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Abstract

We address the supervisory synthesis problem for controlling the sequential behaviors
of Discrete Event Dynamical Systems (DEDS’s) under complete as well as partial information
through the use of synchronous composition of the plants and the supervisors. We present the
notion of complete languages, discuss some of its algebraic properties and show its close relation
to w-languages. We prove that the supremal (closed,) complete and controllable sublanguage
of a given language exists and present an algorithm to compute it. We present a closed form
expression for the supremal w-controllable sublanguage of a given w-language in terms of the
supremal (closed,) complete and controllable sublanguage. This closed form expression suggests
that certain operations on a given w-language can alternatively be achieved by performing certain
other but similar operations on its prefix (which is a finite language) and then taking the limit
(to obtain the desired w-language). A necessary and sufficient condition for the existence of a
supervisor in case of partial observation is presented in terms of w-observability. Notion of w-
normality is also introduced and a closed form expression for the supremal w-normal sublanguage
in terms of the supremal closed, complete and normal sublanguage is presented.

1 Introduction

In this paper we study the problem of synthesizing supervisors for controlling the sequential
behavior of a plant under both complete and partial observation. The supervisory synthesis problem
for controlling the sequential or infinite string behavior was first studied by Ramadge [14] and
Thistle and Wonham [17]. Further related work by the authors is reported in [12]. We follow the
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framework of [14] for modeling the sequential behavior of a plant and the closed loop system, and
use the notion of the synchronous composition of two machines [9, 11, 10] for describing the control
achieved by a supervisor over the sequential behavior of a plant.

The necessary and sufficient condition that the desired w-language must satisfy for the existence
of a supervisor is called w-controllability [14]. Tt is further shown in [14] that w-controllability is
preserved under union, hence the supremal w-controllable sublanguage of a given w-language exists
and is unique. One of the main results of this paper is to present a closed form expression for the
supremal w-controllable sublanguage. Using this closed form representation, we also present an
algorithm for computing the supremal w-controllable sublanguage.

We introduce the notion of complete languages and show that these languages are closely related
to the w-languages. We discuss some of the algebraic properties of complete languages and show
that they are algebraically well behaved. Completeness of languages is preserved under union,
hence the supremal complete, (closed and controllable) sublanguage of a given language exists and
is unique. The closed form expression for the supremal w-controllable sublanguage is obtained in
terms of the supremal (closed,) complete and controllable sublanguage of a given language. This
suggests that certain operations on the w-languages can alternatively be performed by performing
certain other but similar operations on their prefixes (which are complete languages) and then
taking the limits (to obtain the desired w-language). As the operations of taking the prefix of an
w-language and taking the limit of a (finite string) language can be easily performed, the problem of
performing certain computations in the space of w-languages can be reduced to performing certain
other similar computations in the space of (finite string) languages. An algorithm for constructing
the supremal complete, closed and controllable sublanguage of a given language is presented. The
computational complexity of the algorithm is linear in product of the number of states in the
finite state machine (FSM) realization of the given language and the number of states in the FSM
realization of the plant.

In case the sequential behavior of the plant is not fully observed, we show that the supervisor
for achieving the desired closed loop sequential behavior exists if and only if the desired behavior
is w-observable (a concept defined in this paper). w-observable languages are not closed under
union; however, a stronger notion, called w-normality that we define next is preserved under union,
so that the supremal w-normal sublanguages exist and the construction of minimally restrictive
supervisors is possible. We present a closed form expression for computing the supremal w-normal
sublanguages. This closed form expression is similar to the one obtained for the supremal w-
controllable sublanguages.

2 Notation and Terminology

The DEDS to be controlled, called the plant, is represented as a deterministic trim [16] state

machine (SM). Letting P denote the plant, it is represented as a 5-tuple [7]: P def (X, X, 0,20, Xin),

where X denotes the state set of the plant (X is finite, if P is a FFSM); ¥ denotes the finite event
set; a : X X X — X is the partial state transition function; xg € X denotes the initial state of the
plant; and X,, € X denotes the set of marked states of the plant.

The finite string behavior of the plant is described by the set of finite strings of events, called the
language, that the plant can generate. Formally, the languages generated and recognized (or marked)
by P are denoted by L(P) and L,,(P), respectively, and are defined as: L(P) = {s € ¥* | a(s, z0)!},
and L, (P) ={s € L(P) | a(s,z9) € X,,}, where ¥* denotes the set of all the finite strings of
events belonging to X; the notation “!” is used to denote “is defined”. The state transition function
a is extended to the domain ¥* X X in the natural way. The language L(P) is prefiz closed by



its definition. Further, if the plant is given to be a FSM, then L(P) and L,,(P) both are regular
languages [7].

