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use them for modeling the stochastic qualitative behavior ofDESs.A probabilistic language can be viewed as a formal powerseries [21], but satisfying the constraints mentioned above.As discussed in [7], this probabilistic language model di�ersin various ways from other existing models of stochastic be-havior of DESs such as Markov chains [1], stochastic Petrinets [15], Rabin's probabilistic automata [18, 17, 4] and theirsupervisory control as studied by Mortzavian [16], fuzzy settheory [14], etc., and it is better suited for modeling stochas-tic qualitative behavior of DESs.In [7] we de�ned the set of regular language operators forthe probabilistic languages, and also introduced the notion ofregularity, i.e., �niteness of automata representation, that ispreserved under the operations of regular language operators.We also endowed the set of probabilistic languages with apartial order under which it forms a complete partial order[3]: A probabilistic language is bounded above by anotherone if the occurrence probability of each trace in the �rst isbounded above by that in the second.Sengupta [22, Chapter 5] studies the problem of opti-mal control of stochastic behaviors of DESs. The controllerchanges the occurrence probabilities of events. A cost is as-signed with each control action, and the control objectiveis to minimize the cumulative cost over an in�nite horizon.The optimal control problem is the classical in�nite horizonoptimal control of Markov processes [10].In [11] we introduced and studied the problem of supervi-sory control of stochastic behavior of DESs modeled as prob-abilistic languages. In this setting, a supervisor restricts thebehavior of the plant by dynamically disabling certain set ofcontrollable events based on its observations of the executedtraces. Thus the occurrence probability of disabled eventsbecomes zero, whereas the occurrence probability of the en-abled ones is obtained as conditionals given that certain con-trollable events are disabled, which increases the occurrenceprobabilities of the enabled events proportionately. Hencesupervision restricts the support of the probabilistic languageof the plant, but increases the occurrence probabilities of thesurviving traces within this restricted support.The control objective is speci�ed as a lower and an upperbound constraint. The upper bound constraint imposes alegality constraint specifying that a trace be enabled if andonly if it is legal. Thus the upper bound constraint can berepresented as a non-probabilistic language that maps a traceto the value one if and only if it is legal. The second con-straint imposes a level of desirability on the legal traces byspecifying a lower bound on their occurrence probabilities.This constraint is given as a probabilistic map over the set oftraces, and the control objective is to ensure that each legaltrace occurs with probability at least as much as speci�ed1



by this lower bound. Summarizing, upper bound constraintis given as a non-probabilistic language, whereas the lowerbound constraint given as a probabilistic map, and the con-trol objective is to ensure that the probabilistic language ofthe controlled plant lies within the two bounds. Intuitively,we are interested in designing a supervisor so that \bad"traces never occur, whereas the \good" traces occur withcertain minimum probabilities. This generalizes the super-visory control problem studied in the non-stochastic settingwhere both the upper and lower bounds are non-probabilisticlanguages.In [11] we obtained a necessary and su�cient condition forthe existence of the supervisor for the above control problem:A supervisor exists if and only if the probabilistic languageof the system, controlled so that the set of surviving tracesis the in�mal controllable superlanguage of the support ofthe lower bound constraint, itself lies within the prescribedbound. Thus to test the existence of a supervisor one needsto (i) compute in�mal controllable superlanguage of a non-probabilistic language, which is known [13, 12], and (ii) checkwhether a given probabilistic language is bounded above byanother one, which we show can be e�ectively checked. Thecomplexity of the later is the same as that of shortest pathcomputation, i.e., O(n3), where n is the product of the num-ber of states in the automata representations of the two prob-abilistic