
Control of Event Separation Times inDiscrete Event SystemsDarren D. CoferHoneywell Technology Center3660 Techology Dr.Minneapolis, MN 55418cofer darren@htc.honeywell.com Vijay K. Garg1Dept. of Elec. and Comp. EngineeringUniversity of Texas at AustinAustin, TX 78712-1084garg@ece.utexas.eduAbstractThe class of timed discrete event systems which can be mod-elled by automata known as timed event graphs are struc-turally related to �nite state machines. Consequently, su-pervisory control problems for these timed DES can be ad-dressed using methods similar to those developed for theiruntimed counterparts. When the desired behavior takes theform of minimum separation times between events, it also canbe expressed as a timed event graph. Supervised behavior isthen de�ned by the synchronous operation of the plant andspeci�cation automata. Controllability and the existence ofoptimal behaviors can be evaluated in this framework.1. IntroductionDiscrete event systems (DES) which are subject to synchro-nization constraints in time can be modelled by automataknown as timed event graphs [2]. A timed event graph (TEG)is a Petri net in which a delay or processing time is associatedwith each place and such that forks and joins occur only atits transitions. Each transition in the graph corresponds toan event in the system. Therefore, an event will only occurafter all of the processes (places) connecting it to predecessorevents are completed.An autonomous TEG (one having no input transitions) willexecute a �xed behavior which may be described by thevector sequence of transition �ring times corresponding tothe occurrence times of all events. Suppose that some ofthe events are controllable, meaning that their occurrencemay be arbitrarily delayed. Given a desired behavior of thesystem (such as a set or range of acceptable �ring time se-quences) we wish to determine whether there exist controlactions which will restrict the system to that behavior. Ifthis is not possible, we wish to determine a subset of thedesired behavior which can be realized and is in some senseoptimal.By using a max-algebra model for timed DES, this problem1Research supported in part by NSF grant CCR-9110605, aGeneral Motors Fellowship, and an IBM grant

becomes similar to the supremal controllable sublanguageproblem for untimed DES [9]. The max-algebra approachallows a TEG to be described by a linear equation. Fur-thermore, controllable behavior may be characterized by aninvariance condition on the lattice of time sequences [5]. Thisis a departure from previous max-algebra control work whichfocused on the input-output behavior of systems.In this paper we consider speci�cations which are in the formof minimum desired separation times between events in thesystem. Such a speci�cation can also be expressed as oneor more TEGs. We show that questions of controllabilityand optimal behavior can be addressed by considering thesynchronous operation of the plant and speci�cation TEGs.Thus, for this type of problem we follow an automata-basedapproach, in contrast to [5] where the methods were anal-ogous to formal language theory. A preliminary version ofthis work appears in [4]. Proofs and additional details maybe found in [3]. 2. Timed Event GraphsThe dynamic behavior of a TEG can be studied using max-algebra techniques [2, 3]. Consider a TEG G = (T; A) whereT is a set of N transitions and A is an N � N matrix ofdelay functions at places connecting the transitions. Thenthe sequence xi of �ring times of transition ti satis�esxi = maxf max1�j�nfAijxjg; vig (1)where vi speci�es an earliest starting time for ti. The absenceof a place connecting tj to ti is denoted by Aij = ", whichrepresents a delay of �1 and hence no restriction.Let S be the set of sequences over R [ f�1g. Using theshorthand of max-algebra where � denotes pointwise maxi-mization in SN , (1) can be writtenx = Ax� v: (2)Assuming there are no other constraints and since transitions�re as soon as they are enabled, the actual behavior of thesystem is given by the least solution to (2) which is x = A�v,



