
Predicates and Predicate Transformers forSupervisory Control of Discrete Event DynamicalSystems 1Ratnesh KumarDepartment of Electrical EngineeringUniversity of KentuckyLexington, KY 40506-0046Vijay GargDepartment of Electrical and Computer EngineeringUniversity of Texas at AustinAustin, TX 78712-1084Steven I. MarcusDepartment of EE and System Research CenterUniversity of MarylandCollege Park, MD 20742February 2, 19951This research was supported in part by the Center for Robotics and Manufacturing, Universityof Kentucky, in part by the National Science Foundation under Grant NSFD-CDR-8803012 andNSF-CCR-9110605, in part by the Air Force O�ce of Scienti�c Research (AFOSR) under ContractF49620-92-J-0045, in part by a University Research Institute Grant and in part by a Bureau ofEngineering Research Grant.



AbstractMost discrete event system models are based on de�ning the alphabet set or the set ofevents as a fundamental concept. In this paper, we take an alternative view of treating thestate space as the fundamental concept. We approach the problem of controlling discreteevent systems by using predicates and predicate transformers. Predicates have the advantagethat they can concisely characterize an in�nite state space. The notion of controllability ofa predicate is de�ned, and the supervisory predicate control problem introduced in thispaper is solved. A closed form expression for the weakest controllable predicate is obtained.The problem of controlling discrete event systems under incomplete state observation isalso considered and observability of predicates is de�ned. Techniques for �nding extremalsolutions of boolean equations is used to derive minimally restrictive supervisors.



1 IntroductionMany discrete event system models [24, 23, 25, 9, 11, 12] are based on de�ning thealphabet set or the set of events as a fundamental concept. The language of a deterministicsystem characterizes its behavior, and two systems are considered equivalent if they havethe same alphabet and language [9]. In this paper, we take an alternative view of treatingthe state space as the fundamental concept. Problems treated in [22, 19, 3, 1, 18, 14, 7] arealso formalized with a similar point of view.We approach the problem of controlling the behavior of a discrete event system describedin terms of its state trajectories by using predicates and predicate transformers. Predicateshave the advantage that they can concisely characterize an in�nite state space. Petri netbased models have also been used for describing in�nite state discrete event dynamicalsystems [26, 17]. The notions of two types of predicate transformers, namely strongest post-condition (sp) and weakest liberal precondition (wlp) [5, 6, 8] are very useful in characterizingthe dynamics of discrete event dynamical systems. In this paper, we study the system dy-namics in the framework of these predicate transformers. We use the notion of duality ofpredicate transformers and show that sp and wlp are duals of each other. Thus one of thepredicate transformers - either sp or wlp - can be treated as fundamental and the other as aderived notion. In this paper we treat sp to be the fundamental predicate transformer, as itdescribes the forward evolution of the system behavior, and develop the supervisory controltheory using it.We describe a few basic properties - strictness, monotonicity, disjunctivity, conjunctivityetc. - of predicate transformers. sp is a strict, monotone and disjunctive predicate trans-former, while its dual wlp is a strict, monotone and conjunctive. One or more of theseproperties of sp and wlp are used to obtain all the results in this paper. It is known [6] thata predicate equation in the variable predicate Q of the type Q : f(Q) � g(Q) has uniqueextremal solutions, provided the predicate transformers f; g satisfy certain basic properties.We use the extremal solutions of such predicate equations to demonstrate the existence anduniqueness of minimally restrictive [23, 2] supervisors.We introduce the supervisory predicate control problem as the problem of synthesizinga supervisor for a given system so that the state trajectories of the system remain con�nedto a set of \legal" states, and also visit all the states in the set of legal states. Thus the setof legal predicate corresponds to the weakest predicate that remains invariant under control.A special case of this problem where the latter constraint is relaxed was considered in [22].The notion of controllability is de�ned and it is shown that it serves as a necessary andsu�cient condition for the existence of a supervisor that solves the supervisory predicatecontrol problem. A di�erent de�nition of controllability is presented in [19], which can beshown to be equivalent to our de�nition. Our de�nition of controllability is purely in termsof the predicate transformer sp, which results in a more compact de�nition, simplicity of theproofs (as demonstrated by the proof of Theorem 4.5) as well as the synthesis techniques ofthe supervisors.In this paper, we also address the problem of synthesizing supervisors for the case whenthe required predicate is not controllable. This problem is quite important and is not ad-dressed in [19, 22]. We show that if the given \legal" predicate is not controllable, thenthe minimally restrictive supervisor can be constructed so that the state trajectories of the1