languages.In this paper we study the problem of �nding a maximallypermissive supervisor for the above control problem, where asupervisor is said to be more permissive than another one ifthe �rst one does not disable a trace that is allowed by thesecond one. We show that unlike in the non-stochastic caseno unique maximally permissive supervisor exists. This isbecause the set of probabilistic languages is not a completeupper semi-lattice [7]. However, since the set of controllablenon-probabilistic languages is a complete upper semi-lattice[19], and the set of probabilistic languages is a complete par-tial order [7], non-unique maximally permissive supervisorsdo exist. An o�-line computation of a maximally permissivesupervisor need not be feasible. We present an e�ective al-gorithm for on-line computation of a maximally permissivesupervisor (refer [9, 2, 8] for other on-line supervisory com-putation algorithms). The computational complexity of eachstep is again O(n3), where n is the product of the number ofstates in the automata representations of the plant and thelower bound speci�cation.We also show that a unique minimally permissive supervi-sor does exist. This is because the set of controllable non-probabilistic languages as well as the set of probabilistic lan-guages is a complete lower semi-lattice. We present an ef-fective algorithm for o�-line computation of the unique min-imally permissive supervisor. The computational complexityof this algorithm is again O(n3).2 Notation and PreliminariesWe use � to denote the universe of events over which agiven DES evolves. The set �� is the set of all �nite lengthevent sequences, called traces, including the zero length trace,denoted �. A subset of �� is called a language. Given traces

s and t, we use s � t to denote that s is a pre�x of t, inwhich case the notation s�1t is used to denote the su�x oft obtained by removing the pre�x s, i.e., t = ss�1t. Givena language K, we use pr(K), pre�x closure of K, to denotethe set of all pre�xes of K; K is said to be pre�x closed ifK = pr(K).Qualitative behavior of DESs is described by languages.A language L � �� can be viewed as a unit interval valuedmap|a probabilistic map|over ��, L : �� ! [0; 1]. For aprobabilistic map L, its support, denoted supp(L) � ��, isthe set of traces such that L(s) > 0. L is said to be a non-probabilistic map if L(s) 2 f0; 1g for each trace s. Clearly,languages can also be represented by non-probabilistic maps.A non-probabilistic map L models the non-stochastic quali-tative behavior of a DES ifL(�) = 1;8s 2 ��; � 2 � : L(s�) = 1) L(s) = 1:This is because a system can always execute the epsilon trace,and if it can execute a trace, then it can also execute all itspre�xes. We call such maps to be non-probabilistic languagesor np-languages.The notion of probabilistic languages or p-languages was in-troduced in [7] to model the stochastic qualitative behavior ofDESs. A de�nition of p-languages based on their underlyingprobability measure space was presented in [7]. A p-languageL can alternatively be viewed as a probabilistic map satisfy-ing the following constraints:P1: L(�) = 1P2: 8s 2 �� :P�2� L(s�) � L(s)Here for each trace s, L(s) gives its probability of occurrence.Condition P1 follows from the fact that a system can alwaysexecute the epsilon trace, whereas the condition P2 followsfrom the fact that for any extension of a trace s to be exe-cutable, s must itself be executable.It follows from the de�nition of a p-language L that �(L) :�� ! [0; 1] de�ned as:8s 2 �� : �(L)(s) := L(s)�X�2�L(s�)satis�es �(L) � 0. �(L)(s) gives the probability that thesystem modeled as p-language L terminates following the ex-ecution of s.Qualitative behavior of DESs can alternatively be repre-sented by automata. An automaton G over the event set� is a quadruple, G := (X;�; xinit; P ), where X is theset of states of G, xinit 2 X is the initial state of G, andP : X � � � X ! [0; 1] is the state transition function ofG. A triple (x; �; x0) 2 X � � � X is called a transition.G is called a non-probabilistic automaton or np-automaton ifP (x; �; x0) 2 f0; 1g for each transition (x; �0; x); it is said tobe a probabilistic automaton or p-automaton [7] if8x 2 X : Xx02XX�2�P (x; �; x0) � 1:For a p-automaton G, we de�ne8x 2 X : �(G)(x) := 1� Xx02XX�2�P (x; �; x0)



