
Finite Bu�er Realization of Input-Output DiscreteEvent Systems 1 ;2Ratnesh KumarDepartment of Electrical EngineeringUniversity of KentuckyLexington, KY 40506-0046Email: kumar@engr.uky.eduVijay K. GargDepartment of Electrical and Computer EngineeringUniversity of Texas at AustinAustin, Texas 78712-1084Email: vijay@pine.ece.utexas.eduSteven I. MarcusDepartment of Electrical Engineering andInstitute for Systems ResearchUniversity of MarylandCollege Park, MD 20742Email: marcus@src.umd.edu1A preliminary version of the paper has appeared in [16].2This research was supported in part by the Center for Robotics and Manufacturing, Univer-sity of Kentucky, in part by the National Science Foundation under Grants NSF-ECS-9409712,NSFD-CDR-8803012, and NSF-CCR-9110605, in part by the Air Force O�ce of Scienti�c Re-search (AFOSR) under Contract F49620-92-J-0045, and in part by a TRW faculty assistantshipaward.

AbstractMany discrete event systems (DESs) such as manufacturing systems, data base manage-ment systems, communication networks, tra�c systems, etc., can be modeled as input-outputdiscrete event systems (I/O DESs). In this paper we formulate and study the problem of sta-ble realization of such systems in the logical setting. Given an input and an output languagedescribing the sequences of events that occur at the input and the output, respectively, of anI/O DES, we study whether it is possible to realize the system as a unit consisting of a givenset of bu�ers of �nite capacity, called a dispatching unit. The notions of stable, condition-ally stable, dispatchable and conditionally dispatchable units are introduced as existence ofstable (or input-output bounded), and causal (or pre�x preserving) input-output maps, ande�ectively computable necessary and su�cient conditions for testing them are obtained.

1 Introduction and MotivationA discrete event system (DES) is one in which the dynamics or evolution of the systemis governed by the occurrences of certain discrete qualitative changes, called events, in thesystem. Arrival of a customer in a queueing system, loss of a message packet in a com-munication network, termination of an algorithm in a computer program, etc., are someexamples of events. A logical framework was introduced by Ramadge and Wonham [26, 14]for studying the control of the qualitative behavior of DESs; where a DES was modeled asa state machine [10], and the logical behavior of the DES was described using the languageor the set of all possible execution sequences of the state machine.Many DESs such as manufacturing systems, communication networks, database man-agement systems, tra�c systems, etc., can be viewed as input-output discrete event systems(I/O DESs), where an \input" and an \output" language describe the logical behavior at theinput and the output, respectively, of the DES. In a communication network, for example,the collection of all sequences in which messages arrive at the network de�nes the inputlanguage, and the collection of all sequences in which messages depart from the network de-�nes the output language. In a database management system, the set of all interleavings oftransaction operations constitutes the input language, whereas the set of all serializable andstrict [23] interleavings of transaction operations constitutes the output language. Similarly,in a manufacturing system, the set of all possible parts arrival sequences corresponds to thelogical behavior at the input, and the set of all desired parts departure sequences correspondsto the logical behavior at the output end. Common to all these systems is the fact that theevents at the input/output end correspond to physical arrival/departure of messages/read-write operations/parts/customers, etc. In the computer science literature, models such asMoore and Mealy automata [10, Section 2.7], I/O automata [20], etc., and more recentlyin the DES control literature, models such as \command-response" systems [1] have beenproposed for studying I/O DESs.In this paper we study the issue of stable realization of a given I/O DES. Although thework presented here is applicable to any I/O DES of the type described above, our termi-nology pertains to manufacturing systems. (Consequently, the input and output languagesconsist of parts arrival and departure sequences, respectively.) Suppose n di�erent typesof parts P1; P2; : : : ; Pn arrive in some order (on one or more conveyor belts) at the inputof a manufacturing system, whereas they depart in some other order at the output. Weinvestigate whether such an input-output manufacturing system can be represented as adispatching unit consisting of n �nite capacity bu�ers B1; B2; : : : ; Bn (bu�er Bk is used forstoring part type Pk) together with a dispatching policy|a stable and causal input-outputmap. The dispatching policy determines at each arrival instance whether or not to bu�erthe arrived part, and the sequence in which bu�ered parts must be dispatched so that thebu�er capacity constraints remain satis�ed at each such instance. Note that our model al-lows the possibility of simultaneous departures. Also note that if the departure sequence ata certain arrival instance is the empty sequence, then this simply means that the arrivedpart is bu�ered in its bu�er at that instance.1

It is evident that if there exists no departure sequence constraint, or equivalently, if theoutput language consists of the collection of all possible departure sequences, then thereexists a trivial dispatching policy, which dispatches a part when it arrives; thus no bu�eringis needed. Hence if there is no departure sequence constraint, then any given unit is \dis-patchable". However, when a departure sequence constraint is imposed, then there is no apriori guarantee that a dispatching unit will be dispatchable. For example, suppose that twotypes of parts a and b arrive in the order ababab : : :, whereas they must be dispatched in theorder aabaabaab : : :. Since part types a and b arrive alternately, whereas two parts of type aand one part of type b are dispatched alternately, it is clear that the bu�er for part type bwill grow without bound.It follows from this example that the stability of the bu�ers in the dispatching unitdepends on the qualitative constraint imposed by the set of arrival and departure sequences.This observation motivates the work presented in this paper. The work presented herethus supplements other works such as those reported in [25, 13, 19, 12, 3, 27, 6, 5], whichdeal with the quantitative stability issues for manufacturing systems. The works reportedin [2, 22, 21, 15, 28] also deal with stability issues in the logical setting. However, theseaddress the issue of eventual/in�nitely-often reachability of \safe" states/strings, and arenot applicable to the study of boundedness of bu�ers as described above. It should also benoted that the dispatching unit that we study in this paper is an example of a vector discreteevent system for which the controllability issues have recently been reported in [17, 18]. Ourwork deals with stability issues of such systems.A dispatching unit is de�ned as a triple (I;O;��!jBj), where I, called the input language,denotes the set of all possible arrival sequences; O, called the output language, denotes theset of all possible departure sequences; and ��!jBj, called the bu�er capacity vector, representsthe capacities of the individual bu�ers. We consider two kinds of scenarios: (i) The arrivalsequence is known in advance. This applies, for example, to the setting of a manufacturingsystem where production planning is done in an o�-line manner|i.e., prior to the actualproduction. This information should be taken into account for designing a dispatching policy.The notions of conditional stability and conditional dispatchability discussed below refer tothis scenario. (ii) The arrival sequence is not known in advance, and the decision to eithertemporarily bu�er an arrived part, or to dispatch it, is taken based on the previously arrivedsequence of parts. This applies, for example, to the setting of a
exible manufacturingsystem where production decisions are made in an on-line manner|i.e., during the actualrun of production. The notions of (unconditional) stability and dispatchability discussedbelow refer to this scenario.Given a language I 0 � I, a map DI 0 : I 0 ! O is said to be an input-output map over I 0;if I 0 = I, then it is simply said to be an input-output map. An input-output map cannotbe used to realize a dispatching policy unless it is causal (or pre�x preserving) and stable(or input-output bounded). In case an input-output map is causal and stable, we providea technique for realizing a dispatching policy. Causality of an input-output map is neededto unambiguously determine the sequence of parts to be dispatched at each arrival instance,2

