
On Supervisory Control of Sequential Behaviors �Ratnesh KumarDepartment of Electrical EngineeringUniversity of KentuckyLexington, KY 40506-0046Email: Kumar@engr.uky.eduVijay K. GargDepartment of Electrical and Computer EngineeringUniversity of Texas at AustinAustin, TX 78712-1084Steven I. MarcusDepartment of Electrical Engineering andInstitute of Systems ResearchUniversity of Maryland at College Park, College Park, MD 20712AbstractWe address the supervisory synthesis problem for controlling the sequential behaviorsof Discrete Event Dynamical Systems (DEDS's) under complete as well as partial informationthrough the use of synchronous composition of the plants and the supervisors. We present thenotion of complete languages, discuss some of its algebraic properties and show its close relationto !-languages. We prove that the supremal (closed,) complete and controllable sublanguageof a given language exists and present an algorithm to compute it. We present a closed formexpression for the supremal !-controllable sublanguage of a given !-language in terms of thesupremal (closed,) complete and controllable sublanguage. This closed form expression suggeststhat certain operations on a given !-language can alternatively be achieved by performing certainother but similar operations on its pre�x (which is a �nite language) and then taking the limit(to obtain the desired !-language). A necessary and su�cient condition for the existence of asupervisor in case of partial observation is presented in terms of !-observability. Notion of !-normality is also introduced and a closed form expression for the supremal !-normal sublanguagein terms of the supremal closed, complete and normal sublanguage is presented.1 IntroductionIn this paper we study the problem of synthesizing supervisors for controlling the sequentialbehavior of a plant under both complete and partial observation. The supervisory synthesis problemfor controlling the sequential or in�nite string behavior was �rst studied by Ramadge [14] andThistle and Wonham [17]. Further related work by the authors is reported in [12]. We follow the�This research was supported in part by the Advanced Technology Program of the State of Texas under Grant003658-093, in part by the Air Force of Scienti�c Research under Grant AFOSR-86-0029, in part by the NationalScience Foundation under Grant ECS-8617860, in part by the Air Force O�ce of Scienti�c Research (AFSC) underContract F49620-89-C-0044, in part by a University Research Institute Grant and in part by a Bureau of EngineeringResearch Grant. 1

framework of [14] for modeling the sequential behavior of a plant and the closed loop system, anduse the notion of the synchronous composition of two machines [9, 11, 10] for describing the controlachieved by a supervisor over the sequential behavior of a plant.The necessary and su�cient condition that the desired !-language must satisfy for the existenceof a supervisor is called !-controllability [14]. It is further shown in [14] that !-controllability ispreserved under union, hence the supremal !-controllable sublanguage of a given !-language existsand is unique. One of the main results of this paper is to present a closed form expression for thesupremal !-controllable sublanguage. Using this closed form representation, we also present analgorithm for computing the supremal !-controllable sublanguage.We introduce the notion of complete languages and show that these languages are closely relatedto the !-languages. We discuss some of the algebraic properties of complete languages and showthat they are algebraically well behaved. Completeness of languages is preserved under union,hence the supremal complete, (closed and controllable) sublanguage of a given language exists andis unique. The closed form expression for the supremal !-controllable sublanguage is obtained interms of the supremal (closed,) complete and controllable sublanguage of a given language. Thissuggests that certain operations on the !-languages can alternatively be performed by performingcertain other but similar operations on their pre�xes (which are complete languages) and thentaking the limits (to obtain the desired !-language). As the operations of taking the pre�x of an!-language and taking the limit of a (�nite string) language can be easily performed, the problem ofperforming certain computations in the space of !-languages can be reduced to performing certainother similar computations in the space of (�nite string) languages. An algorithm for constructingthe supremal complete, closed and controllable sublanguage of a given language is presented. Thecomputational complexity of the algorithm is linear in product of the number of states in the�nite state machine (FSM) realization of the given language and the number of states in the FSMrealization of the plant.In case the sequential behavior of the plant is not fully observed, we show that the supervisorfor achieving the desired closed loop sequential behavior exists if and only if the desired behavioris !-observable (a concept de�ned in this paper). !-observable languages are not closed underunion; however, a stronger notion, called !-normality that we de�ne next is preserved under union,so that the supremal !-normal sublanguages exist and the construction of minimally restrictivesupervisors is possible. We present a closed form expression for computing the supremal !-normalsublanguages. This closed form expression is similar to the one obtained for the supremal !-controllable sublanguages.2 Notation and TerminologyThe DEDS to be controlled, called the plant, is represented as a deterministic trim [16] statemachine (SM). Letting P denote the plant, it is represented as a 5-tuple [7]: P def= (X;�; �; x0; Xm),where X denotes the state set of the plant (X is �nite, if P is a FSM); � denotes the �nite eventset; � : � �X ! X is the partial state transition function; x0 2 X denotes the initial state of theplant; and Xm � X denotes the set of marked states of the plant.The �nite string behavior of the plant is described by the set of �nite strings of events, called thelanguage, that the plant can generate. Formally, the languages generated and recognized (ormarked)by P are denoted by L(P) and Lm(P), respectively, and are de�ned as: L(P) = fs 2 �? j �(s; x0)!g,and Lm(P) = fs 2 L(P) j �(s; x0) 2 Xmg, where �? denotes the set of all the �nite strings ofevents belonging to �; the notation \!" is used to denote \is de�ned". The state transition function� is extended to the domain �? � X in the natural way. The language L(P) is pre�x closed by2

