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Abstract

Many discrete event systems (DESs) such as manufacturing systems, data base manage-
ment systems, communication networks, traffic systems, etc., can be modeled as input-output
discrete event systems (I/O DESs). In this paper we formulate and study the problem of sta-
ble realization of such systems in the logical setting. Given an input and an output language
describing the sequences of events that occur at the input and the output, respectively, of an
[/O DES, we study whether it is possible to realize the system as a unit consisting of a given
set of buffers of finite capacity, called a dispatching unit. The notions of stable, condition-
ally stable, dispatchable and conditionally dispatchable units are introduced as existence of
stable (or input-output bounded), and causal (or prefix preserving) input-output maps, and
effectively computable necessary and sufficient conditions for testing them are obtained.



1 Introduction and Motivation

A discrete event system (DES) is one in which the dynamics or evolution of the system
is governed by the occurrences of certain discrete qualitative changes, called events, in the
system. Arrival of a customer in a queueing system, loss of a message packet in a com-
munication network, termination of an algorithm in a computer program, etc., are some
examples of events. A logical framework was introduced by Ramadge and Wonham [26, 14]
for studying the control of the qualitative behavior of DESs; where a DES was modeled as
a state machine [10], and the logical behavior of the DES was described using the language
or the set of all possible execution sequences of the state machine.

Many DESs such as manufacturing systems, communication networks, database man-
agement systems, traffic systems, etc., can be viewed as input-output discrete event systems
(I/0 DESs), where an “input” and an “output” language describe the logical behavior at the
input and the output, respectively, of the DES. In a communication network, for example,
the collection of all sequences in which messages arrive at the network defines the input
language, and the collection of all sequences in which messages depart from the network de-
fines the output language. In a database management system, the set of all interleavings of
transaction operations constitutes the input language, whereas the set of all serializable and
strict [23] interleavings of transaction operations constitutes the output language. Similarly,
in a manufacturing system, the set of all possible parts arrival sequences corresponds to the
logical behavior at the input, and the set of all desired parts departure sequences corresponds
to the logical behavior at the output end. Common to all these systems is the fact that the
events at the input/output end correspond to physical arrival/departure of messages/read-
write operations/parts/customers, etc. In the computer science literature, models such as
Moore and Mealy automata [10, Section 2.7], [/O automata [20], etc., and more recently
in the DES control literature, models such as “command-response” systems [1] have been
proposed for studying 1/O DESs.

In this paper we study the issue of stable realization of a given I/O DES. Although the
work presented here is applicable to any 1/O DES of the type described above, our termi-
nology pertains to manufacturing systems. (Consequently, the input and output languages
consist of parts arrival and departure sequences, respectively.) Suppose n different types
of parts Py, Py,..., P, arrive in some order (on one or more conveyor belts) at the input
of a manufacturing system, whereas they depart in some other order at the output. We
investigate whether such an input-output manufacturing system can be represented as a
dispatching unit consisting of n finite capacity buffers By, Ba, ..., B, (buffer By is used for
storing part type Py) together with a dispatching policy—a stable and causal input-output
map. The dispatching policy determines at each arrival instance whether or not to buffer
the arrived part, and the sequence in which buffered parts must be dispatched so that the
buffer capacity constraints remain satisfied at each such instance. Note that our model al-
lows the possibility of simultaneous departures. Also note that if the departure sequence at
a certain arrival instance is the empty sequence, then this simply means that the arrived
part is buffered in its buffer at that instance.



It is evident that if there exists no departure sequence constraint, or equivalently, if the
output language consists of the collection of all possible departure sequences, then there
exists a trivial dispatching policy, which dispatches a part when it arrives; thus no buffering
is needed. Hence if there is no departure sequence constraint, then any given unit is “dis-
patchable”. However, when a departure sequence constraint is imposed, then there is no a
priori guarantee that a dispatching unit will be dispatchable. For example, suppose that two
types of parts a and b arrive in the order ababab. .., whereas they must be dispatched in the
order aabaabaab. ... Since part types a and b arrive alternately, whereas two parts of type a
and one part of type b are dispatched alternately, it is clear that the buffer for part type b
will grow without bound.

It follows from this example that the stability of the buffers in the dispatching unit
depends on the qualitative constraint imposed by the set of arrival and departure sequences.
This observation motivates the work presented in this paper. The work presented here
thus supplements other works such as those reported in [25, 13, 19, 12, 3, 27, 6, 5], which
deal with the gquantitative stability issues for manufacturing systems. The works reported
in [2, 22, 21, 15, 28] also deal with stability issues in the logical setting. However, these
address the issue of eventual/infinitely-often reachability of “safe” states/strings, and are
not applicable to the study of boundedness of buffers as described above. It should also be
noted that the dispatching unit that we study in this paper is an example of a vector discrete
event system for which the controllability issues have recently been reported in [17, 18]. Our
work deals with stability issues of such systems.

A dispatching unit is defined as a triple (1,0, |B|), where I, called the input language,
denotes the set of all possible arrival sequences; O, called the output language, denotes the

set of all possible departure sequences; and |B|, called the buffer capacity vector, represents
the capacities of the individual buffers. We consider two kinds of scenarios: (i) The arrival
sequence is known in advance. This applies, for example, to the setting of a manufacturing
system where production planning is done in an off-line manner—i.e., prior to the actual
production. This information should be taken into account for designing a dispatching policy.
The notions of conditional stability and conditional dispatchability discussed below refer to
this scenario. (ii) The arrival sequence is not known in advance, and the decision to either
temporarily buffer an arrived part, or to dispatch it, is taken based on the previously arrived
sequence of parts. This applies, for example, to the setting of a flexible manufacturing
system where production decisions are made in an on-line manner—i.e., during the actual
run of production. The notions of (unconditional) stability and dispatchability discussed
below refer to this scenario.

Given a language I’ C I, a map Dy : I' — O is said to be an input-output map over I';
if I' = I, then it is simply said to be an input-output map. An input-output map cannot
be used to realize a dispatching policy unless it is causal (or prefix preserving) and stable
(or input-output bounded). In case an input-output map is causal and stable, we provide
a technique for realizing a dispatching policy. Causality of an input-output map is needed
to unambiguously determine the sequence of parts to be dispatched at each arrival instance,



whereas stability of an input-output map is needed to satisfy the buffer capacity constraints
at each such instance. A dispatching unit is defined to be stable if there exists a stable
input-output map for it. A dispatching unit is defined to be dispatchable if there exists a
stable as well as causal input-output map for it.

In the setting where the arrival sequence, say s € I, is known in advance, then an input-
output map corresponds to a map of the type Dz : 3 — O defined from the set of prefixes of
the known arrival sequence to the output language. A dispatching policy in this setting is a
causal and stable input-output map defined over the prefixes of the known arrival sequence.
A dispatching unit is defined to be conditionally stable if for each arrival sequence there exists
a stable input-output map defined over the prefixes of the arrival sequence. A dispatching
unit is said to be conditionally dispatchable if for each arrival sequence, there exists a stable
as well as causal input-output map defined over the prefixes of the arrival sequence.