whereas stability of an input-output map is needed to satisfy the bu�er capacity constraintsat each such instance. A dispatching unit is de�ned to be stable if there exists a stableinput-output map for it. A dispatching unit is de�ned to be dispatchable if there exists astable as well as causal input-output map for it.In the setting where the arrival sequence, say s 2 I, is known in advance, then an input-output map corresponds to a map of the type Ds : s! O de�ned from the set of pre�xes ofthe known arrival sequence to the output language. A dispatching policy in this setting is acausal and stable input-output map de�ned over the pre�xes of the known arrival sequence.A dispatching unit is de�ned to be conditionally stable if for each arrival sequence there existsa stable input-output map de�ned over the pre�xes of the arrival sequence. A dispatchingunit is said to be conditionally dispatchable if for each arrival sequence, there exists a stableas well as causal input-output map de�ned over the pre�xes of the arrival sequence.We show that an input-output map is causal if and only if it is representable as a Mealyautomaton [10]. We also present a test for the stability of a causal input-output map usingits Mealy automaton representation. It is clear that the stability of a dispatching unit impliesits conditional stability. We show that the converse is also true, i.e., the two notions areequivalent. The notion of semi-linear sets [7, 24] is used to obtain a necessary and su�cientcondition for the stability of a dispatching unit. It is also clear that the dispatchability of adispatching unit implies its conditional dispatchability. We show the converse is not true. Weobtain a necessary and su�cient condition for determining the conditional dispatchability ofa given dispatching unit using concurrent composition [9] of systems. Finally, we obtain anecessary and su�cient condition for the dispatchability of a given dispatching unit.The rest of the paper is organized as follows: Section 2 develops the notations usedfor the analysis. Section 3 de�nes the notions of dispatching units, dispatching policies,stability and dispatchability of dispatching units, and gives illustrative examples. Section4-6 presents algorithmic tests for existence of respectively, stable, conditionally dispatchable,and dispatchable units. Techniques to synthesize dispatching policies whenever they existare also presented in those sections. Section 7 discusses the conclusion and future research.2 Notation and PreliminariesAs discussed in introduction, an input language over a �nite number of part types isused for describing the set of all possible sequences in which part types may arrive, and anoutput language is used for describing the set of all possible sequences in which they maydepart. Let n 2 N denote the total number of part types. The set �I (respectively, �O) isused to denote the set of events, each element of which corresponds to arrival (respectively,departure) of a certain part type. Thus j�I j = j�Oj = n.Given a �nite set � = f�1; �2; : : : ; �ng of size n 2 N , �� is used to denote the set of allpossible �nite sequences of elements belonging to �, including the zero length sequence �;��N � �� is used to denote the set of sequences of length no greater than N 2 N . Givens; t 2 ��, we use s � t to denote that s is a pre�x of t. For a string s 2 �� the notationjsj 2 N is used to denote the length of s; and s � �� denotes the set of all pre�xes of s. For3

each k � jsj, the notation s(k) 2 � is used to denote the kth element of s, s(k) � s is usedto denote the pre�x of length k of s, and s(k) 2 �� denotes the su�x obtained by deletingthe �rst k elements of s. For s 2 ��, and k � n, the notation #(�k; s) is used to denote thenumber of occurrences of the symbol �k in the string s; and the notation ~s 2 N n is used todenote the count vector of s, also called the score vector or the Parikh's map [24] de�ned as:~s := [#(�1; s); : : : ;#(�k; s); : : : ;#(�n; s)]:For example if s = �1�2�n�3�2, then ~s = [1; 2; 1; 0; 0; : : : ; 0; 1]. The count vector is usedbelow for calculating the di�erence between the numbers of each part type in an arrivalsequence and in the corresponding departure sequence under a given dispatching policy. Asubset L � �� is called a language over �. Given L � ��, L is used to denote (pre�x) closureof L, i.e., L := ft 2 �� j 9s 2 L s.t. t 2 sg: The set of count vectors of L � ��, denoted~L � N n, is de�ned to be ~L := f~s 2 N n j s 2 Lg.Letting I;O denote the input, output language constraints respectively, we have I � ��I ,and O � ��O. It is clear that if a sequence s 2 I is an arrival sequence, and if t � s, thent should also be an arrival sequence. Hence we require that I be a closed language, i.e.,I = I. Similarly, we require that O be closed, i.e., O = O. Both I and O can in generalcontain in�nitely many sequences. However, if they are regular languages, then they can beconcisely described using deterministic �nite automata (DFA) (refer to [10] for the de�nitionof regular languages).A deterministic automaton (DA) G is de�ned to be the quadruple:G := (Q;�; �; q0);where Q denotes the state set of G, � is the event set of G, � : Q � � ! Q denotesthe (partial) deterministic transition function of G, and q0 2 Q denotes the initial stateof G. G is a DFA if Q is �nite. The transition function �(�; �) is recursively extended to�� : Q� �� ! Q as follows:8q 2 Q; s 2 �� : ��(q; s) := ��(�(q; s(1)); s(1)); ��(q; �) := q:The language generated by G, denoted L(G), is de�ned to be:L(G) := fs 2 �� j ��(q0; s) is de�nedg:It follows from this de�nition that L(G) is closed. A DA G0 := (Q;�; �0; q0) is said to be asubautomaton [10] of the DAG, writtenG0 � G, if for each q 2 Q and � 2 �, �0(q; �) = �(q; �)whenever it is de�ned.Given I � ��I ; O � ��O as speci�cations for input, output languages respectively, DAsGI := (QI;�I ; �I ; q0I); GO := (QO;�O; �O; q0O) are used as their respective generators; i.e.,L(GI) = I; L(GO) = O.n di�erent bu�ers, one for each part type, are used for temporary storage. Let Bk denotethe bu�er for the kth part type, and jBkj 2 N denote its capacity. We use the notation4

��!jBj2 N n, called the bu�er capacity vector, to denote the vector formed by considering thecapacities of the individual bu�ers, i.e.,��!jBj:= [jB1j; jB2j; : : : ; jBkj; : : : ; jBnj]:This system of n bu�ers can be described as a \bu�er DFA",GB = (QB;�B; �B; q0B), where (i)QB := f~b 2 N n j ~0 � ~b ���!jBjg1 is the �nite set of states|each state is a vector representingthe number of bu�ered parts of each type, (ii) �B := �I ���kBkO , where kBk :=Pnk=1 jBkj isthe sum of all the bu�er capacities|each transition represents a possible arrival event and apossible departure sequence at the indicated state, (iii) q0B := ~0|initially all the bu�ers areempty, and (iv) the transition function is de�ned as follows (~b 2 QB; � 2 �I ; s 2 ��kBkO):�B(~b; (�; s)) := 8<: [~b+ ~� � ~s] if ~0 � [~b+ ~� � ~s] ���!jBjunde�ned otherwiseThus when an arrival event � 2 �I and a departure sequence s 2 ��kBkO occur in the bu�erstate ~b, then the resulting bu�er state is obtained by adding the count vector [~� � ~s] to thebu�er state ~b, provided the resulting bu�er state satis�es the bu�er capacity constraints.Example 1 Consider for example a dispatching unit for three part types fa; b; cg. Suppose(a; �) � 2 fa; b; cg(�; �a);~b = [1; 0; 0]~0 (�; a�) (�; �)(�; �)Figure 1: Bu�er DFA with ��!jBj= [1; 0; 0]there is a single bu�er space for the part type a, and there is no bu�er space for other parttypes, i.e., the bu�er capacity vector ��!jBj= [1; 0; 0]. Then the corresponding bu�er DFA isshown in Figure 1.Let the map �O : �I � ��O ! ��O denote the projection operation onto the outputevents, i.e., �O(�; s) := s, where � 2 �I and s 2 ��O. This map can be extended to�O : 2(�I���O)� ! 2��O in a natural way. The map �I : 2(�I���O)� ! 2��I can be de�nedanalogously. The following proposition can be obtained in a straightforward manner usinginduction on the length of strings.1~0 denotes the zero vector of size n, and the \�" relation holds for vectors if it holds for their eachrespective components. 5