where A� =Mi�0 Ai:Borrowing notation from untimed automata we denote thebehavior of G by L(G).For a TEG with constant delay times, the delay functionsare of the form am, where a represents unary addition ofa constant delay to every term in the sequence and  is theindex backshift function (x(k) = x(k�1)). Each of m < Mtokens in the initial marking of a place causes a backshiftsince the (k �m)th token to enter the place will be the kthto depart. We de�ne the degree of a delay function of thisform by deg(am) � m.If we are interested in the individual terms of the sequencex it is convenient to rewrite (2) as the recurrence equationx(k) = A�0(A1x(k � 1)� : : : AMx(k �M) � v(k)): (3)Here the delay matrix has been decomposed into matrices ofdelay functions having the same degree so thatA = A0 � A1 : : : �AMM : (4)Timed event graphs are structurally very similar to �nitestate machines (FSM) which are often used to model un-timed DES. Both are directed graphs with weighted edges.In a timed event graph the nodes correspond to events andthe edges to process delays, while the nodes in a �nite statemachine represent the system states and the edges corre-spond to events. The weight of an edge in a TEG speci�esa minimum separation time between the events it connectsand therefore imposes an order on their execution times. Theedge weight in a FSM is just the event label. The structuresare dual in the sense that a FSM models nondeterministicchoice but not synchronization while a TEG models synchro-nization but not choice.As a result of their common structure both TEGs and FSMsare governed by the same equation (2). The only di�erence isthe de�nition of the operators in the underlying algebra [3].It is this structural and algebraic similarity which suggeststhat control of timed DES modelled by TEGs may be studiedusing techniques developed for FSMs.3. Supervisory Control of Timed Event GraphsSuppose that some events Tc � T are controllable, mean-ing that their transitions may be delayed from �ring untilsome arbitrary later time. The delayed enabling times ui(k)are provided by a supervisor, with ui(k) = �1 for ti un-controllable. Then the supervised system is described byx = Ax� v � u.Now let Y be a set of desired behaviors (sequences) to whichwe would like to restrict the system. We say that Y is con-trollable if enabling the controllable transitions at any timesallowed by Y is su�cient to guarantee that the resulting be-havior belongs to Y . To compute the e�ect of uncontrollableevents, let Ic denote the matrix having the identity function

on diagonal elements i for which ti 2 Tc and " elsewhere.Then for any desired sequence y 2 Y the supervisor pro-vides �ring times u = Icy. This results in actual behaviorx = A�(Icy � v). Since the desired behavior must be invari-ant under uncontrollable actions, we formalize the de�nitionof controllability as follows [3, 5].De�nition 1 A set of sequences Y � SN is controllablewith respect to A, v, and Tc ifA�(IcY � v) � Y: (5)Sets of sequences in SN may be ordered by inclusion to form alattice. The controllability of a set of behaviors is determinedby inequation (5) on this lattice. Likewise, the controllabil-ity of untimed DES modelled by FSMs is determined by aninequation on the lattice of languages. In the untimed case ifa language is not controllable we can �nd its supremal con-trollable sublanguage. An uncontrollable set of sequences fora TEG is shown in [5] to have an extremal controllable sub-set and superset. Furthermore, these extremal controllablebehaviors can be found using the same �xed point results forlattices which are used to study untimed DES [7].In [5] the desired behaviors considered were speci�ed in termsof bounds on the occurrence times of events. Suppose in-stead that the desired system behavior is speci�ed by min-imum separation times that must be maintained betweenevents. For example, we may want to delay the departureof an airplane until all of its connecting ights have been onthe ground for some minimum time. In a communicationnetwork such constraints could be used to restrict tra�c ad-mitted to the network.For this type of constraint, the set of desirable behaviors isof the form Y = fx 2 SN j x � Sxg (6)where xi � Sijxj speci�es delay functions connecting pairs ofevents. Rather than determining the controllability of the setY associated with speci�cation S, we determine the existenceof controllable sequences belonging to the set. We specializethe de�nition of controllability for a single sequence y to beA�(Icy � v) = yand formally state the problem as follows:Problem: Given a plant Gp = (T; A) and a speci�cation ofminimum event separation times S, �nd a supervisor for thespeci�cation.In [1] upper and lower bounds on event separation times werefound. Our interest is to determine whether a speci�ed limiton event separation times can be achieved given the controlavailable. In [5] a language-based approach was taken to thisproblem. Given a set of the form (6) the supremal control-lable sequence satisfying the minimum separation constraintsand less than a �xed upper bound is shown to exist.It is possible to instead use an automata-based approach toexamine this problem. The minimum required separationtimes S essentially form another TEG in the same way asthe system or plant delay times. Thus the supervisor whichprovides the delayed enabling times to the controllable eventsin the plant is another TEG, de�ned by x = Sx� v.