its de�nition. Further, if the plant is given to be a FSM, then L(P) and Lm(P) both are regularlanguages [7].A supervisor for controlling a given plant is another DEDS modeled as a deterministic trimSM (for a more general de�nition see [16]). Letting S denote the supervisor, it is represented as a5-tuple: S def= (Y;�; �; y0; Ym), where Y denotes the state set of the supervisor; � denotes the �niteevent set, the same as that of the plant; � : � � Y ! Y denotes the partial state transition map;y0 2 Y denotes the initial state of the supervisor; and Ym � Y denotes the set of marked states ofthe supervisor.The supervisor executes synchronously with the plant and thereby controls the plant behavior.The synchronous composition [6, 5, 11] of the plant and the supervisor is represented by another SMP2S, where \2" represents the synchronous composition operator. The synchronous compositionof the plant and the supervisor means that only those transitions which are allowed in both theplant P and the supervisor S, are allowed in the coupled SM P2S, when run synchronously. Thus,if some of the transitions are not allowed in the supervisor then they also cannot occur in theplant; this is the way the supervisor controls the plant. Formally, P2S is another deterministicSM, represented by the 5-tuple: P2S def= (Z;�;
; z0; Zm), where Z = X � Y is the state set of thecoupled SM, P2S; � denotes the �nite event set as before;
 : ��Z ! Z denotes the partial statetransition map for P2S. Let � 2 � and (x; y) 2 X � Y = Z; then we de�ne:
(�; (x; y)) def= ((�(�; x); �(�; y)) if �(�; x)! and �(�; y)!unde�ned otherwisez0 = (x0; y0) denotes the initial state of the coupled SM P2S; and Zm = Xm � Ym denotes themarked states of the coupled SM. The synchronous composition of two SM's can be de�ned in amore general setting, in which the event sets of the two SM's are di�erent [6, 5].Example 2.1 Consider the plant P shown in Figure 1 (\
" denotes a state; \!" entering a statedenotes the initial state; a directed arc, labeled with an event, between two states denotes a statetransition; and \
� " denotes a marked state). The event set � of P equals the set fa; b; c; ug. ThenL(P) = (a+ b)?ca?(b+ u)a? and Lm(P) = (a+ b)?ca?(b+ u)a?.Let the state machine S shown in Figure 1 be a supervisor for the plant P. Then L(S) =(ca+ (ab)?acu)a? and Lm(S) = (ca + (ab)?acu)a?. We note that L(S) � L(P) and Lm(S) �Lm(P). It is easily shown that the state machine P2S has the same structure as that of S so thatL(P2S) = L(S) and Lm(P2S) = Lm(S).Lemma 2.2 [9, 11] Let L(P2S) be the language generated and Lm(P2S) the language markedby P2S; then L(P2S) = L(P) \ L(S) and Lm(P2S) = Lm(P) \ Lm(S).The event set � is partitioned into �u [(� � �u), the sets of uncontrollable and controllableevents. It is shown in [16, 9, 11] that given any plant P , there exists a supervisor whichwhen run synchronously with the plant can restrict its behavior to any language K if and only ifK is controllable.De�nition 2.3 K � �? is said to be controllable with respect to P , if K�u \ L(P) � K, whereK denotes the pre�x closure [7] of K.Thus K is controllable if and only if K is controllable. In case K is not controllable, a minimallyrestrictive supervisor which restricts the plant's behavior to the supremal controllable sublanguageK" � K can be constructed [16, 15]. A closed form expression for K" and an optimal algorithmfor computing K" assuming K to be closed is presented in [9, 1, 11].3

If the plant behavior is incompletely observed, then a supervisor can be constructed to restrictthe plant's behavior to the desired behavior K if and only if K is controllable and observable [13, 3].Let M : � ! � [� denote an observation map, called a mask, from � to the observation space� [�. Let M be extended to the space �? in the obvious manner.De�nition 2.4 K � �? is said to be observable with respect to P and M , if for s; t 2 L(P) \Ksuch that M(s) =M(t), the following hold:1. � 2 �; s� 2 L(P) \K; t� 2 L(P) implies t� 2 K, and2. s 2 K; t 2 Lm(P) implies t 2 K.In case K is not observable, a minimally restrictive supervisor cannot be constructed, for asupremal observable sublanguage of K does not exist [13, 3]. However, maximal observable sub-languages of K exist [2], and algorithms for constructing them are given in [2]. A stronger notionof observability, called normality [13], is often considered for supervisory control under partialobservation.De�nition 2.5 K � �? is said to be normal with respect to P andM ifM�1(M(K))\L(P) = K.Normality of languages is preserved under union [13]. Hence, if K is not observable, a supervisorwhich restricts the plant's behavior to the supremal normal sublanguage of K can be constructed.Algorithms and closed form expressions for computing the supremal normal sublanguage are givenin [9, 1, 11].3 Formula for the Supremal !-Controllable SublanguageThe synthesis of the supervisors for controlling the in�nite or sequential behavior of DEDS'scan also be easily studied in the above framework. We extend the above notations (following theframework of Ramadge [14]) to describe the in�nite behavior of a given plant, and present a closedform expression for computing the supremal !-controllable sublanguage of a given !-language.Let �! denote the set of all in�nite strings of events belonging to �. An in�nite string or!-language is a sublanguage of �!. Let en 2 �? denote the pre�x of size n of the in�nite stringe 2 �!. Given two in�nite strings e1; e2 2 �!, the distance d(e1; e2) between the two in�nite stringsis de�ned to be [4]:d(e1; e2) def= (1=(n+ 1) if en1 = en2 and en+11 6= en+12 (n 2 N)0 if e1 = e2Given a language L � �?, its limit, denoted as L1, is the !-language de�ned as:L1 def= fe 2 �! j en 2 L for in�nitely many n 2 NgWe will use t � s to denote that t 2 �? is a pre�x of s 2 �? [�!. If t is a proper pre�x of s, thenit is written as t < s. Given an in�nite sequence of strings s1 < s2 < : : : < sn < : : : with sn 2 �?for each n, there exists a unique in�nite string e 2 �! such that sn < e for each n. In this case, thein�nite string e is also written as e = limn!1 sn. Given an !-language L � �! , its pre�x, denotedby prL, is the language: prL def= fs 2 �? j 9e 2 L s.t. s < eg4