Proposition 1 Let GB = (QB;�B; �B; q0B) be the bu�er DFA as de�ned above. ThenL(GB) = fs 2 (�I � ��kBkO)� j 8k � jsj : ~0 � [����!�I(s(k)) � ����!�O(s(k))] ���!jBjg:3 Dispatching Unit and Dispatching PoliciesHaving introduced the notation, we now formally de�ne a dispatching unit, the notions ofconditional stability, stability, conditional dispatchability, and dispatchability of a dispatch-ing unit. Given an input language I � ��I , an output language O � ��O, and a bu�er capacityvector ��!jBj2 N n, the corresponding dispatching unit is de�ned to be the triple (I;O;��!jBj).We are mainly interested in stability and causality of input-output maps de�ned either overthe input language, or over the pre�xes of a given arrival sequence. However, in general,these can be de�ned over any closed sublanguage of the input language.De�nition 1 Given a dispatching unit (I;O;��!jBj), and a closed language I 0 � I, an input-output map DI 0 : I 0 ! O is said to be stable (or input-output bounded) over I 0 ifStability: 8s 2 I 0 : ~0 � [~s� ����!DI 0(s)] ���!jBj :It is said to be causal over I 0 if it is pre�x preserving, i.e.,Causality: 8s; t 2 I 0 : s � t) DI 0(s) � DI 0(t):In other words, the stability of an input-output map DI 0 : I 0 ! O implies that for eacharrival sequence s 2 I 0 the di�erence between the count vectors of s and DI 0(s) is (i) boundedbelow by the zero vector, implying that the number of dispatched parts does not exceed thenumber of arrived parts for each part type, and (ii) bounded above by the bu�er capacityvector, implying that the bu�ers of each part type never over
ow. The causality of an input-output map DI 0 : I 0 ! O implies that the departure sequence corresponding to the arrivalsequence s 2 I 0 is a pre�x of the departure sequence corresponding to the arrival sequencet 2 I 0 whenever s is a pre�x of t. Consequently, upon occurrence of an arrival event � 2 �Ifollowing an arrival sequence s 2 I 0 (so that s� 2 I 0), the sequence of parts to be dispatchedis obtained as DI 0(s�)(jDI0(s)j), i.e., it is the su�x obtained by deleting the initial pre�x DI 0(s)from the sequence DI 0(s�). This is well de�ned since DI 0(�) is causal.Remark 1 A stable and causal input-output map can be used to obtain a dispatching policywhich determines the sequence of parts to be dispatched following each arrival sequence insuch a manner that the output language constraint as well as the bu�er capacity constraintis satis�ed. More formally, given a dispatching unit (I;O;��!jBj) and a closed language I 0 � I,a dispatching policy over I 0 is a map PI 0 : I 0 ! ��O such thatP1: 8s 2 I 0 : ts := PI 0(s(1))PI 0(s(2)) : : :PI 0(s) 2 O, andP2: 8s 2 I 0 : ~0 � [~s� ~ts] ���!jBj. 6

Note that given a dispatching policy PI 0 : I 0 ! ��O over I 0, it induces a stable and causalinput-output map DI 0 : I 0 ! O over I 0 de�ned as DI 0(s) := PI 0(s(1))PI 0(s(2)) : : :PI 0(s) foreach s 2 I 0. Conversely, given a stable and causal input-output map DI 0 : I 0 ! O over I 0, itinduces a dispatching policy PI 0 : I 0 ! ��O over I 0 de�ned as PI 0(s) := DI 0(s)(jDI0(s(jsj�1))j) ifs 6= �, and PI 0(�) := �.De�nition 2 Given a dispatching unit (I;O;��!jBj), it is said to be stable if there exists astable input-output map over I; it is said to be dispatchable if there exists a stable and causalinput-output map over I (equivalently, a dispatching policy over I).Remark 2 Note that the notion of a \causal" dispatching unit de�ned as the existence of acausal input-output map over I is not of any interest, as given a dispatching unit (I;O;��!jBj),there exists a trivial causal input-output map DI : I ! O de�ned as DI (s) := �, for eachs 2 I. Hence, we have only de�ned the notions of stability and dispatchability (and not\causality") of a dispatching unit.The existence of a dispatching policy over I requires that the sequence of parts to bedispatched after an arrival sequence s 2 I should depend only on s|the past sequenceof arrivals, and no knowledge about the future arrival sequence is assumed. However, asdiscussed in the introduction, in some applications the entire arrival sequence may be knownin advance, and a dispatching policy should be determined by taking this fact into account.Hence, we de�ne the weaker notions of conditional stability and conditional dispatchability.De�nition 3 Given a dispatching unit (I;O;��!jBj), it is said to be conditionally stable iffor each s 2 I, there exists a stable input-output map over s; it is said to be conditionallydispatchable if for each s 2 I, there exists a stable and causal input-output map over s(equivalently, a dispatching policy over s).Thus conditional stability requires existence of a set of input-output maps fDs : s! O js 2 Ig such that each map Ds(�) is stable; and conditional dispatchability requires that eachsuch map be also causal. It follows from De�nition 2 that dispatchability of a dispatchingunit implies its stability; similarly it follows fromDe�nition 3 that conditional dispatchabilityof a dispatching unit implies its conditional stability. It also follows from De�nitions 2 and3 that stability of a dispatching unit implies its conditional stability, since given a stableinput-output map DI : I ! O and any sequence s 2 I, restriction of DI (�) to s yields a stableinput-output map over s; similarly dispatchability of a dispatching unit implies its conditionaldispatchability. Note that given a set of stable input-output maps fDs : s ! O j s 2 Ig,one can obtain a stable input-output map DI : I ! O by de�ning DI (s) := Ds(s) for eachs 2 I. Hence conditional stability of a dispatching unit also implies its stability. Thus thetwo notions are equivalent. However, as illustrated by an example below (refer to Example4), conditional dispatchability of a dispatching unit does not imply its dispatchability. Thus,there are essentially three classes of dispatching units|stable, conditionally dispatchable,and dispatchable. Next we illustrate this using a series of examples. The �rst example7

illustrates that not all dispatching units are stable, and the class of stable dispatching unitsis nonempty.Example 2 Let the input, output language constraint for two part types a and b be givenas: I = fakbk j k � 0g, and O = fbkak j k � 0g. Then there exists no �nite bu�ercapacity vector ��!jBj< [1;1] such that (I;O;��!jBj) is stable. In order to see this suppose��!jBj= [n1; n2] 2 N 2, and consider the input string an1+1 2 I. Note that due to the outputlanguage constraint, any dispatcher before dispatching a certain number of parts of type amust dispatch an equal or greater number of parts of type b. Since no part of type b ispresent in an1+1, a dispatcher is forced to bu�er all the n1 + 1 parts of type a. However,this violates the bu�er capacity constraint. This illustrates that not every dispatching unitis stable.Consider a di�erent setting in which I = fakbk j k � 0g, O = fa2kb2k j k � 0g, and let��!jBj= [1; 1]. Then an input-output map DI : I ! O de�ned as DI(akbl) := a2b k2 cb2b l2 c for eachk � l � 0 is a stable input-output map, where bk2c denotes the largest integer smaller thank2 . Hence, (I;O;��!jBj) is stable. This illustrates that the class of stable dispatching units isnonempty.The next example illustrates that the class of conditionally dispatchable dispatching unitsis a proper subclass of the class of stable dispatching units.Example 3 Let the input and output language constraints for the two part types a andb be given as I = (ab)� and O = a�b�. Then an input-output map DI : I ! O de�nedas DI ((ab)k) := akbk and DI((ab)ka) := ak+1bk for each k � 0 is a stable input-outputmap. Thus (I;O;��!jBj) is stable with ��!jBj= [0; 0]. However, (I;O;��!jBj) is not conditionallydispatchable for any ��!jBj< [1;1]. In order to see this, suppose the bu�er capacity vectoris ��!jBj= [n1; n2] 2 N 2 and let n := maxfn1; n2g. Consider the input string s := (ab)2n+2 2 Iand its pre�x t := (ab)n+1. Then for the bu�er capacity constraint to hold, the output stringfor s must of the form a2n+2�n1akb2n+2�n2bl, where k � n1 and l � n2. On the other hand,the output string for t must be of the form an+1�n1ak0bn+1�n2bj0, where k0 � n1 and j0 � n2.Note that 2n + 2 � n1 + k � n1 + 2 > n1 + 1 � n + 1 � n1 + k0, and n + 1 � n2 + j0 � 0.Thus although t is a pre�x of s, the output string for t cannot be a pre�x of the outputstring for s. This shows that (I;O;��!jBj) is not conditionally dispatchable. Thus the class ofconditionally dispatchable dispatching units is a proper subclass of the class of stable ones.Finally, the following example illustrates that the class of dispatchable dispatching unitsis nonempty, and it is a proper subclass of the class of conditionally dispatchable ones.Example 4 Let a; b; c; d represent the part types, and let the input language constraint beI = (ab)�c�, and the output constraint be O = (ba)�c�. Then a dispatching policy (i.e., a8

