Control of Stochastic Discrete Event Systems: Synthesis *

Ratnesh Kumar
Dept. of Elec. Eng., Univ. of KY, &
Applied Research Lab., Penn. State

Abstract

In our earlier papers [7, 6, 5] we introduced the formalism
of probabilistic languages for modeling the stochastic qualita-
tive behavior of discrete event systems (DESs). We presented
a framework for their supervisory control in [11], where con-
trol is exercised by dynamically disabling certain controllable
events thereby nulling the occurrence probabilities of disabled
events, and increasing the occurrence probabilities of enabled
events proportionately. The control objective is to design a
supervisor such that the controlled system never executes any
illegal traces (their occurrence probability is zero), and legal
traces occur with minimum prespecified occurrence proba-
bilities. In other words, the probabilistic language of the
controlled system lies within a prespecified range, where the
upper bound is a “non-probabilistic language” representing
a legality constraint. In [11] we provided a condition for the
existence of a supervisor, and also presented an algorithm to
test this condition when the probabilistic languages are regu-
lar (so that they admit probabilistic automata representation
with finitely many states). In this paper we give a technique
to compute on-line a maximally permissive supervisor achiev-
ing the specified lower and upper bound constraints.

Keywords: Stochastic discrete event systems, supervisory
control, probabilistic languages.

1 Introduction

The non-stochastic behavior of a discrete event system can
be viewed as a binary valued map over the set of all possible
sequences of events, called traces. (A trace is mapped to one
if and only if it belongs to the system behavior.) We call such
a map to be non-probabilistic language. In [7] we introduced
a more general map over the set of all traces that takes values
in the closed unit interval (instead of just in the set of binary
numbers) to describe the stochastic qualitative behavior of
a DES. The interpretation being that the value associated
with a certain trace under such a map is its occurrence prob-
ability. In order for such a probabilistic map to describe the
stochastic behavior of a DES it must satisfy certain consis-
tency properties obtained in [7]: (i) the probability of the
zero length trace is one, and (ii) the probability of any trace
is at least as much as the cumulative probability of all its ex-
tensions. We call such maps to be probabilistic languages and

*This research is supported in part by the National Science Foun-
dation under Grants NSF-ECS-9409712, NSF-ECS-9709796, ECS-
9414780, and CCR-9520540, in part by the Office of Naval Research
under the Grant ONR-N00014-96-1-5026, a General Motors Fellowship,
a Texas Higher Education Coordinating Board Grant ARP-320, and an
IBM grant.

Vijay K. Garg
Dept. of Elec. & Comp. Eng.
Univ. of Texas at Austin

use them for modeling the stochastic qualitative behavior of
DES:s.

A probabilistic language can be viewed as a formal power
series [21], but satisfying the constraints mentioned above.
As discussed in [7], this probabilistic language model differs
in various ways from other existing models of stochastic be-
havior of DESs such as Markov chains [1], stochastic Petri
nets [15], Rabin’s probabilistic automata [18, 17, 4] and their
supervisory control as studied by Mortzavian [16], fuzzy set
theory [14], etc., and it is better suited for modeling stochas-
tic qualitative behavior of DESs.

In [7] we defined the set of regular language operators for
the probabilistic languages, and also introduced the notion of
regularity, i.e., finiteness of automata representation, that is
preserved under the operations of regular language operators.
We also endowed the set of probabilistic languages with a
partial order under which it forms a complete partial order
[3]: A probabilistic language is bounded above by another
one if the occurrence probability of each trace in the first is
bounded above by that in the second.

Sengupta [22, Chapter 5] studies the problem of opti-
mal control of stochastic behaviors of DESs. The controller
changes the occurrence probabilities of events. A cost is as-
signed with each control action, and the control objective
is to minimize the cumulative cost over an infinite horizon.
The optimal control problem is the classical infinite horizon
optimal control of Markov processes [10].