A supervisor for controlling a given plant is another DEDS modeled as a deterministic trim
SM (for a more general definition see [16]). Letting S denote the supervisor, it is represented as a

5-tuple: § def (Y, %, 5,90, Y ), where Y denotes the state set of the supervisor; ¥ denotes the finite
event set, the same as that of the plant; 5 : X X Y — Y denotes the partial state transition map;
Yo € Y denotes the initial state of the supervisor; and Y, CY denotes the set of marked states of
the supervisor.

The supervisor executes synchronously with the plant and thereby controls the plant behavior.
The synchronous composition [6, 5, 11] of the plant and the supervisor is represented by another SM
POS, where “0O” represents the synchronous composition operator. The synchronous composition
of the plant and the supervisor means that only those transitions which are allowed in both the
plant P and the supervisor S, are allowed in the coupled SM POS, when run synchronously. Thus,
if some of the transitions are not allowed in the supervisor then they also cannot occur in the
plant; this is the way the supervisor controls the plant. Formally, POS is another deterministic
SM, represented by the 5-tuple: POS def (Z,%,7,20, Zm), where Z = X x Y is the state set of the
coupled SM, POS; ¥ denotes the finite event set as before; v : 3 X Z — Z denotes the partial state
transition map for POS. Let 0 € ¥ and (z,y) € X X Y = Z; then we define:

def | (a(o,2),p(o,y)) if a(o,z)! and §(o,y)!
V(o (2,9)) = { undefined otherwise

20 = (w0, yo) denotes the initial state of the coupled SM POS; and 7,, = X,, X Y,, denotes the
marked states of the coupled SM. The synchronous composition of two SM’s can be defined in a
more general setting, in which the event sets of the two SM’s are different [6, 5].

Example 2.1 Consider the plant P shown in Figure 1 (“()” denotes a state; “—” entering a state
denotes the initial state; a directed arc, labeled with an event, between two states denotes a state
transition; and “@)” denotes a marked state). The event set ¥ of P equals the set {a,b,c,u}. Then
L(P)=(a+ b)yca*(b+ u)a* and L,,(P) = (a+ b)*ca*(b+ u)a*.

Let the state machine S shown in Figure 1 be a supervisor for the plant P. Then L(S5) =
(ca + (ab)*acu)a* and L,,(5) = (ca + (ab)*acu)a*. We note that L(S) C L(P) and L, (5) C
L., (P). It is easily shown that the state machine POS has the same structure as that of S so that
L(POS) = L(S) and L, (POS) = L,,(9).

Lemma 2.2 [9, 11] Let L(POS) be the language generated and L,,(P0OS) the language marked
by POS; then L(POS) = L(P)NL(S) and L, (POS) = L,,(P) N Ly (95).

The event set ¥ is partitioned into ¥, U (X — X,,), the sets of uncontrollable and controllable
events. It is shown in [16, 9, 11] that given any plant P, there exists a supervisor which
when run synchronously with the plant can restrict its behavior to any language K if and only if
K is controllable.

Definition 2.3 K C Y* is said to be controllable with respect to P, if KX, N L(P) C K, where
K denotes the prefix closure [7] of K.

Thus K is controllable if and only if K is controllable. In case K is not controllable, a minimally
restrictive supervisor which restricts the plant’s behavior to the supremal controllable sublanguage
K1 C K can be constructed [16, 15]. A closed form expression for K and an optimal algorithm
for computing K assuming K to be closed is presented in [9, 1, 11].



If the plant behavior is incompletely observed, then a supervisor can be constructed to restrict
the plant’s behavior to the desired behavior K if and only if K is controllable and observable [13, 3].
Let M : ¥ — A U ¢ denote an observation map, called a mask, from X to the observation space
A Ue. Let M be extended to the space ¥* in the obvious manner.

Definition 2.4 K C ¥* is said to be observable with respect to P and M, if for s,t € L(P)N K
such that M(s) = M(t), the following hold:

1. 0 € ¥,s0 € L(P)N K,to € L(P) implies to € K, and
2. se K,te L, (P)implies t € K.

In case K is not observable, a minimally restrictive supervisor cannot be constructed, for a
supremal observable sublanguage of K does not exist [13, 3]. However, mazimal observable sub-
languages of K exist [2], and algorithms for constructing them are given in [2]. A stronger notion
of observability, called normality [13], is often considered for supervisory control under partial
observation.

Definition 2.5 K C X* is said to be normal with respect to P and M if M~ (M(K))NL(P) = K.

Normality of languages is preserved under union [13]. Hence, if K is not observable, a supervisor
which restricts the plant’s behavior to the supremal normal sublanguage of K can be constructed.
Algorithms and closed form expressions for computing the supremal normal sublanguage are given
in [9, 1, 11].

3 Formula for the Supremal w-Controllable Sublanguage

The synthesis of the supervisors for controlling the infinite or sequential behavior of DEDS’s
can also be easily studied in the above framework. We extend the above notations (following the
framework of Ramadge [14]) to describe the infinite behavior of a given plant, and present a closed
form expression for computing the supremal w-controllable sublanguage of a given w-language.