stable and causal input-output map) can be obtained as follows: bu�er the initially arrivedpart a, and then repeatedly dispatch ba for each arrival of ba until the �rst arrival of parttype c occurs, upon when dispatch bca (using the last arrived part b, bu�ered part a, andthe currently arrived part c), and then continue dispatching part c whenever it arrives. Thisillustrates that the class of dispatchable dispatching units is nonempty.Now, if the input and output language constraints are changed to I = (ab)�(c� + d�),and O = (ba)�c� + (ab)�d�, respectively, then a dispatching policy cannot be constructed.This is because the departure sequence must contain a pre�x ab : : : ab if the arrival sequencecontains the event d, whereas, it must contain a pre�x ba : : : ba if the arrival sequence containsthe event c. However, since the knowledge of the entire arrival sequence is not available inadvance, any dispatcher is forced to bu�er an unbounded number of parts. On the otherhand, if the arrival sequence is known in advance, then it is easy to construct a dispatchingpolicy. This illustrates that the class of dispatchable dispatching units is a proper subclassof the class of conditionally dispatchable dispatching units.Figure 2 summarizes the relationship among various types of dispatching units de�nedabove.
causal = conditionally causal = all

stable = conditionally stable

conditionally dispatchable =

dispatchable =
stable + causal

conditionally stable + causalFigure 2: Relationship among various types of dispatching units4 Stable UnitsIn this section we provide existence condition for stable dispatching units and discusstechnique for verifying it. This requires the concept of semi-linear sets.The motivation for studying semi-linear sets comes from the notion of count vector in-troduced in section 2. Let ~x = [x1; x2; : : : ; xn] and ~y = [y1; y2; : : : ; yn] be elements of N n,where for each 1 � k � n, xk; yk 2 N . We de�ne addition and scalar multiplication in N nin the usual manner:~x+ ~y := [x1 + y1; x2 + y2; : : : ; xn + yn]; �~x := [�x1; �x2; : : : ; �xn];where � 2 N . 9

De�nition 4 Given ~c; ~p1; : : : ; ~pk 2 N n, the setX[~c; ~p1; : : : ; ~pk] := f~c+ n1~p1 + : : :+ nk ~pk j nj 2 N ;8j � kg � N nis called a linear set. ~c is the constant, and for each j � k, ~pj is a period of the linear set. Asubset of N n is called a semi-linear set if it is a �nite union of linear sets.For example, the linear set X[[10; 10]; [1; 0]; [0; 1]] represents the set of all points in a planehaving integer coordinates greater than or equal to 10.Semi-linear sets form an important class of subsets of N n from the viewpoint of formallanguage theory because the count vector of any context-free language is a semi-linear set[24]. This fact was �rst shown by Parikh [24]. We prove a special case of this result forregular languages. Our proof has the advantage that it provides a decomposition of a regularlanguage into a �nite number of regular sublanguages whose count vectors are linear sets.Our method uses the regular expression representation of regular languages [10]. A regularexpression de�ned on an alphabet set � is any expression containing the symbols: choiceoperation (represented by \+"), concatenation operation (represented by \:"), Kleene closureoperation (represented by \�"), �, and symbols from �.De�nition 5 A regular expression is called a linear regular expression if its count vector isa linear subset of N n.An algebraic characterization of linear regular expressions is given next. Let r] := r:r�, inwhich r is repeated any �nite number of times but at least once. A regular expression can bewritten using the operations \ + "; \:"; \]" by eliminating \�" using the identity r� = r] + �.Lemma 1 Let � = f�1; : : : ; �ng be a �nite alphabet set of size n 2 N . Any expressioncomposed of \]"; \:", �, and any symbol from � is a linear regular expression.Proof: Note that a regular expression composed of either � or a single symbol from � is alinear regular expression. The linear set corresponding to � equals X[~0;]; and the linear setcorresponding to a symbol �k 2 �, where k � n, equals X[[0; : : : ; 1; : : : ; 0];], in which thekth entry of the constant is 1. We need to show that the operations \:" and \]" preservelinearity.We claim that if r1; r2 are linear regular expressions, then so are r1:r2 and r]1. To seethis let ~r1 = X[~c; ~p1; : : : ; ~pk] and ~r2 = X[~d; ~q1; : : : ; ~ql], where ~c; ~d 2 N n are constants, and~pi; ~qj 2 N n for each i � k; j � l are periods. Then ����!r1:r2= X[~c+ ~d; ~p1; : : : ; ~pk; ~q1; : : : ; ~ql], and��!r]1 = X[~c;~c; ~p1; : : : ; ~pk].We now present a method for decomposing a regular expression into a �nite number oflinear regular expressions.Lemma 2 Let r be a regular expression. Then it can be written as r1+ r2+ : : :+ rn, whererk for each k � n is a linear regular expression.10

Proof: We �rst replace each occurrence of \�" by \]" in r using the identity described aboveso that r contains only the operation symbols \:"; \]", and \+". Then the result follows fromLemma 1 and by noting these two facts: (i) Given any three regular expressions r1; r2; r3 thefollowing holds: (r1 + r2):r3 = r1:r3 + r2:r3 and r3:(r1 + r2) = r3:r1 + r3:r2;and (ii) Given any two regular expressions r1; r2 the following holds:(r1 + r2)] = r]1 + r]2 + (r]1:r]2)] + (r]2:r]1)] + (r]1:r]2)]:r]1 + (r]2:r]1)]:r]2The right hand side of the identity corresponds to the following choices between r1 and r2:1. one or more of strings from r12. one or more of strings from r23. starts with a string in r1, ends in a string in r24. starts with a string in r2, ends in a string in r15. starts with a string in r1, ends in a string in r1, at least one string from r26. starts with a string in r2, ends in a string in r2, at least one string from r1It is easily veri�ed that these are the only possible choices.Since ����!r1 + r2= ~r1[~r2 for any two regular expressions r1 and r2, the following Propositionis immediate from Lemmas 2 and 1.Proposition 2 If L is a regular language over a �nite set �, then its count vector ~L � N j�jis a semi-linear set.Example 5 Consider the language a�b� de�ned over the alphabet set fa; bg. Thena�b� = (a] + �):(b] + �) = (a]:b] + a] + b] + �):The corresponding linear sets are:~� = X[[0; 0];];��!a] = X[[1; 0]; [1; 0]];��!b] = X[[0; 1]; [0; 1]]; ��!a]:b]= X[[1; 1]; [0; 1]; [1; 0]]:Using the tools of semi-linear sets, we next obtain conditions under which a given dis-patching unit (I;O;��!jBj) is stable, so that there exists a stable input-output map for it.Consider two sets P;Q � N n and de�neP �Q := f~w 2 N n j 9~u 2 P;~v 2 Q s.t. ~w = ~u+ ~vg:Note that if P;Q are semi-linear sets, then so is P �Q. De�ne ~B := f~b 2 N n j ~0 � ~b ���!jBjg,i.e., ~B is the collection of all possible bu�er state vectors. Since ~B is a �nite set, it is clearthat it is a semi-linear set. 11

Theorem 1 A dispatching unit (I;O;��!jBj) is stable if and only if ~I � ~O � ~B.Proof: ()) Assume �rst that (I;O;��!jBj) is stable. Consider any string s 2 I so that ~s 2 ~I.Since (I;O;��!jBj) is stable, there exists a map DI : I ! O such that ~0 � [~s� ��!DI(s)] ���!jBj.This implies that [~s� ��!DI (s)] 2 ~B, i.e., there exists ~b 2 ~B such that [~s� ��!DI (s)] = ~b. Thiscan be rewritten to obtain ~s = ��!DI(s) +~b. Now since DI (s) 2 O and ~b 2 ~B we obtain that~s 2 ~O � ~B, as desired.(() Assume next that ~I � ~O� ~B. Consider s 2 I, then ~s 2 ~I. Hence there exists t 2 Oand ~b 2 ~B such that ~s = ~t+~b, i.e., ~s� ~t = ~b. Since ~b 2 ~B, we have that ~0 � ~b ���!jBj. Hence~0 � [~s� ~t] ���!jBj. Thus by setting DI (s) := t, we can conclude that (I;O;��!jBj) is stable.Remark 3 It follows from Theorem 1 and Proposition 2 that when I and O are regularlanguages, then the task of determining whether a given dispatching unit (I;O;��!jBj) is stableis reduced to checking whether a semi-linear set is contained in another semi-linear set. Itis shown in [7] that the containment problem for semi-linear sets in a general setting isdecidable.Example 6 Consider the setting of Example 2 with I = fakbk j k � 0g;O = fa2kb2k j k �0g;��!jBj= [1; 1]. Then ~I = f[n1; n2] j 0 � n1 � n2 � 1g~O = f[n1; n2] j 0 � n1 � n2 � 2; n1 or n2 eveng~B = f[n1; n2] j 0 � n1; n2 � 1gHence it follows that ~O � ~B = f[n1; n2] j �1 � n1 � n2 � 3g:Thus ~I � ~O � ~B, so Theorem 1 implies that the triple (I;O;��!jBj) is a stable dispatchingunit.Theorem 1 demonstrates that the property of stability only depends on the count vectorsof the languages involved. Given a �nite set �, de�ne an equivalence relation �= � 2�� � 2��such that for K;L � ��, K �= L if ~K = ~L. In this case K and L are said to be countequivalent or letter equivalent. A consequence of Theorem 1 is the following corollary:Corollary 1 Let I1; I2 � ��I , O1; O2 � ��O be such that I1 �= I2 and O1 �= O2; then(I1; O1;��!jBj) is stable if only if (I2; O2;��!jBj) is stable.12