controlled system remain con�ned to and also visit all the states in the set of states wherethe weakest controllable legal predicate holds. We prove that the weakest controllable pred-icate stronger than the required predicate exists and present an algorithm for computing it.This algorithm is then used for constructing the minimally restrictive supervisor. Thus ourwork extends the earlier works on supervisory predicate control [22, 19]. In [22] a method ispresented for computing the weakest \invariant" predicate stronger than the legal predicate;which can also be computed as a special case using the method of computing the weakestcontrollable predicate presented in this paper.Next we consider the supervisory predicate control problem under partial state observa-tions. The behavior of the system, i.e. the state trajectories, are observed under a \mask"which maps the state space of the system to the \observation space", and is not necessarilyinjective. This problem is much harder, as the controller also consists of a state estimator,and based on its state estimates takes the appropriate control actions. This problem was�rst addressed in [19] and a solution was obtained under very restrictive assumptions on thedesired reachable predicate. This is because the observability condition obtained in [19] isbased only on the current observations and ignores all the past observations. We obtain theobservability condition based on the entire available information: control as well as obser-vation; present as well as past. Thus the notion of observability introduced in this paper isquite general. The notion of dynamical observers, which use the entire history for estimatingstates, is presented in [3, 21]. However, in [3] it is assumed that the transition events arecompletely known at all the transition steps, which is not the case in this paper. All that isknown is at any transition step one of the several events that are enabled by the supervisorwill occur and cause a system transition. In [21] the issue of synthesizing dynamical stateestimator for a partially observed system was addressed and no control was exercised. Inthis paper we address the issue of simultaneously estimating the state and controlling thesystem so that the set of reachable states equals the required legal set of states.The notion of observability of a predicate described in this paper also leads to a syn-thesis technique for the minimally restrictive supervisor. Unlike the supervisory control ofsystem behavior described in terms of event trajectories under partial observation where theminimally restrictive supervisor does not exist [20], we show in this paper that it is possibleto construct the minimally restrictive supervisor for the supervisory predicate control prob-lem under partial state observation, where the system behavior is described as the weakestinvariant predicate.The advantage of using predicates and predicate transformers to represent a DEDS isthat we can concisely characterize systems with a very large, possibly in�nite, number ofstates. This is illustrated by the Readers-Writers example considered in this paper, in whichcase the state space is in�nite. We provide a technique for synthesizing a supervisor so asto ensure mutual exclusion of readers and writers. Also, a technique is provided for the syn-thesis of the minimally restrictive supervisor for a modi�ed Readers-Writers problem, againwith in�nite state space. Thus we have successfully developed a technique for supervisorycontrol of in�nite state systems. The computational complexity of our approach dependson the number of variables and conditional assignment statements representing the systemrather than the actual number of states and transitions. Computationally more e�cient al-gorithms for supervisory control of in�nite state systems need to be developed based on thetheory presented in this paper. Some such techniques that involve mathematical induction2