In [11] we introduced and studied the problem of supervi-
sory control of stochastic behavior of DESs modeled as prob-
abilistic languages. In this setting, a supervisor restricts the
behavior of the plant by dynamically disabling certain set of
controllable events based on its observations of the executed
traces. Thus the occurrence probability of disabled events
becomes zero, whereas the occurrence probability of the en-
abled ones is obtained as conditionals given that certain con-
trollable events are disabled, which increases the occurrence
probabilities of the enabled events proportionately. Hence
supervision restricts the support of the probabilistic language
of the plant, but increases the occurrence probabilities of the
surviving traces within this restricted support.

The control objective is specified as a lower and an upper
bound constraint. The upper bound constraint imposes a
legality constraint specifying that a trace be enabled if and
only if it is legal. Thus the upper bound constraint can be
represented as a non-probabilistic language that maps a trace
to the value one if and only if it is legal. The second con-
straint imposes a level of desirability on the legal traces by
specifying a lower bound on their occurrence probabilities.
This constraint is given as a probabilistic map over the set of
traces, and the control objective is to ensure that each legal
trace occurs with probability at least as much as specified

by this lower bound. Summarizing, upper bound constraint
is given as a non-probabilistic language, whereas the lower
bound constraint given as a probabilistic map, and the con-
trol objective is to ensure that the probabilistic language of
the controlled plant lies within the two bounds. Intuitively,
we are interested in designing a supervisor so that “bad”
traces never occur, whereas the “good” traces occur with
certain minimum probabilities. This generalizes the super-
visory control problem studied in the non-stochastic setting
where both the upper and lower bounds are non-probabilistic
languages.

In [11] we obtained a necessary and sufficient condition for
the existence of the supervisor for the above control problem:
A supervisor exists if and only if the probabilistic language
of the system, controlled so that the set of surviving traces
is the infimal controllable superlanguage of the support of
the lower bound constraint, itself lies within the prescribed
bound. Thus to test the existence of a supervisor one needs
to (i) compute infimal controllable superlanguage of a non-
probabilistic language, which is known [13, 12], and (ii) check
whether a given probabilistic language is bounded above by
another one, which we show can be effectively checked. The
complexity of the later is the same as that of shortest path
computation, i.e., O(n?), where n is the product of the num-
ber of states in the automata representations of the two prob-
abilistic languages.

In this paper we study the problem of finding a maximally
permissive supervisor for the above control problem, where a
supervisor is said to be more permissive than another one if
the first one does not disable a trace that is allowed by the
second one. We show that unlike in the non-stochastic case
no unique maximally permissive supervisor exists. This is
because the set of probabilistic languages is not a complete
upper semi-lattice [7]. However, since the set of controllable
non-probabilistic languages is a complete upper semi-lattice
[19], and the set of probabilistic languages is a complete par-
tial order [7], non-unique maximally permissive supervisors
do exist. An off-line computation of a maximally permissive
supervisor need not be feasible. We present an effective al-
gorithm for on-line computation of a maximally permissive
supervisor (refer [9, 2, 8] for other on-line supervisory com-
putation algorithms). The computational complexity of each
step is again O(n?), where n is the product of the number of
states in the automata representations of the plant and the
lower bound specification.

We also show that a unique minimally permissive supervi-
sor does exist. This is because the set of controllable non-
probabilistic languages as well as the set of probabilistic lan-
guages is a complete lower semi-lattice. We present an ef-
fective algorithm for off-line computation of the unique min-
imally permissive supervisor. The computational complexity
of this algorithm is again O(n?).

2 Notation and Preliminaries

We use ¥ to denote the universe of events over which a
given DES evolves. The set ¥* is the set of all finite length
event sequences, called traces, including the zero length trace,
denoted e. A subset of ¥* is called a language. Given traces

s and t, we use s < t to denote that s is a prefiz of ¢, in
which case the notation s~'t is used to denote the suffix of
t obtained by removing the prefix s, i.e., t = ss~'t. Given
a language K, we use pr(K), prefix closure of K, to denote
the set of all prefixes of K; K is said to be prefix closed if
K =pr(K).