Let X% denote the set of all infinite strings of events belonging to Y. An infinite string or
w-language is a sublanguage of ¥*. Let ¢” € ¥* denote the prefix of size n of the infinite string
e € X¥. Given two infinite strings e1,e; € X%, the distance d(eq, e3) between the two infinite strings

is defined to be [4]:

def | 1/(n+1) if e} = e and it £ 2 (n e N)
d(@l,@z) - 0 if €1 = €3

Given a language L C X7, its limit, denoted as L, is the w-language defined as:
1 ¥ {e € ¥¥ | e € [ for infinitely many n € A}

We will use t < s to denote that ¢ € X* is a prefix of s € ¥*U X%, If ¢ is a proper prefix of s, then
it is written as t < s. Given an infinite sequence of strings s1 < s2 < ... < 58, < ... with s, € ¥*
for each n, there exists a unique infinite string e € ¥“ such that s, < e for each n. In this case, the
infinite string e is also written as e = lim,_ ., $,,. Given an w-language £ C X% its prefiz, denoted
by prL, is the language:

prﬁd:ef{SEE*|Ele€£s.t. s<e}



Note that prL = prL, where £ denotes the topological closure! of £ in the metric space (X¢, d) [4].
It is readily verified that for a w-language £ C X%, (pr£)> = L. Thus (pr£)> = £ if and only if £
is topologically closed, i.e. £ = £. We will show that for any language L C ¥*, pr(L*°) = L if and
only if L is complete (see Definition 3.3) and prefix closed, which, as we will see, is a useful result.

With these preliminary notions we can study the problem of controlling the infinite behavior of

a given DEDS. Let P def (X, %, a,20, X,,) denote the plant. Then as defined above, L, (P), L(P) C

Y¥* denote its (finite string) marked, generated languages respectively. The w-language generated

by P, denoted by L(P), is defined to be:

£(P) % {e € L(P)™ | 3 infinitely many n € N s.t. a(e”,2,) € Xpn} = (Lp(P))>
Note that the w-language L£(P) generated by P as defined above is also the w-language generated

by P viewed as a Biichi automaton [4]. P is said to nonblocking if prC(P) = L(P). We have

shown in [8] that P is nonblocking if and only if it is live (see Definition 3.4 and Lemma 4.8). Let

g e (Y, %, 5,90, Yom) denote the supervisor that controls P by operating in synchrony with it as

described above. Then the w-language generated by the closed loop system POS is defined to be:

£(Pos) ¥ (L(POS))™= n L(P)

Example 3.1 (continued) Consider the plant P and the supervisor S described in Example 2.1.
Then L(P) = (a + b)*ca™(b + w)a” and L(POS) = (L(PTS)* N L(P) = (L(S)>* N L(P) =
(ab)¥ 4 (ca + (ab)ac(u + ba))a” N (a + b)*ca*(b+ u)a” = (ca+ (ab)*ac(u + ba))a®.

Let £ C L(P) be the desired w-language. It is shown in [14] that a complete, nonblocking
supervisor exists for achieving the desired behavior if and only if it is w-controllable with respect
to P.

Definition 3.2 X C X“ is said to be w-controllable with respect to a plant P if prk is controllable
with respect to P, and K is topologically closed with respect to L£(P).

It is further shown in [14] that if K is not w-controllable, but is topologically closed with respect
to L(P), then the supremal w-controllable sublanguage, denoted by K1, of K exists?. Thus the
construction of a minimally restrictive supervisor is possible.

In the next theorem we present a closed form expression for the supremal w-controllable sub-
language. This is one of the main results presented in this paper. First we define the notion of
complete languages which will be useful in studying the control of infinite behaviors.

Definition 3.3 Consider a language L C ¥*. A string s € L is said to have an exztension in L if
there exists ¢t € L such that s < . L is said to be complete if for every string s € L, there exists an
extension in L.

The notion of complete languages is closely related to the notion of live SM’s that we define
next:

Definition 3.4 Consider a SM, V def (Q,%,06,q0,Qm). A state ¢ € Q is said to be live if there

exists a ¢ € ¥ such that 6(o,¢)!. V is said to be live if all the states in Q) are live.

!The notation £ is used to denote topological closure whenever £ C £*, and the notation I is used to denote the
prefix closure whenever I C X%,

2The notation KT is used to denote the supremal w-controllable sublanguage of K C X, and the notation K7 is
used to denote the supremal controllable sublanguage of K C X*.



A state that is not live will be referred to as a dead state.

Lemma 3.5 [8] A language I C ¥* is complete if and only if any deterministic trim SM recognizing
it is live.

Next we study some of the properties of a complete language.

Lemma 3.6 [8] K C ¥* is complete if and only if K is complete.