Note that prL = prL, where L denotes the topological closure1 of L in the metric space (�!; d) [4].It is readily veri�ed that for a !-language L � �!, (prL)1 = L. Thus (prL)1 = L if and only if Lis topologically closed, i.e. L = L. We will show that for any language L � �?, pr(L1) = L if andonly if L is complete (see De�nition 3.3) and pre�x closed, which, as we will see, is a useful result.With these preliminary notions we can study the problem of controlling the in�nite behavior ofa given DEDS. Let P def= (X;�; �; x0; Xm) denote the plant. Then as de�ned above, Lm(P); L(P) ��? denote its (�nite string) marked, generated languages respectively. The !-language generatedby P, denoted by L(P), is de�ned to be:L(P) def= fe 2 L(P)1 j 9 in�nitely many n 2 N s.t. �(en; x0) 2 Xmg = (Lm(P))1Note that the !-language L(P) generated by P as de�ned above is also the !-language generatedby P viewed as a B�uchi automaton [4]. P is said to nonblocking if prL(P) = L(P). We haveshown in [8] that P is nonblocking if and only if it is live (see De�nition 3.4 and Lemma 4.8). LetS def= (Y;�; �; y0; Ym) denote the supervisor that controls P by operating in synchrony with it asdescribed above. Then the !-language generated by the closed loop system P2S is de�ned to be:L(P2S) def= (L(P2S))1 \ L(P)Example 3.1 (continued) Consider the plant P and the supervisor S described in Example 2.1.Then L(P) = (a + b)?ca?(b + u)a! and L(P2S) = (L(P2S))1 \ L(P) = (L(S))1 \ L(P) =(ab)! + (ca+ (ab)?ac(u+ ba))a! \ (a+ b)?ca?(b+ u)a! = (ca+ (ab)?ac(u+ ba))a!.Let K � L(P) be the desired !-language. It is shown in [14] that a complete, nonblockingsupervisor exists for achieving the desired behavior if and only if it is !-controllable with respectto P .De�nition 3.2 K � �! is said to be !-controllable with respect to a plant P if prK is controllablewith respect to P , and K is topologically closed with respect to L(P).It is further shown in [14] that if K is not !-controllable, but is topologically closed with respectto L(P), then the supremal !-controllable sublanguage, denoted by K", of K exists2. Thus theconstruction of a minimally restrictive supervisor is possible.In the next theorem we present a closed form expression for the supremal !-controllable sub-language. This is one of the main results presented in this paper. First we de�ne the notion ofcomplete languages which will be useful in studying the control of in�nite behaviors.De�nition 3.3 Consider a language L � �?. A string s 2 L is said to have an extension in L ifthere exists t 2 L such that s < t. L is said to be complete if for every string s 2 L, there exists anextension in L.The notion of complete languages is closely related to the notion of live SM's that we de�nenext:De�nition 3.4 Consider a SM, V def= (Q;�; �; q0; Qm). A state q 2 Q is said to be live if thereexists a � 2 � such that �(�; q)!. V is said to be live if all the states in Q are live.1The notation L is used to denote topological closure whenever L � �! , and the notation L is used to denote thepre�x closure whenever L � �?.2The notation K" is used to denote the supremal !-controllable sublanguage of K � �!, and the notation K" isused to denote the supremal controllable sublanguage of K � �?.5