4. Control by SynchronizationOften the desired behavior for an untimed DES will be speci-�ed by another FSM. The speci�cation FSM is made to serveas a supervisor for the plant FSM by operating the two insynchrony [9]. This means that the plant and the supervisorwill execute an event only if it is enabled in both machines.Thus, the supervisor may prevent or disable events whichotherwise would have been permitted in the plant. A super-visor is said to be complete if it does not disable any un-controllable events. These concepts are extended to untimedPetri nets in [8].Synchronous composition of timed event graphs can be de-�ned in a similar manner. Assume that we are given twoevent graphs de�ned by delay matrices A1 and A2. Transi-tions which are common to both graphs �re only when theyare enabled in both graphs. Transitions which appear inonly one of the graphs �re when enabled by their own localpredecessors, as before. An important observation is thatsynchronization may be used to realize a control policy fora TEG since some of its events will be delayed if they aresynchronized to events in another TEG.In the max-algebra representation, the construction of thesynchronous composition of two systems is straightforward.If the respective event sets T1 and T2 are not identical, weassume that events are mapped into their union with A1 andA2 permuted and augmented with empty rows and columnsas needed. Then the synchronous behavior of the plant andthe supervisor, denoted G1kG2, is governed byx = (A1 �A2)x� vwhere v = v1 � v2. The sequence of �ring times L(G1kG2)is then given by (A1 � A2)�v.Note that as for the synchronous composition of FSMs, thisis a completely general and symmetric construction. We canconsider the synchronous operation of any number of TEGsin any order. In fact, the decomposition in (4) of a systemdelay matrix A into the collection fAig based the number ofinitial tokens is an example.It is easy to see that synchronous composition results in eventtimes which are greater than or equal to those of the indi-vidual systems operating independently.Theorem 1 L(G1kG2) � L(G1) � L(G2).This follows directly from the de�nition and the fact that(A1 �A2)�v � A�1v �A�2v:Clearly synchronous composition of TEGs may introducenew circuits. Thus there is the potential to introduce a dead-lock (a circuit containing no tokens) that was not presentbefore. This condition is checked by examining A0, the sub-graph of places in the synchronized graph with no initial to-kens. If there exists a permutation of the rows and columnsof this matrix that makes it strictly upper triangular then itis circuit-free. Equivalently, if there exists n � N such that(A0)n = " then there is no deadlocked circuit.

Now consider the synchronous composition of a plant Gp =(T;A) and a supervisor Gs = (T; S). In de�ning synchro-nization of TEGs we have implicitly assumed that all eventsin the plant are controllable. If this is actually the case, theproblem becomes trivial since y = (A � S)�v satis�es theminimum separation time speci�cation y � Sy and y is acontrollable sequence. In fact, there is no sequence less thany which satis�es these requirements.We must now account for the e�ect of the uncontrollableevents. The speci�cation is a legitimate supervisor for theplant if it does not directly delay the occurrence of uncon-trollable events. That is, the speci�cation may require un-controllable event ti to occur d seconds after any other eventtj, but this delay cannot be imposed directly; only throughthe action of controllable events and delays within the plant.This is analogous to the requirement that a FSM supervisornot disable any uncontrollable events.To verify this we must check if the synchronous compositionof the plant and supervisor is changed by deleting from thesupervisor all incoming edges to uncontrollable events. LetIc be de�ned as before. Then Ĝs = (T; IcS) removes fromthe supervisor graph all incoming edges to events which areuncontrollable in the plant. We may now sum up this condi-tion with the following de�nition.De�nition 2 A supervisor Gs = (T; S) is complete withrespect to plant Gp = (T; A) and controllable event set Tc ifthe synchronous composition of the supervisor and plant doesnot depend upon any delay of uncontrollable events imposeddirectly by the supervisor; that is,L(GpkĜs) = L(GpkGs)or (A� IcS)�v = (A� S)�v:If the completeness condition holds, then the speci�cationis implemented simply by means of the synchronous compo-sition of the plant and the speci�cation event graphs. Theresulting behavior is controllable and meets the separationtime requirements.Theorem 2 If supervisor S is complete with respect to Aand Tc then y = (A � S)�v is a controllable sequence andy � Sy. Furthermore, y is the least such sequence.Su�cient conditions for the completeness of a speci�cationcan also be computed using the recurrence form (3).Example 1 Consider the following plant and supervisorA = " " " 1" " 12 1 " # S = " " 1 "" " "" 3 " #with t1 controllable in the plant. Letting D = A � S andD̂ = A� IcS we haveD0 = " " 1 "" " "2 3 " # D̂0 = " " 1 "" " "2 1 " # :
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1Figure 1: Plant (left) and complete supervisor (right)Since D�0 = D̂�0 and D1 = D̂1 the sequences generated areidentical and the supervisor is complete. For further insight,looking at the graph in Fig. 1 we see that the desired separa-tion of 3 between t2 and uncontrollable event t3 is achievedby imposing a delay of 1 between t2 and controllable eventt1. Therefore the sequence (A� S)�v is controllable. utSuppose that the speci�cation may be decomposed as a col-lection of k TEGs whose separation times must all be satis-�ed. Equivalently, the desired behavior may be speci�ed ina modular fashion. In either case we have an overall speci�-cation of the form S = S1 � : : : Sk :It turns out that the component speci�cations may be eval-uated individually to make a valid judgement regarding thecompleteness and, therefore, the controllability of the wholespeci�cation.Theorem 3 If each of the speci�cations in the collectionfSig is complete thenLi Si is complete.The next theorem gives us a componentwise check for com-pleteness which is both necessary and su�cient.Theorem 4 A speci�cation S is complete for any initialcondition if and only ifS � (A� IcS)�: (7)To check completeness we only need to verify[S]ij � [(A� IcS)�]ijfor all i and j such that ti 62 Tc and [S]ij > ". For all otheri and j the condition is trivially satis�ed.5. Optimal Controllable BehaviorIf the given speci�cation for event separation times is notcomplete, we would like to �nd a complete speci�cationwhich is optimal in some sense. Assuming that it is impor-tant to achieve at least the event separation times given byS, an optimal speci�cation would be the least Ŝ � S which iscomplete. Unfortunately, we can run into problems in boththe existence and uniqueness of such an optimal speci�cation.