as an analysis tool are reported in [7], and further research on this issue is currently underinvestigation.2 Notation and TerminologyThe discrete event dynamical system (DEDS) to be controlled - called the plant - ismodeled as a state machine (SM) [10] following the framework of [23]. Let the quadrupleG def= (X;�; �; x0) denote a SM representing a plant; whereX denotes the state set; � denotesthe �nite event or alphabet set; � : X��! X denotes the partial state transition function;and x0 2 X denotes the initial state.A supervisor or controller for the given DEDS is designed so that the behavior of theclosed loop system satis�es certain qualitative constraints described in terms of the state setof the plant. The event set is partitioned into � = �u [ (���u), the sets of uncontrollableand controllable events. A supervisor for the given plant G is characterized by a (static)control law S : X ! 2�. A control law is said to be static if the control action at each stepdepends only on the observation at that step (for a more detailed and formal de�nition referto [13, 16]). A dynamic control law will be considered in section 5, where the supervisorycontrol problem under partial observation is addressed.Thus if � 2 � is such that � 2 S(x) for some x 2 X, then � is said to be enabled by thesupervisor in state x. Since a supervisor can disallow only controllable events from occurring,we also have for each x 2 X, �u(x) � S(x), where �u(x) is the set of uncontrollableevents de�ned at state x. The controlled system is then described by the state machineGS def= (X;�; �S; x0), where for x 2 X and � 2 �, �S(x; �) = �(x; �) if � 2 S(x), andunde�ned otherwise.Remark 2.1 One way to implement a static control law as described above is to let thesubautomaton of G corresponding to the control law S run in synchrony with G, as describedin [13, 16].2.1 Predicates and Predicate TransformersNext we introduce a few de�nitions from the theory of predicate calculus [5, 6, 8] thatwe use in this paper to study and formulate the supervisory predicate control problem. LetP denote the collection of predicates de�ned on the state set X, i.e. if P 2 P, then it is aboolean valued map P : X ! f0; 1g. With every P 2 P, we associate a set XP � X onwhich P takes the value one, i.e. x 2 XP if and only if P (x) = 1. We say that the predicateP holds on x 2 X if P (x) = 1. Conversely, given a set X 0 � X, it can be associated witha predicate PX 0 2 P such that PX 0(x) = 1 if and only if x 2 X 0. Thus the collection ofpredicates P can be associated with the power set 2X using the association described above.In what follows next, we use the names predicates and subsets interchangeably. The symbolsP;Q;R etc. are used for denoting predicates.De�nition 2.2 Given P 2 P, its negation, denoted :P , is another predicate de�ned to be:for every x 2 X;:P (x) = 1, P (x) = 0. Given an indexing set �, let P� 2 P for each � 2 �.Then the conjunction V�2� P� is de�ned to be: for every x 2 X;V�2� P�(x) = 1 , 8� 23



�; P�(x) = 1; and the disjunction W�2� P� is de�ned to be: for every x 2 X;W�2� P�(x) =1, 9� 2 � s.t. P�(x) = 1.De�nition 2.3 The symbols true and false are used for denoting predicates that hold onall and none of the states respectively, i.e. true(x) = 1;8x 2 X and false(x) = 0;8x 2 X.Thus true = :false. Also, the predicate true can be associated with the entire state spaceX, and the predicate false can be associated with the empty set ;.Example 2.4 Let X = R2, i.e. the state space equals the real plane. Let x; y be statevariables taking values in R. Then the predicate (x � y) holds in those states in R2 wherethe value of the variable x is not greater than that of variable y. Notice that predicates canconcisely describe an in�nite state space.The quadruple (P;:;^;_) forms a boolean algebra which is isomorphic to the algebra ofsubsets of X under the operations of complementation, intersection and union. For P1; P2 2P, we say that P1 � P2 if and only if P1 ^P2 = P1, or P1_P2 = P2. P1 is said to be strongerthan P2, equivalently, P2 is said to be weaker than P1 if P1 � P2. Note that � induces apartial order on P, i.e. � is a re
exive, transitive and antisymmetric relation on P. Since �is antisymmetric, if P1; P2 2 P are such that P1 � P2 and P2 � P1, then P1 = P2, i.e. theyare the same predicate. It can be shown that the partial order (P;�) is also complete [9].Let F denote the collection of all predicate transformers, i.e. if f 2 F , then f : P ! P.We use the symbols f; g; h etc. to denote predicate transformers.De�nition 2.5 The negation :f for some f 2 F is de�ned to be (:f)(P ) = :(f(P )) foreach P 2 P. The conjunction and disjunction of an arbitrary set of predicate transformersare de�ned in an analogous way and are obtained by taking the conjunction and disjunc-tion, respectively, over the set of image predicates, i.e. given an arbitrary indexing set �,(V�2� f�)(P ) = V�2�(f�(P )), and (W�2� f�)(P ) = W�2�(f�(P )) for each P 2 P.De�nition 2.6 Consider G def= (X;�; �; x0). For each � 2 �, sp� : P ! P is de�ned to be:sp�(P ) def= Q, where XQ = fx 2 X j 9y 2 XP s.t. �(y; �) = xg. We use