5 Conditionally Dispatchable UnitsIn this section we obtain a necessary and su�cient condition under which a given dis-patching unit (I;O;��!jBj) is conditionally dispatchable, so that for each s 2 I, there exists astable and causal input-output map de�ned over pre�xes of s. The condition is obtained interms of the output-composition of the bu�er DFA GB and the DA GO which generates theoutput language O.De�nition 6 The output-composition of GB and GO, denoted GBO, is another DA GBO :=(QB�QO;�B; �BO; (~0; q0O)), where the transition function is de�ned as (~b 2 QB; qO 2 QO; � 2�I ; s 2 ��kBkO):�BO((~b; qO); (�; s)) := ((�B(~b; (�; s)); ��O(qO; s)) if �B(~b; (�; s)); ��O(qO; s) de�nedunde�ned otherwiseThus a transition corresponding to an arrival event � 2 �I and a departure sequence s 2��kBkO is de�ned in a bu�er state ~b and a state qO of the generator for O if and only if (i) theresulting bu�er state [~b+~��~s] is an admissible bu�er state (i.e., bu�er capacity constraintsare satis�ed), and (ii) the departure sequence s is executable in the state qO of GO (i.e., s is avalid extension of the departure sequence, execution of which from the initial state q0O leadsto the state qO in GO). Since the number of states of the bu�er DFA equals Qnk=1(jBkj+1),the number of states in GBO equals jQOj � [Qnk=1(jBkj+ 1)].Example 7 Consider the setting of Example 4 with I = (ab)�c�;O = (ba)�c�;��!jBj= [1; 0; 0].The DFAs GI and GO generating the input and output languages, respectively, are shown inFigure 3(a) and 3(b), respectively; and the bu�er DFA GB with capacity vector ��!jBj= [1; 0; 0]is shown in Figure 1. 321 (b)(a) ab cccc abFigure 3: Diagram illustrating DFAs GI and GO13

(c; c) (c; c) (c; ac)(c; c)(a; �)(a; �) (c; c)(b; ba)(b; b)(a; a) (a; �)(b; ba)(b; b)(a; a)(a)
c c ca ccab b a baba (b)

(~0; 1) (~0; 2)(~b; 1) (~b; 2)(~b; 3)(~0; 3)Figure 4: Diagram illustrating DFA GBOFigure 4(a) depicts the DFA GBO obtained using output-composition of GB and GO asstated in De�nition 6.The result of the following proposition can be obtained in a straightforward manner byusing induction on the length of strings.Proposition 3 Consider the DA GBO = (QB � QO;�B; �BO; (~0; q0O)) as in De�nition 6.Then L(GBO) = fs 2 L(GB) j �O(s) 2 Og:It follows from Proposition 3 that L(GBO) � L(GB) and �O(L(GBO)) � O.Theorem 2 A dispatching unit (I;O;��!jBj) is conditionally dispatchable if and only if I ��I(L(GBO)).Proof: ()) Assume �rst that (I;O;��!jBj) is conditionally dispatchable. Pick any strings 2 I; then we need to show that s 2 �I(L(GBO)). Since the dispatching unit (I;O;��!jBj) isconditionally dispatchable, it follows from De�nition 3 that there exists a map Ds : s ! Othat is stable and causal over all pre�xes of s. Recall that for each k � jsj, the notation14

s(k) 2 �I is used to denote the kth element in s; the notation s(k) � s is used to denote thepre�x of length k of s; and the notation s(k) 2 ��I is used to denote the sequence obtainedby deleting the initial k symbols from s. Consider the following sequence of pairs of arrivalevents and departure sequences:sIO :=fs(1);Ds(s(1))g: : :fs(k);Ds(s(k))(jDs(s(k�1))j)g: : :fs(jsj);Ds(s)(jDs(s(jsj�1))j)g2 (�I � ��O)�;where the kth pair consists of the arrival event s(k) 2 �I and the departure sequence obtainedby deleting the initial pre�x Ds(s(k�1)) from the departure sequence Ds(s(k)). Note that thisis well de�ned since the map Ds(�) is causal over pre�xes of s. Since the map Ds(�) is alsostable over the pre�xes of s, the following holds for each k � jsj: ~0 � [��!s(k) � ����!Ds(s(k))] ���!jBj.Since s(k) = �I(s(k)IO) and Ds(s(k)) = �O(s(k)IO), we obtain that for each k � jsj;~0 � [����!�I(s(k)IO)� ����!�O(s(k)IO)] ���!jBj. Hence it follows from Proposition 1 that sIO 2 L(GB). It is clear that�O(sIO) = Ds(s), hence �O(sIO) 2 O. Consequently, it follows from Proposition 3 thatsIO 2 L(GBO). Since �I(sIO) = s, we obtain as desired that s 2 �I(L(GBO)).(() Next assume that I � �I(L(GBO)). Pick s 2 I, then we need to show that thereexists a map Ds : s ! O which is stable and causal over all pre�xes of s. Since I ��I(L(GBO)), there exists a string sIO 2 L(GBO) such that �I(sIO) = s. For a length kpre�x of s de�ne Ds(s(k)) := �O(s(k)IO). Since sIO 2 L(GBO) � L(GB) and s(k)IO is the lengthk pre�x of sIO, we have that s(k)IO 2 L(GB). Hence it follows from Proposition 1 that~0 � [����!�I(s(k)IO) � ����!�O(s(k)IO)] ���!jBj. Since �I(s(k)IO) = s(k) and �O(s(k)IO) = Ds(s(k)), we obtain that~0 � [��!s(k) � ����!Ds(s(k))] ���!jBj. Since k is arbitrary, this implies that the map Ds(�) is stableover all pre�xes of s. It is clear that if k � l, then Ds(s(k)) = �O(s(k)IO) � �O(s(l)IO) = Ds(s(l)).This proves that the map Ds(�) is also causal over all pre�xes of s.Remark 4 It follows from Theorem 2 that the conditional dispatchability, i.e., existence ofa stable and causal input-output map over all pre�xes of a known arrival sequence for thegiven dispatching unit (I;O;��!jBj), can be determined by testing whether the input languageI is contained in the language obtained by projecting the language of the output-composedDA GBO onto the input event set. Also note that while the statement of Theorem 2 providesan existence condition for a stable and conditionally causal dispatching policy, its proof isconstructive, i.e., it provides a technique to compute such a dispatching policy whenever itexists. (Refer to the example below for illustration of such a construction.)Example 8 Consider the setting of Example 7. As mentioned above, the correspondingGI and GO are shown in Figures 3(a) and 3(b), respectively, GB is shown in Figure 1, andGBO is shown in Figure 4(a). The DFA shown in Figure 4(b) is obtained by projecting eachtransition in the DFA GBO to the input event set. Hence the language generated by theDFA of Figure 4 equals �I(L(GBO)). Consider the sub-automaton of the DFA of Figure4(b) lying within the rectangular area. Then the language generated by this sub-automaton15