If there is no path in the plant from a controllable transitionto any uncontrollable transition which must be delayed in thespeci�cation S, then there is no Ŝ � S which is complete.We characterize the existence of such paths as follows.De�nition 3 A transition ti is structurally controllable if itis reachable from some controllable transition; that is, thereexists n < N and tj 2 Tc such that [An]ij > ". [An]ij iscalled a controllable path.We may now state a su�cient condition for the existence ofa complete speci�cation greater than or equal to S.Theorem 5 Suppose S is not complete. Let U denote theset of transitions for which the completeness condition (7)fails to hold. Then a complete speci�cation Ŝ � S exists ifthe following two conditions are satis�ed:1. Every transition in U is structurally controllable.2. For each ti 2 U with [S]ij � g > " there exists acontrollable path f such that deg(f) � deg(g).If every uncontrollable event ti which requires a delay fromsome tj is reachable from a controllable event tc (condition 1)then the result follows by adding the appropriate delay fromtj to tc. Condition 2 is necessary since tokens can be addedto the delay path but excess tokens cannot be removed.Even when complete supervisors greater than the given spec-i�cation exist, there may not be a minimum complete super-visor. This is because the set of complete supervisors is notclosed under minimization. Therefore, we propose the follow-ing procedure for generating a minimal complete supervisor;that is, one such that no supervisor less than it is complete.The procedure incorporates the existence criteria above.Procedure1. Determine if the speci�cation S is complete.8ti 62 Tc, let Vi = ftj j [S]ij > [(A� IcS)�]ijgU = fti j Vi 6= ;gComplete if U = ; (Theorem 4).2. Verify structural controllability for all ti 2 U .Wi = ff j f is a controllable path for tigIf Wi = ; then ti is not structurally controllable (con-dition 1 of Theorem 5).3. Compute delays to be added to S.8tj 2 Vi, with g � [S]ij(a) Select f 2Wi such that deg(f) � deg(g).(If none, condition 2 of Theorem 5 fails.)(b) Compute minimum h such that fh � g and set[Ŝ]cj = [Ŝ]cj � h.By its construction, the procedure �nds a complete super-visor Ŝ � S if one exists. Minimality is achieved by thecomputation of h in step 3(b). Strictly speaking, it turnsout that the resulting supervisor may not, in fact, be min-imal. It is possible that a delay added in one step may bemade unnecessary by a delay added in a parallel path at alater step. Thus, by deleting the unnecessary delay we could



obtain a supervisor less than that computed by our proce-dure. For practical purposes this is of little consequence sincethe resulting behavior will be the same in either case.It is possible that any delays h with deg(h) = 0 added in step3(b) could introduce deadlocked circuits. This situation canbe handled in two ways. After using the procedure to �nd thenew supervisor, check (A� IcŜ)0 to �nd any deadlocks andidentify the added delays which caused them. Then rerunthe procedure for the a�ected transitions, with the restrictionthat di�erent controllable paths must be chosen in step 3(a).Alternatively, deadlocks can be avoided on{line by makingthe following changes to step 3(a). Where possible, givepreference to the selection of controllable paths such thatdeg(f) < deg(g). This ensures that deg(h) � 1, avoidingthe possibility of deadlock. In those cases where deg(h) = 0cannot be avoided, it necessary to �nd a controllable pathusing tc such that [(A� IcŜ)�0]jc = ". If this cannot be done,deadlock is inevitable.As a �nal consideration, suppose that condition 2 of Theo-rem 5 fails to hold in step 3(a). A further attempt at �ndinga complete supervisor may be made with the following mod-i�cation to step 3:� For tj failing this condition, replace