A state that is not live will be referred to as a dead state.Lemma 3.5 [8] A language L � �? is complete if and only if any deterministic trim SM recognizingit is live.Next we study some of the properties of a complete language.Lemma 3.6 [8] K � �? is complete if and only if K is complete.Example 3.7 (continued) Consider the SM's P and S described in Example 2.1. Since both Pand S are live (refer to Figure 1), it follows from Lemma 3.5 that both Lm(P) and Lm(S) arecomplete languages. Also, since L(P) = Lm(P) and L(S) = Lm(S), it follows from Lemma 3.6that L(P) and L(S) are complete languages as well.Proposition 3.8 Consider K � �?. Then pr(K1) = K if and only if K is pre�x closed andcomplete.Proof: Assume that K is pre�x closed and complete. We �rst show that pr(K1) � K. Picks 2 pr(K1); then there exists e 2 K1 such that s < e. Since e 2 K1, there exists an in�nitesequence of strings s1 < s2 < : : : < sn : : :, sn 2 K for each n, such that limn!1 sn = e. Pick astring sm from the above in�nite sequence of strings such that s � sm. Since sm 2 K, and K ispre�x closed, s 2 K.Next we show that K � pr(K1). Pick s 2 K; then since K is complete, there exists anin�nite sequence of strings t1 < t2 < : : : < tn : : :,such that tn 2 K for each n, and s < t1. Lete def= limn!1 tn; then e 2 K1. Since s < e, s 2 pr(K1).Next assume that pr(K1) = K. Since pr(K1) is pre�x closed by de�nition, it follows thatK is pre�x closed. It remains to show that K is complete. Pick s 2 K; then s 2 pr(K1), i.e.there exists e 2 K1 such that s < e. Since e 2 K1, there exist in�nitely many n 2 N such thaten 2 K. Then there exists m 2 N such that s < em. Since em 2 K and s < em, we obtain that Kis complete. 2Lemma 3.9 [8] The set of complete languages is closed under union.Corollary 3.10 [8] Consider K � �? and a plant P. Then the supremal (closed,) complete andcontrollable sublanguage of K with respect to P exists, and is unique.The notation K* will be used to denote the supremal complete and controllable sublanguage,and the notation K* will be used to denote the supremal complete, closed and controllable sublan-guage of K � �?.Corollary 3.11 Assume that K � �? is closed, then K* = K* = K*.Proof: Since K* � K and K is pre�x closed, K* � K. Also, K* is complete and controllable(follows from Lemma 3.6 and the de�nition of controllability). Since K* is the supremal completeand controllable sublanguage of K, it follows that K* = K*. Thus K* is closed. Since K* is thesupremal complete, closed and controllable sublanguage of K, it follows that K* = K*. 2With the above remarks on complete languages and some of their algebraic properties, we canpresent a closed form expression for the supremal !-controllable sublanguage of a given !-language.Lemma 3.12 If K � L(P) is topologically closed, then it is topologically closed with respect toL(P). 6

Proof: We have K \ L(P) = K \ L(P) = K, where the �rst equality follows from the fact that Kis closed, and the last equality follows from the fact that K � L(P). 2Thus it follows from Lemma 3.12 that if K � L(P) is topologically closed, then K" exists.Theorem 3.13 Let K � L(P) be topologically closed. Then K" = ((prK)*)1.Note that in Theorem 3.13, ((prK)*)1 = ((prK)*)1 (follows from Corollary 3.11, for prK is aclosed language).Remark 3.14 We have obtained a closed form expression for K" in a more general setting, wherewe do not assume K to be topologically closed. We have proved that if K can be written as thelimit of a complete language, i.e. if there exists a complete K � �? such that K = K1, thenK" = ((pr(K)*)1. This result is reported in [8]. However, assuming that K is topologically closedresults in a much simpler proof.We �rst prove some lemmas before proving Theorem 3.13.Lemma 3.15 Let H def= ((prK)*)1. Then the following hold:1. H � K2. prH = (prK)*3. H is topologically closed.Proof: 1. Since (prK)* � prK, we have H = ((prK)*)1 � (prK)1 = K = K, where the lastequality follows from the fact that K is closed.2. Follows from Proposition 3.8, for (prK)* is by de�nition closed and complete.3. We have H = ((prK)*)1 = (prH)1 = H, where the second equality follows from part 2 above.Thus H = H. 2Corollary 3.16 H is topologically closed with respect to L(P).Proof: From part 1 of Lemma 3.15, we have H � K. Hence H � L(P). Since H is also closed(part 3 of Lemma 3.15), it follows from Lemma 3.12 that H is closed with respect to L(P). 2Lemma 3.17 pr(K") = (prK)*Proof: Since K" � K, pr(K") � prK. Thus pr(K") is a complete, closed and controllable sublan-guage of prK. Hence pr(K") � (prK)*, for (prK)* is the supremal complete, closed and controllablesublanguage of prK.It remains to show that (prK)* � pr(K"). Using part 2 of Lemma 3.15 we obtain prH =(prK)*, showing that prH is controllable. Since H is also topologically closed with respect to L(P)(Corollary 3.16), H is an !-controllable sublanguage of K. Hence H � K" (since K" is the supremalone), showing that prH � pr(K"), i. e. (prK)* � pr(K"). 2Proof (of Theorem 3.13): We have K" = K"\L(P) = (pr(K"))1\L(P) = ((prK)*)1\L(P) =H \ L(P) = H, where the �rst equality follows from the fact that K" is topologically closed withrespect to L(P) (K" is !-controllable), the third equality follows from Lemma 3.17, and the lastequality follows from the fact that H � K � L(P). 27

