Control of Event Separation Times in

Discrete Event Systems

Darren D. Cofer
Honeywell Technology Center
3660 Techology Dr.
Minneapolis, MN 55418

cofer_darren@htc.honeywell.com

Abstract

The class of timed discrete event systems which can be mod-
elled by automata known as timed event graphs are struc-
turally related to finite state machines. Consequently, su-
pervisory control problems for these timed DES can be ad-
dressed using methods similar to those developed for their
untimed counterparts. When the desired behavior takes the
form of minimum separation times between events, it also can
be expressed as a timed event graph. Supervised behavior is
then defined by the synchronous operation of the plant and
specification automata. Controllability and the existence of
optimal behaviors can be evaluated in this framework.

1. Introduction

Discrete event systems (DES) which are subject to synchro-
nization constraints in time can be modelled by automata
known as timed event graphs [2]. A timed event graph (TEG)
is a Petri net in which a delay or processing time is associated
with each place and such that forks and joins occur only at
its transitions. Each transition in the graph corresponds to
an event in the system. Therefore, an event will only occur
after all of the processes (places) connecting it to predecessor
events are completed.

An autonomous TEG (one having no input transitions) will
execute a fixed behavior which may be described by the
vector sequence of transition firing times corresponding to
the occurrence times of all events. Suppose that some of
the events are controllable, meaning that their occurrence
may be arbitrarily delayed. Given a desired behavior of the
system (such as a set or range of acceptable firing time se-
quences) we wish to determine whether there exist control
actions which will restrict the system to that behavior. If
this is not possible, we wish to determine a subset of the
desired behavior which can be realized and is in some sense
optimal.

By using a max-algebra model for timed DES, this problem

1Research supported in part by NSF grant CCR-9110605, a
General Motors Fellowship, and an IBM grant

Vijay K. Garg?

Dept. of Elec. and Comp. Engineering

University of Texas at Austin
Austin, TX 78712-1084

garg@Qece.utexas.edu

becomes similar to the supremal controllable sublanguage
problem for untimed DES [9]. The max-algebra approach
allows a TEG to be described by a linear equation. Fur-
thermore, controllable behavior may be characterized by an
invariance condition on the lattice of time sequences [5]. This
is a departure from previous max-algebra control work which
focused on the input-output behavior of systems.

In this paper we consider specifications which are in the form
of minimum desired separation times between events in the
system. Such a specification can also be expressed as one
or more TEGs. We show that questions of controllability
and optimal behavior can be addressed by considering the
synchronous operation of the plant and specification TEGs.
Thus, for this type of problem we follow an automata-based
approach, in contrast to [5] where the methods were anal-
ogous to formal language theory. A preliminary version of
this work appears in [4]. Proofs and additional details may
be found in [3].

2. Timed Event Graphs

The dynamic behavior of a TEG can be studied using max-
algebra techniques [2, 3]. Consider a TEG G = (T, A) where
T is a set of N transitions and A is an N X N matrix of
delay functions at places connecting the transitions. Then
the sequence z; of firing times of transition ¢; satisfies

po = max{ max (A2}, 0 (1)

where v; specifies an earliest starting time for ¢;. The absence
of a place connecting ¢; to ¢; is denoted by A;; = e, which
represents a delay of —oo and hence no restriction.

Let S be the set of sequences over R U {£oo}. Using the
shorthand of max-algebra where & denotes pointwise maxi-
mization in ¥, (1) can be written

= Az P v. (2)

Assuming there are no other constraints and since transitions
fire as soon as they are enabled, the actual behavior of the
system is given by the least solution to (2) which is ¢ = A*v,

where ‘
A =pa
i>0
Borrowing notation from untimed automata we denote the

behavior of G by L(G).

For a TEG with constant delay times, the delay functions
are of the form a+™, where a represents unary addition of
a constant delay to every term in the sequence and v is the
index backshift function (yz(k) = ¢(k—1)). Each of m < M
tokens in the initial marking of a place causes a backshift
since the (k — m)th token to enter the place will be the kth
to depart. We define the degree of a delay function of this
form by deg(ay™) = m.