We show that an input-output map is causal if and only if it is representable as a Mealy
automaton [10]. We also present a test for the stability of a causal input-output map using
its Mealy automaton representation. It is clear that the stability of a dispatching unit implies
its conditional stability. We show that the converse is also true, i.e., the two notions are
equivalent. The notion of semi-linear sets [7, 24] is used to obtain a necessary and sufficient
condition for the stability of a dispatching unit. It is also clear that the dispatchability of a
dispatching unit implies its conditional dispatchability. We show the converse is not true. We
obtain a necessary and sufficient condition for determining the conditional dispatchability of
a given dispatching unit using concurrent composition [9] of systems. Finally, we obtain a
necessary and sufficient condition for the dispatchability of a given dispatching unit.

The rest of the paper is organized as follows: Section 2 develops the notations used
for the analysis. Section 3 defines the notions of dispatching units, dispatching policies,
stability and dispatchability of dispatching units, and gives illustrative examples. Section
4-6 presents algorithmic tests for existence of respectively, stable, conditionally dispatchable,
and dispatchable units. Techniques to synthesize dispatching policies whenever they exist
are also presented in those sections. Section 7 discusses the conclusion and future research.

2 Notation and Preliminaries

As discussed in introduction, an input language over a finite number of part types is
used for describing the set of all possible sequences in which part types may arrive, and an
output language is used for describing the set of all possible sequences in which they may
depart. Let n € NV denote the total number of part types. The set ¥ (respectively, ¥p) is
used to denote the set of events, each element of which corresponds to arrival (respectively,
departure) of a certain part type. Thus |¥;]| = |¥o| = n.

Given a finite set ¥ = {0y, 09,...,0,} of size n € N, ¥* is used to denote the set of all
possible finite sequences of elements belonging to X, including the zero length sequence ¢;
YN C ¥* is used to denote the set of sequences of length no greater than N € A. Given
s,t € ¥, we use s <t to denote that s is a prefiz of t. For a string s € ¥* the notation
|s| € AV is used to denote the length of s; and 5 C X* denotes the set of all prefixes of s. For



each k < |s|, the notation s(k) € ¥ is used to denote the kth element of s, s < s is used
to denote the prefix of length £ of s, and sy € ¥* denotes the suffix obtained by deleting
the first k elements of s. For s € ¥*, and k < n, the notation #(oy, s) is used to denote the
number of occurrences of the symbol o, in the string s; and the notation 5 € AN™ is used to
denote the count vector of s, also called the score vector or the Parikh’s map [24] defined as:

§i=[#(01,9),. ..., #(0k, 8), ..., #(0on, 9)].

For example if s = 01090,030,, then § = [1,2,1,0,0,...,0,1]. The count vector is used
below for calculating the difference between the numbers of each part type in an arrival
sequence and in the corresponding departure sequence under a given dispatching policy. A
subset [ C X" is called a language over . Given L C ¥*, L is used to denote (prefix) closure
of L,ie., L:={t €Y |ds e Lst. tes} Thesetof count vectors of L C ¥*, denoted
L CN™, is defined to be L := {§€ N | s € L}.

Letting I, O denote the input, output language constraints respectively, we have I C 37,
and O C 7. It is clear that if a sequence s € [ is an arrival sequence, and if ¢ < s, then
t should also be an arrival sequence. Hence we require that [ be a closed language, i.e.,
I = 1. Similarly, we require that O be closed, i.e., O = O. Both I and O can in general
contain infinitely many sequences. However, if they are regular languages, then they can be
concisely described using deterministic finite automata (DFA) (refer to [10] for the definition
of regular languages).

A deterministic automaton (DA) G is defined to be the quadruple:

G = (Q? 27 57 q0)7

where () denotes the state set of (G, X is the event set of GG, 6 : ) x ¥ — () denotes
the (partial) deterministic transition function of &, and ¢° € @ denotes the initial state
of G. G is a DFA if @) is finite. The transition function é(-,-) is recursively extended to
0 1 () x ¥* — () as follows:

Vg€ Qs € X1 6%(q,8) 1= 67(8(q,8(1)), s1)); 67(g.¢) :=q.
The language generated by (i, denoted L((), is defined to be:
L(G) = {s € ¥* | 6*(¢", ) is defined}.

It follows from this definition that L(G) is closed. A DA G’ := (Q, X, &, ¢°) is said to be a
subautomaton [10] of the DA G, written ( < G ifforeach ¢ € Q and o € ¥, 6'(¢,0) = 6(q,0)
whenever it is defined.

Given I C 3,0 C Y% as specifications for input, output languages respectively, DAs
Gr = (Qr,Xr5,61,47),Go == (Qo,X0,60,¢5) are used as their respective generators; i.e.,
LG =1,L(Go) =0.

n different buffers, one for each part type, are used for temporary storage. Let By denote
the buffer for the kth part type, and |By| € N denote its capacity. We use the notation
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|_B|€ N7, called the buffer capacity vector, to denote the vector formed by considering the
capacities of the individual buffers, i.e.,

|B|:: [|B1|7 |B2|7 SR} |Bk|7 SR |Bn|]

This system of n buffers can be described as a “buffer DFA”, Gg = (@5, X5, 5, ¢%), where (i)

Qp:={beN"|0< g§|_B|}1 is the finite set of states—each state is a vector representing
the number of buffered parts of each type, (ii) ¥p := ¥ X Z(S)HB”, where || B|| :== >7_, | Bx| is
the sum of all the buffer capacities—each transition represents a possible arrival event and a
possible departure sequence at the indicated state, (iii) ¢% := O—initially all the buffers are

empty, and (iv) the transition function is defined as follows (g €Qp,0€X,s¢€ Z(S)HB”):

55(b,(0,5)) :z{ b+ 3 i0<[b+d—3<|B|

undefined otherwise

Thus when an arrival event ¢ € ¥; and a departure sequence s € Zg”B” occur in the buffer
state b, then the resulting buffer state is obtained by adding the count vector [ — ] to the

buffer state g, provided the resulting buffer state satisfies the buffer capacity constraints.

Example 1 Consider for example a dispatching unit for three part types {a, b, ¢}. Suppose

o €{a,b,c}

Figure 1: Buffer DFA with |_B|: [1,0,0]

there is a single buffer space for the part type a, and there is no buffer space for other part

types, i.e., the buffer capacity vector |_B|: [1,0,0]. Then the corresponding buffer DFA is
shown in Figure 1. |

Let the map 7o : X5 x ¥3 — X7 denote the projection operation onto the output
events, i.e., mo(0,s) := s, where ¢ € Y¥; and s € ¥5. This map can be extended to
7o @ 281xE0)" 5 955 in a natural way. The map w7 : 21%%6)" — 257 can be defined
analogously. The following proposition can be obtained in a straightforward manner using
induction on the length of strings.

10 denotes the zero vector of size n, and the “<” relation holds for vectors if it holds for their each
respective components.



Proposition 1 Let Gg = (@B, X5, 5, %) be the buffer DFA as defined above. Then

_— _—

L(Gg) = {s € (51 x SN | ik < Js] : 6 < [ri(s®) — 7o (s™)] <|B]}.