Example 3.7 (continued) Consider the SM’s P and S described in Example 2.1. Since both P
and S are live (refer to Figure 1), it follows from Lemma 3.5 that both L,,(P) and L,,(S5) are

complete languages. Also, since L(P) = L,,(P) and L(S) = L, (9), it follows from Lemma 3.6
that L(P) and L(5) are complete languages as well.

Proposition 3.8 Consider k' C ¥*. Then pr(K*°) = K if and only if K is prefix closed and
complete.

Proof: Assume that K is prefix closed and complete. We first show that pr(K*) C K. Pick
s € pr(K°); then there exists e € K such that s < e. Since e € K™, there exists an infinite
sequence of strings s; < $9 < ... < Sp..., S, € K for each n, such that lim,,_,. s, = e. Pick a
string s,, from the above infinite sequence of strings such that s < s,,. Since s, € K, and K is
prefix closed, s € K.

Next we show that K C pr(K°°). Pick s € K; then since K is complete, there exists an

infinite sequence of strings 1 < t3 < ... < t,...,such that t, € K for each n, and s < #;. Let

e M lim, t,; then e € K°°. Since s < e, s € pr(K).

Next assume that pr(K°) = K. Since pr(K ) is prefix closed by definition, it follows that
K is prefix closed. It remains to show that K is complete. Pick s € K; then s € pr(K), i.e.
there exists e € K such that s < e. Since e € K, there exist infinitely many n € N such that
€™ € K. Then there exists m € A such that s < e™. Since ™ € K and s < €™, we obtain that K
is complete. a

Lemma 3.9 [8] The set of complete languages is closed under union.

Corollary 3.10 [8] Consider K C ¥* and a plant P. Then the supremal (closed,) complete and
controllable sublanguage of K with respect to P exists, and is unique.

The notation Kﬁ will be used to denote the supremal complete and controllable sublanguage,
and the notation KM will be used to denote the supremal complete, closed and controllable sublan-
guage of K C ™.

Corollary 3.11 Assume that K C ¥* is closed, then KT = K= KT,

Proof: Since KT C K and K is prefix closed, K" C K. Also, KT is complete and controllable
(follows from Lemma 3.6 and the definition of controllability). Since K™ is the supremal complete
and controllable sublanguage of K, it follows that KT = KT Thus K" is closed. Since K™ is the
supremal complete, closed and controllable sublanguage of K, it follows that KT = KT, O

With the above remarks on complete languages and some of their algebraic properties, we can
present a closed form expression for the supremal w-controllable sublanguage of a given w-language.

Lemma 3.12 If K C L(P) is topologically closed, then it is topologically closed with respect to
L(P).



Proof: We have KN L(P) = KN L(P) = K, where the first equality follows from the fact that K
is closed, and the last equality follows from the fact that K C L(P). a
Thus it follows from Lemma 3.12 that if K C £(P) is topologically closed, then KT exists.

Theorem 3.13 Let K C £(P) be topologically closed. Then KT = ((prlC)ﬁ)oo.

Note that in Theorem 3.13, ((prlC)ﬁ)oo = ((prK)M (follows from Corollary 3.11, for prk is a
closed language).

Remark 3.14 We have obtained a closed form expression for K1 in a more general setting, where
we do not assume K to be topologically closed. We have proved that if X can be written as the
limit of a complete language, i.e. if there exists a complete K C ¥* such that K = K°°, then
K1 = ((pr(K)M. This result is reported in [8]. However, assuming that K is topologically closed
results in a much simpler proof.

We first prove some lemmas before proving Theorem 3.13.

Lemma 3.15 Let H & ((prlC)ﬁ)oo. Then the following hold:

. HCK
2. prH = (jm‘lC)ﬁ
3. 'H is topologically closed.

Proof: 1. Since (prlC)ﬁ C prk, we have H = ((pTIC)ﬁ)OO C (prK)> = K = K, where the last
equality follows from the fact that K is closed.

2. Follows from Proposition 3.8, for (prlC)ﬁ is by definition closed and complete.

3. We have H = ((pTIC)ﬁ)OO = (prH)> = 'H, where the second equality follows from part 2 above.
Thus H = H. O

Corollary 3.16 H is topologically closed with respect to L(P).

Proof: From part 1 of Lemma 3.15, we have H C K. Hence H C L(P). Since H is also closed
(part 3 of Lemma 3.15), it follows from Lemma 3.12 that H is closed with respect to L(P). o

Lemma 3.17 pr(/CT) = (PTIC)ﬁ

Proof: Since K C K, pr(K1) C prK. Thus pr(K') is a complete, closed and controllable sublan-
guage of prk. Hence pr(KT) C (prlC)ﬁ, for (prlC)ﬁ is the supremal complete, closed and controllable
sublanguage of prk.