If we are interested in the individual terms of the sequence
« it is convenient to rewrite (2) as the recurrence equation

w(k) = A3 (Are(k — 1) & ... Ayz(k— M) ®o(k)). (3)

Here the delay matrix has been decomposed into matrices of
delay functions having the same degree so that

A= Ao D Arvy... D Au~y™. (4)

Timed event graphs are structurally very similar to finite
state machines (FSM) which are often used to model un-
timed DES. Both are directed graphs with weighted edges.
In a timed event graph the nodes correspond to events and
the edges to process delays, while the nodes in a finite state
machine represent the system states and the edges corre-
spond to events. The weight of an edge in a TEG specifies
a minimum separation time between the events it connects
and therefore imposes an order on their execution times. The
edge weight in a FSM is just the event label. The structures
are dual in the sense that a FSM models nondeterministic
choice but not synchronization while a TEG models synchro-
nization but not choice.

As a result of their common structure both TEGs and FSMs
are governed by the same equation (2). The only difference is
the definition of the operators in the underlying algebra [3].
It is this structural and algebraic similarity which suggests
that control of timed DES modelled by TEGs may be studied
using techniques developed for FSMs.

3. Supervisory Control of Timed Event Graphs

Suppose that some events 7. C T are controllable, mean-
ing that their transitions may be delayed from firing until
some arbitrary later time. The delayed enabling times u; (k)
are provided by a supervisor, with u;(k) = —oo for ¢; un-
controllable. Then the supervised system is described by
x=Arx DvDPu.

Now let Y be a set of desired behaviors (sequences) to which
we would like to restrict the system. We say that Y is con-
trollable if enabling the controllable transitions at any times
allowed by Y is sufficient to guarantee that the resulting be-
havior belongs to Y. To compute the effect of uncontrollable
events, let /. denote the matrix having the identity function

on diagonal elements ¢ for which ¢, € T, and ¢ elsewhere.
Then for any desired sequence y € Y the supervisor pro-
vides firing times v = I.y. This results in actual behavior
¢ = A*(I.y @ v). Since the desired behavior must be invari-
ant under uncontrollable actions, we formalize the definition
of controllability as follows [3, 5].

Definition 1 A set of sequences Y C SV is controllable
with respect to A, v, and T, if

A* (LY ®v) C Y. (5)

Sets of sequences in S™ may be ordered by inclusion to form a
lattice. The controllability of a set of behaviors is determined
by inequation (5) on this lattice. Likewise, the controllabil-
ity of untimed DES modelled by FSMs is determined by an
inequation on the lattice of languages. In the untimed case if
a language is not controllable we can find its supremal con-
trollable sublanguage. An uncontrollable set of sequences for
a TEG is shown in [5] to have an extremal controllable sub-
set and superset. Furthermore, these extremal controllable
behaviors can be found using the same fixed point results for
lattices which are used to study untimed DES [7].

In [5] the desired behaviors considered were specified in terms
of bounds on the occurrence times of events. Suppose in-
stead that the desired system behavior is specified by min-
imum separation times that must be maintained between
events. For example, we may want to delay the departure
of an airplane until all of its connecting flights have been on
the ground for some minimum time. In a communication
network such constraints could be used to restrict traffic ad-
mitted to the network.
For this type of constraint, the set of desirable behaviors is
of the form

Y={ze8" |z> 5z} (6)
where x; > Si;x; specifies delay functions connecting pairs of
events. Rather than determining the controllability of the set
Y associated with specification 5, we determine the existence
of controllable sequences belonging to the set. We specialize
the definition of controllability for a single sequence y to be

AIydv)=y

and formally state the problem as follows:
Problem: Given a plant G, = (T, A) and a specification of
minimum event separation times .S, find a supervisor for the
specification.
In [1] upper and lower bounds on event separation times were
found. Our interest is to determine whether a specified limit
on event separation times can be achieved given the control
available. In [5] a language-based approach was taken to this
problem. Given a set of the form (6) the supremal control-
lable sequence satisfying the minimum separation constraints
and less than a fixed upper bound is shown to exist.

It is possible to instead use an automata-based approach to
examine this problem. The minimum required separation
times S essentially form another TEG in the same way as
the system or plant delay times. Thus the supervisor which
provides the delayed enabling times to the controllable events

in the plant is another TEG, defined by * = Sz @ v.