sp; spu to denoteW�2� sp�;W�2�u sp� respectively.Thus sp�(P ) is the predicate which holds on the set of states that are reached by thetransition � from a state where P holds.De�nition 2.7 For the system G, the predicate transformer wlp� 2 F for each � 2 � is:wlp�(P ) def= Q, where XQ = fx 2 X j either �(x; �) 2 XP or �(x; �) is unde�nedg. Thepredicate transformers wlp;wlpu are de�ned to be V�2� wlp�, V�2�u wlp� respectively.Thus wlp�(P ) is the predicate which holds in those states where either the transition �is not de�ned or a � transition from them leads to a state where P holds.Example 2.8 Let the state space be R2. We will use the pair (x; y) to denote an arbitraryelement of R2. Consider a program G that assigns (x; y) to (x+ y; x� y), i.e.G : (x; y) := (x+ y; x� y):4



Then given any set R � R2, it gets \transformed" to the set f(x0; y0) j (x0 = x+ y) ^ (y0 =x � y); (x; y) 2 Rg whenever G is executed. Let the predicate (xy � 10) be true uponexecution of G. Then the predicate (x2 � y2) � 10 must be true before execution of G. Inother words, wlp(x;y):=(x+y;x�y)((xy � 10)) = (x2 � y2 � 10).The predicate transformers sp and wlp as de�ned above are called strongest postconditionand the weakest liberal precondition [5, 6, 8]. We use the notation spS(wlpS) to denote thestrongest postcondition (weakest liberal precondition) operator induced by the transitionfunction �S of the controlled system GS , i.e. spS = W�2�(spS)� and wlpS = V�2�(wlpS)�.With the above introduction on predicates and predicate transformers it is clear that a DEDScan also be represented in terms of predicates and predicate transformers.De�nition 2.9 G def= (PX ; �; sp; I); where PX corresponds to the set of predicates de�nedon the state space X of G; � denotes the event set; sp 2 F is the predicate transformercorresponding to the state transition function of G; and I 2 PX corresponds to the initialstates (also called initial condition) of G.The behavior of a DEDS is essentially described by sp 2 F which is speci�ed using thestate transition function. It may also be speci�ed using a �nite set of conditional assignmentstatements of the type: x := F (x) if C(x) : �The above assignment statement, labeled by the event �, is said to be enabled if the thecondition speci�ed as the predicate C(x) holds, and if executed, value of variable x becomesF (x). Thus given any predicate P (x), sp�(P (x)) is the predicate reached after the executionof � and can be readily calculated to be [P (F�1(x)) ^ C(F�1(x))], where F�1(x) = fx0 jF (x0) = xg. Similarly, the predicate wlp�(P (x)) can be easily computed to be [[P (F (x)) ^C(x)] _ :C(x)].Consider for example a conditional assignment statement:x; y := x+ y; x� y if x > y : �Let P (x; y) = x+ y � 10. Then sp�(P (x; y)) = [fx+y2 + x�y2 � 10g ^ fx+y2 > x�y2 g] = [(x �10) ^ (y > 0)]; and wlp�(P (x; y)) = [f(x+ y) + (x� y) � 10g ^ fx > yg] _ [x � y] = [f(x �5) ^ (x > y)g _ fx � 5g].Note that the DEDS representation as described in De�nition 2.9 describes a wide rangeof DEDS's, such as system with an in�nite state space, a nondeterministic [10] system, or asystem that could initially be in a set of states where the predicate I holds. Henceforth weuse the representation of G introduced in De�nition 2.9 for describing a DEDS.Example 2.10 Consider the following program which corresponds to the Readers{Writersproblem written in a programming logic adapted from UNITY framework [4]. Informallystated, the Readers{Writers problem can be expressed as a DEDS which has a distributeddatabase, access to which is sought by an in�nite numbers of readers and writers.5



Program Rd Wrdeclare nr; nw : integerst rd; st wt; end rd; end wt : eventinitially nr; nw = 0,0assign nr := nr + 1 :st rdnr � 1 if (nr > 0) :end rdnw := nw + 1 :st wtnw � 1 if (nw > 0) :end wtend fRd WrgThe declare section contains the description of the program variables. The state variablesnr; nw are integer type and denote the number of readers, number of writers respectivelyaccessing the database. Both nr; nw are bounded below by zero. Thus the state spaceof the system is N 2 which is in�nite. The symbols st rd; st wt; end rd; end wt correspondto the events start-read, start-write, end-read, end-write respectively. The program startsexecuting with the system being in the initial state ((nr; nw) = (0; 0)), which is describedin the initial section of the program. The system evolves according to the execution of the\enabled" assignment statements of the assign section. An assignment statement is said tobe enabled whenever the condition under the \if" part of the assignment is satis�ed. Oneof the enabled assignment statements is nondeterministically picked for execution and uponexecution the state variables accordingly change their values. The entries in the last columnof the assign section are the