to be the probability of termination at state x. An np-automaton (resp., p-automaton) is said to be determinis-tic np-automaton or dnp-automaton (resp., deterministic p-automaton or dp-automaton) if8x 2 X; � 2 � : jfx0 2 X j P (x; �; x0) > 0gj � 1:The state transition function of G can be extended tothe set of paths X(�X)�, where a path is obtained by con-catenating transitions such that the end and start states ofconsecutive transitions are the same. Given a path � =x0�1x1 : : : �nxn 2 X(�X)�, we use j�j to denote its length.The state transition function is extended inductively to theset of paths as follows:8x 2 X;8� 2 X(�X)�; � 2 �:P (x) = 1; P (�; �; x) = P (�)P (xj�j; �; x).If G is a np-automaton, then np-language generated by G isgiven by[LG(s) := 1], [9� 2 X(�X)� : tr(�) = s; P (�) = 1]:If G is a p-automaton, then the p-language generated by G isgiven by LG(s) := X�:tr(�)=s;�0=xinit P (�):It is easy to see that LG is a np-language when G is a np-automaton, and it was shown in [7] that LG is a p-languagewhen G is a p-automaton. Conversely, given a np-language(resp., p-language) there exists a deterministic np-automaton(resp., deterministic p-automaton) that generates it [7].A np-language (resp., p-language) L is said to be regu-lar if there exists a np-automaton (resp., p-automaton) Gwith �nitely many states such that LG = L. A regular np-language (resp., regular p-language) L is called deterministicregular if there exists a dnp-automaton (resp., dp-automaton)with �nite states such that LG = L.Given a set X , a partial order on X , denoted �, is a binaryrelation that is re
exive, antisymmetric, and transitive. Thepair (X;�) is called a partially order set or a poset. For a pairof elements x; y 2 X , their in�mum and supremum wheneverde�ned are unique. A poset (x;�) is said to be a upper (resp.,lower) semi-lattice if supremum (resp., in�mum) for any pairof elements in X exists; it is said to be a complete upper(resp., lower) semi-lattice if supremum (resp., in�mum) ofany subset of X exists; it is said to be a (complete) latticeif it is both (complete) upper and lower semi-lattice. A setY � X is called a chain if it is totally ordered, in which caseY can be written as a monotonically increasing sequence ofposet elements Y = fxigi�0 with xi � xj whenever i � j. Aposet (X;�) is called a complete partial order or a cpo if ithas the bottom element and every chain has the supremumelement. A function f : X ! X is called monotone if itpreserves ordering under its transformation; it is said to becontinuous if it distributes with supremum taken over a chain.The set of unit interval valued probabilistic maps over ��forms a poset under the following natural ordering relationintroduced in [7]:8K;L : �� ! [0; 1] : [K � L], [8s 2 �� : K(s) � L(s)]:

It is easy to see that the set of all non-probabilistic maps isa complete lattice under this ordering. Also, it was shownin [7] that the set of all p-languages forms a cpo as well as acomplete lower semi-lattice under this ordering.For supervisory control of the qualitative behavior of adiscrete event plant the set of events is partitioned into�u [ (� � �u), the sets of uncontrollable and controllableevents. For a discrete event plant with behavior modeled bya np-language or a p-language L, a supervisor S with com-plete observation of traces is a map S : supp(L) ! 2���uthat, following the occurrence of a trace s 2 supp(L), dis-ables the controllable events in the set S(s) � � � �u fromoccurring next. The behavior of the controlled plant is de-noted by LS. For a np-language L, the controlled behaviorLS is also a np-language de�ned inductively as:LS(�) := 1;LS(s) = 1; L(s�) = 1; � 62 S(s)) LS(s�) := 1:Given a language K � ��, and a plant with np-languageor p-language L, K is said to be controllable with respect toL if pr(K)�u \ supp(L) � pr(K). It is known that there ex-ists a supervisor S for a plant with np-language L such thatsupp(LS) = K if and only if K is nonempty, pre�x closed,and controllable [19]. The set of pre�x closed and control-lable languages forms a complete lattice. So the in�mal pre-�x closed and controllable superlanguage of a language K,denoted infPC(K) [13], and its supremal pre�x closed andcontrollable sublanguage, denoted supPC(K) [19], exist andare e�ectively computable.3 Existence of SupervisorIn this section we review our earlier work from [11] thatextended the supervisory control framework to the stochasticsetting. Given a DES with stochastic behavior modeled asp-language L, we use (s�1L)(t) to denote the probability oftrace t given that trace s has already occurred:8s; t 2 �� : (s�1L)(t) := L(stjs) = L(st ^ s)L(s) = L(st)L(s) ;where the last equality follows from the fact that the outcomethat trace st and trace s have occurred is equivalent to theoutcome that the trace st has occurred, since occurrence ofst implies occurrence of the pre�x s also. We thus haveL(st) = L(st ^ s) = L(stjs)L(s) = (s�1L)(t)L(s):We have the following simple lemma about s�1L.Lemma 1 Let L be a p-language. Then for each s 2 �� wehave:1. 