Qualitative behavior of DESs is described by languages.
A language L C ¥* can be viewed as a unit interval valued
map—a probabilistic map—over £*, L : ¥* — [0,1]. For a
probabilistic map L, its support, denoted supp(L) C ¥*, is
the set of traces such that L(s) > 0. L is said to be a non-
probabilistic map if L(s) € {0,1} for each trace s. Clearly,
languages can also be represented by non-probabilistic maps.
A non-probabilistic map L models the non-stochastic quali-
tative behavior of a DES if

Le)=1;Vse€e X" 0 € X: L(so) =1= L(s) = 1.

This is because a system can always execute the epsilon trace,
and if it can execute a trace, then it can also execute all its
prefixes. We call such maps to be non-probabilistic languages
or np-languages.

The notion of probabilistic languages or p-languages was in-
troduced in [7] to model the stochastic qualitative behavior of
DESs. A definition of p-languages based on their underlying
probability measure space was presented in [7]. A p-language
L can alternatively be viewed as a probabilistic map satisfy-
ing the following constraints:

Pl: L(e) =1

P2: Vs e ¥*:) v L(so) < L(s)

Here for each trace s, L(s) gives its probability of occurrence.
Condition P1 follows from the fact that a system can always
execute the epsilon trace, whereas the condition P2 follows
from the fact that for any extension of a trace s to be exe-
cutable, s must itself be executable.

It follows from the definition of a p-language L that A(L) :
¥* — [0,1] defined as:

Vs € X : A(L)(s) := L(s) — Y _ L(so)

oEY

satisfies A(L) > 0. A(L)(s) gives the probability that the
system modeled as p-language L terminates following the ex-
ecution of s.

Qualitative behavior of DESs can alternatively be repre-
sented by automata. An automaton G over the event set
Y is a quadruple, G := (X,X, zinit, P), where X is the
set of states of G, w;nie € X is the initial state of G, and
P: X xXxX — [0,1] is the state transition function of
G. A triple (z,0,2') € X x ¥ x X is called a transition.
G is called a non-probabilistic automaton or np-automaton if
P(z,0,2') € {0,1} for each transition (z,o',x); it is said to
be a probabilistic automaton or p-automaton [7] if

Ve e X : Z ZP(z,a,x') <1
z'eX oe¥
For a p-automaton G, we define

Vee X : A(G)(z) :=1— Z Z P(z,0,1)

z'eX o€X

to be the probability of termination at state x. An np-
automaton (resp., p-automaton) is said to be determinis-
tic np-automaton or dnp-automaton (resp., deterministic p-
automaton or dp-automaton) if

Ve X,c€X:|{z' € X | P(z,0,2") > 0}| < 1.

The state transition function of G can be extended to
the set of paths X (XX)*, where a path is obtained by con-
catenating transitions such that the end and start states of
consecutive transitions are the same. Given a path © =
Too1Z1 ... opTy € X(XX)*, we use |7| to denote its length.
The state transition function is extended inductively to the
set of paths as follows:

Ve e X,Vre X(ZX)*,0€X:
P(x) =1; P(m,0,z) = P(m)P(z|z|,0,7).

If G is a np-automaton, then np-language generated by G is
given by
[La(s) =1l [Fr e X(EX)" :tr(n) = s, P(m) = 1].

If G is a p-automaton, then the p-language generated by G is
given by
L(;(S) =

mitr(m)=s,m0=Cinit

P(n).

It is easy to see that L¢ is a np-language when G is a np-
automaton, and it was shown in [7] that Lg is a p-language
when G is a p-automaton. Conversely, given a np-language
(resp., p-language) there exists a deterministic np-automaton
(resp., deterministic p-automaton) that generates it [7].