3 Dispatching Unit and Dispatching Policies

Having introduced the notation, we now formally define a dispatching unit, the notions of
conditional stability, stability, conditional dispatchability, and dispatchability of a dispatch-
ing unit. Given an input language I C Y7, an output language O C 37, and a buffer capacity

vector |Bl€ N, the corresponding dispatching unit is defined to be the triple (1,0, |B]).
We are mainly interested in stability and causality of input-output maps defined either over
the input language, or over the prefixes of a given arrival sequence. However, in general,
these can be defined over any closed sublanguage of the input language.

Definition 1 Given a dispatching unit (7, O, |_B|), and a closed language I’ C I, an input-
output map Dy : I’ — O is said to be stable (or input-output bounded) over I' if

Stability: Vs € I': 0 < [~ Dy(s)] <|B| .
It is said to be causal over I' if it is prefix preserving, i.e.,
Causality: Vs,t € I' : s <t = Dp(s) < Dp(t).

In other words, the stability of an input-output map Dy : I’ — O implies that for each
arrival sequence s € [’ the difference between the count vectors of s and Dy/(s) is (i) bounded
below by the zero vector, implying that the number of dispatched parts does not exceed the
number of arrived parts for each part type, and (ii) bounded above by the buffer capacity
vector, implying that the buffers of each part type never overflow. The causality of an input-
output map Dy : I’ — O implies that the departure sequence corresponding to the arrival
sequence s € [’ is a prefix of the departure sequence corresponding to the arrival sequence
t € I' whenever s is a prefix of t. Consequently, upon occurrence of an arrival event o € ¥
following an arrival sequence s € I’ (so that so € I'), the sequence of parts to be dispatched
is obtained as Dy (s0)(1p,,(s))), 1-., it is the suffix obtained by deleting the initial prefix Dy (s)
from the sequence Dy (so). This is well defined since Dy (+) is causal.

Remark 1 A stable and causal input-output map can be used to obtain a dispatching policy
which determines the sequence of parts to be dispatched following each arrival sequence in
such a manner that the output language constraint as well as the buffer capacity constraint

is satisfied. More formally, given a dispatching unit (7, O, |_B|) and a closed language I’ C I,
a dispatching policy over I' is a map Pp : I' — Y7, such that

Pl: Vs e I' ity :=Pp(sNPp(s?)...Pr(s) € O, and
P2: Vse ' 0 <[5—1)] <|B|.



Note that given a dispatching policy P : I' — X7 over I’ it induces a stable and causal
input-output map Dy : I' — O over I’ defined as Dyp(s) := 771/(5(1))771/(3(2)) ... Pp(s) for
each s € I'. Conversely, given a stable and causal input-output map Dy : I’ — O over I, it
induces a dispatching policy Pp : I' — X% over [’ defined as Pp(s) := DI/(S)(|DI/(S(|S|_1))|) if
s # €, and Pp(e) := e u

Definition 2 Given a dispatching unit (1,0, |B]), it is said to be stable if there exists a
stable input-output map over [; it is said to be dispatchable if there exists a stable and causal
input-output map over I (equivalently, a dispatching policy over I).

Remark 2 Note that the notion of a “causal” dispatching unit defined as the existence of a

causal input-output map over [ is not of any interest, as given a dispatching unit (1, O, |B]),
there exists a trivial causal input-output map Dy : [ — O defined as Dj(s) := e, for each
s € I. Hence, we have only defined the notions of stability and dispatchability (and not
“causality”) of a dispatching unit. [ ]

The existence of a dispatching policy over [ requires that the sequence of parts to be
dispatched after an arrival sequence s € [ should depend only on s—the past sequence
of arrivals, and no knowledge about the future arrival sequence is assumed. However, as
discussed in the introduction, in some applications the entire arrival sequence may be known
in advance, and a dispatching policy should be determined by taking this fact into account.
Hence, we define the weaker notions of conditional stability and conditional dispatchability.

Definition 3 Given a dispatching unit (1,0, |B|), it is said to be conditionally stable if
for each s € I, there exists a stable input-output map over 3; it is said to be conditionally
dispatchable if for each s € [, there exists a stable and causal input-output map over s
(equivalently, a dispatching policy over 3).

Thus conditional stability requires existence of a set of input-output maps {Ds:35 — O |
s € I} such that each map Ds(-) is stable; and conditional dispatchability requires that each
such map be also causal. It follows from Definition 2 that dispatchability of a dispatching
unit implies its stability; similarly it follows from Definition 3 that conditional dispatchability
of a dispatching unit implies its conditional stability. It also follows from Definitions 2 and
3 that stability of a dispatching unit implies its conditional stability, since given a stable
input-output map Dy : [ — O and any sequence s € [, restriction of D;(-) to 3 yields a stable
input-output map over s; similarly dispatchability of a dispatching unit implies its conditional
dispatchability. Note that given a set of stable input-output maps {D5:3 — O | s € [},
one can obtain a stable input-output map Dy : I — O by defining D;(s) := Ds(s) for each
s € I. Hence conditional stability of a dispatching unit also implies its stability. Thus the
two notions are equivalent. However, as illustrated by an example below (refer to Example
4), conditional dispatchability of a dispatching unit does not imply its dispatchability. Thus,
there are essentially three classes of dispatching units—stable, conditionally dispatchable,
and dispatchable. Next we illustrate this using a series of examples. The first example



illustrates that not all dispatching units are stable, and the class of stable dispatching units
1s nonempty.

Example 2 Let the input, output language constraint for two part types a and b be given
as: I = {aFbF | k > 0}, and O = {bfa* | k > 0}. Then there exists no finite buffer

Capaaty vector |B|< [00, 00] such that (7,0, |B|) is stable. In order to see this suppose

|B|: [n1,ny] € N2, and consider the input string a™*! € I. Note that due to the output
language constraint, any dispatcher before dispatching a certain number of parts of type a
must dispatch an equal or greater number of parts of type b. Since no part of type b is
present in @™ %!, a dispatcher is forced to buffer all the n; + 1 parts of type a. However,
this violates the buffer capacity constraint. This illustrates that not every dispatching unit
is stable.

Cons1der a different setting in which I = {a*0* | k > 0}, O = {a?*6** | k > 0}, and let

| [1,1]. Then an input-output map D; : I — O defined as D;(a*b’) := a?121p215) for each
E>1>01s a stable input-output map, where bj denotes the largest integer smaller than

onempty. [ |

The next example illustrates that the class of conditionally dispatchable dispatching units
is a proper subclass of the class of stable dispatching units.

Example 3 Let the input and output language constraints for the two part types a and
b be given as [ = (ab)* and O = a*b*. Then an input-output map Dy : I — O defined
as Dr((ab)¥) := a*oF and Di((ab)*a) := a**'b* for each & > 0 is a stable input-output

e

map. Thus (1,0, |B]) is stable with |B| [0,0]. However, (],O,|_B_|>) is not conditionally

dlspatchable for any |B|< [00, 00]. In order to see this, suppose the buffer capacity vector

is |B|: [n1,n2] € N? and let n := max{ny,ny}. Consider the input string s := (ab)**t* € [
and its prefix ¢ := (ab)"*'. Then for the buffer capacity constraint to hold, the output string
for s must of the form a?"T2~™a*p?"+t2=m2pl where k < ny and [ < ny. On the other hand,
the output string for ¢ must be of the form q" 1= gk el —na bj/, where £’ < ny and j' < ns.
Note that 2n +2 —ny+k>ni+2>n+1>n+1—n+ kK, andn+1—ny+ 3 > 0.
Thus although ¢ is a prefix of s, the output string for ¢ cannot be a prefix of the output

string for s. This shows that (7,0, |_B|) is not conditionally dispatchable. Thus the class of
conditionally dispatchable dispatching units is a proper subclass of the class of stable ones.m

Finally, the following example illustrates that the class of dispatchable dispatching units
is nonempty, and it is a proper subclass of the class of conditionally dispatchable ones.