Corollary 3.18 If K � L(P) is closed, then so is K".Proof: Follows from the fact that K" = H, and H is closed. 2Remark 3.19 Let � be a property of languages that is preserved under union. An !-languageK � L(P) is said to be !-� if it is topologically closed with respect to L(P) and prK satis�es�. Then following the proof of Proposition 3.3 [14], it is easily shown that the supremal !-�sublanguage of K exists and is unique. Letting K� denote the supremal !-� sublanguage of Kand assuming that K is closed, it can be proved, in view of Theorem 3.13, that K� is same as the!-language obtained by taking the limit of the supremal complete and closed sublanguage of prKsatisfying the property �. The interested reader is referred to [8] for a more general result, whereK is not assumed to be topologically closed.4 Computation of K*In the previous section we showed that the supremal complete, closed and controllable sublan-guage, K*, of a given language K � �? with respect to a plant P exists and is unique (Corollary3.10). In this section we present an algorithm for computing K* assuming that K is closed, inwhich case K* is the same as K* (Corollary 3.11). This algorithm can then be used for computingthe supremal !- controllable sublanguages by using the formula in Theorem 3.13.Consider P def= (X;�; �; x0; Xm) and let S def= (Y;�; �; y0; Ym) be such that L(S) = K (K isassumed to be closed). Since K represents the desired plant behavior, we can assume withoutloss of generality that K � L(P). Construct P2S def= (Z;�;
; z0; Zm); then from Lemma 2.2,L(P2S) = K. Since K is closed, K = K. Thus K is controllable with respect to P if and onlyif K�u \ L(P) � K. We de�ne s 2 K to be an uncontrollable string if there exists �u 2 �u,such that s�u 2 L(P) � K. Let z = (xz ; yz) 2 X � Y be the state reached in P2S by acceptingan uncontrollable string s 2 K. Then the state reached in P by accepting s is xz . Letting�u(P)(xz);�u(P2S)(z) denote the sets of uncontrollable events de�ned at states xz ; z respectively,i.e. �u(P)(xz) = f�u 2 �uj�(�u; xz)!g; �u(P2S)(z) = f�u 2 �uj
(�u; z)!g;it follows from the de�nition of uncontrollable string that �u(P)(xz) 6� �u(P2S)(z). A strings 2 K is said to be a bad string if either it is an uncontrollable string, or it has no extension in K.Letting z = (xz ; yz) 2 X � Y denote the state reached in P2S by accepting a bad string s 2 K, itfollows from the de�nition of bad strings that either �u(P)(xz) 6� �u(P2S)(z) or z is a dead state(Lemma 3.5).Given a deterministic SM V def= (Q;�; �; q0; Qm), there is a natural equivalence relation RV [7, 2]induced by V on �?, which is de�ned by s �= t(RV), �(s; q0) = �(t; q0)3, where s; t 2 �?. We use[s](RV) to denote the equivalence class under the equivalence relation RV , containing the string s.Lemma 4.1 s 2 K is a bad string if and only if all the strings [s](RP2S) are bad.Proof: Assume that all the strings in [s](RP2S) are bad; then clearly s is a bad string, fors 2 [s](RP2S).Assume next that s 2 K is a bad string. Let z 2 Z be the state reached by accepting s in P2S,i. e. z =
(s; z0). Let z = (xz; yz) 2 X�Y . Since s is a bad string, either �u(P)(xz) 6� �u(P2S)(z)or z is a dead state. Thus if t 2 [s](RP2S), then the state reached in P2S by accepting the string3This is meant to include the condition that �(s; q0) is unde�ned , �(t; q0) is unde�ned.8

t is again z. Thus either t is an uncontrollable string (if s is uncontrollable) or t has no extensionin K (if s has none). Hence t is a bad string. 2The implication of Lemma 4.1 is that if a string s 2 K is bad, then the state z 2 Z reached byaccepting s must be removed from P2S in order to construct the generator for K*. Let Zb � Zbe the set of all the states that need to removed from P2S. Then an algorithm for computing Zbis given below:Algorithm 4.2 We need to compute Zb. Assume that P is a FSM and the closed language K isregular, so that P2S is a FSM. This is needed for the algorithm to terminate in a �nite number ofiterations.1. Initiation step:Set n = 0, Z�1 = ;, andZ0 = fz 2 Zj either �u(P)(xz) 6� �u(P2S)(z) or z is a dead stateg2. Iteration step:(a) Let Ẑn � Z be the set of states from which Zn � Zn�1 can be reached in a singletransition, i.e. Ẑn = fz 2 Zj9� 2 � s.t.
(�; z) 2 Zn � Zn�1gThe set Ẑn is constructed by considering the SM obtained by reversing all the transitionsin P2S.(b) Consider z 2 Ẑn. If there exists an uncontrollable transition from z to Zn or if all thetransitions from z lead to Zn, then Zn+1 = Zn [fzg. Repeat this for every z 2 Ẑn, i. e.Zn+1 = Zn [fz 2 Ẑnj either 9�u 2 �u s.t.
(�u; z) 2 Zn; or 8� 2 �;
(�; z) 2 Zng3. Termination step: If Zn+1 = Zn, then stop; else set n = n+ 1 and go to step 2.Theorem 4.3 Let n0 2 N be the number of the last iteration step in Algorithm 4.2. ThenZb = Zn0 .Proof: We use induction to prove Theorem 4.3. We show that at every iteration step we removeonly those states that are reached by accepting only the bad strings, and eventually we remove allsuch states. In other words, Zn � Zb for each iteration n � n0, and Zb � Zn0 .Let n � 0 denote the number of iteration step. Then the above statement holds true for n = 0(by de�nition, the set Z0 contains states reached by only the bad strings). Let the statement betrue for the nth iteration, i.e. assume that Zn � Zb. Consider z 2 Ẑn such that
(�u; z) 2 Zn forsome �u 2 �u; then clearly z 2 Zn+1, for all the strings that lead to state z are uncontrollable andhence bad. If z 2 Ẑn is such that
(�; z) 2 Zn for all � 2 �, then again z 2 Zn+1, for all the stringsthat lead to state z have no extension in the reduced SM obtained at the end of the nth iteration,and hence are bad. Since these are the only states added to Zn at the nth iteration (for computingZn+1), Zn+1 � Zb.As n0 is the number of the last iteration step, Zn0 = Zn0+1. Hence none of the states in the setZ � Zn0 are reached by the bad strings, showing that the strings that reach the states in Z � Zn0belong to the generator of K*. Thus Zb = Zn0 . 2Corollary 4.4 Let (P2S) j(Z�Zb)def= ((Z � Zb);�;
 j��(Z�Zb); z0; (Z � Zb) \ Zm). Then K* =L((P2S) j(Z�Zb)). 9