8t 2 �� : �(s�1L)(t) = �(L)(st)L(s) .2. s�1L is a p-language.As described above, a supervisor S : supp(L) ! 2���udetermines the set of controllable events S(s) � � � �u tobe disabled following the execution of trace s. In the nextlemma we obtain the value of (s�1LS)(�), the occurrenceprobability of event � in the controlled plant given that trace



s has already occurred. It states that this probability is zerowhen � 2 S(s), and otherwise it equals the correspondingoccurrence probability in the uncontrolled plant scaled byan appropriate normalization factor. For the notational con-venience, given a plant with p-language L and a supervi-sor S : supp(L) ! 2���u , we de�ne a probabilistic map�S(L) : �� ! [0; 1]:8s 2 �� : �S(L)(s) := �(s�1L)(�) + X�̂2��S(s)(s�1L)(�̂):�S(L)(s) computes the probability of either termination orexecution of an enabled event given that the trace s has al-ready occurred.Lemma 2 Let L be the p-language of a DES, and S :supp(L)! 2���u be a supervisor. Then8s 2 ��; � 2 � : (s�1LS)(�) = ( 0 if � 2 S(s)(s�1L)(�)�S(L)(s) if � 2 �� S(s)Using the result of Lemma 2 we de�ne the p-language ofthe controlled plant next (that it is indeed a p-language isestablished below in Theorem 1):De�nition 1 Let L be a p-language of a DES, and S :supp(L) ! 2���u be a supervisor. The p-language of thecontrolled plant, denoted LS, is de�ned inductively as:LS(�) := 1; 8s 2 ��; � 2 � : LS(s�) := LS(s)(s�1LS)(�):The following corollary states that the e�ect of the controlis to restrict the support, but to increase the occurrence prob-abilities of the surviving traces within this restricted support.Corollary 1 Let L be the p-language of a DES, and S :supp(L)! 2���u be a supervisor. Then1. supp(LS) � supp(L).2. supp(LS) is nonempty, pre�x closed, and controllable.3. 8s 2 supp(LS) : L(s) � LS(s).The following theorem shows that LS is indeed a p-language.Theorem 1 Let L be the p-language of a DES, and S :supp(L)! 2���u be a supervisor. Then1. 8s 2 �� : �(LS)(s) = LS(s) h�(s�1L)(�)�S(L)(s) i2. LS in De�nition 1 is a p-language.Remark 1 Since from the �rst part of Lemma 1,�(s�1LS)(�) = �(LS)(s)LS(s) , using the result of the �rst partof Theorem 1 it follows�(s�1LS)(�) = �(s�1L)(�)�S(L)(s) :This equates the probability of termination given that traces has already occurred in the controlled plant to various pa-rameters of the uncontrolled plant.

For a plant with p-language L we have de�ned a supervi-sor S and the resulting controlled plant p-language LS. Thecontrol objective is to ensure that the controlled plant p-language lies within a certain prespeci�ed range, i.e., givena pair of probabilistic maps K � D, the task is to designa supervisor such that K � LS � D. Here D is actually anon-probabilistic map, i.e., D : �� ! f0; 1g, and speci�esa legality constraint. D maps the legal traces to one, andthe illegal traces to zero. The control objective is to ensureLS � D, i.e., illegal traces never occur in the controlled plantimplying their occurrence probabilities are zero, whereas noconstraint is imposed on the occurrence probabilities of le-gal traces in the upper bound speci�cation D. The lowerbound K on the other hand speci�es the level of desirabil-ity of legal traces by specifying their minimum acceptableoccurrence probabilities. The control objective is to ensureK � LS , i.e., legal traces in the controlled plant occur withat least as much probability as speci�ed by the lower boundconstraintK. The existence of S such that K � LS � D alsoimplies supp(K) � supp(LS) � supp(D), which is the super-visory control problem studied in the non-stochastic setting[20]. Thus the supervisory control problem formulated heregeneralizes the one studied in the non-stochastic setting.In the following theorem we give a necessary and su�cientcondition for the existence of a supervisor for the supervisorycontrol problem described above.Theorem 2 Let L be the p-language of a DES,K be a prob-abilistic map representing the lower bound constraint, and Dbe a non-probabilistic map representing the upper bound con-straint. Then there exists a supervisor S : supp(L)! 