A np-language (resp., p-language) L is said to be regu-
lar if there exists a np-automaton (resp., p-automaton) G
with finitely many states such that Lg = L. A regular np-
language (resp., regular p-language) L is called deterministic
regularif there exists a dnp-automaton (resp., dp-automaton)
with finite states such that Lg = L.

Given a set X, a partial order on X, denoted =<, is a binary
relation that is reflexive, antisymmetric, and transitive. The
pair (X, <) is called a partially order set or a poset. For a pair
of elements z,y € X, their infimum and supremum whenever
defined are unique. A poset (z, <) is said to be a upper (resp.,
lower) semi-lattice if supremum (resp., infimum) for any pair
of elements in X exists; it is said to be a complete upper
(resp., lower) semi-lattice if supremum (resp., infimum) of
any subset of X exists; it is said to be a (complete) lattice
if it is both (complete) upper and lower semi-lattice. A set
Y C X is called a chain if it is totally ordered, in which case
Y can be written as a monotonically increasing sequence of
poset elements Y = {;};>0 with 2; < 2; whenever ¢ < j. A
poset (X, <) is called a complete partial order or a cpo if it
has the bottom element and every chain has the supremum
element. A function f : X — X is called monotone if it
preserves ordering under its transformation; it is said to be
continuous if it distributes with supremum taken over a chain.

The set of unit interval valued probabilistic maps over ¥*
forms a poset under the following natural ordering relation
introduced in [7]:

VK,L:3S* = [0,1]: [K < L] & [Vs € % : K(s) < L(s)].

It is easy to see that the set of all non-probabilistic maps is
a complete lattice under this ordering. Also, it was shown
in [7] that the set of all p-languages forms a cpo as well as a
complete lower semi-lattice under this ordering.

For supervisory control of the qualitative behavior of a
discrete event plant the set of events is partitioned into
Y, U (Z — Xy), the sets of uncontrollable and controllable
events. For a discrete event plant with behavior modeled by
a np-language or a p-language L, a supervisor S with com-
plete observation of traces is a map S : supp(L) — 2¥ >«
that, following the occurrence of a trace s € supp(L), dis-
ables the controllable events in the set S(s) C ¥ — X, from
occurring next. The behavior of the controlled plant is de-
noted by L°. For a np-language L, the controlled behavior
L% is also a np-language defined inductively as:

L%(€) :=1;L%(s) = 1,L(s0) = 1,0 € S(s) = L°(s0) := 1.

Given a language K C ¥*, and a plant with np-language
or p-language L, K is said to be controllable with respect to
L if pr(K)X, Nsupp(L) C pr(K). It is known that there ex-
ists a supervisor S for a plant with np-language L such that
supp(L®) = K if and only if K is nonempty, prefix closed,
and controllable [19]. The set of prefix closed and control-
lable languages forms a complete lattice. So the infimal pre-
fix closed and controllable superlanguage of a language K,
denoted infPC(K) [13], and its supremal prefiz closed and
controllable sublanguage, denoted supPC(K) [19], exist and
are effectively computable.

3 Existence of Supervisor

In this section we review our earlier work from [11] that
extended the supervisory control framework to the stochastic
setting. Given a DES with stochastic behavior modeled as
p-language L, we use (s~'L)(t) to denote the probability of
trace t given that trace s has already occurred:

L(st A\ s)

Vs, t € £ : (sT'L)(t) := L(st|s) = 10) =

L(st)
L(s)’

where the last equality follows from the fact that the outcome
that trace st and trace s have occurred is equivalent to the
outcome that the trace st has occurred, since occurrence of
st implies occurrence of the prefix s also. We thus have

L(st) = L(st A s) = L(st|s)L(s) = (s *L)(t)L(s).
We have the following simple lemma about s~ L.

Lemma 1 Let L be a p-language. Then for each s € ¥* we
have:

L Vtex*: A(sLL)(t) = 2.

2. s 1L is a p-language.