event names for the corresponding assignment statements.The program Rd Wr describes a DEDS of the type: G def= (PX; �; sp; I); where PXdenotes the set of predicates corresponding to the subsets of the state set X = N 2; � =fst rd; st wt; end rd; end wtg; sp corresponds to the assignments of the assign section asaforementioned; and I = ((nr; nw) = (0; 0)).3 On Solving Predicate EquationsSo far we have de�ned the notions of predicates and predicate transformers. Next weconsider some of their properties and describe a few methods for solving some predicateequations that we use later to design supervisors for a given DEDS. Some of the resultspresented in this section can also be found in [6], however, we present their proofs heremainly to illustrate the proof style that we follow throughout the paper.De�nition 3.1 [6] Consider f 2 F . f is said to be strict if f(false) = false; monotoneif P � Q ) f(P ) � f(Q); disjunctive if f(W�2� P�) = W�2� f(P�); and conjunctive iff(V�2� P�) = V�2� f(P�) (� denotes an arbitrary indexing set, and we adopt the conven-tion that the disjunction as well as conjunction over the empty set is predicate false, i.e.W�2� P� = V�2� P� = false if � = ;).It is easily shown that sp�(W�2� P�) = W�2� sp�(P�), as fx 2 X j 9� 2 � : 9y 2XP� s.t. �(y; �) = xg = 9� 2 � : fx 2 X j 9y 2 XP� s.t. �(y; �) = xg. Thus sp isdisjunctive, and similarly it is easily veri�ed that wlp is conjunctive.Example 3.2 To illustrate that sp is disjunctive, consider the program of Example 2.8, andlet [x + y � 1] and [(x; y) = (0; 1)] be two predicates on the state space R2. Then under6



program G, sp([x+ y � 1]) = ([x � 1]), and sp([(x; y) = (0; 1)]) = [(x; y) = (1;�1)]. Since[x+ y � 1] _ [(x; y) = (0; 1)] = [x+ y � 1], sp([x+ y � 1] _ [(x; y) = (0; 1)]) = sp([x+ y �1]) = [x � 1]. Notice that [x � 1] _ [(x; y) = (1;�1)] = [x � 1] as expected, for sp isdisjunctive.wlp is conjunctive; to illustrate this consider two predicates xy � 10 and x = 2 on thestate space R2. Then xy � 10 ^ (x = 2) = y � 5. Consider the program G of Example2.8. Then under G, wlp([xy � 10]) = [x2 � y2 � 10], wlp([x = 2]) = [x + y = 2], andwlp([y � 5]) = [x� y � 5]. Note that [x2� y2 � 10] ^ [x+ y = 2] = [x� y � 5] as expected,for wlp is conjunctive.Lemma 3.3 [6] Consider f 2 F .1. f disjunctive implies that f is strict and monotone.2. f conjunctive implies that f is strict and monotone.Proof: We prove the �rst part of Lemma 3.3; the proof of the second part is obtained in asimilar manner. Let P;Q 2 P be arbitrary.1. f(W�2� P�) = W�2� f(P�) ;f is disjunctive2. f(W�2;P�) = W�2; f(P�) ;replace � by ; in 13. f(false) = false ;from 2 and using W�2� P� = false4. f is strict ;from 35. P � Q) P _Q = Q ;by de�nition of �6. P � Q) f(P _Q) = f(Q) ;apply f on 57. P � Q) f(P ) _ f(Q) = f(Q) ;f is disjunctive8. P � Q) f(P ) � f(Q) ;follows from 7 and de�nition of �9. f is monotone ;from 8This completes the proof. 2We de�ne the following operations on f 2 F (we have already de�ned negation, disjunc-tion and conjunction above):De�nition 3.4 The conjugate of f , written as f , is de�ned to be :f:, i.e. for P 2 P,f(P ) = :(f(:P )); the disjunctive closure of f , written as f?, is de�ned to be Wn�0 fn; andthe conjunctive closure of f , written as f?, is de�ned to be Vn�0 fn, where f0 is de�ned tobe the identity predicate transformer.Thus sp(P ) characterizes the predicate which holds in states that cannot be reached bya single transition from a state where :P holds, i.e. in states that either have no transitionsleading into them or which can be reached by a single transition only from those states whereP holds. sp?(P ) denotes the predicate which holds in those states that can be reached byany number of transitions from a state where P holds. Thus sp? is useful in characterizingthe set of reachable states.wlp(P ) characterizes the predicate which holds in states from which only a state where Pholds can be reached by a single transition. wlp?(P ) characterizes the the weakest predicatestronger than P that is closed under the executions of G, i.e. Xwlp?(P ) is the supremal �-invariant [13, 16] subset of XP . 7