2���usuch that K � LS � D if and only ifK � LS# � D;where S# is the supervisor that restricts the support of theplant to infPC(supp(K)). In this case S# can be used as asupervisor.An algorithm for verifying the existence condition of The-orem 2 was presented in [11] when languages K;L;D are allregular (i.e., they each admit a �nite automaton representa-tion), the complexity of which was polynomial.4 Maximally Permissive SupervisorTheorem 2 provides a condition for the existence of a su-pervisor S for a plant with p-language L with control speci�-cations K � D, that ensures K � LS � D. It also mentionsthat a supervisor S# that restricts the support of the plantto infPC(supp(K)) can be used as a supervisor wheneverthe existence condition is satis�ed. However, S# need not bea maximally permissive supervisor. In fact, we show belowthat it is the minimally permissive supervisor. In this sec-tion we present a technique to construct supervisors that aremaximally permissive.De�nition 2 Given a plant with p-language L, and super-visors S1; S2 : supp(L) ! 2���u , S1 is said to be less per-missive than S2 (or equivalently, S2 is said to be more per-missive than S1), denoted S1 � S2, if for each s 2 supp(L),



S1(s) � S2(s), i.e., S1 disables more events than S2 followingthe execution of any trace s. The in�mum and supremum ofS1 and S2 are de�ned as follows:8s 2 supp(L) : � S1 u S2(s) := S1(s) [ S2(s)S1 t S2 := S1(s) \ S2(s)It is clear that the set of all supervisors together with thepartial order of De�nition 2 forms a complete lattice. Also,supp(LS1uS2) = supp(LS1) \ supp(LS2)supp(LS1tS2) = supp(LS1) [ supp(LS2):Given a plant with p-language L and speci�cationsK � D,de�ne the following class of supervisors:S := fS : supp(L)! 2���u j K � LS � Dg: (1)S is the class of supervisors which can control the plant tomeet the given speci�cations. The following theorem statesa few properties of this class of supervisors.Theorem 3 Let L be the p-language of a plant with controlspeci�cations K � D. Consider the class of supervisors S asde�ned in Equation (1). Then1. (S;�) is a complete lower semi-lattice.2. If S 6= ;, then S# is the bottom element of (S;�), whereS# is the supervisor that restricts the support of theplant to infPC(supp(K)).3. (S;�) is not a upper semi-lattice.4. (S;�) is a complete partial order.The �rst part of Theorem 3 shows that a unique minimallypermissive supervisor exists, whereas the second part of thetheorem shows that the supervisor given by Theorem 2 is ac-tually the unique minimally permissive supervisor. The thirdpart of Theorem 3 shows that no unique maximally permis-sive supervisor exists, but the fourth part of the theoremshows that non-unique maximally permissive supervisors doexist. So we next present an algorithm for the on-line com-putation of such a supervisor assuming that all maps L;K;Dare deterministic regular. (Note that an algorithm for the o�-line computation of a maximally permissive supervisor maynot exist since the controlled plant p-language under such asupervisor may not be regular.) For each trace t 2 supp(L),we de�ne S#t : supp(t�1L) ! 2���u to be the supervisorfor plant with p-language (t�1L) that restricts its support toinfPC(supp(t�1K)).Algorithm 1 Consider a plant with deterministic regularp-language L, a lower bound speci�cation K which is also adeterministic regular p-language, and an upper bound speci-�cation D which is a deterministic regular np-language. As-sume that K � LS# � D, i.e., a supervisor ensuring thegiven speci�cations exists. Obtain a maximal supervisorSmax : supp(L)! 2���u as follows.For each s 2 supp(L), de�ne Smax(s) := � � �max(s),where �max(s) � � is a maximal set such that for any t =s� 2 s�max(s):K(t)LSmax(t) (t�1K) � (t�1L)S#t � (t�1D); (2)