As described above, a supervisor S : supp(L) — 2¥ ¥«
determines the set of controllable events S(s) C ¥ — X, to
be disabled following the execution of trace s. In the next
lemma, we obtain the value of (s~'L%)(c), the occurrence
probability of event o in the controlled plant given that trace

s has already occurred. It states that this probability is zero
when o € S(s), and otherwise it equals the corresponding
occurrence probability in the uncontrolled plant scaled by
an appropriate normalization factor. For the notational con-
venience, given a plant with p-language L and a supervi-
sor S : supp(L) — 2¥~>+ we define a probabilistic map
®5(L): ¥* - [0,1]:

Vs € X : ®(L)(s) :=

A(sT'L) () + Y. (sT'L)(5).

FEX—S(s)

®5(L)(s) computes the probability of either termination or
execution of an enabled event given that the trace s has al-
ready occurred.

Lemma 2 Let L be the p-language of a DES, and S :
supp(L) — 2¥~*« be a supervisor. Then

0 if o € S(s)

L) e s - S(s)

VseX 0€X: (s L% (0) = {
5(L)(s)

Using the result of Lemma 2 we define the p-language of
the controlled plant next (that it is indeed a p-language is
established below in Theorem 1):

Definition 1 Let L be a p-language of a DES, and S :
supp(L) — 2¥~*« be a supervisor. The p-language of the
controlled plant, denoted L, is defined inductively as:

L%(e):=1; VseX*,0€¥:L%s0):=L%(s)(s7L%)(0).

The following corollary states that the effect of the control
is to restrict the support, but to increase the occurrence prob-
abilities of the surviving traces within this restricted support.

Corollary 1 Let L be the p-language of a DES, and S :
supp(L) — 2¥~*« be a supervisor. Then

1. supp(L®) C supp(L).
2. supp(L®) is nonempty, prefix closed, and controllable.
3. Vs € supp(L®) : L(s) < L(s).

The following theorem shows that L° is indeed a p-
language.

Theorem 1 Let L be the p-language of a DES, and S :
supp(L) — 2¥~*« be a supervisor. Then

L Vs € 5 1 A(LS)(s) = LS(s) [

2. L® in Definition 1 is a p-language.

Remark 1 Since from the first part of Lemma 1,

S
A(s 1L5)(e) = Al

of Theorem 1 it follows

, using the result of the first part

A(s71L)(e)

A(s L) (e) = B5(D)(s)

This equates the probability of termination given that trace
s has already occurred in the controlled plant to various pa-
rameters of the uncontrolled plant.

For a plant with p-language L we have defined a supervi-
sor S and the resulting controlled plant p-language L°. The
control objective is to ensure that the controlled plant p-
language lies within a certain prespecified range, i.e., given
a pair of probabilistic maps K < D, the task is to design
a supervisor such that K < LS < D. Here D is actually a
non-probabilistic map, i.e., D : ¥* — {0,1}, and specifies
a legality constraint. D maps the legal traces to one, and
the illegal traces to zero. The control objective is to ensure
L% < D, i.e., illegal traces never occur in the controlled plant
implying their occurrence probabilities are zero, whereas no
constraint is imposed on the occurrence probabilities of le-
gal traces in the upper bound specification D. The lower
bound K on the other hand specifies the level of desirabil-
ity of legal traces by specifying their minimum acceptable
occurrence probabilities. The control objective is to ensure
K < L®, ie., legal traces in the controlled plant occur with
at least as much probability as specified by the lower bound
constraint . The existence of S such that K < L% < D also
implies supp(K) C supp(L®) C supp(D), which is the super-
visory control problem studied in the non-stochastic setting
[20]. Thus the supervisory control problem formulated here
generalizes the one studied in the non-stochastic setting.

In the following theorem we give a necessary and sufficient
condition for the existence of a supervisor for the supervisory
control problem described above.