4. Control by Synchronization

Often the desired behavior for an untimed DES will be speci-
fied by another FSM. The specification FSM is made to serve
as a supervisor for the plant FSM by operating the two in
synchrony [9]. This means that the plant and the supervisor
will execute an event only if it is enabled in both machines.
Thus, the supervisor may prevent or disable events which
otherwise would have been permitted in the plant. A super-
visor is said to be complete if it does not disable any un-
controllable events. These concepts are extended to untimed
Petri nets in [8].

Synchronous composition of timed event graphs can be de-
fined in a similar manner. Assume that we are given two
event graphs defined by delay matrices A1 and As. Transi-
tions which are common to both graphs fire only when they
are enabled in both graphs. Transitions which appear in
only one of the graphs fire when enabled by their own local
predecessors, as before. An important observation is that
synchronization may be used to realize a control policy for
a TEG since some of its events will be delayed if they are
synchronized to events in another TEG.

In the max-algebra representation, the construction of the
synchronous composition of two systems is straightforward.
If the respective event sets 71 and T, are not identical, we
assume that events are mapped into their union with A; and
As permuted and augmented with empty rows and columns
as needed. Then the synchronous behavior of the plant and
the supervisor, denoted G1||G2, is governed by

t=(A1 DAz DY

where v = v1 @ vz. The sequence of firing times L(G1]|G2)
is then given by (A1 @ A2)*v.

Note that as for the synchronous composition of FSMs, this
is a completely general and symmetric construction. We can
consider the synchronous operation of any number of TEGs
in any order. In fact, the decomposition in (4) of a system
delay matrix A into the collection {A4;} based the number of
initial tokens is an example.

It is easy to see that synchronous composition results in event
times which are greater than or equal to those of the indi-
vidual systems operating independently.

Theorem 1 L(G1||G2) > L(G1) & L(G2).
This follows directly from the definition and the fact that

(A1 B A2) v > Alv @ AJw.

Clearly synchronous composition of TEGs may introduce
new circuits. Thus there is the potential to introduce a dead-
lock (a circuit containing no tokens) that was not present
before. This condition is checked by examining Ao, the sub-
graph of places in the synchronized graph with no initial to-
kens. If there exists a permutation of the rows and columns
of this matrix that makes it strictly upper triangular then it
is circuit-free. Equivalently, if there exists n < N such that
(Ag)™ = ¢ then there is no deadlocked circuit.

Now consider the synchronous composition of a plant G, =
(T, A) and a supervisor G. = (7,5). In defining synchro-
nization of TEGs we have implicitly assumed that all events
in the plant are controllable. If this is actually the case, the
problem becomes trivial since y = (A ® S)*v satisfies the
minimum separation time specification y > Sy and y is a
controllable sequence. In fact, there is no sequence less than
y which satisfies these requirements.

We must now account for the effect of the uncontrollable
events. The specification is a legitimate supervisor for the
plant if it does not directly delay the occurrence of uncon-
trollable events. That is, the specification may require un-
controllable event ¢; to occur d seconds after any other event
t;, but this delay cannot be imposed directly; only through
the action of controllable events and delays within the plant.
This is analogous to the requirement that a FSM supervisor
not disable any uncontrollable events.

To verify this we must check if the synchronous composition
of the plant and supervisor is changed by deleting from the
supervisor all incoming edges to uncontrollable events. Let
I. be defined as before. Then G, = (T, 1.5) removes from
the supervisor graph all incoming edges to events which are
uncontrollable in the plant. We may now sum up this condi-
tion with the following definition.

Definition 2 A supervisor G. = (1,S5) is complete with
respect to plant G, = (T, A) and controllable event set T, if
the synchronous composition of the supervisor and plant does
not depend upon any delay of uncontrollable events imposed
directly by the supervisor; that is,

L(GpllGe)

L(Gp|Gs)
v (A® S) v.

or (As I.5)"

If the completeness condition holds, then the specification
is implemented simply by means of the synchronous compo-
sition of the plant and the specification event graphs. The
resulting behavior is controllable and meets the separation
time requirements.