Lemma 3.5 Let f 2 F be monotone; then1. f(P ) � P , f?(P ) � P2. P � f(P ), P � f?(P ).Proof: We only prove the �rst part of Lemma 3.5; the proof for the second part is derivedin an analogous way. Note that the reverse implication is obvious; we use induction on theexponent n in the de�nition of f? to prove the forward implication.1. f?(P ) � P ) f(P ) � P ;by de�nition of f?2. f0(P ) � P , true ;by de�nition of f03. f(P ) � P ) f0(P ) � P ;from 2 (base case for induction)4. f(P ) � P ) fn(P ) � P ;induction hypothesis5. f(P ) � P ) f(fn(P )) � f(P ) ;apply f on RHS of 4, and f monotone6. f(P ) � P ) fn+1(P ) � P ;simplifying 57. 8i � 0 : f(P ) � P ) f i(P ) � P ;from 3, 6 and induction8. f(P ) � P ) f?(P ) � P ;taking disjunct wrt i in 79. f(P ) � P , f?(P ) � P ;from 1 and 8This completes the proof. 2Since sp is disjunctive, it is also monotone (Lemma 3.3). Thus Lemma 3.5 applies to spas well; the implication of part 1 is that if the set of states reached by a single transitionis contained in the set of starting states, then so is the entire set of reachable states. Theimplication of the second part of Lemma 3.5 applied to wlp (wlp conjunctive implies wlpmonotone from Lemma 3.3) is that if the set of states from which only the states in a targetstate set can be reached in a single transition contains the set of target states, then so doesthe set of states from which only the target state set is reached in all numbers of transitions.Lemma 3.6 [6] Consider f 2 F .1. If f is disjunctive, then so is f?.2. If f is conjunctive, then so is f?.Proof: As above we omit the proof of the second part, which can be obtained analogouslyto the proof of part 1 that we present next. It su�ces to show that fn is disjunctive foreach n 2 N , for if fn is disjunctive for each n 2 N , then f?(W�2� P�) = Wn�0 fn(W�2� P�) =Wn�0W�2� fn(P�) = W�2�Wn�0 fn(P�) = W�2� f?(P�). Hence we prove disjunctivity of fnfor each n 2 N by induction on the exponent n in the de�nition of f?.1. f1 = f is disjunctive ;by assumption (base case for induction)2. fn+1 = f(fn) ;de�nition of exponent3. fn(W�2� P�) = W�2� fn(P�) ;induction hypothesis4. fn+1(W�2� P�) = f(W�2� fn(P�)) ;using 2 and 35. fn+1(W�2� P�) = W�2� fn+1(P�) ;from 4 and f is disjunctiveThus the proof is completed. 2Lemma 3.7 [6] If f is disjunctive (conjunctive), then f is conjunctive (disjunctive).8



Proof: The proof is simple and based on application of De Morgan's law. 2It thus follows from Lemma 3.6 that sp? is disjunctive, and from Lemma 3.7 that sp andsp? are conjunctive. Similarly, since wlp is conjunctive, so is wlp? (Lemma 3.6) and wlpand wlp? are disjunctive (Lemma 3.7). Next we quote a result regarding existence of theextremal solution of a predicate equation, the proof of which can be found in [6]. A notationof the type Q : f(Q) � h(Q), where f; h 2 F and Q 2 P, is used to denote a predicateequation in the variable predicate Q such that it stais�es f(Q) � h(Q).Theorem 3.8 [6] Consider the predicate equation Q : f(Q) � h(Q).1. If f is disjunctive and h is monotone, then the weakest solution of the above equationexists (and is unique).2. If f is monotone and h is conjunctive, then the strongest solution of the above equationexists (and is unique).An immediate consequence of Theorem 3.8 is the following corollary:Corollary 3.9 Let f be disjunctive and P 2 P be arbitrary; then1. the weakest solution of the equation Q : f(Q) � P exists.2. the weakest solution of the equation Q : f(Q) � Q exists.Proof: 1. Follows from the fact that P , treated as a constant predicate transformer, ismonotone.2. Follows from the fact that the identity function is monotone. 2Next we show that there exists a strong relationship between the set of disjunctive andthe set of conjunctive predicate transformers. A result of similar nature is obtained in [6, p.202, Theorem 1] regarding converses of predicates.Theorem 3.10 Consider f; g 2 F . Let f be disjunctive and g be conjunctive; then thefollowing are equivalent:C-1. g(P ) is the weakest solution of Q : f(Q) � P for all P 2 P.C-2. (f(g(P )) � P ) ^ (P � g(f(P ))) for all P 2 PC-3. f(P ) � Q, P � g(Q) for all P;Q 2 P.C-4. f(P ) is the strongest solution of Q : P � g(Q) for all P 2 P.Proof: Refer to Appendix A. 2The weakest solution of Q : f(Q) � P depends both on f and P . Let it be denoted byf?(P ). Note that f? 2 F . We de�ne it to be the dual of f . Formally,De�nition 3.11 Let f?(�) 2 F be the weakest solution of Q : f(Q) � (�), where f 2 F isdisjunctive. Then f? is called the dual of f .Lemma 3.12 If f is disjunctive, then its dual f? is conjunctive.9



Proof: Consider the equation Q : f(Q) � V�2� P�. Then by de�nition f?(V�2� P�) is theweakest solution of this equation. We show that V�2�(f?(P�)) is also the weakest solution;hence from the uniqueness of the solution it follows that f? is conjunctive. First we showthat V�2�(f?(P�)) is a solution.1. 8� 2 � : f(f?(P�)) � P� ;f?(P�) is a solution of Q : f(Q) � P�2. 8� 2 � : V�2�(f?(P�)) � f?(P�) ;de�nition of conjunction3. 8� 2 � : f(V�2�(f?(P�))) � f(f?(P�)) ;apply f on 2, f monotone (Lemma 3.3)4. 8� 2 � : f(V�2�(f?(P�))) � P� ;from 1 and 35. f(V�2�(f?(P�))) � V�2� P� ;by taking conjunct wrt � in 46. V�2�(f?(P�)) is a solution ;from 5Next we show that V�2�(f?(P�)) is the weakest solution also. Let R be another solution ofQ : f(Q) � V�2�(P�). Then we need to show that R � V�2�(f?(P�)).1. f(R) � V�2� P� ;by assumption2. 8� 2 � : f(R) � P� ;from 13. 8� 2 � : R is a solution of Q : f(Q) � P� ;from 24. 8� 2 � : f?