Example 4 Let a, b, ¢, d represent the part types, and let the input language constraint be

I = (ab)*c*, and the output constraint be O = (ba)*¢*. Then a dispatching policy (i.e., a



stable and causal input-output map) can be obtained as follows: buffer the initially arrived
part a, and then repeatedly dispatch ba for each arrival of ba until the first arrival of part
type ¢ occurs, upon when dispatch bea (using the last arrived part b, buffered part @, and
the currently arrived part ¢), and then continue dispatching part ¢ whenever it arrives. This
illustrates that the class of dispatchable dispatching units is nonempty.

Now, if the input and output language constraints are changed to I = (ab)*(¢* + d*),
and O = (ba)*c* + (ab)*d~, respectively, then a dispatching policy cannot be constructed.
This is because the departure sequence must contain a prefix ab...ab if the arrival sequence
contains the event d, whereas, it must contain a prefix ba . . . ba if the arrival sequence contains
the event ¢. However, since the knowledge of the entire arrival sequence is not available in
advance, any dispatcher is forced to buffer an unbounded number of parts. On the other
hand, if the arrival sequence is known in advance, then it is easy to construct a dispatching
policy. This illustrates that the class of dispatchable dispatching units is a proper subclass
of the class of conditionally dispatchable dispatching units. [ ]

Figure 2 summarizes the relationship among various types of dispatching units defined
above.

dispatchable =
stable + causal

conditionally dispatchable =
conditionally stable + causal

stable = conditionally stable
causal = conditionally causal = all

Figure 2: Relationship among various types of dispatching units

4 Stable Units

In this section we provide existence condition for stable dispatching units and discuss
technique for verifying it. This requires the concept of semi-linear sets.

The motivation for studying semi-linear sets comes from the notion of count vector in-
troduced in section 2. Let & = [wy,29,...,2,] and § = [y1,92,...,y.] be elements of N,
where for each 1 < k < n, zp,yx € N. We define addition and scalar multiplication in N™
in the usual manner:

THy:=[r1+y, a4y, T, +ys]; af = |ax, axg, ..., ax,],

where o € V.



Definition 4 Given ¢, p1,...,p. € N, the set
X[ p1,.pr)i={C+mpi+...+nmpi | n; e NVj <k} CN”

is called a linear set. € is the constant, and for each j < k, p; is a period of the linear set. A
subset of N is called a semi-linear set if it is a finite union of linear sets.

For example, the linear set X[[10,10];[1,0], [0, 1]] represents the set of all points in a plane
having integer coordinates greater than or equal to 10.

Semi-linear sets form an important class of subsets of N from the viewpoint of formal
language theory because the count vector of any context-free language is a semi-linear set
[24]. This fact was first shown by Parikh [24]. We prove a special case of this result for
regular languages. Our proof has the advantage that it provides a decomposition of a regular
language into a finite number of regular sublanguages whose count vectors are linear sets.
Our method uses the regular expression representation of regular languages [10]. A regular
expression defined on an alphabet set X is any expression containing the symbols: choice

W

operation (represented by “+7), concatenation operation (represented by “.”), Kleene closure
operation (represented by “*”), ¢, and symbols from X.

Definition 5 A regular expression is called a linear reqular expression if its count vector is
a linear subset of N,

An algebraic characterization of linear regular expressions is given next. Let v := r.r*, in
which r is repeated any finite number of times but at least once. A regular expression can be
written using the operations “+ 7, “.”, “#” by eliminating “*” using the identity r* = rf + «.

Lemma 1 Let ¥ = {0y,...,0,} be a finite alphabet set of size n € A. Any expression
composed of “#”7 “” ¢ and any symbol from ¥ is a linear regular expression.

Proof: Note that a regular expression composed of either € or a single symbol from ¥ is a
linear regular expression. The linear set corresponding to € equals X[ﬁ; ]; and the linear set
corresponding to a symbol o € X, where k < n, equals X[[0,...,1,...,0];], in which the
kth entry of the constant is 1. We need to show that the operations “.” and “#” preserve
linearity.

We claim that if rq, 7y are linear regular expressions, then so are ri.ry and rg. To see
this let 7 = X[ p1,...,pr] and 75 = X[CZ Q-5 q), where E,JE N™ are constants, and
Piy G € N for each 1 < k,j < [ are periods. Then r1.r= X[¢+ cZ;p_i,...,p_;;,q_i,...,q_}], and

_
ﬁ _ = = = —
ri = X[& ¢, pi,. .., pr)- |
We now present a method for decomposing a regular expression into a finite number of
linear regular expressions.

Lemma 2 Let r be a regular expression. Then it can be written as r{ +ry+...4r,, where
ri for each £ < n is a linear regular expression.
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Proof: We first replace each occurrence of “*” by “4” in r using the identity described above
so that  contains only the operation symbols “.”, “4” "and “+7. Then the result follows from
Lemma 1 and by noting these two facts: (i) Given any three regular expressions rq,ry, r3 the

following holds:
(r1 4 re).rs = r1.rs + ro.rg and rs.(ry + o) = r3.ry 4 raurg,
and (ii) Given any two regular expressions ry,ry the following holds:
(r1 + 7“2)ﬁ = rg + rg + (rg.rg)ﬁ + (rg.rg)ﬁ + (rg.rg)ﬁ.rg + (rg.rg)ﬁ.rg
The right hand side of the identity corresponds to the following choices between ry and ry:

1. one or more of strings from rq

one or more of strings from ry

starts with a string in r;, ends in a string in r

starts with a string in ry, ends in a string in

starts with a string in ry, ends in a string in rq, at least one string from r,

AR RN

starts with a string in ry, ends in a string in ro, at least one string from r

It is easily verified that these are the only possible choices. [ ]

Since rl_—l—_;“z: 11 U7 for any two regular expressions rq and ry, the following Proposition
1s immediate from Lemmas 2 and 1.

Proposition 2 If L is a regular language over a finite set X2, then its count vector L CNE
is a semi-linear set.

Example 5 Consider the language a*b* defined over the alphabet set {a,b}. Then
a b = (aﬁ + e).(bﬁ +e¢) = (aﬁ.bﬁ a4 €).

The corresponding linear sets are:

E— E— E—

€= X[[0,0];]; at = X[[l,()]; [170]]; b = X[[Ov 1]; [07 1]];aﬁ'bﬁ: X[[lv 1]; [07 1]7 [170]]'
| |

Using the tools of semi-linear sets, we next obtain conditions under which a given dis-

patching unit (7, O, |_B|) is stable, so that there exists a stable input-output map for it.
Consider two sets P, € N™ and define

PoQ:={decN"|IecPicQst &=a+7)

Note that if P, are semi-linear sets, then so is P & (. Define B := {b € A™™ |0 < b <|B|},
i.e., B is the collection of all possible buffer state vectors. Since B is a finite set, it is clear
that it is a semi-linear set.