Theorem 2 Let L be the p-language of a DES, K be a prob-
abilistic map representing the lower bound constraint, and D
be a non-probabilistic map representing the upper bound con-
straint. Then there exists a supervisor S : supp(L) — 2%~ >«
such that K < LS < D if and only if

K<L <D,

where S¥ is the supervisor that restricts the support of the
plant to infPC(supp(K)). In this case S* can be used as a
supervisor.

An algorithm for verifying the existence condition of The-
orem 2 was presented in [11] when languages K, L, D are all
regular (i.e., they each admit a finite automaton representa-
tion), the complexity of which was polynomial.

4 Maximally Permissive Supervisor

Theorem 2 provides a condition for the existence of a su-
pervisor S for a plant with p-language L with control specifi-
cations K < D, that ensures K < L < D. It also mentions
that a supervisor S+ that restricts the support of the plant
to infPC(supp(K)) can be used as a supervisor whenever
the existence condition is satisfied. However, S+ need not be
a maximally permissive supervisor. In fact, we show below
that it is the minimally permissive supervisor. In this sec-
tion we present a technique to construct supervisors that are
maximally permissive.

Definition 2 Given a plant with p-language L, and super-
visors Si, Sy : supp(L) — 27« S is said to be less per-
missive than Sy (or equivalently, Ss is said to be more per-
missive than S;), denoted S; < Ss, if for each s € supp(L),

S1(s) D Sa(s), i.e., Sy disables more events than S, following
the execution of any trace s. The infimum and supremum of
S1 and Sy are defined as follows:

f S1MS2(s) := S1(s) U Sa(s)
Vs € supp(L) : { Sy U S, = Si(s) N Sa(s)

It is clear that the set of all supervisors together with the
partial order of Definition 2 forms a complete lattice. Also,

supp(LS:7%%) =
supp(LS:9%) =

supp(L°*) N supp(L*?)
supp(L°') U supp(L™2).

Given a plant with p-language L and specifications K < D,
define the following class of supervisors:

S:={S :supp(L) = 2* " | K < L° < D}. (1)

S is the class of supervisors which can control the plant to
meet the given specifications. The following theorem states
a few properties of this class of supervisors.

Theorem 3 Let L be the p-language of a plant with control
specifications K < D. Consider the class of supervisors S as
defined in Equation (1). Then

1. (S, =) is a complete lower semi-lattice.

2. If S #), then S* is the bottom element of (S, <), where
St is the supervisor that restricts the support of the
plant to infPC(supp(K)).

3. (S,=) is not a upper semi-lattice.
4. (8, =) is a complete partial order.

The first part of Theorem 3 shows that a unique minimally
permissive supervisor exists, whereas the second part of the
theorem shows that the supervisor given by Theorem 2 is ac-
tually the unique minimally permissive supervisor. The third
part of Theorem 3 shows that no unique maximally permis-
sive supervisor exists, but the fourth part of the theorem
shows that non-unique maximally permissive supervisors do
exist. So we next present an algorithm for the on-line com-
putation of such a supervisor assuming that all maps L, K, D
are deterministic regular. (Note that an algorithm for the off-
line computation of a maximally permissive supervisor may
not exist since the controlled plant p-language under such a
supervisor may not be regular.) For each trace ¢t € supp(L),
we define S : supp(t~*L) — 27« to be the supervisor
for plant with p-language (¢ 1L) that restricts its support to
inf PC(supp(t 1K)).

Algorithm 1 Consider a plant with deterministic regular
p-language L, a lower bound specification K which is also a
deterministic regular p-language, and an upper bound speci-
fication D which is a deterministic regular np-language. As-
sume that K = LS < D, i.e., a supervisor ensuring the
given specifications exists. Obtain a maximal supervisor
Smaz : supp(L) — 2w as follows.