where LSmax(t) := LSmax(s)(s�1LSmax)(�)= LSmax(s) (s�1L)(�)�Smax(L)(s) :Algorithm 1 computes the set of events to be enabled bySmax following the execution of each trace s as follows. Smaxenables events in �max(s) if (i) after the occurrence of anyevent � 2 �max(s) it is possible to control the plant in futureso that the given speci�cations are satis�ed, which is capturedby Equation 2, and (ii) �max(s) is a maximal set of eventshaving such property.The next theorem states the correctness of Algorithm 1.We �rst prove a lemma.Lemma 3 Given a plant with p-language L and speci�ca-tions K � D, let S be a supervisor such that K � LS � D,i.e., S 2 S. Then8t = s� 2 s(�� S(s)) : K(t)LS(t) (t�1K) � (t�1L)S#t � (t�1D)(3)Theorem 4 Let L;K;D; Smax be as in Algorithm 1. ThenSmax is a maximal supervisor such that K � LSmax � D.Remark 2 In Algorithm 1 the computation of Smax(s) ateach trace s requires testing the condition of Equation (2)for all possible set of events �max(s). Ignoring the depen-dence of computational complexity on the size of the set �,it can be shown (refer [11] for an algorithm to test orderingof deterministic regular p-languages) that the computationalcomplexity at each step of Algorithm 1 is O(n3), where n isthe product of the number of states in the automata repre-sentations of the plant and the lower bound speci�cation.In the following remark we compare the maximally permis-sive supervisor of Algorithm 1 with the maximally permissivesupervisor in the non-stochastic setting.Remark 3 In the non-stochastic setting we are interestedin designing a supervisor S such that for a plant with p-language L, a probabilistic map lower bound speci�cationK, and a non-probabilistic map upper bound speci�cationD, satisfying K � D, we obtain supp(K) � supp(LS) �supp(D).It can be shown that whenever such a supervisor exists,there exists a unique maximally permissive supervisor Ssup,called supremely permissive supervisor, which can be com-puted as follows. For each s 2 supp(L), de�ne Ssup(s) :=���sup(s), where �sup(s) � � is the supremal set such thatfor any t = s� 2 s�sup(s):supp(t�1K) � supp((t�1L)S#t ) � supp(t�1D): (4)In other words, Ssup enables an event following the occur-rence of s if it is possible to control the plant in the future sothat the speci�cations of the non-stochastic setting are sat-is�ed. Since supp[ K(t)LSmax(s) (t�1K)] = supp(t�1K), it followsfrom Equation (2) that for any t = s� 2 s�max(s):supp(t�1K) � supp((t�1L)S#t ) � supp(t�1D):



This together with the de�nition of Ssup given in Equa-tion (4) implies that �max(s) � �sup(s), i.e., any maximallypermissive supervisor in the stochastic setting is less permis-sive than the maximally permissive supervisor in the non-stochastic setting, as expected.The following example with � = fa; b; cg and �u = ; illus-trates that the converse does not hold in general.L(�) = 1; L(a) = L(b) = L(c) = 13 ; and L(s) =0; otherwiseK(a) = K(b) = 12 ; and K(s) = 0; otherwiseD(s) = 1;8sThen it is clear that the supremely permissive supervisor inthe non-stochastic setting disables no events initially, whereasthe maximally permissive supervisor in the stochastic settingdisables the event c initially.5 ConclusionThe supervisory control of stochastic DESs naturallygeneralizes the supervisory control formalism of the non-stochastic DESs. The control objective in the stochastic set-ting is to design a supervisor so that the controlled plant onlygenerates legal traces (speci�ed as a non-probabilistic map),and that the traces it generates occur with certain minimumprobabilities (speci�ed as a probabilistic map). The compu-tational complexity of the test for the existence of a super-visor, and also that for the on-line computation of a maxi-mally permissive supervisor (in the case when the languagesinvolved are deterministic regular) are both O(n3).References[1] C. G. Cassandras. Discrete Event Systems: Modelingand Performance Analysis. Aksen Associates, Boston,MA, 1993.[2] S. L. Chung, S. Lafortune, and F. Lin. Supervisory con-trol using variable lookahead policies. Discrete EventDynamic Systems: Theory and Applications, 4(3):237{268, July 1994.[3] B. A. Davey and H. A. Priestley. Introduction to Latticesand Order. Cambridge University Press, Cambridge,UK, 1990.[4] E. Doberkat. Stochastic Automata: Stability, Nondeter-minism and Prediction, volume 113 of Lecture Notes inComputer Science. Springer-Verlag, New York, 1981.[5] V. K. Garg. An algebraic approach to modeling prob-abilistic discrete event systems. In Proceedings of 1992IEEE Conference on Decision and Control, pages 2348{2353, Tucson, AZ, December 1992.[6] V. K. Garg. Probabilistic languages for modeling of deds.In Proceedings of Conference on Information Sciencesand Systems, pages 198{203, Princeton, NJ, March 1992.
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