11



Theorem 1 A dispatching unit (7, O, |_B_|>) is stable if and only if I € O & B.

Proof: (=) Assume first that (1,0, |_B_|>) is stable. Consider any string s € [ so that s & I.
Since (],O,|_B|) is stable, there exists a map D; : I — O such that 0 < [§— D_[(S)] §|_B|
This implies that [$— D?(_(;)] € B, i.e., there exists b € B such that [§— D?(_(;)] = b. This

E—

can be rewritten to obtain § =Dj(s) —I—E. Now since Dy(s) € O and b € B we obtain that
§€ 0@ B, as desired. o .
(<) Assume next that I C O & B. Consider s € [, then § € I. Hence there exists t € O

and b € B such that §=1+ g, fle,§—1= b. Since b € g, we have that 0 < g§|_l§|> Hence
0<[5—1] §|_B| Thus by setting Dj(s) := ¢, we can conclude that (1,0, |_B|) is stable. m

Remark 3 It follows from Theorem 1 and Proposition 2 that when I and O are regular

languages, then the task of determining whether a given dispatching unit (7, O, |B|) is stable
is reduced to checking whether a semi-linear set is contained in another semi-linear set. It
is shown in [7] that the containment problem for semi-linear sets in a general setting is

decidable. |
Example 6 Consider the setting of Example 2 with [ = {a*6* | & > 0}; 0 = {a?b?* | k >
0}; ﬁz [1,1]. Then

= {[n1,m2] |0 <y —ny <1}
{[n1,n2] | 0 < ny —ny < 2,0y or ny even}

= {[n1,n2] |0 < ny,ng < 1}

T S~y
|

Hence it follows that o
O@B: {[nl,ng] | —1 S 1 — Ny S 3}

Thus [ € O @ B, so Theorem 1 implies that the triple (],O,|_B|) is a stable dispatching
unit. ]

Theorem 1 demonstrates that the property of stability only depends on the count vectors
of the languages involved. Given a finite set ¥, define an equivalence relation = C 2¥" x 2%

such that for K, L C ¥*, K = L if K = L. In this case K and L are said to be count
equivalent or letter equivalent. A consequence of Theorem 1 is the following corollary:

Corollary 1 Let 1,1, C Y3, 01,0, C Y5 be such that I} = [, and Oy = Og; then
(1, Ox, |_l§|>) is stable if only if (I3, O4, |_l§|>) is stable.
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5 Conditionally Dispatchable Units

In this section we obtain a necessary and sufficient condition under which a given dis-

patching unit (7,0, |B]) is conditionally dispatchable, so that for each s € I, there exists a
stable and causal input-output map defined over prefixes of s. The condition is obtained in
terms of the output-composition of the buffer DFA G'g and the DA G which generates the
output language O.

Definition 6 The ouiput-composition of Gg and GGg, denoted Ggp, is another DA Ggp :=
(QB*xQo,%E,080,(0,q)), where the transition function is defined as (b € @5, g0 € Qo,0 €

S5 € u3IEl,
Y — (5]3(37 (0,5)),05(q0,5)) if 5]3(37 (0,5)),05(q0, s) defined
6p0((b,40), (7, 5)) = { undefined otherwise

Thus a transition corresponding to an arrival event o € ¥; and a departure sequence s €
Z(S)HB” is defined in a buffer state b and a state qo of the generator for O if and only if (i) the
resulting buffer state [g—l— d — 8] is an admissible buffer state (i.e., buffer capacity constraints
are satisfied), and (ii) the departure sequence s is executable in the state ¢o of G (i.e., s is a
valid extension of the departure sequence, execution of which from the initial state ¢2 leads
to the state go in Gp). Since the number of states of the buffer DFA equals [Tr_, (| Bx| + 1),
the number of states in Gpo equals |Qo| - [[Ti=1(|Bx| + 1))

Example 7 Consider the setting of Example 4 with I = (ab)*c*; O = (ba)*c*; |_B|: [1,0,0].
The DFAs Gi; and Gp generating the input and output languages, respectively, are shown in

Figure 3(a) and 3(b), respectively; and the buffer DFA /g with capacity vector |_B|: [1,0,0]
is shown in Figure 1.

(a) (b)

Figure 3: Diagram illustrating DFAs GG; and Go
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Figure 4: Diagram illustrating DFA Gpgo

Figure 4(a) depicts the DFA G'po obtained using output-composition of G and G as
stated in Definition 6. [ |

The result of the following proposition can be obtained in a straightforward manner by
using induction on the length of strings.

Proposition 3 Consider the DA Gpo = (@B X QO,ZB,(SBO,(@ q9)) as in Definition 6.
Then
L(Gpo) ={s € L(Gp) | 7o(s) € O}.

It follows from Proposition 3 that L(Gpo) C L(Gg) and 7o(L(Gpo)) C O.

Theorem 2 A dispatching unit (7, O, |_B_|>) is conditionally dispatchable if and only if I C
F[(L(GB())).

Proof: (=) Assume first that (],O,|_B|) is conditionally dispatchable. Pick any string

s € I; then we need to show that s € m;(L(Gpo)). Since the dispatching unit (1,0, |_B|) is
conditionally dispatchable, it follows from Definition 3 that there exists a map Dz : 5 — O
that is stable and causal over all prefixes of s. Recall that for each k& < |s|, the notation
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s(k) € Xy is used to denote the kth element in s; the notation sF) < 5is used to denote the
prefix of length & of s; and the notation s € X7 is used to denote the sequence obtained
by deleting the initial & symbols from s. Consider the following sequence of pairs of arrival
events and departure sequences:

s10:={5(1), Ds(s)} ... (k). Da(s? o sy - L3(1s]), Dels)hgpgurr-nyp } € (S x S

where the kth pair consists of the arrival event s(k) € ¥ and the departure sequence obtained
by deleting the initial prefix Ds(s*=1) from the departure sequence Ds(s*)). Note that this
is well defined since the map Ds(-) is causal over prefixes of s. Since the map Ds(-) is also

E— ——>

stable over the prefixes of s, the following holds for each k < |s|: 0 < [s) — Dy(s¥))] < |B|

B —

Since s = 71'1(5(10)) and Dy(s¥)) = 71'0(5([]8), we obtain that for each k < |s|,0 < [71'1(5([]8)

— 71'0(5[0)] <|B| Hence it follows from Proposition 1 that s;o € L(Gpg). It is clear that
mo(s10) = Ds(s), hence no(sro) € O. Consequently, it follows from Proposition 3 that
sjo € L(Gpo). Since m(sj0) = s, we obtain as desired that s € 7;(L(Gpo)).