(P�) is weakest solution of Q : f(Q) � P� ;by de�nition of f?5. 8� 2 � : R � f?(P�) ;from 3 and 46. R � V�2�(f?(P�)) ;taking conjunct wrt � in 57. V�2�(f?(P�)) is the weakest solution ;from 5This proves that f? is conjunctive. 2An immediate consequence of Theorem 3.10 and Lemma 3.12 is the following corollary:Corollary 3.13 Let f 2 F be disjunctive. Then the strongest solution of the equationQ : P � f?(Q) exists and is given by f(P ).Proof: From Lemma 3.12 we have that f? is conjunctive. Since P as a constant predicatetransformer is monotone, the strongest solution of Q : P � f?(Q) exists (Theorem 3.8).That f(P ) is the strongest solution follows by substituting f? for g in Theorem 3.10. 2Remark 3.14 The result of Corollary 3.13 justi�es the term dual for the functions f andf?. Note that C-1 is used to de�ne the dual of a disjunctive predicate transformer. Since inTheorem 3.10 we showed the equivalence of C-1 and C-2 and C-3 and C-4, any one of themcan be used to equivalently de�ne the dual predicate transformer.Next we prove a result that is interesting from the control perspective.Theorem 3.15 wlp and sp are duals of each other.Proof: Note that sp is disjunctive and wlp is conjunctive; hence the duality is well de�nedin this context. In order to show duality we need to show that wlp and sp satisfy any of theconditions C-1 through C-4 (refer to Theorem 3.10 and Remark 3.14). We show that C-2holds.Firstly, it follows from the de�nitions of sp and wlp that sp(wlp(P )) � P for any P 2 P.This is true because sp(wlp(P )) holds only in those states of XP which have at least onetransition leading into them. Secondly, it again follows from the de�nitions of sp and wlpthat P � wlp(sp(P )) for any P 2 P. This is true because wlp(sp(P )) holds in those stateswhere either P holds or which have no transitions leading out of them. Thus both theconjuncts of C-2 hold, which proves the duality of wlp and sp. 210



4 Predicate Transformers and Supervisory ControlIn the previous section we described the conditions under which extremal solutions ofvarious boolean equations exist, and introduced the notion of duality of predicate transform-ers, which is one of the key concepts relating the extremal solutions of the above booleanequations. We now show how these concepts can be useful in synthesizing static supervisors[16, 13] for a given DEDS.Let G def= (PX; �; sp; I) be a plant as described in De�nition 2.9. Let R 2 P denote therequired behavioral constraint on G. In other words, the control task is to design a staticcontroller S : X ! 2� such that as the closed loop system evolves, it visits only and all thosestates where R holds. Formally,Supervisory Predicate Control Problem (SPCP): The control task is to construct astatic controller S : X ! 2� for the plant G def= (PX; �; sp; I) such that sp?S(I) = R.The SPCP requires that the state trajectories (in the controlled systemGS) starting froma state where the initial predicate I holds, remain con�ned to the set of states where therequired predicate R holds, and visit all the states where R holds. A special case of thisproblem was �rst treated in [22] where the control task was to synthesize a static supervisorS such that sp?S(I) � R, i.e. the states visited under closed loop control be con�ned to R.Thus R in [22] represents a predicate that remains invariant under control. The requiredpredicate R considered in this paper represents the weakest predicate that remains invariantunder control (i.e. if S solves SPCP, then no other predicate weaker than R is invariantunder S).It is clear that SPCP is solvable only if the set of initial states is contained in the set ofstates where R holds. Hence in order to allow nontrivial solution of the SPCP we assumethat the above condition is satis�ed, which we state as assumption A-1 below:A-1. I � R.Next we de�ne a few notions that play a central role in supervisory control of DEDS.De�nition 4.1 R is said to be invariant if sp(R) � R. R is said to be �u-invariant ifspu(R) � R. R is said to be control-invariant if there exists a static controller S : X ! 2�such that spS(R) � R.Thus if R is an invariant predicate and if the system starts from a state where R holds,then as it evolves it visits only those states where R holds. If R is �u-invariant, and ifthe system starts in a state where R holds, then under the execution of any uncontrollableevent it remains in a state where R holds. If R is control-invariant, then there exists astatic supervisor S such that R is invariant in the controlled system GS . Note that allthe above notions are de�ned with respect to the plant G, for they depend on the planttransition function sp. It also follows in view of C-3 of Theorem 3.10 that R being invariant,�u-invariant, control-invariant is equivalent to R � wlp(R); R � wlpu(R); R � wlpS(R)respectively. These are the same as the de�nitions given in [22]. Hence it follows in view ofProposition 7.1 of [22] that R is control-invariant if and only if R is �u-invariant.11