For each s € supp(L), define S™**(s) := ¥ — XM (s),
where ™% (s) C ¥ is a mazimal set such that for any ¢ =
S0 € sXMAT(g):

K(1)

m(t‘lff) < (t7'L)% = (t7'D), (2)

where

L") == L (s)(s71L5")(0)
(s"'L)(o)

— smar s i
- Pes

Algorithm 1 computes the set of events to be enabled by
Smav following the execution of each trace s as follows. S™**
enables events in ¥%(s) if (i) after the occurrence of any
event o € ¥'™%%(s) it is possible to control the plant in future
so that the given specifications are satisfied, which is captured
by Equation 2, and (ii) ¥™%*(s) is a maximal set of events
having such property.

The next theorem states the correctness of Algorithm 1.
We first prove a lemma.

Lemma 3 Given a plant with p-language L and specifica-
tions K < D, let S be a supervisor such that K < L° < D,
ie., S €S. Then

K() , 4 —17\8} -1
s) S 1(7;)

Theorem 4 Let L, K, D, 5™ be as in Algorithm 1. Then
S™MaT s o maximal supervisor such that K < L5""" < D.

Vi =s0 € s(X —S5(s)):

Remark 2 In Algorithm 1 the computation of S™**(s) at
each trace s requires testing the condition of Equation (2)
for all possible set of events ™% (s). Ignoring the depen-
dence of computational complexity on the size of the set X,
it can be shown (refer [11] for an algorithm to test ordering
of deterministic regular p-languages) that the computational
complexity at each step of Algorithm 1 is O(n?), where n is
the product of the number of states in the automata repre-
sentations of the plant and the lower bound specification.

In the following remark we compare the maximally permis-
sive supervisor of Algorithm 1 with the maximally permissive
supervisor in the non-stochastic setting.

Remark 3 In the non-stochastic setting we are interested
in designing a supervisor S such that for a plant with p-
language L, a probabilistic map lower bound specification
K, and a non-probabilistic map upper bound specification
D, satisfying K < D, we obtain supp(K) C supp(L®) C
supp(D).

It can be shown that whenever such a supervisor exists,
there exists a unique maximally permissive supervisor S%%?,
called supremely permissive supervisor, which can be com-
puted as follows. For each s € supp(L), define S°%P(s) :=
Y —X5UP(s), where X5 (s) C X is the supremal set such that
for any t = so € sLP(s):

supp(t ™ K) C supp((t L)) C supp(t 'D). (4

In other words, S®“P enables an event following the occur-
rence of s if it is possible to control the plant in the future so
that the specifications of the non-stochastic setting are sat-
isfied. Since supp[pﬁi%(t_ll()] = supp(t1K), it follows
from Equation (2) that for any t = so € sX™%(s):

supp(t ' K) C supp((t*L)F) C supp(tD).

This together with the definition of S*“P given in Equa-
tion (4) implies that ™% (s) C X"P(s), i.e., any maximally
permissive supervisor in the stochastic setting is less permis-
sive than the maximally permissive supervisor in the non-
stochastic setting, as expected.

The following example with ¥ = {a,b, ¢} and X,, = () illus-
trates that the converse does not hold in general.

L(e) = 1,L(a) = L(b) = L(c) = %, and L(s) =
0, otherwise

K(a) = K(b) = 3, and K(s) =0, otherwise

D(s) =1,Vs

Then it is clear that the supremely permissive supervisor in
the non-stochastic setting disables no events initially, whereas
the maximally permissive supervisor in the stochastic setting
disables the event c initially.

5 Conclusion

The supervisory control of stochastic DESs naturally
generalizes the supervisory control formalism of the non-
stochastic DESs. The control objective in the stochastic set-
ting is to design a supervisor so that the controlled plant only
generates legal traces (specified as a non-probabilistic map),
and that the traces it generates occur with certain minimum
probabilities (specified as a probabilistic map). The compu-
tational complexity of the test for the existence of a super-
visor, and also that for the on-line computation of a maxi-
mally permissive supervisor (in the case when the languages
involved are deterministic regular) are both O(n?).