(<) Next assume that I C 7;(L(Gpo)). Pick s € I, then we need to show that there
exists a map Ds : 3 — O which is stable and causal over all prefixes of s. Since I C
71(L(Gpo)), there exists a string 510 € L(Gpo) such that 7;(s;0) = s. For a length k

prefix of s define Dg(S(k)) = 71'0(5 O) Since sjo0 € L(Gpo) € L(Gp) and S(IO) is the length
k prefix of sjo, we have that 5(118 € L(Gp). Hence it follows from Proposition 1 that

_— _—

E— ——>

0< [71'1(5([]8) — 71'0(5(10))] <|B| Since 71'1(3([]8) = s and 71'0(5([]8) = D5(sM), we obtain that
]

0 < [s) — Dg(sH) <|B| Since k is arbitrary, this implies that the map Ds(-) is stable
over all prefixes of s. It is clear that if £ <[, then Dg(S(k)) = 71'0(3([]8) < 7'('0(8([[())) = Dg(s(l)).
This proves that the map Ds(-) is also causal over all prefixes of s. [ ]

Remark 4 It follows from Theorem 2 that the conditional dispatchability, i.e., existence of
a stable and causal input-output map over all prefixes of a known arrival sequence for the

given dispatching unit (1, O, |B]), can be determined by testing whether the input language
I is contained in the language obtained by projecting the language of the output-composed
DA Gpop onto the input event set. Also note that while the statement of Theorem 2 provides
an existence condition for a stable and conditionally causal dispatching policy, its proof is
constructive, i.e., it provides a technique to compute such a dispatching policy whenever it
exists. (Refer to the example below for illustration of such a construction.) [ ]

Example 8 Consider the setting of Example 7. As mentioned above, the corresponding
(/1 and Go are shown in Figures 3(a) and 3(b), respectively, Gg is shown in Figure 1, and
('po is shown in Figure 4(a). The DFA shown in Figure 4(b) is obtained by projecting each
transition in the DFA Gpo to the input event set. Hence the language generated by the
DFA of Figure 4 equals 7;(L(Gpo)). Consider the sub-automaton of the DFA of Figure
4(b) lying within the rectangular area. Then the language generated by this sub-automaton
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equals (ab)*c¢* = I. Hence we conclude that I C 7;(L(Gpgo)). Thus it follows from Theorem

2 that the corresponding (I, O, |B|) is conditionally dispatchable.

The corresponding dispatching policy can be obtained as follows: Pick any arrival se-
quence s € [. Since I C 7;(L(Gpo)), the arrival sequence s can be traced in the DFA of
Figure 4(b) starting from the initial state. Consider the corresponding path in the DFA
Gpo. Then the required dispatching policy is obtained simply by considering the departure
sequence for each arrival event in the sequence s. Suppose for example the arrival sequence is

abe. Then upon arrival of a, nothing is output (a is buffered, this is feasible as |_B|: [1,0,0]);
upon arrival of next b, ba is output; and finally, upon arrival of ¢, ¢ is output. [ ]

6 Dispatchable Units

e

In this section we obtain conditions under which a given dispatching unit (1,0, |B| )
is dispatchable so that a stable and causal input-output map or a dispatching policy exists
for it. We first show that a causal input-output map can be represented as a Deterministic
Mealy Automaton (DMA) [10]. A condition for stability of a given causal input-output map
is then obtained using its DMA representation.

Letting M denote a DMA, it is a six-tuple:

M = (Q? 27 A? 57 07 q0)7

where ), 3, 6, ¢° are as in a DA, A is the output event set, and 0 : ) x ¥ — A* is the deter-
ministic output function. M is said to be a deterministic finite Mealy Automata (DFMA) if
() is finite. The output function is extended to 6* : () x ¥* — A* recursively as follows:

Vg€ Q,s € X :07(q,s):=07(0(q,s(1)),5q)); 07(q,¢) =€
The input language, denoted Ly(M) C ¥*, and the output language, denoted Lo(M) C A*,
of M are defined as:
Li(M):={s€ ¥ |6(¢, s) defined}; Lo(M):={tc A*|Isc L;(M)s.t. 07(¢°s) =1}

A DMA is a DA together with an output function which describes the outputs of the DA
on its state transitions. Conversely, a DMA can be viewed as a DA—similar in structure
to the buffer DFA G, which we describe next. Given a DMA M := (Q,%,A,4,0,¢°%), it

can equivalently be represented as a DA Gy = (Q, % x A*, épr,4°), where the transition
function 6y 1 @ x (X x A*) — @ is defined as follows (¢ € Q,0 € X, s € A*):

Sai(q, (0,5)) = { 6(q,0) if 6(q,0) defined, and 0(q,0) = s

undefined otherwise

Note that L(Gar) C (3 x A*)*. It is easily seen that m;(L(Gar)) = Li(M) and 7o(L(Gr)) =
Lo(M).
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Definition 7 Given a DMA M = (Q,%},X0,6,0,¢°) with I C L;(M),Lo(M) C O, it
realizes an input-output map Dy : [ — O defined as Dy(s) := 6*(¢°, s) for each s € I.
this case, the input-output map Dj(-) is said to be realizable as M.

In

Note that Dy(s) = 0*(¢°, s) is defined for each s € I since (i) #*(¢°, s) is defined for each
s€ Ly(M)and I C L;(M), and (ii) 6*(¢°,s) € Lo(M) C O. The set of maps realizable as

DFMAs is the set of regular causal input-output maps, which we define next.

Definition 8 Given a causal input-output map Dy : I — O, it is said to be regular causal
if the equivalence relation ~ C ¥5 x ¥ defined as (s,s" € ¥7):

s~s = Vie Z}K : [St cl&s'te ]] A [St,S/t cl= DI(St)(|D1(s)|) = DI(S/t)(|DI(s’)|)]
is of finite index.

Note that in Definition 8 if st,s't € I, then s,s" € [ since [ is closed. Hence Dj(s), D;(s'),
Di(st), Dy(s't) are all well defined. Also, note that if s, s & I, then there exists no sequence
t € X% such that st,s’t € I. Henceif s,s" &€ I, then s ~ s’. Note that the equivalence relation
~ given in Definition 8 is finer than the Nerode equivalence defined in theory of formal
languages [10, 11]. A proof similar to the Nerode equivalence based proof, which establishes
equivalence of regular languages and DFAs [10], can be used to obtain the following result:

Theorem 3 An input-output map Dy : [ — O is causal (respectively, regular causal) if
and only if it is realizable as a DMA (respectively, DFMA) M := (Q, %, Y0, 6,0, ¢°) with

Proof: We only prove the second claim; the first claim can be proved analogously.

(=) Assume that a regular causal input-output map Dy : I — O is given. We need to
show that there exists a DFMA M := (Q, ¥, %0,6,0,4¢°) with I C Ly(M) and Lo(M) C O
that realizes Dy(-). Let [s] denote the equivalence class under the equivalence relation =~
containing the string s. Define a DMA M := (Q,%,%0,6,0,¢"), where (i) Q := {[s] | s €
Y3}, (i) ¢° == [¢], (iii) for each s € ¥% and ¢ € ¥ define §([s], o) := [so], and (iv) for each
s € ¥j and o € ¥ define

O8], o) = { Di(s'o) oy if exist§ s e[s]st. sloeld
€ otherwise

Note that the transition function of M is well defined, as s',s” € [s] implies s'c, s"0 € [s0]
for each o € ¥. Also note that in the definition of the output function if s'c € I, then s’ €
since [ is closed. Hence Dj(s’") and Dj(s'o) are both defined. Also, since Dy(-) is causal,
Dy(s'0)(jp,(s)) is defined. Furthermore, it follows from the definition of the equivalence class
[s] that if s',s" € [s], then Dj(s'0)(p,(s1y)) = Pr(s"7)(p,(sm))- Hence the output function is
well defined. Moreover, regularity of Dj(-) implies that |Q| < co. We claim that M is the
desired DFMA. Note that from construction of M we have L;(M) = ¥%; hence I C Ly(M).
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Also, Lo(M) ={s € O | 3t € I s.t. Dy(t) = s}, which implies that Lo(M) C O. It follows
from the definition of the output function of M that for any s € I we have

0*(q0, S) = D[(S(l))D[(S(z))(“)](su))|) e D[(S(k))(|DI(S(k—1))|) e DI(S(|S|))(|DI(S(|S|_1))|) == D[(S),

where the last equality follows from the fact that Dj(-) is causal. Thus M realizes the
input-output map Dy(-).