Proof: By de�nition, Zb � Z is the set of all the states that need to be removed from P2S inorder to construct the generator for K*, hence the result. 2In view of Corollary 4.4, the generator for K* can thus be constructed using Algorithm 4.2.Theorem 4.5 The computational complexity of the Algorithm 4.2 is of order O(mn), where mnis the number of states in P2S (the number of states in SM's P; S are m;n respectively).Proof: Assume that at the end of nth iteration the number of transitions leading into the setZn+1 � Zn from Z � Zn+1 is En. Then step 2 of the algorithm can be computed in O(En) time.This follows, since (a) the states in the set Ẑn can be computed by considering En transitions, and(b) there are at most En states in Ẑn, so the states to be added to Zn+1 (for computing Zn+2) canbe determined in O(En) time.Since the sets Zn+1 �Zn for each n are all disjoint, the transitions leading into them from Z �Zn+1 are also all disjoint. Hence the states in the set Zb can be computed in order O(PnEn � E),where E denotes the number of transitions in P2S. Since the SM's are deterministic, E � j�j�(mn);hence the theorem follows. 2Remark 4.6 The computational complexity of Algorithm 4.2 for computing K* is of the sameorder as that of the optimal algorithm that computes K" presented in [9, 11].4.1 Computation of K"The computation of K" using the formula of Theorem 3.13 involves computations of the oper-ators pr(�), (�)* and (�)1. We discussed above computation of the operator (�)*. Next we discusscomputations of the other two operators.Lemma 4.7 [4, Proposition 1.1, Chapter 14] Consider a trim SM V def= (Q;�; �; q0; Qm). Then(Lm(V))1 = L(V).Thus if V is live so that Lm(V) is complete (Lemma 3.5), L(V) can be written as the limit ofa complete language.Lemma 4.8 [8] Consider a deterministic trim SM V def= (Q;�; �; q0; Qm). Then V is nonblocking,i.e. prL(V) = L(V), if and only if it is live.Corollary 4.9 [8] Let V be as in Lemma 4.8. Then (L(V))1 = L(V).Remark 4.10 The implication of Lemma 4.7 is that given a trim SM that recognizes a languageL � �?, L1 is the !-language generated by the same SM, and the implication of Lemma 4.8 is thatgiven a live trim SM that generates the !-language L, prL is the �nite language generated by thesame SM. Thus the supremal !-language K" of a given topologically closed !-language K � �!,generated by a deterministic FSM (i.e. K 2 DRAT [4]) with respect to plant P can easily becomputed in view of Theorem 3.13, Algorithm 4.2, Lemma 4.7 and Lemma 4.8. The complexity ofthe computation is of order O(mn), where m;n are the number of states in the SM's representingP , generator of prK respectively (Theorem 4.5).Example 4.11 (continued) Consider the plant P and the supervisor S shown in Figure 1. Thenas mentioned in Example 2.1, P2S has the same structure as that of the machine S. Let theuncontrollable event set �u � � be the singleton containing the event u. We make an additionalassumption in this example that all the states in P as well as in S are marked. Hence Lm(P) =10