References

[1] C. G. Cassandras. Discrete Event Systems: Modeling
and Performance Analysis. Aksen Associates, Boston,
MA, 1993.

[2] S. L. Chung, S. Lafortune, and F. Lin. Supervisory con-
trol using variable lookahead policies. Discrete Event
Dynamic Systems: Theory and Applications, 4(3):237—
268, July 1994.

[3] B. A. Davey and H. A. Priestley. Introduction to Lattices
and Order. Cambridge University Press, Cambridge,
UK, 1990.

[4] E. Doberkat. Stochastic Automata: Stability, Nondeter-
minism and Prediction, volume 113 of Lecture Notes in
Computer Science. Springer-Verlag, New York, 1981.

[5] V. K. Garg. An algebraic approach to modeling prob-
abilistic discrete event systems. In Proceedings of 1992
IEEE Conference on Decision and Control, pages 2348—
2353, Tucson, AZ, December 1992.

[6] V. K. Garg. Probabilistic languages for modeling of deds.
In Proceedings of Conference on Information Sciences
and Systems, pages 198-203, Princeton, NJ, March 1992.

[7] V. K. Garg, R. Kumar, and S. I. Marcus. Probabilis-
tic language formalism for stochastic discrete event sys-
tems. IEFE Transactions on Automatic Control, 1997.
Accepted.

[8] N. B. Hadj-Alouane, S. Lafortune, and F. Lin. Cen-
tralized and distributed algorithm for on-line synthesis
of maximal control policies under partial observation.
Discrete Event Dynamical Systems: Theory and Appli-
cations, 6(41):379-427, 1996.

[9] M. Heymann and F. Lin. On-line control of partially ob-
served discrete event systems. Discrete Fvent Dynamical
Systems: Theory and Applications, 4(3):221-236, July
1994.

[10] P. R. Kumar and P. Varaiya. Stochastic Systems: Es-
timation, identification and adaptive control. Prentice
Hall, 1986.

[11] R. Kumar and V. K. Garg. Control of stochastic discrete
event systems: Existence. In Proceedings of 1998 Inter-

national Workshop on Discrete Event Systems, Cagliari,
Italy, August 1998.

[12] R. Kumar and M. A. Shayman. Formulae relating con-
trollability, observability, and co-observability. Automat-
ica, 34(1), 1998. To appear.

[13] S. Lafortune and E. Chen. On the infimal closed
and controllable superlanguage of a given language.
IEEE Transactions on Automatic Control, 35(4):398-
404, 1990.

[14] E. T. Lee and L. A. Zadeh. Note on fuzzy languages.
Information Sciences, pages 421-434, 1969.

[15] M. K. Molloy. Performance analysis using stochas-
tic Petri nets. IFEFE Transactions on Computers, C-
31(9):913-917, September 1982.

[16] H. Mortzavian. Controlled stochastic languages. In Pro-
ceedings of 1993 Allerton Conference, pages 938-947,
Urbana, IL, 1993.

[17] A. Paz. Introduction to Probabilistic Automata.
demic Press, New York, 1971.

[18] M. O. Rabin. Probabilistic automata. Information and
Control, 6:230-245, 1963.

Aca-

[19] P.J. Ramadge and W. M. Wonham. Supervisory control
of a class of discrete event processes. SIAM Journal of
Control and Optimization, 25(1):206-230, 1987.

[20] P. J. Ramadge and W. M. Wonham. The control of dis-
crete event systems. Proceedings of IEEE: Special Issue
on Discrete Event Systems, 77:81-98, 1989.

[21] A. Salomaa. Formal languages and power series. In
J. v. Leeuwen, editor, Handbook of theoretical computer
science. MIT Press, Cambridge, MA, 1994.

[22] R. Sengupta. Optimal control of discrete event systems.
PhD thesis, Department of Electrical Engineering and
Computer Science, University of Michigan at Ann Ar-
bor, 1995.