Theorem 2 If supervisor S is complete with respect to A
and T. then y = (A ® S)*v is a controllable sequence and

y > Sy. Furthermore, y s the least such sequence.

Sufficient conditions for the completeness of a specification
can also be computed using the recurrence form (3).

Example 1 Consider the following plant and supervisor

e e 1y €
A=| e ¢ 1v S=1]¢ ¢
2 1 € e 3

VYith t1 controllable in the plant. Letting D = A$ S and
D=A3®I.S we have

e 1 e e 1 e
Do=| ¢ ¢ ¢ Do=| ¢ e ¢
2 3 e 2 1 €

CTL

ty t2 1

1@ ()210) (@1 3

t3

Figure 1: Plant (left) and complete supervisor (right)

Since D¢ = D¢ and Dy = D; the sequences generated are
identical and the supervisor is complete. For further insight,
looking at the graph in Fig. 1 we see that the desired separa-
tion of 3 between ¢» and uncontrollable event ¢s is achieved
by imposing a delay of 1 between t2 and controllable event
t1. Therefore the sequence (A @ S)*v is controllable.

O

Suppose that the specification may be decomposed as a col-
lection of & TEGs whose separation times must all be satis-
fied. Equivalently, the desired behavior may be specified in
a modular fashion. In either case we have an overall specifi-
cation of the form

S=51¢...5.

It turns out that the component specifications may be eval-
uated individually to make a valid judgement regarding the
completeness and, therefore, the controllability of the whole
specification.

Theorem 3 If each of the specifications in the collection
{S;} is complete then @l Si 1s complete.

The next theorem gives us a componentwise check for com-
pleteness which is both necessary and sufficient.

Theorem 4 A specification S is complete for any initial
condition if and only if

S<(A®1.8)". (7)

To check completeness we only need to verify
[Sli; < [(A & 1e5)"]

for all ¢ and j such that ¢; € T, and [S];; > . For all other
¢ and 7 the condition is trivially satisfied.

5. Optimal Controllable Behavior

If the given specification for event separation times is not
complete, we would like to find a complete specification
which 1s optimal in some sense. Assuming that it is impor-
tant to achieve at least the event separation times given by
S, an optimal specification would be the least S > S which is
complete. Unfortunately, we can run into problems in both
the existence and uniqueness of such an optimal specification.

If there is no path in the plant from a controllable transition
to any uncontrollable transition which must be delayed in the

specification S, then there is no S > S which is complete.
We characterize the existence of such paths as follows.

Definition 3 A éransition t; is structurally controllable if ¢
18 reachable from some controllable transition; that is, there
exists n < N and t; € T, such that [A™];; > e. [A™]i; is
called a controllable path.

We may now state a sufficient condition for the existence of
a complete specification greater than or equal to S.

Theorem 5 Suppose S is not complete. Let U denote the
set of transitions for which the completeness condition (7)
fails to hold. Then a complete specification S > S ewists if
the following two conditions are satisfied:

1. Every transition in U is structurally controllable.

2. For each t; € U with [S];; = g > € there exists a
controllable path f such that deg(f) < deg(yg).

If every uncontrollable event ¢; which requires a delay from
some t; is reachable from a controllable event ¢. (condition 1)
then the result follows by adding the appropriate delay from
t; to t.. Condition 2 is necessary since tokens can be added
to the delay path but excess tokens cannot be removed.

Even when complete supervisors greater than the given spec-
ification exist, there may not be a minimum complete super-
visor. This 1s because the set of complete supervisors is not
closed under minimization. Therefore, we propose the follow-
ing procedure for generating a minimal complete supervisor;
that is, one such that no supervisor less than it is complete.
The procedure incorporates the existence criteria above.

Procedure

1. Determine if the specification S is complete.
Vi, @ Te, let Vi = {t; | [S]ij > [(A ® 15)"]is}
U={ti| Vi #0}
Complete if U = @ (Theorem 4).

2. Verify structural controllability for all ¢, € U.
W: = {f| f is a controllable path for ¢;}
If W; = 0 then ¢; is not structurally controllable (con—
dition 1 of Theorem 5).