tj by the set of itsimmediate predecessors ftpg in the plant A.For each predecessor tp, let g � [S]ij[A]jp.Now if step 3(a) is successful for the modi�ed set of transi-tions, the separation time required by [S]ij can be met.To see why this works, consider the case where tj has a singlepredecessor tp and the required separation is xi � g(xj).Then assuming condition 2 can be satis�ed for tp and lettinggp = gAjp, we can �nd delay hp and a controllable path suchthat fhp � gp. Thus we havexi � fhp(xp) � gp(xp)= gAjp(xp)= g(xj):Example 2 To illustrate the results of this section, we con-sider a manufacturing work cell which uses automated guidedvehicles (AGV) for transporting parts between stations inthe cell. The control objective is to prevent collisions ofthe AGVs by ensuring su�cient separation between certainevents. The logical behavior of this system is studied in [6].A timed event graph model for the work cell is shown inFigure 2. Two di�erent types of un�nished parts arrive atthe input parts stations to be picked up by AGVs. The partsare transported to two di�erent work stations for machiningand then moved to a another work station for �nal machiningand assembly. The �nished product is then transported tothe completed parts station for packaging.The cell is described by the synchronous composition of 11subsystems:� 2 input parts stations M;N� 3 work stations U;V;W� 5 AGVs A;B;D;E;F
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quirements to avoid collisions, and impose the least possibledelays to accomplish this. As the last step, we compute(A � S)�0 to ensure that no deadlock conditions have beenintroduced by the new supervisors. ut6. ConclusionWhen the desired behavior of a timed event graph is givenin terms of minimum separation times between events, thespeci�cation may be expressed as another timed event graph.We have de�ned the synchronous composition of TEGs andshown that this may be used to control the plant by delayingcertain events. We have introduced an appropriate notion ofcompleteness to characterize speci�cations which may legiti-mately function as supervisors for a particular plant. Whena speci�cation fails to be complete we have shown that theset of complete speci�cations greater than the desired speci-�cation is not well-behaved in that it may be empty or mayfail to have a unique minimum element. In this case we haveoutlined a procedure to generate a minimal complete speci-�cation.References[1] T. Amon, H. Hulgaard, S. M. Burns, G. Borriello, \Analgorithm for exact bounds on the time separation of eventsin concurrent systems," IEEE Int. Conf. on Computer De-sign, October 1993.[2] F. Baccelli, G. Cohen, G. J. Olsder, J. P. Quadrat,Synchronization and Linearity, Wiley, New York, 1992.[3] D. D. Cofer, Control and Analysis of Real-Time Dis-crete Event Systems, Ph.D. Thesis, Dept. of ECE, Univ. ofTexas at Austin, May 1995.[4] D. D. Cofer, V. K. Garg, \Supervisory Control ofTimed Event Graphs," in Proc. 1994 IEEE Int. Conf. Sys.Man & Cyb., San Antonio, TX, pp. 994{999, Oct. 1994.[5] D. D. Cofer, V. K. Garg, \Supervisory Control of Real-Time Discrete Event Systems Using Lattice Theory," in Proc.33rd Conf. Dec. Ctl., Orlando, FL, pp. 978{983, Dec. 1994(also to appear in IEEE Trans. Auto. Ctl.).[6] L. E. Holloway, B. H. Krogh, \E�cient synthesis ofcontrol logic for a class of discrete event systems," in Proc.1989 Amer. Ctl. Conf., Pittsburgh, PA, June 1989.[7] R. Kumar, V. K. Garg, Modeling and Control of Log-ical Discrete Event Systems, Kluwer, 1995.[8] R. Kumar, L. E. Holloway, \Supervisory Control ofPetri Net Languages," Proc. of the 31st Conf. on Decisionand Control, Tuscon, AZ, pp. 1190-1195, Dec. 1992.[9] P. J. Ramadge, W. M. Wonham, \The control of dis-crete event systems," Proceedings of the IEEE, vol. 77, no.1, pp. 81{98, 1989.