equals (ab)�c� = I. Hence we conclude that I � �I(L(GBO)). Thus it follows from Theorem2 that the corresponding (I;O;��!jBj) is conditionally dispatchable.The corresponding dispatching policy can be obtained as follows: Pick any arrival se-quence s 2 I. Since I � �I(L(GBO)), the arrival sequence s can be traced in the DFA ofFigure 4(b) starting from the initial state. Consider the corresponding path in the DFAGBO. Then the required dispatching policy is obtained simply by considering the departuresequence for each arrival event in the sequence s. Suppose for example the arrival sequence isabc. Then upon arrival of a, nothing is output (a is bu�ered, this is feasible as ��!jBj= [1; 0; 0]);upon arrival of next b, ba is output; and �nally, upon arrival of c, c is output.6 Dispatchable UnitsIn this section we obtain conditions under which a given dispatching unit (I;O;��!jBj)is dispatchable so that a stable and causal input-output map or a dispatching policy existsfor it. We �rst show that a causal input-output map can be represented as a DeterministicMealy Automaton (DMA) [10]. A condition for stability of a given causal input-output mapis then obtained using its DMA representation.Letting M denote a DMA, it is a six-tuple:M := (Q;�;�; �; �; q0);where Q;�; �; q0 are as in a DA, � is the output event set, and � : Q��! �� is the deter-ministic output function. M is said to be a deterministic �nite Mealy Automata (DFMA) ifQ is �nite. The output function is extended to �� : Q� �� ! �� recursively as follows:8q 2 Q; s 2 �� : ��(q; s) := ��(�(q; s(1)); s(1)); ��(q; �) := �:The input language, denoted LI(M) � ��, and the output language, denoted LO(M) � ��,of M are de�ned as:LI(M) := fs 2 �� j ��(q0; s) de�nedg; LO(M) := ft 2 �� j 9s 2 LI(M) s.t. ��(q0; s) = tg:A DMA is a DA together with an output function which describes the outputs of the DAon its state transitions. Conversely, a DMA can be viewed as a DA|similar in structureto the bu�er DFA GB, which we describe next. Given a DMA M := (Q;�;�; �; �; q0), itcan equivalently be represented as a DA GM := (Q;� � ��; �M ; q0), where the transitionfunction �M : Q� (����)! Q is de�ned as follows (q 2 Q;� 2 �; s 2 ��):�M(q; (�; s)) := (�(q; �) if �(q; �) de�ned, and �(q; �) = sunde�ned otherwiseNote that L(GM) � (����)�. It is easily seen that �I(L(GM)) = LI(M) and �O(L(GM)) =LO(M). 16

De�nition 7 Given a DMA M := (Q;�I;�O; �; �; q0) with I � LI(M); LO(M) � O, itrealizes an input-output map DI : I ! O de�ned as DI(s) := ��(q0; s) for each s 2 I. Inthis case, the input-output map DI (�) is said to be realizable as M .Note that DI (s) = ��(q0; s) is de�ned for each s 2 I since (i) ��(q0; s) is de�ned for eachs 2 LI(M) and I � LI(M), and (ii) ��(q0; s) 2 LO(M) � O. The set of maps realizable asDFMAs is the set of regular causal input-output maps, which we de�ne next.De�nition 8 Given a causal input-output map DI : I ! O, it is said to be regular causalif the equivalence relation ' � ��I � ��I de�ned as (s; s0 2 ��I):s ' s0 () 8t 2 ��I : [st 2 I , s0t 2 I] ^ [st; s0t 2 I) DI(st)(jDI(s)j) = DI (s0t)(jDI(s0)j)]is of �nite index.Note that in De�nition 8 if st; s0t 2 I, then s; s0 2 I since I is closed. Hence DI (s);DI(s0),DI(st);DI(s0t) are all well de�ned. Also, note that if s; s0 62 I, then there exists no sequencet 2 ��I such that st; s0t 2 I. Hence if s; s0 62 I, then s ' s0. Note that the equivalence relation' given in De�nition 8 is �ner than the Nerode equivalence de�ned in theory of formallanguages [10, 11]. A proof similar to the Nerode equivalence based proof, which establishesequivalence of regular languages and DFAs [10], can be used to obtain the following result:Theorem 3 An input-output map DI : I ! O is causal (respectively, regular causal) ifand only if it is realizable as a DMA (respectively, DFMA) M := (Q;�I ;�O; �; �; q0) withI � LI(M) and LO(M) � O.Proof: We only prove the second claim; the �rst claim can be proved analogously.()) Assume that a regular causal input-output map DI : I ! O is given. We need toshow that there exists a DFMA M := (Q;�I ;�O; �; �; q0) with I � LI(M) and LO(M) � Othat realizes DI (�). Let [s] denote the equivalence class under the equivalence relation 'containing the string s. De�ne a DMA M := (Q;�I ;�O; �; �; q0), where (i) Q := f[s] j s 2��Ig, (ii) q0 := [�], (iii) for each s 2 ��I and � 2 �I de�ne �([s]; �) := [s�], and (iv) for eachs 2 ��I and � 2 �I de�ne�([s]; �) := (DI(s0�)(jDI(s0)j) if exists s0 2 [s] s.t. s0� 2 I� otherwiseNote that the transition function of M is well de�ned, as s0; s00 2 [s] implies s0�; s00� 2 [s�]for each � 2 �. Also note that in the de�nition of the output function if s0� 2 I, then s0 2 Isince I is closed. Hence DI(s0) and DI(s0�) are both de�ned. Also, since DI(�) is causal,DI(s0�)(jDI(s0)j) is de�ned. Furthermore, it follows from the de�nition of the equivalence class[s] that if s0; s00 2 [s], then DI(s0�)(jDI(s0)j) = DI(s00�)(jDI(s00)j). Hence the output function iswell de�ned. Moreover, regularity of DI (�) implies that jQj < 1. We claim that M is thedesired DFMA. Note that from construction of M we have LI(M) = ��I ; hence I � LI(M).17

Also, LO(M) = fs 2 O j 9t 2 I s.t. DI(t) = sg, which implies that LO(M) � O. It followsfrom the de�nition of the output function of M that for any s 2 I we have��(q0; s) = DI(s(1))DI (s(2))(jDI(s(1))j) : : :DI(s(k))(jDI(s(k�1))j) : : :DI(s(jsj))(jDI(s(jsj�1))j) = DI(s);where the last equality follows from the fact that DI (�) is causal. Thus M realizes theinput-output map DI (�).(() Assume next that a DFMAM := (Q;�I;�O; �; �; q0) with I � LI(M) and LO(M) �O is given. We need to show that it realizes a regular causal map DI : I ! O. For anystring s 2 I, de�ne DI (s) := ��(q0; s). Since ��(q0; s) is de�ned for each s 2 LI(M) andI � LI (M), it follows that DI(s) is de�ned for each s 2 I. Also, since ��(q0; s) 2 LO(M)and LO(M) � O, it follows that DI (s) = ��(q0; s) 2 O. Thus M realizes an input-outputmap. It remains to show that this map is also regular causal. Causality follows from thefact that for s; t 2 I; s � t implies ��(q0; s) � ��(q0; t). Regularity follows from the fact thatfor each s; s0 2 I, s ' s0 whenever ��(q0; s) = ��(q0; s0), since for any t 2 ��I st 2 I if andonly if s0t 2 I, and st; s0t 2 I implies ��(q0; st)(j��(q0;s)j) = ��(q0; s0t)(j��(q0;s0)j). On the otherhand, if s; s0 62 I, then s ' s0. This proves that the index of the equivalence relation ' is nogreater than jQj+ 1 <1.Theorem 3 provides an alternate characterization of causal as well as regular causalmaps. We next present a condition for the stability of such maps. Recall that given a DMA(respectively, DFMA) M , the notation GM is used to denote its equivalent DA (respectively,DFA) representation.Proposition 4 An input-output map DI : I ! O is stable and causal (respectively, regularcausal) if and only if it is realizable as a DMA (respectively, DFMA)M := (Q;�I ;�O; �; �; q0)with I � LI(M); LO(M) � O and fsIO 2 L(GM) j �I(sIO) 2 Ig � L(GB).Proof: We only prove the second claim, as the �rst claim can be proved analogously. Again,we only prove the forward implication; the reverse implication can be proved analogously.Assume that DI : I ! O is stable and regular causal. Then it follows from Theorem 3that there exists a DFMA M := (Q;�I ;�O; �; �; q0) with I � LI(M) and LO(M) � Othat realizes DI(�). We need to show that if sIO 2 L(GM) is such that �I(sIO) 2 I, thensIO 2 L(GB), i.e., for each k � jsIOj the following holds: ~0 � [����!�I(s(k)IO) � ��!�O(s(k)IO)] ���!jBj.Fix k � jsIOj. Since �I(sIO) 2 I and I is closed, s := �I(s(k)IO) 2 I. Also, since sIO 2 L(GM)and L(GM) is closed, s(k)IO 2 L(GM). Hence t := �O(s(k)IO) 2 LO(M) � O. Note that fromthe construction of the DFA GM , we have t = ��(q0; s), and from the construction of theDMA M we have, ��(q0; s) = DI(s). Hence t = DI(s). Since DI(�) is stable over I we have:~0 � [~s� ��!D(s)] ���!jBj. This implies that ~0 � [����!�I(s(k)IO) � ����!�O(s(k)IO)] ���!jBj. Since k � jsIOj isarbitrary, the desired result is obtained.Finally we provide a test for determining whether a given dispatching unit is dispatchable.Recall that the output-composed DAGBO de�ned in the previous subsection has the propertythat (i) �O(L(GBO)) � O, and (ii) L(GBO) � L(GB), which implies that fsIO 2 L(GBO) j18