It remains to show that (prlC)ﬁ C pr(K"). Using part 2 of Lemma 3.15 we obtain prH =
(prlC)ﬁ, showing that pr’H is controllable. Since H is also topologically closed with respect to L(P)
(Corollary 3.16), H is an w-controllable sublanguage of K. Hence H C KT (since K is the supremal
one), showing that prH C pr(K1), i. e. (prlC)ﬁ C pr(Kh). o

Proof (of Theorem 3.13): We have K = KTNL(P) = (pr(K1)®*NL(P) = ((prK)N>NL(P) =
H N L(P) = H, where the first equality follows from the fact that K is topologically closed with
respect to L(P) (KT is w-controllable), the third equality follows from Lemma 3.17, and the last
equality follows from the fact that H C K C L(P). O



Corollary 3.18 If K C L(P) is closed, then so is K.
Proof: Follows from the fact that K1 = H, and H is closed. a

Remark 3.19 Let m be a property of languages that is preserved under union. An w-language
K C L(P) is said to be w-7 if it is topologically closed with respect to £(P) and prKk satisfies
7. Then following the proof of Proposition 3.3 [14], it is easily shown that the supremal w-7
sublanguage of K exists and is unique. Letting K™ denote the supremal w-7 sublanguage of K
and assuming that K is closed, it can be proved, in view of Theorem 3.13, that K™ is same as the
w-language obtained by taking the limit of the supremal complete and closed sublanguage of prk
satisfying the property . The interested reader is referred to [8] for a more general result, where
K is not assumed to be topologically closed.

4 Computation of KT

In the previous section we showed that the supremal complete, closed and controllable sublan-
guage, KT of a given language K C ¥* with respect to a plant P exists and is unique (Corollary
3.10). In this section we present an algorithm for computing K™ assuming that K is closed, in

which case KT is the same as K (Corollary 3.11). This algorithm can then be used for computing

the supremal w- controllable sublanguages by using the formula in Theorem 3.13.

Consider P % (X, %, a,20,X,,) and let S def (Y, %, 5,90, Yrm) be such that L(S) = K (K is

assumed to be closed). Since K represents the desired plant behavior, we can assume without

loss of generality that X' C L(P). Construct POS def (Z,%,7, 20, Zpn,); then from Lemma 2.2,

L(POS) = K. Since K is closed, K = K. Thus K is controllable with respect to P if and only
if K¥, N L(P) C K. We define s € K to be an uncontrollable string if there exists o, € Y,
such that so, € L(P)— K. Let z = (z,,y,) € X XY be the state reached in POS by accepting
an uncontrollable string s € K. Then the state reached in P by accepting s is z,. Letting
Yu(P)(z,), X, (POS)(2) denote the sets of uncontrollable events defined at states z ., z respectively,
i.e.

YulP)(2z) = {on € Nula(ow, 22)'), Lu(POS)(2) = {ou € Buly(aw, 2)1},

it follows from the definition of uncontrollable string that ¥,(P)(z,) € X, (POS)(z). A string
s € K is said to be a bad string if either it is an uncontrollable string, or it has no extension in K.
Letting z = (2,,y.) € X XY denote the state reached in POS by accepting a bad string s € K, it
follows from the definition of bad strings that either ¥, (P)(z,) € X, (POS)(2) or z is a dead state
(Lemma 3.5).

Given a deterministic SM V & (Q,%,0,q0,Qm), there is a natural equivalence relation Ry [7, 2]
induced by V on ¥*, which is defined by s 2 t(Ry) < é(s,q0) = 6(1,q0)>, where s,t € ¥*. We use
[s](Rv) to denote the equivalence class under the equivalence relation Ry, containing the string s.

Lemma 4.1 s € K is a bad string if and only if all the strings [s](Rpog) are bad.

Proof: Assume that all the strings in [s](Rpos) are bad; then clearly s is a bad string, for
s € [8](RPD5).

Assume next that s € K is a bad string. Let z € Z be the state reached by accepting s in POS',
i.e.z=1(s,2). Let 2 = (2,,y.) € X XY. Since s is a bad string, either ¥, (P)(z,) € X, (POS)(2)
or z is a dead state. Thus if ¢ € [s](Rpos), then the state reached in POS by accepting the string

®This is meant to include the condition that &(s, go) is undefined < 6(¢, go) is undefined.



t is again z. Thus either ¢ is an uncontrollable string (if s is uncontrollable) or ¢ has no extension
in K (if s has none). Hence ¢ is a bad string. ]

The implication of Lemma 4.1 is that if a string s € K is bad, then the state 2 € Z reached by
accepting s must be removed from POS in order to construct the generator for K. Let Z, C Z
be the set of all the states that need to removed from POYS. Then an algorithm for computing Z,
is given below:

Algorithm 4.2 We need to compute Z;. Assume that P is a FSM and the closed language K is
regular, so that POS is a FSM. This is needed for the algorithm to terminate in a finite number of
iterations.