L(P) = (a+ b)?ca?(b+ u)a?, Lm(S) = L(S) = (ca+ (ab)?ac(u+ ba))a?, L(P) = (a + b)! + (a +b)?ca! + (a+ b)?ca?(u+ b)a!, and L(S) = (ab)! + (ca+ (ab)?ac(u+ ba))a!. We note that L(P) =(L(P))1 and L(S) = (L(S))1, which also follows from Lemma 4.7.Let the desired sequential behavior K � L(P) be given by K = L(S). Since S is a live trimmachine, it follows from Lemma 4.8 that prK = L(S). Thus K = (prK)1 = (L(S))1 = L(S) = K,showing that K is topologically closed. Hence it follows from Lemma 3.12 that K is topologicallyclosed with respect to L(P). Since the string c 2 prK and the string cu 2 L(P) � prK, it followsthat prK is not controllable with respect to P ; thus K is not !-controllable with respect to P . Hencewe cannot construct a supervisor so that the closed loop sequential behavior is K [14]. However,since K is topologically closed, K", the supremal !-controllable sublanguage of K, exists (Lemma3.12 and Proposition 3.2 in [14]), so that the construction of the minimally restrictive supervisoris possible. Thus the existence of the minimally restrictive supervisor is guaranteed; we use theclosed form expression in Theorem 3.13 to compute K".First we need to compute (prK)*. From the above discussions, prK = L(S). We employ Algo-rithm 4.2 for computing (prK)*. Since the machine P2S is the same as the machine S, no furtherconstruction is need for obtaining the machine P2S. Also, since the string c 2 prK = L(S)is the only bad string in prK, Z0 = f[c](RP2S)g = f[c](RS)g, where Z0 is de�ned in Algo-rithm 4.2. It then follows from Figure 1 that Ẑ0 = f[�](RS); [ac](RS)g, where Ẑ0 is the setof states in P2S (=S), from which Z0 can be reached in a single transition. Since not allthe transitions from the states in the set Ẑ0 lead to Z0, and since no uncontrollable transi-tion from the states in the set Ẑ0 lead to Z0, it follows that Z1 = Z0 = Zb, where Z1 andZb are de�ned in Algorithm 4.2. Hence the generator for (prK)* is given by the SM shownin Figure 2, which is obtained by removing the state in the set Zb from S. Thus (prK)* =(ab)?acua?. It then follows from Lemma 4.7 that ((prK)*)1 is the !-language generated by theSM in Figure 2 and is given by ((prK)*)1 = (ab)! + (ab)?acua!. Hence from Theorem 3.13,K" = ((prK)*)1 = (ab)! + (ab)?acua!.If b 2 � is also given to be an uncontrollable event, then it is clear from Figure 1 that thereexists an uncontrollable transition, namely b, from the state [ac](RS) 2 Ẑ0 leading to Z0. HenceZ1 = Z0 [f[ac](RS)g = f[c](RS); [ac](RS)g. It can be argued as above to conclude that in thiscase, Z2 = Z1 = Zb. Hence, in this case, the generator for (prK)* is given by the SM in Figure 1which is obtained by removing the states in the set Z2 from S. It then follows from Theorem 3.13that in this case, K" = (ab)!.5 Partially Observed Sequential BehaviorIn our previous discussions we have assumed that the supervisor has complete information aboutthe plant behavior, i.e. the supervisor observes all the events that occur in the plant perfectly.However, in many situations the supervisor has only partial information about the plant behavior(refer to the example in [3, p. 259]). In this section we consider the supervisory synthesis problemfor a plant whose sequential behavior is partially observed.The de�nition of the mask M can be easily extended to the space �!. First we prove thefollowing result:Lemma 5.1 Let fsngn2N ; ftmgm2N be any two sequences of strings such that sn 2 �?; sn < sn+1for each n, tm 2 �?; tm < tm+1 for each m, and limn!1 sn = limm!1 tm. Then limn!1M(tn) =limm!1M(tm). 11

Proof: Since limn!1 sn = limm!1 tm, we have for each m there exist nm; nm+1 2 N such thatsnm < tm < snm+1 . SinceM distributes over concatenation, we haveM(snm) < M(tm) < M(snm+1)for each m. Similarly, it can be shown that for each n there exist mn; mn+1 2 N such thatM(tmn) < M(sn) < M(tmn+1). Hence limn!1M(sn) = limm!1M(tm). 2Using the result of Lemma 5.1, we can extend the de�nition of M to the space �! as follows:De�nition 5.2 Consider a in�nite string e 2 �!; let fsngn2N be a sequence of strings suchthat sn 2 �?; sn < sn+1 for each n and limn!1 sn = e. Then M(e) is de�ned to be, M(e) def=limn!1M(sn).Thus if L(P) denotes the in�nite string behavior of the plant P , then the behavior observedunder the mask M is given by M(L(P)). Let K � �! denote the desired closed loop sequentialbehavior. We introduce the notion of !-observability of !-languages and state a necessary andsu�cient condition for the existence of a supervisor for achieving the desired closed loop sequentialbehavior.De�nition 5.3 K � �! is said to be !-observable with respect to P and M if K is topologicallyclosed with respect to L(P) and prK is observable with respect to P and M .Assume that all the events are controllable.Theorem 5.4 Let K � L(P) be nonempty. Then there exists a nonblocking supervisor S suchthat L(P2S) = K if and only if K is !-observable with respect to P and M .Proof: Assume that K is !-observable. Since prK is observable and nonempty with respectto P and M , there exists a supervisor S such that L(P2S) = prK [13, 3]. Hence L(P2S) =(L(P2S))1 \ L(P) = (prK)1 \ L(P) = K \ L(P) = K, where the last equality follows from thefact the K is topologically closed with respect to L(P). Also pr(L(P2S)) = prK = L(P2S); thusS is nonblocking.Next assume that there exists a nonblocking supervisor S such that L(P2S) = K. ThenL(P2S) is observable [13, 3]], and pr(L(P2S)) = L(P2S) (since S is nonblocking). Thus prK =pr(L(P2S)) = L(P2S), showing that prK is observable. Also K \ L(P) = (prK)1 \ L(P) =(L(P2S))1 \ L(P) = L(P2S) = K; hence, K is closed with respect to L(P). 2Remark 5.5 Since the observability of languages is not preserved under union, the supremal !-observable sublanguage of a given !-language does not exist. Also, since the pre�x of !-languagesis not preserved under intersection, the in�mal !-observable superlanguage of a given !-languagedoes not exist either. We introduce the notion of !-normality that is stronger notion than that of!-observability, and is preserved under union.De�nition 5.6 An !-language K � L(P) is said to be !-normal with respect to the plant P andthe mask M if K is topologically closed with respect to L(P), and prK is normal with respect to Pand M , i. e.1. K \ L(P) = K, and2. M�1M(prK)\ L(P) = prKRemark 5.7 Since normality of languages is preserved under union, it follows from Remark 3.19that the supremal !-normal sublanguage of a given !-language exists. Thus if the desired behavioris not !-observable, a supervisor can be constructed so that the closed loop system generates thesupremal !-normal sublanguage of the desired behavior. Letting K� denote the supremal !-normalsublanguage of a given topologically closed !-language K � �! , it follows from Remark 3.19 thatit is given by the limit of the supremal complete, closed and normal sublanguage of prK.12