�I(sIO) 2 Ig � L(GBO) � L(GB). Furthermore, if (I;O;��!jBj) is conditionally dispatchable,then I � �I(L(GBO)). Thus if (I;O;��!jBj) is conditionally dispatchable, then it follows fromProposition 4 that the DA GBO can be used to realize a stable and causal input-outputmap provided it can be represented as a DMA. GBO := (QB � QO;�B; �BO; (~0; q0O)) can berepresented as a DMA whenever it satis�es the following condition:C1: 8~b 2 QB; qO 2 QO; � 2 �I : ������� [s2��kBkO �BO((~b; qO); (�; s))������� � 1:In other words, for each admissible bu�er state and output DA state, there is at most onedeparture sequence for an arrival event.Example 9 Consider for example the DFA GBO shown in Figure 1(a). Then it can be seenthat at state (~0; 3), there are transitions on (a; �) as well as (a; a). Thus upon arrival of a atthis state it is possible to either bu�er a (i.e., output nothing) or output a without violatingeither the bu�er capacity constraint or the output language constraint. Hence the departuresequence for the arrival event a at state (~0; 3) is not unique, i.e., condition C1 above does nothold in this case. (This can be veri�ed in an easier manner by noting that the correspondingDFA of Figure 4(b) is non-deterministic.)If C1 holds, then letting s(~b;qO;�) 2 ��kBkO denote the unique departure sequence at theindicated point we can representGBO as a DMAMBO := (QB�QO;�I ;�O; �̂BO; �̂BO; (~0; q0O)),where for each ~b 2 QB; qO 2 QO; � 2 �I :�̂BO((~b; qO); �) := �BO((~b; qO); (�; s(~b;qO;�))); �̂BO((~b; qO); �) := s(~b;qO ;�):It can be easily veri�ed that LI (MBO) = �I(L(GBO)) and LO(MBO) = �O(L(GBO)). Thuswe obtain the following su�cient condition for dispatchability of (I;O;��!jBj):Proposition 5 Suppose C1 holds for the DA GBO. Then (I;O;��!jBj) is dispatchable if andonly if (I;O;��!jBj) is conditionally dispatchable.Proof: Since dispatchability implies conditional dispatchability, it su�ces to show thatC1 and conditional dispatchability of (I;O;��!jBj) imply its dispatchability. Since C1 holds,the output-composed DA GBO can be equivalently represented as a DMA MBO. It followsfrom the construction of MBO that LI(MBO) = �I(L(GBO)); LO(MBO) = �O(L(GBO)) � Oand L(GMBO) = L(GBO) � L(GB). Furthermore since (I;O;��!jBj) is conditionally dis-patchable, it follows from Theorem 2 that I � �I(L(GBO)). Hence we obtain that I �LI(MBO); LO(MBO) � O and L(GMBO) � L(GB). Hence it follows from Proposition 4 thatMBO realizes a stable and causal input-output map, i.e., (I;O;��!jBj) is dispatchable.19

The result of Proposition 5 can be strengthened to obtain a necessary and su�cientcondition for dispatchability. Note that in general condition C1 may not be satis�ed by theoutput-composed DA GBO. However, it is easy to construct a subautomaton G0BO � GBOfor which the condition C1 is satis�ed, so that for each admissible state of G0BO, there is aunique departure sequence for each admissible arrival event. Given such a subautomatonG0BO, if I � �I(L(G0BO)), then it is easily seen that (I;O;��!jBj) is dispatchable. In fact theconverse of the last statement also holds.Theorem 4 A dispatching unit (I;O;��!jBj) is dispatchable if and only if there exists a sub-automaton G0BO � GBO such that C1 holds for G0BO and I � �I(L(G0BO)).Proof: ()) First assume that (I;O;��!jBj) is dispatchable. Then we need to show that thereexists a subautomaton G0BO � GBO such that C1 holds for G0BO and I � �I(L(G0BO)). Fromhypothesis there exists a stable and causal input-output map DI : I ! O. Using the input-output map DI(�) construct a subautomaton G0BO := (QB � QO;�B; �0BO; (~0; q0O)) � GBO,where the transition function is de�ned as (~b 2 QB; qO 2 QO; �I 2 �I ; sO 2 ��kBkO):�0BO((~b; qO); (�I; sO)) :=8><>:�BO((~b; qO); (�I; sO)) 9sI 2 I s.t. ��BO((~0; q0O); (sI;DI (sI))=(~b; qO);and DI(sI�I)(jD(sI)j) = sOunde�ned otherwiseSince D(sI�I)(jD(sI)j) 2 ��kBkO is uniquely de�ned whenever sI�I 2 I, it is clear that given abu�er state ~b and a state qO of the output DA, there exists at most one departure sequencesO 2 ��kBkO for the arrival event �I. In other words,8~b 2 QB; qO 2 QO; �I 2 �I : ������� [sO2��kBkO �0BO((~b; qO); (�I ; sO))������� � 1:Thus C1 holds for the DFA G0BO.We use induction on the length of strings in I to prove that if sI 2 I, then sI 2�I(L(G0BO)). In fact we prove a stronger claim:sI 2 I) �0�BO((~0; q0O); (sI ;DI(sI)) = ([~sI� ��!DI(sI)]; ��O(q0O;DI(sI))): (1)Note that the condition of (1) implies that (sI ;DI(sI)) 2 L(G0BO), which in turn impliesthat sI 2 �I(L(G0BO)). The condition of (1) certainly holds for the zero length string � 2 Isince DI (�) = �. Hence the base step holds. In order to prove the induction step, considersI 2 I and �I 2 �I such that sI�I 2 I. Then from induction hypothesis, (1) holds. Let~b := [~sI� ��!DI (sI)] and qO := ��O(q0O;DI(sI)). Then it follows from the de�nition of thetransition function of G0BO that[�0BO((~b; qO); (�I; sO)) = �BO((~b; qO); (�I ; sO))]() [sO = DI(sI�I)(jDI(sI)j)]: (2)20