1. Initiation step:
Set n =0, Z7! =0, and
7% = {2 € 7| either ¥,(P)(z,) € X, (POS)(z) or z is a dead state}

2. Iteration step:

(a) Let Z, C Z be the set of states from which Z" — Z"~! can be reached in a single
transition, i.e.

Zn = {Z € Z|E|O' € Y s.t. 7(072) c 7" — Zn_l}

The set Z, is constructed by considering the SM obtained by reversing all the transitions
in POS.

(b) Consider z € Z,. If there exists an uncontrollable transition from z to Z” or if all the
transitions from z lead to Z”, then Z"t! = Z" U {z}. Repeat this for every z € Z,,, i. e.

7" = 7" U {2 € Z,| either 3o, € By, s.t. y(0y,2) € Z"; or Vo € B,7(0,2) € Z"}

3. Termination step: If Z"t! = Z", then stop; else set n = n + 1 and go to step 2.

Theorem 4.3 Let ng € AN be the number of the last iteration step in Algorithm 4.2. Then
Iy = 7™,

Proof: We use induction to prove Theorem 4.3. We show that at every iteration step we remove
only those states that are reached by accepting only the bad strings, and eventually we remove all
such states. In other words, Z™ C Z; for each iteration n < ng, and Z, C Z™0,

Let n > 0 denote the number of iteration step. Then the above statement holds true for n = 0
(by definition, the set Z° contains states reached by only the bad strings). Let the statement be
true for the nth iteration, i.e. assume that Z" C Z;. Consider z € Zn such that vy(oy,2) € Z" for
some o, € ¥,; then clearly z € Z"+1, for all the strings that lead to state z are uncontrollable and
hence bad. If z € Z, is such that v(0,2) € Z" for all 0 € %, then again z € Z"T!, for all the strings
that lead to state z have no extension in the reduced SM obtained at the end of the nth iteration,
and hence are bad. Since these are the only states added to Z" at the nth iteration (for computing
Znthy, Zntt C 7.

As ng is the number of the last iteration step, Z™ = Z"0t1 Hence none of the states in the set
74 — Z" are reached by the bad strings, showing that the strings that reach the states in Z — Z"°

belong to the generator of K. Thus Z, = Z™. a

Corollary 4.4 Let (POS) |(Z_Zb)d:ef (Z = Z4), 5,9 |ex(7=24) 20, (Z = Zp) N Zy). Then KT =

L((POS) |(z-2,))-



Proof: By definition, Z, C Z is the set of all the states that need to be removed from POS in
order to construct the generator for K™, hence the result. a
In view of Corollary 4.4, the generator for K™ can thus be constructed using Algorithm 4.2.

Theorem 4.5 The computational complexity of the Algorithm 4.2 is of order O(mn), where mn
is the number of states in POS (the number of states in SM’s P, S are m, n respectively).

Proof: Assume that at the end of nth iteration the number of transitions leading into the set
Zmtl — 77 from Z — 7"+ is F,. Then step 2 of the algorithm can be computed in O(F,) time.
This follows, since (a) the states in the set Z,, can be computed by considering F,, transitions, and
(b) there are at most £, states in Z,, so the states to be added to Z"*+! (for computing Z"*2) can
be determined in O(F,,) time.

Since the sets Z"T1 — Z" for each n are all disjoint, the transitions leading into them from Z —
7"+ are also all disjoint. Hence the states in the set Z, can be computed in order O(3,, F, < E),
where E denotes the number of transitions in POS. Since the SM’s are deterministic, £ < |X|-(mn);
hence the theorem follows. O

Remark 4.6 The computational complexity of Algorithm 4.2 for computing KT is of the same
order as that of the optimal algorithm that computes KT presented in [9, 11].

4.1 Computation of X!

The computation of K1 using the formula of Theorem 3.13 involves computations of the oper-
ators pr(-), (-)M and (-)>°. We discussed above computation of the operator (-)T. Next we discuss
computations of the other two operators.

Lemma 4.7 [4, Proposition 1.1, Chapter 14] Consider a trim SM V def (Q,%,6,q0,Qm). Then
(Lm (V)™ = L(V).

Thus if V' is live so that L., (V) is complete (Lemma 3.5), £(V') can be written as the limit of
a complete language.

Lemma 4.8 [8] Consider a deterministic trim SM V' def (Q,%,6,q0,Qm). Then V is nonblocking,

ie. prl(V) = L(V), if and only if it is live.
Corollary 4.9 [8] Let V be as in Lemma 4.8. Then (L(V))> = L(V).