(<) Assume next that a DFMA M := (Q,%;,%0,6,0,¢°) with I C L;(M) and Lo(M) C
O 1s given. We need to show that it realizes a regular causal map Dy : I — O. For any
string s € I, define Dy(s) := 6*(¢°, s). Since 0*(¢°,s) is defined for each s € L;(M) and
I C Ly(M), it follows that Dy(s) is defined for each s € I. Also, since 8*(¢°,s) € Lo(M)
and Lo(M) C O, it follows that D(s) = 6*(¢°,s) € O. Thus M realizes an input-output
map. It remains to show that this map is also regular causal. Causality follows from the
fact that for s,t € I,s <t implies 6*(¢°, s) < 6*(¢",t). Regularity follows from the fact that
for each s,s" € I, s ~ s’ whenever §*(¢°,s) = §*(¢", s'), since for any ¢ € Z? st € I if and
only if st € I, and st,s't € I implies 0*(¢° st)or(q0,5)) = 07(q°, 5't)(j6+(0,5))- On the other
hand, if s,s" & I, then s ~ s’. This proves that the index of the equlvalence relatlon o~ 1S no
greater than |Q| + 1 < co. u

Theorem 3 provides an alternate characterization of causal as well as regular causal
maps. We next present a condition for the stability of such maps. Recall that given a DMA
(respectively, DFMA) M, the notation () is used to denote its equivalent DA (respectively,
DFA) representation.

Proposition 4 An input-output map D; : I — O is stable and causal (respectively, regular
causal) if and only if it is realizable as a DMA (respectively, DEFMA) M := (Q, %, Y0, 6,0, ¢°)
with I C Ly(M),Lo(M) C O and {sj0 € L(Gn) | 71(s10) € I} C L(Gp).

Proof: We only prove the second claim, as the first claim can be proved analogously. Again,
we only prove the forward implication; the reverse implication can be proved analogously.
Assume that Dy : I — O is stable and regular causal. Then it follows from Theorem 3
that there exists a DFMA M := (Q,X;,¥0,6,0,¢°) with I C L;(M) and Lo(M) C O
that realizes Dj(-). We need to show that if s;0 € L(Gar) is such that 77(s;0) € I, then

sjo € L(Gp), i.e., for each k < |sjo| the following holds: 0 < [71'1(5([]8) — 71'0(5[0)] <|B|

Fix k£ < |sjol- Smce 71(s10) € I and [ is closed, s := 7y(s € 1. Also, since sjo € L(Gy)

and L(Ghy) is closed, S(IO) € L(Gy). Hence t := 71'0(5(10)) € Lo(M) C O. Note that from

the construction of the DFA Gy, we have t = 6*(¢", s), and from the construction of the

DMA M we have, 8*(¢°, s) = D(s). Hence t = D[(S) Since Dj(-) is stable over I we have:
)

0
(k)
)

0 < [§— D(s)] <|B|. This implies that < [F[(S(Ik — 71'0(5[ )] <|B| Since k < |sjol is
arbitrary, the desired result is obtained. [ ]

Finally we provide a test for determining whether a given dispatching unit is dispatchable.
Recall that the output-composed DA (' defined in the previous subsection has the property
that (i) 7o(L(GBo)) C O, and (ii) L(Go) C L(Gp), which implies that {s;0 € L(Gpo) |
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71(s10) € 1} C L(Gpo) C L(Gp). Furthermore, if (1, O, |_B_|>) is conditionally dispatchable,

then I C #;(L(Gpo)). Thus if (1,0, |B]) is conditionally dispatchable, then it follows from
Proposition 4 that the DA Gpp can be used to realize a stable and causal input-output
map provided it can be represented as a DMA. Gpo := (@B X Qo, X5, 050, (6, q9)) can be
represented as a DMA whenever it satisfies the following condition:

C1: Vb€ Qp.q0 € Qo,0 €5y U 680((b,q0), (0,5))] < 1.

sexsIz

In other words, for each admissible buffer state and output DA state, there is at most one
departure sequence for an arrival event.

Example 9 Consider for example the DFA Ggo shown in Figure 1(a). Then it can be seen
that at state (6, 3), there are transitions on (a, €) as well as (@, a). Thus upon arrival of @ at
this state it is possible to either buffer « (i.e., output nothing) or output ¢ without violating
either the buffer capacity constraint or the output language constraint. Hence the departure
sequence for the arrival event a at state (6, 3) is not unique, i.e., condition C1 above does not
hold in this case. (This can be verified in an easier manner by noting that the corresponding
DFA of Figure 4(b) is non-deterministic.) |

It C1 holds, then letting Sg0.0) € Z(S)HB” denote the unique departure sequence at the

indicated point we can represent Ggp as a DMA Mpo 1= (QpxQo, X1, Yo, 680,050, (6, 7)),
where for each b € (p,q0 € Qo,0 € X5t
5BO((bv QO)v U) = 5BO((67 q0)7 (0-7 3({;'7(1070))); GBO((bv q0)7 U) = 3({}'7(1070)'

It can be easily verified that L;(Mpo) = #;/(L(Gpo)) and Lo(Mpo) = mo(L(Gpo)). Thus
we obtain the following sufficient condition for dispatchability of (1, O, |_B_|>)

Proposition 5 Suppose C1 holds for the DA G'go. Then (7,0, |_B_|>) is dispatchable if and
only if (1, 0O, |_B_|>) is conditionally dispatchable.
Proof: Since dispatchability implies conditional dispatchability, it suffices to show that

C1 and conditional dispatchability of (1,0, |_l§|>) imply its dispatchability. Since C1 holds,
the output-composed DA Ggp can be equivalently represented as a DMA Mppo. It follows
from the construction of Mpo that Ly(Mpo) = m1(L(Gpo)), Lo(Mpo) = no(L(Go)) C O

and L(Guyp,) = L(Geo) € L(Gp). Furthermore since (],O,|_B_|>) is conditionally dis-
patchable, it follows from Theorem 2 that I C 7;(L(Gpo)). Hence we obtain that I C
Li(Mgo), Lo(Mpo) C O and L(Ganp,,) € L(Ge). Hence it follows from Proposition 4 that

Mpo realizes a stable and causal input-output map, i.e., (1,0, |B|) is dispatchable. ]
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The result of Proposition 5 can be strengthened to obtain a necessary and sufficient
condition for dispatchability. Note that in general condition C1 may not be satisfied by the
output-composed DA G'po. However, it is easy to construct a subautomaton G5, < Gpo
for which the condition C1 is satisfied, so that for each admissible state of G'gp, there is a
unique departure sequence for each admissible arrival event. Given such a subautomaton

"o, if I C 71(L(G'p)), then it is easily seen that (I, O, |_B|) is dispatchable. In fact the
converse of the last statement also holds.