6 ConclusionIn this paper, we have used the notion of synchronous composition for describing the control ofsequential behavior of DEDS's.We have introduced the notion of complete languages, and shown that these languages are closelyrelated to !-languages. The supremal complete, closed and controllable sublanguage of a languageexists, and an algorithm for constructing it has been presented. A closed form expression for thesupremal !-controllable sublanguage of a given !-language has been derived using the supremalcomplete, closed and controllable sublanguage. This result indicates that certain operations on!-languages can alternatively be performed by �rst performing certain other similar operations ontheir pre�xes (which are �nite string languages) and then taking the limits (to obtain the desired!-language). Thus a computational problem on the space of in�nite languages can be reducedto another similar computational problem on the space of �nite languages, for the operations ofcomputing the pre�x of an !-langauge and the limit of a (�nite string) language can be easilyperformed.The problem of supervisory synthesis is then extended to deal with controlling the sequentialbehavior under partial observation. We introduce the notion of !-observability and show thatit is a necessary and su�cient condition for the existence of the supervisor. !-observability isnot preserved under union or intersection. Hence a stronger notion called !-normality that isalgebraically better behaved has been presented. We prove that the supremal !-normal sublanguageexists and is unique, and describe a method for computing it.References[1] R. D. Brandt, V. K. Garg, R. Kumar, F. Lin, S. I. Marcus, and W. M. Wonham. Formulasfor calculating supremal controllable and normal sublanguages. Systems and Control Letters,15(8):111{117, 1990.[2] H. Cho and S. I. Marcus. Supremal and maximal sublanguages arising in supervisor synthesisproblems with partial observations. Mathematical Systems Theory, 22:177{211, 1989.[3] R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya. Supervisory control of discrete eventprocesses with partial observation. IEEE Transactions on Automatic Control, 33(3):249{260,1988.[4] S. Eilenberg. Automata, Languages, and Machines: Volume A. Academic Press, New York,NY, 1974.[5] M. Heymann. Concurrency and discrete event control. IEEE Control Systems Magazine,10(4):103{112, 1990.[6] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, Inc., Englewood Cli�s,NJ, 1985.[7] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Compu-tation. Addison-Wesley, Reading, MA, 1979.[8] R. Kumar. Supervisory Synthesis Techniques for Discrete Event Dynamical Systems: Transi-tion Model Based Approach. PhD thesis, Department of Electrical and Computer Engineering,University of Texas at Austin, 1991. 13

[9] R. Kumar, V. K. Garg, and S. I. Marcus. Supervisory control of discrete event systems:supremal controllable and observable languages. In Proceedings of 1989 Allerton Conference,pages 501{510, Allerton, IL, September 1989.[10] R. Kumar, V. K. Garg, and S. I. Marcus. Language stability of deds. In Proceedings of 1990International Conference on Mathematical Theory of Control, Indian Institute of Technology,Bombay, India, December 1990.[11] R. Kumar, V. K. Garg, and S. I. Marcus. On controllability and normality of discrete eventdynamical systems. Systems and Control Letters, 17(3):157{168, 1991.[12] R. Kumar, V. K. Garg, and S. I. Marcus. On !-controllability and !-normality of deds. InProceedings of 1991 ACC, pages 2905{2910, Boston, MA, June 1991.[13] F. Lin and W. M. Wonham. On observability of discrete-event systems. Information Sciences,44(3):173{198, 1988.[14] P. J. Ramadge. Some tractable supervisory control problems for discrete event systems modeledby buchi automata. IEEE Transactions on Automatic Control, 34(1):10{19, 1989.[15] P. J. Ramadge and W. M. Wonham. On the supremal controllable sublanguage of a givenlanguage. SIAM Journal of Control and Optimization, 25(3):637{659, 1987.[16] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event processes.SIAM Journal of Control and Optimization, 25(1):206{230, 1987.[17] J. G. Thistle and W. M. Wonham. On the synthesis of supervisors subject to !-language spec-i�cations. In Proceedings of 22nd Annual Conference on Information Sciences and Systems,pages 440{444, Princeton, NJ, 1988.

14

SP uu bb c ca a aaaa; bc Figure 1: Example to illustrate synchronous composition
Generator for (prK)* (�u = fb; ug)Generator for (prK)* (�u = fug) ub ca a abFigure 2: Example to illustrate computation of K"

15