Remark 4.10 The implication of Lemma 4.7 is that given a trim SM that recognizes a language
L C Y%, L™ is the w-language generated by the same SM, and the implication of Lemma 4.8 is that
given a live trim SM that generates the w-language £, prL is the finite language generated by the
same SM. Thus the supremal w-language K of a given topologically closed w-language K C X<,
generated by a deterministic FSM (i.e. K € DRAT [4]) with respect to plant P can easily be
computed in view of Theorem 3.13, Algorithm 4.2, Lemma 4.7 and Lemma 4.8. The complexity of
the computation is of order O(mn), where m,n are the number of states in the SM’s representing
P, generator of prk respectively (Theorem 4.5).

Example 4.11 (continued) Consider the plant P and the supervisor S shown in Figure 1. Then
as mentioned in Example 2.1, POS has the same structure as that of the machine S. Let the
uncontrollable event set ¥, C ¥ be the singleton containing the event u. We make an additional
assumption in this example that all the states in P as well as in S are marked. Hence L, (P) =
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L(P) = (a+b)ca*(b+ u)a*, L, (5) = L(S) = (ca+ (ab)*ac(u+ ba))a*, L(P) = (a+ b)* + (a +
by ca® + (a +b)*ca*(u+ b)a¥, and L(5) = (ab)* + (ca+ (ab)*ac(u+ ba))a®”. We note that L(P) =
(L(P))* and L(S) = (L(5))*, which also follows from Lemma 4.7.

Let the desired sequential behavior K C L(P) be given by K = L£(5). Since S is a live trim
machine, it follows from Lemma 4.8 that prK = L(S). Thus K = (prK)> = (L(9))>* = L(S) = K,
showing that K is topologically closed. Hence it follows from Lemma 3.12 that K is topologically
closed with respect to L(P). Since the string ¢ € prk and the string cu € L(P) — prk, it follows
that prk is not controllable with respect to P; thus K is not w-controllable with respect to P. Hence
we cannot construct a supervisor so that the closed loop sequential behavior is K [14]. However,
since K is topologically closed, KT, the supremal w-controllable sublanguage of K, exists (Lemma
3.12 and Proposition 3.2 in [14]), so that the construction of the minimally restrictive supervisor
is possible. Thus the existence of the minimally restrictive supervisor is guaranteed; we use the
closed form expression in Theorem 3.13 to compute K.

First we need to compute (prK)T. From the above discussions, prK = L(S). We employ Algo-

rithm 4.2 for computing (prlC)ﬂ. Since the machine POYS is the same as the machine S, no further
construction is need for obtaining the machine POS. Also, since the string ¢ € prk = L(S)
is the only bad string in prK, Z° = {[¢](Rpos)} = {[c](Rs)}, where Z° is defined in Algo-
rithm 4.2. It then follows from Figure 1 that Zy = {[€](Rs),[ac](Rs)}, where Zy is the set
of states in POS (=S), from which Z° can be reached in a single transition. Since not all
the transitions from the states in the set Zo lead to 7Y, and since no uncontrollable transi-
tion from the states in the set Zy lead to Z°, it follows that Z! = Z° = Z,, where Z' and
7y are defined in Algorithm 4.2. Hence the generator for (prK)T is given by the SM shown
in Figure 2, which is obtained by removing the state in the set Z, from S. Thus (prIC)TT =
(ab)*acua*. Tt then follows from Lemma 4.7 that ((prK)M)*° is the w-language generated by the
SM in Figure 2 and is given by ((prK)M)>* = (ab)¥ + (ab)*acua”. Hence from Theorem 3.13,
KT = ((prK)M® = (ab)* + (ab)*acua®.

If b € ¥ is also given to be an uncontrollable event, then it is clear from Figure 1 that there
exists an uncontrollable transition, namely b, from the state [ac](Rs) € Zo leading to Z°. Hence
7zt = 79U {[ac)(Rs)} = {[c)(Rs),[ac)(Rs)}. Tt can be argued as above to conclude that in this
case, Z* = 7' = 7). Hence, in this case, the generator for (prK)M is given by the SM in Figure 1
which is obtained by removing the states in the set Z2 from S. It then follows from Theorem 3.13
that in this case, KT = (ab)“.

5 Partially Observed Sequential Behavior

In our previous discussions we have assumed that the supervisor has complete information about
the plant behavior, i.e. the supervisor observes all the events that occur in the plant perfectly.
However, in many situations the supervisor has only partial information about the plant behavior
(refer to the example in [3, p. 259]). In this section we consider the supervisory synthesis problem
for a plant whose sequential behavior is partially observed.

The definition of the mask M can be easily extended to the space ¥“. First we prove the
following result:

Lemma 5.1 Let {s,}.ens {tm}men be any two sequences of strings such that s, € ¥, s, < s,41
for each n, t,, € ¥*,t,, < t;41 for each m, and lim, . s, = lim,;, 0o tn. Then lim, o, M(t,) =
limy,— 0o M (t).