Theorem 4 A dispatching unit (7, O, |_B_|>) is dispatchable if and only if there exists a sub-
automaton G'’zo < G'po such that C1 holds for G’z and I C 7;(L(G'sp))-

Proof: (=) First assume that (7, O, |_B|) is dispatchable. Then we need to show that there
exists a subautomaton G’y < Ggo such that C1 holds for G5, and I C 77(L(G'sp)). From
hypothesis there exists a stable and causal input-output map Dy : I — O. Using the input-
output map Dy(-) construct a subautomaton G, = (Qr X Qo,XE,d50,(0,¢3)) < Gpo,

where the transition function is defined as (g € @B, 90 € Qo,01 € X1,50 € Z(S)HB”)

. 880((b.q0), (01,50)) Is1 € I s.t. 855((0,43), (51, Di(s1)) = (b.q0),
&po((b,90), (01,50)) 1= and Dr(sror)(p(s)) = So
undefined otherwise

Since D(S[O'[)(“)(SI)D € Z(S)”B” is uniquely defined whenever s;o; € I, it is clear that given a

buffer state b and a state ¢o of the output DA, there exists at most one departure sequence
So € Z(S)”B” for the arrival event o;. In other words,

Vbe Qn,q0 € Qo,01 € 3y U 5%0((37 q0),(01,50))| < 1.

soessIe

Thus C1 holds for the DFA G',.
We use induction on the length of strings in [ to prove that if s; € [, then s; €
71(L(G'p)). In fact we prove a stronger claim:

e

s € 1= 650((0,4%), (s1. Di(s1)) = ([s1— Di(sn)], 65(ad, Dils1))). (1)

Note that the condition of (1) implies that (s7,Dj(s;)) € L(G'p), which in turn implies
that s; € 7;(L(G%p)). The condition of (1) certainly holds for the zero length string e € [
since Dy(€) = e. Hence the base step holds. In order to prove the induction step, consider
s; € I and o7 € ¥ such that sjo; € I. Then from induction hypothesis, (1) holds. Let

e

b= [s7— Di(s1)] and qo = 85(¢d,Dr(sr)). Then it follows from the definition of the
transition function of G, that

[650((b,90), (01, 50)) = 880((b, q0). (01, 50))] <= [s0 = Di(s1o0)p,snpl- (2)
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Thus by combining the conditions of (1) and (2) we obtain the desired result of induction
step:

850((0,40), (s101, Di(s101))) = ([s101 — Di(s101)], 85(4d, Di(s101))).
(<) Next assume that there exists a subautomaton G’ < G'go such that C1 holds for

G'so and I C m1(L(Gp)). Then we need to show that (1,0, |_l§|>) is dispatchable. Construct
an equivalent DMA, Mg, for the DA G',. This is possible since C1 holds for G’5,. Then
1 C mi(L(Glyo)) = Li{Mbo) mo(L(Gao)) = Lo(Mpo) € O and L(Glo) = L(Girry,) C

L(G'p). Hence it follows from Proposition 4 that (7,0, |_B_|>) is dispatchable. [ |

Example 10 Consider the setting of Example 7. As mentioned above, the corresponding
DFA Gpg is shown in Figure 4(a). Also, as noted in Example 9 condition C1 does not

hold in this case. Thus although the triple (1,0, |B|) is conditionally dispatchable the
test for sufficiency of dispatchability as given in Proposition 5 is not applicable. However,
C1 holds for the sub-automaton G'%, < Gpo laying within the rectangular area of Figure
4(a). Furthermore, 7;(L(G's5)) = (ab)*¢* = I. Thus it follows from Theorem 4 that the

triple (7, O, _Bﬁ) is dispatchable. The required dispatching policy is obtained as discussed in

Example 8. ]

In view of Theorem 4, the statement of Proposition 4 can be strengthened to obtain the
following result:

Proposition 6 An input-output map Dy : I — O is stable and causal if and only if it is
realizable as a DMA M = (Q, X1, Y0,6,0,¢°) with I C L;(M), Lo(M) C O and L(Gy) C
L(Gp).

Proof: (=) Suppose Dy : [ — O is stable and causal so that (1,0, |B]) is dispatchable.
Then as in the proof of Theorem 4, a subautomaton Gz, :=(Qp X Qo,XB, 050, (6, 7)) <
G/'po can be constructed so that C1 holds for G, and I C 7;(L(G'p)). Since C1 holds
for G’gp, it can be represented as a DMA Mg, = (@p X QO,ZI,ZO,(%O,(@%O,((_)), a9)).
Then it follows from the construction of G’%, and the definition of Mg, that for each
s € 1,0%((0,4%),s) = Di(s). In other words, Mip, realizes Dy(-). Since I C m1(L(Glyp)),
7o(L(G's0)) C 7o(L(GBo)) € O, and L(G's,) C L(Gpo) € L(Gp), it follows that [ C
Li(Mpg), Lo(Mpo) C O, and L(Gar, ) € L(Gp). This proves the “only if” part.

(<) The “if” part follows from the “if” part of Proposition 4. Note that if L(Gy) C
L(GB), then {SIO - L(GM) | 7'('[(8[0) - ]} - L(GM) - L(GB) |

7 Conclusion

Quantitative design of dispatching policies, that involves queueing theory based analysis,
has widely been studied. In contrast, this paper deals with qualitative design of dispatching
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policies and addresses the problem of whether a given input-output discrete event system
can be realized as a stable dispatching unit, i.e., a system consisting of a set of finite ca-
pacity buffers. We have formalized the notion of a dispatching unit as a triple consisting
of an input language constraint (describing the sequences in which parts may arrive at the
dispatching unit), an output language constraint (describing sequences in which parts may
be dispatched), and a buffer capacity constraint. Dispatching policies are introduced as
stable and causal input-out maps, and notions of conditionally stable, stable, conditionally
dispatchable, and dispatchable dispatching units is introduced and conditions for their ex-
istence, and techniques for synthesizing desired input-output maps whenever they exist are
presented.

There are a number of interesting open problems for future research: (i) algebraic prop-
erties such as closure under union and intersection of dispatching units of each type needs
to be studied; thus if a certain dispatching policy does not exist for a given dispatching
unit, then design of minimally restrictive [26] dispatching policies can be considered; (ii) the
assumption that the buffer capacities are given may be relaxed, and design of dispatching
policies with respect to any finite buffer capacity vector may be considered; (iii) alterna-
tive techniques for determining dispatching policies such as on-line techniques as studied in
[8, 4], and integer-programming based techniques for analyzing vector discrete event systems
as reported in [18], should be developed for facilitating computationally efficient design; (iv)
stability properties of a network of dispatching units ought to be investigated so that a
“modular” notion of stability of 1/O DESs can be developed.
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