3. Compute delays to be added to S.
Vi; € Vi, with g = [S];;

(a) Select f € W; such that deg(f) < deg(g).

(If none, condition 2 of Theorem 5 fails.)

(b) Compute minimum % such that fh > g and set

[S]CJ = [S]CJ ©h.
By its construction, the procedure finds a complete super-
visor S > S if one exists. Minimality is achieved by the
computation of h in step 3(b). Strictly speaking, it turns
out that the resulting supervisor may not, in fact, be min-
imal. It is possible that a delay added in one step may be
made unnecessary by a delay added in a parallel path at a
later step. Thus, by deleting the unnecessary delay we could

obtain a supervisor less than that computed by our proce-
dure. For practical purposes this is of little consequence since
the resulting behavior will be the same in either case.

It is possible that any delays h with deg(h) = 0 added in step
3(b) could introduce deadlocked circuits. This situation can
be handled in two ways. After using the procedure to find the
new supervisor, check (A D ICS)O to find any deadlocks and
identify the added delays which caused them. Then rerun
the procedure for the affected transitions, with the restriction
that different controllable paths must be chosen in step 3(a).

Alternatively, deadlocks can be avoided on-line by making
the following changes to step 3(a). Where possible, give
preference to the selection of controllable paths such that
deg(f) < deg(g). This ensures that deg(h) > 1, avoiding
the possibility of deadlock. In those cases where deg(h) = 0
cannot be avoided, it necessary to find a controllable path
using t. such that [(A@ICS)S]]C = ¢. If this cannot be done,
deadlock is inevitable.

As a final consideration, suppose that condition 2 of Theo-
rem 5 fails to hold in step 3(a). A further attempt at finding
a complete supervisor may be made with the following mod-
ification to step 3:

e For ¢; failing this condition, replace ¢; by the set of its
immediate predecessors {¢,} in the plant A.
For each predecessor tp, let ¢ = [S]i;[A];p-

Now if step 3(a) is successful for the modified set of transi-
tions, the separation time required by [S]:; can be met.

To see why this works, consider the case where ¢; has a single
predecessor ¢, and the required separation is z; > g(z;).
Then assuming condition 2 can be satisfied for ¢, and letting
gp = gAjp, we can find delay h, and a controllable path such
that fhy > gp. Thus we have

vi > fhy(p) > gp(op)
= !JAJP(VCP)
= 9(%)'

Example 2 To illustrate the results of this section, we con-
sider a manufacturing work cell which uses automated guided
vehicles (AGV) for transporting parts between stations in
the cell. The control objective is to prevent collisions of
the AGVs by ensuring sufficient separation between certain
events. The logical behavior of this system is studied in [6].
A timed event graph model for the work cell is shown in
Figure 2. Two different types of unfinished parts arrive at
the input parts stations to be picked up by AGVs. The parts
are transported to two different work stations for machining
and then moved to a another work station for final machining
and assembly. The finished product is then transported to
the completed parts station for packaging.

The cell is described by the synchronous composition of 11
subsystems:

e 2 input parts stations M, N
e 3 work stations U, V, W
e 5AGVs A B, D EF

input parts stations a; work station U

(J (J
m my a,
it o}
(J
n n
2 1 b,

work station W

work station V

Figure 2: Manufacturing work cell.

e 1 completed parts station P.

Each of these subsystems contains some internal events and
shared events. The shared events are those that are syn-
chronized with other subsystems. For example, AGV A is
described by the equation

zta=AxAa P Az B Avry P va

where z 4 denotes the occurrence times of the internal events
for A while z3; and zy are events shared with subsystems

M and U.

The coupled equations for all of the subsystems can be col-
lected into a single equation of the form ¢ = Az @ v where

Alis

M M4
N By
AM A AU
BN B BV
D Dy Dw
F FEv Ew
F F'w Fp
Ua Up U
Vs Ve 14
Wp Wg Wr w
. PF P -

|
O /l
X
1U

U

e

U
ks
B

) |C
O

s

r
/ O

Figure 3: Specification for AGVs in Zone 2.

Due to space restrictions, the AGVs must pass through sev-
eral common zones on the workfloor. Only one AGV may
occupy a zone at any time; otherwise, there will be a colli-
siom.