11



Proof: Since lim,,_ . 8, = lim,; s tn, we have for each m there exist n,,,n,,4+1 € N such that
Sy < by < $p,,, - Since M distributes over concatenation, we have M(s,,,) < M(ty) < M(sp,,,,)
for each m. Similarly, it can be shown that for each n there exist m,,m,41 € N such that
M(t,, ) < M(s,) < M(tp,,,). Hence lim, ..o M(s,) = lim,, oo M(1y,). a
Using the result of Lemma 5.1, we can extend the definition of M to the space X% as follows:

Definition 5.2 Consider a infinite string e € X%; let {s,},ca be a sequence of strings such

that s, € ¥*,s, < su41 for each n and lim, .~ s, = e. Then M(e) is defined to be, M(e) def

lim,,— o M(55,).

Thus if £(P) denotes the infinite string behavior of the plant P, then the behavior observed
under the mask M is given by M(L(P)). Let £ C X denote the desired closed loop sequential
behavior. We introduce the notion of w-observability of w-languages and state a necessary and
sufficient condition for the existence of a supervisor for achieving the desired closed loop sequential
behavior.

Definition 5.3 K C X is said to be w-observable with respect to P and M if K is topologically
closed with respect to L(P) and prK is observable with respect to P and M.

Assume that all the events are controllable.

Theorem 5.4 Let £ C L(P) be nonempty. Then there exists a nonblocking supervisor S such
that £(POS) = K if and only if K is w-observable with respect to P and M.

Proof: Assume that K is w-observable. Since prK is observable and nonempty with respect
to P and M, there exists a supervisor S such that L(POS) = prK [13, 3]. Hence £L(POS) =
(L(POS)>*NL(P) = (prK)>®° N L(P) = KN L(P) = K, where the last equality follows from the
fact the K is topologically closed with respect to L(P). Also pr(£(POS)) = prK = L(POS); thus
S is nonblocking.

Next assume that there exists a nonblocking supervisor S such that £(POS) = K. Then
L(POS) is observable [13, 3]], and pr(L(POS)) = L(POS) (since S is nonblocking). Thus prk =
pr(£(POS)) = L(POS), showing that prk is observable. Also K N L(P) = (prK)> N L(P) =
(L(POS))>*NL(P) = L(POS) = K; hence, K is closed with respect to L(P). 0

Remark 5.5 Since the observability of languages is not preserved under union, the supremal w-
observable sublanguage of a given w-language does not exist. Also, since the prefix of w-languages
is not preserved under intersection, the infimal w-observable superlanguage of a given w-language
does not exist either. We introduce the notion of w-normality that is stronger notion than that of
w-observability, and is preserved under union.

Definition 5.6 An w-language K C £(P) is said to be w-normal with respect to the plant P and
the mask M if K is topologically closed with respect to £L(P), and prK is normal with respect to P
and M, i. e.

1. KNL(P)=K,and
2. M=*M(prK)n L(P) = prK

Remark 5.7 Since normality of languages is preserved under union, it follows from Remark 3.19
that the supremal w-normal sublanguage of a given w-language exists. Thus if the desired behavior
is not w-observable, a supervisor can be constructed so that the closed loop system generates the
supremal w-normal sublanguage of the desired behavior. Letting K° denote the supremal w-normal
sublanguage of a given topologically closed w-language K C 3%, it follows from Remark 3.19 that
it is given by the limit of the supremal complete, closed and normal sublanguage of prk.
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6 Conclusion

In this paper, we have used the notion of synchronous composition for describing the control of
sequential behavior of DEDS’s.

We have introduced the notion of complete languages, and shown that these languages are closely
related to w-languages. The supremal complete, closed and controllable sublanguage of a language
exists, and an algorithm for constructing it has been presented. A closed form expression for the
supremal w-controllable sublanguage of a given w-language has been derived using the supremal
complete, closed and controllable sublanguage. This result indicates that certain operations on
w-languages can alternatively be performed by first performing certain other similar operations on
their prefixes (which are finite string languages) and then taking the limits (to obtain the desired
w-language). Thus a computational problem on the space of infinite languages can be reduced
to another similar computational problem on the space of finite languages, for the operations of
computing the prefix of an w-langauge and the limit of a (finite string) language can be easily
performed.

The problem of supervisory synthesis is then extended to deal with controlling the sequential
behavior under partial observation. We introduce the notion of w-observability and show that
it is a necessary and sufficient condition for the existence of the supervisor. w-observability is
not preserved under union or intersection. Hence a stronger notion called w-normality that is
algebraically better behaved has been presented. We prove that the supremal w-normal sublanguage
exists and is unique, and describe a method for computing it.
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Figure 1: Example to illustrate synchronous composition

a
a a
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Generator for (prlC)ﬁ (X, =A{u}) Generator for (prlC)ﬁ (Xy = {b,u})

Figure 2: Example to illustrate computation of K1
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