Thus by combining the conditions of (1) and (2) we obtain the desired result of inductionstep: �0�BO((~0; q0O); (sI�I ;DI(sI�I))) = ([����!sI�I � ����!DI (sI�I)]; ��O(q0O;DI (sI�I))):(() Next assume that there exists a subautomaton G0BO � GBO such that C1 holds forG0BO and I � �I(L(G0BO)). Then we need to show that (I;O;��!jBj) is dispatchable. Constructan equivalent DMA, M 0BO for the DA G0BO. This is possible since C1 holds for G0BO. ThenI � �I(L(G0BO)) = LI(M 0BO); �O(L(G0BO)) = LO(M 0BO) � O and L(G0BO) = L(GM 0BO) �L(GB). Hence it follows from Proposition 4 that (I;O;��!jBj) is dispatchable.Example 10 Consider the setting of Example 7. As mentioned above, the correspondingDFA GB0 is shown in Figure 4(a). Also, as noted in Example 9 condition C1 does nothold in this case. Thus although the triple (I;O;��!jBj) is conditionally dispatchable thetest for su�ciency of dispatchability as given in Proposition 5 is not applicable. However,C1 holds for the sub-automaton G0BO � GBO laying within the rectangular area of Figure4(a). Furthermore, �I(L(G0BO)) = (ab)�c� = I. Thus it follows from Theorem 4 that thetriple (I;O; ��!B) is dispatchable. The required dispatching policy is obtained as discussed inExample 8.In view of Theorem 4, the statement of Proposition 4 can be strengthened to obtain thefollowing result:Proposition 6 An input-output map DI : I ! O is stable and causal if and only if it isrealizable as a DMA M := (Q;�I;�O; �; �; q0) with I � LI(M), LO(M) � O and L(GM) �L(GB).Proof: ()) Suppose DI : I ! O is stable and causal so that (I;O;��!jBj) is dispatchable.Then as in the proof of Theorem 4, a subautomaton G0BO := (QB � QO;�B; �0BO; (~0; q0O)) �GBO can be constructed so that C1 holds for G0BO and I � �I(L(G0BO)). Since C1 holdsfor G0BO, it can be represented as a DMA M 0BO := (QB � QO;�I ;�O; �̂0BO; �̂0BO; (~0; q0O)).Then it follows from the construction of G0BO and the de�nition of M 0BO that for eachs 2 I; �̂0�BO((~0; q0O); s) = DI (s). In other words, M 0BO realizes DI (�). Since I � �I(L(G0BO)),�O(L(G0BO)) � �O(L(GBO)) � O, and L(G0BO) � L(GBO) � L(GB), it follows that I �LI(M 0BO), LO(M 0BO) � O, and L(GM 0BO) � L(GB). This proves the \only if" part.(() The \if" part follows from the \if" part of Proposition 4. Note that if L(GM) �L(GB), then fsIO 2 L(GM) j �I(sIO) 2 Ig � L(GM) � L(GB).7 ConclusionQuantitative design of dispatching policies, that involves queueing theory based analysis,has widely been studied. In contrast, this paper deals with qualitative design of dispatching21

policies and addresses the problem of whether a given input-output discrete event systemcan be realized as a stable dispatching unit, i.e., a system consisting of a set of �nite ca-pacity bu�ers. We have formalized the notion of a dispatching unit as a triple consistingof an input language constraint (describing the sequences in which parts may arrive at thedispatching unit), an output language constraint (describing sequences in which parts maybe dispatched), and a bu�er capacity constraint. Dispatching policies are introduced asstable and causal input-out maps, and notions of conditionally stable, stable, conditionallydispatchable, and dispatchable dispatching units is introduced and conditions for their ex-istence, and techniques for synthesizing desired input-output maps whenever they exist arepresented.There are a number of interesting open problems for future research: (i) algebraic prop-erties such as closure under union and intersection of dispatching units of each type needsto be studied; thus if a certain dispatching policy does not exist for a given dispatchingunit, then design of minimally restrictive [26] dispatching policies can be considered; (ii) theassumption that the bu�er capacities are given may be relaxed, and design of dispatchingpolicies with respect to any �nite bu�er capacity vector may be considered; (iii) alterna-tive techniques for determining dispatching policies such as on-line techniques as studied in[8, 4], and integer-programming based techniques for analyzing vector discrete event systemsas reported in [18], should be developed for facilitating computationally e�cient design; (iv)stability properties of a network of dispatching units ought to be investigated so that a\modular" notion of stability of I/O DESs can be developed.AcknowledgmentWe thank the anonymous reviewers for their valuable comments.References[1] S. Balemi, G. J. Ho�mann, P. Gyugyi, H. Wong-Toi, and G. F. Franklin. Supervisorycontrol of a rapid thermal multiprocessor. IEEE Transactions on Automatic Control,38(7):1040{1059, July 1993.[2] Y. Brave and M. Heymann. On stabilization of discrete event processes. InternationalJournal of Control, 51(5):1101{1117, 1990.[3] C. Chase and P. J. Ramadge. On real time scheduling policies for
exible manufacturingsystems. IEEE Transactions on Automatic Control, 37(4):491{496, April 1992.[4] S. L. Chung, S. Lafortune, and F. Lin. Limited lookahead policies in supervisory controlof discrete event systems. IEEE Transactions of Automatic Control, 37(12):1921{1935,December 1992. 22

[5] Y. Dallery, R. David, and X. Xie. Approximate analysis of transfer lines with unreliablemachines and �nite bu�ers. IEEE Transactions on Automatic Control, 9(34):943{953,September 1989.[6] S. B. Gershwin. Hierarchical
ow control: A framework for scheduling and planningdiscrete events in manufacturing systems. Proceedings of IEEE, 77(1):195{209, January1989.[7] S. Ginsburg. Mathematical Theory of Context-Free Languages. Addison Wesley, Read-ing, MA, 1966.[8] M. Heymann and F. Lin. On-line control of partially observed discrete event systems.Technical Report CIS-9310, Department of Computer Science, Technion-Israel Instituteof Technology, Ha�a, Israel, 1993.[9] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, Inc., EnglewoodCli�s, NJ, 1985.[10] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages andComputation. Addison-Wesley, Reading, MA, 1979.[11] R. E. Kalman, P. L. Falb, and M. A. Arbib. Topics in Mathematical System Theory.McGraw-Hill, Inc., 1969.[12] V. S. Kouikoglou and Y. A. Phillis. An exact discrete-event model and control policiesfor production lines with bu�ers. IEEE Transactions on Automatic Control, 36(5):515{527, May 1991.[13] P. R. Kumar and T. I. Seidman. Dynamic instabilities and stabilization methods indistributed real-time scheduling of manufacturing systems. IEEE Transactions on Au-tomatic Control, 35(3):289{298, March 1990.[14] R. Kumar and V. K. Garg. Modeling and Control of Logical Discrete Event Systems.Kluwer Academic Publishers, Boston, MA, 1994.[15] R. Kumar, V. K. Garg, and S. I. Marcus. Language stability and stabilizability of dis-crete event dynamical systems. SIAM Journal of Control and Optimization, 31(5):1294{1320, September 1993.[16] R. Kumar, V. K. Garg, and S. I. Marcus. Logical design of a dispatching unit. InProceedings of 1993 American Control Conference, pages 1198{1202, June 1993.[17] Y. Li and W. M. Wonham. Control of vector discrete event systems I - the base model.IEEE Transactions on Automatic Control, 38(8):1214{1227, August 1993.[18] Y. Li and W. M. Wonham. Control of vector discrete event systems II - controllersynthesis. IEEE Transactions on Automatic Control, 39(3):512{531, 1994.23

[19] S. H. Lu and P. R. Kumar. Distributed scheduling based on due dates and bu�erpriorities. IEEE Transactions on Automatic Control, 36(12):1406{1416, December 1991.[20] N. Lynch. I/O automata: a model for discrete event systems. Technical report, Mas-sachusetts Institute of Technology, Cambridge, MA, 1988.[21] C. M. Ozveren and A. S. Willsky. Output stabilizability of discrete event dynamicalsystems. IEEE Transactions on Automatic Control, 36(8):925{935, 1991.[22] C. M. Ozveren, A. S. Willsky, and P. J. Antsaklis. Stability and stabilizability of discreteevent dynamical systems. Journal of ACM, 38(3):730{752, July 1991.[23] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery inDatabase Systems. Addison-Wesley, Reading, MA, 1987.[24] R. J. Parikh. On context-free languages. Journal of the Association for ComputingMachinery, 13:570{581, 1966.[25] J. R. Perkins and P. R. Kumar. Stable, distributed, real time scheduling of
exiblemanufacturing/assembly/disassembly systems. IEEE Transactions of Automatic Con-trol, 34(2):139{148, February 1989.[26] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete eventprocesses. SIAM Journal of Control and Optimization, 25(1):206{230, 1987.[27] D. Towsley, P. D. Sparaggis, and C. G. Cassandras. Optimal routing and bu�er alloca-tion for a class of �nite capacity queueing systems. IEEE Transactions on AutomaticControl, 37(9):1446{1451, September 1992.[28] Y. Willner and M. Heymann. Language convergence in controlled discrete-event sys-tems. IEEE Transactions on Automatic Control, 1992. Submitted.
24