Events in the AGV subsystems correspond to the passage of
the vehicles through various points on their paths. Certain
of these events are controllable (as indicated in Figure 2),
meaning that the AGV may be delayed at that point. To
prevent collisions, we specify minimum separation times be-
tween the admittance of each AGV into a zone. Zone 2 and
its separation time specifications are shown in Figure 3. The
required separation times are specified by two delay matrices
for each zone. For zone 2 we have

T B Saxp

2
2

D SirB

The control objective is to impose the minimum delays at the
controllable events consistent with meeting the specification
for each zone.

The first step is to check whether the specifications are com-
plete. By Theorem 3 we may consider each specification
separately. Using Theorem 4 we obtain the following results.

Zone 1: S| =Ap
Sy = By

complete
not complete at bi2

Zone 2: S; = Agp
Sy = By

not complete at by and big
complete

Zone 3: S; = Ap
Sy = By

not complete at bg
not complete at es

Zone 4: S| = Ap
Sy = By

not complete at eq
not complete at fs

Now we use Theorem 5 to determine if an optimal super-
visor can be found for those specifications which fail com-
pleteness. In every event in question, there is a structurally
controllable path which satisfies the degree condition of the
theorem. It is a simple matter now to compute the addi-
tional delay arcs required to form the revised complete spec-
ifications 32, Sg, 35, 36, 37, and Sg. These specifications are
therefore controllable, satisfy the original separation time re-

quirements to avoid collisions, and impose the least possible
delays to accomplish this. As the last step, we compute
(A @ S); to ensure that no deadlock conditions have been
introduced by the new supervisors. a

6. Conclusion

When the desired behavior of a timed event graph is given
in terms of minimum separation times between events, the
specification may be expressed as another timed event graph.
We have defined the synchronous composition of TEGs and
shown that this may be used to control the plant by delaying
certain events. We have introduced an appropriate notion of
completeness to characterize specifications which may legiti-
mately function as supervisors for a particular plant. When
a specification fails to be complete we have shown that the
set of complete specifications greater than the desired speci-
fication is not well-behaved in that it may be empty or may
fail to have a unique minimum element. In this case we have
outlined a procedure to generate a minimal complete speci-
fication.

References

[1] T. Amon, H. Hulgaard, S. M. Burns, G. Borriello, “An
algorithm for exact bounds on the time separation of events
in concurrent systems,” IEFE Int. Conf. on Computer De-
stgn, October 1993.

[2] F. Baccelli, G. Cohen, G. J. Olsder, J. P. Quadrat,
Synchronization and Linearity, Wiley, New York, 1992.

[3] D. D. Cofer, Control and Analysis of Real-Time Dis-
crete Fvent Systems, Ph.D. Thesis, Dept. of ECE, Univ. of
Texas at Austin, May 1995.

[4] D. D. Cofer, V. K. Garg, “Supervisory Control of
Timed Event Graphs,” in Proc. 1994 IEEFE Int. Conf. Sys.
Man & Cyb., San Antonio, TX, pp. 994-999, Oct. 1994.

[5] D.D. Cofer, V. K. Garg, “Supervisory Control of Real-
Time Discrete Event Systems Using Lattice Theory,” in Proc.
838rd Conf. Dec. Ctl., Orlando, FL, pp. 978-983, Dec. 1994
(also to appear in IEEE Trans. Auto. Ctl.).

[6] L. E. Holloway, B. H. Krogh, “Efficient synthesis of
control logic for a class of discrete event systems,” in Proc.
1989 Amer. Ctl. Conf., Pittsburgh, PA| June 1989.

[7] R. Kumar, V. K. Garg, Modeling and Control of Log-
tcal Discrete Event Systems, Kluwer, 1995.

[8] R. Kumar, L. E. Holloway, “Supervisory Control of
Petri Net Languages,” Proc. of the 31st Conf. on Decision
and Control, Tuscon, AZ, pp. 1190-1195, Dec. 1992.

[9] P.J. Ramadge, W. M. Wonham, “The control of dis-
crete event systems,” Proceedings of the IEFFE, vol. 77, no.
1, pp. 81-98, 1989.