These notions of invariance introduced in [22] are useful in characterizing those sets ofstates which are closed under the system execution, i.e. if the system starts in a state ofan invariant set, then under all executions the state of the system remains in that invariantset. However, it may be quite possible that the system may never visit some states in thatinvariant set. Thus the notion of invariance alone is not enough for addressing the SPCP.The notion of controllability of predicates (a notion stronger than that of invariance) wasintroduced in [19] for addressing the above mentioned problem. We present an equivalentbut slightly di�erent de�nition of controllability and show that controllability is a necessaryand su�cient condition for a solution of SPCP to exist. In our opinion, our de�nition ismuch more compact and uses a more convenient notation that results in simplicity of proofsand supervisory synthesis techniques.De�nition 4.2 Given f 2 F and P 2 P, the restriction of f to P , denoted f jP , is thepredicate transformer de�ned as: (f jP )(Q) = f(P ^Q) ^ P for each Q 2 P.Next we prove a useful property of the restriction operator. We say f 2 F is weakeningif P � f(P ) for any P 2 P.Lemma 4.3 Let f 2 F be monotone and weakening, and P;Q 2 P be arbitrary. Thenf j(f jP (Q)) (Q) = f jP (Q).Proof: Let R def= f jP (Q). Then we need to show that f jR (Q) = R.1. R = f(P ^ Q) ^ P ;de�nition of restriction2. f jR (Q) = f(f(P ^ Q) ^ P ^Q) ^ f(P ^Q) ^ P ;de�nition of f j(�) and 13. P ^Q � f(P ^Q) ;f is weakening4. P ^Q � f(P ^Q) ^ P ^ Q ;conjunct with P ^Q in 35. f(P ^ Q) � f(f(P ^ Q) ^ P ^Q) ;apply f in 4, f monotone6. f jR (Q) = f(P ^Q) ^ P ;from 2 and 57. f jR (Q) = R ;from 6 and de�nition of RThis completes the proof. 2Thus it follows from Lemma 4.3 that the restriction of a monotone predicate transformer,the application of which results in an image predicate weaker than its preimage predicate,exhibits a nice \invariance" property. For example, the disjunctive closure of any predicatetransformer is weakening as well as monotone (Lemma 3.3 and 3.5), and thus exhibits sucha property.De�nition 4.4 R is said to be controllable with respect to G if1. spu(R) � R, and2. R = (sp jR)?(I)Note that it follows from the de�nition of restriction and disjunctive closure that thefollowing ordering always holds: (sp jR)?(I) � R. Thus the second condition in the de�nitionof controllability is equivalent toR � (sp jR)?(I). We use either of these equivalent de�nitionsof controllability interchangeably. In the next theorem we present a solution to the SPCP.The simplicity of the proof obtained by using the theory of predicate transformers and amore compact de�nition of controllability is easily seen.12



Theorem 4.5 The solution to SPCP exists if and only if R is controllable with respect toG.Proof: First assume that R is controllable; we show that there exists a controller S : X ! 2�such that sp?S(I) = R. Consider the controller de�ned as: for each x 2 XR; � 2 S(x) ,�(x; �) 2 XR. Since R is �u-invariant, it follows that the events disabled by S are allcontrollable (S never disables any uncontrollable events). Also, note that the strongestpostcondition predicate transformer spu corresponds to the maximally restrictive controllaw - the control law that disables all the controllable events from occurring.1. spu(R) � R ;by assumption (R is controllable)2. sp jR= spS ;from 1, de�nitions of S and sp jR and A-13. R = (sp jR)?(I) ;by assumption (R is controllable)4. R = sp?S(I) ;from 2 and 3Next we show that if there exists a controller S such that sp?S(I) = R, then R is controllable.1. sp?S(I) = R ;by assumption2. sp?S(I) = sp?S(R) ;apply sp?S on 13. sp?S(R) = R ;from 1 and 24. sp?u(R) � sp?S(R) ;spu : most restrictive control5. sp?u(R) � R ;from 3 and 46. spu(R) � R ;from 5 and Lemma 3.57. (spS jR)?(I) = R ;from 1 and Lemma 4.38. (spS jR)?(I) � (sp jR)?(I) ;S restricts behavior9. R � (sp jR)?(I) ;from 7 and 810. R is controllable ;from 6 and 9This completes the proof of Theorem 4.5. 2Example 4.6 Consider the problem of mutual exclusion for the Readers-Writers program ofExample 2.10. The mutual exclusion constraint requires that the number of writers accessingthe database should never be more than one, and a reader can access the database only whenno writer is accessing it. Thus the mutual exclusion constraint can be written as the followingrequired predicate: R = ((nw = 0) _ (nw = 1 ^ nr = 0)). Let �u = fend rd; end wtg. Thenit is easily veri�ed that R is controllable, namely, spu(R) � R and (sp jR)?(I) = R asdescribed below. First consider the event end rd:nr := nr � 1 if nr > 0 : end rdComparing the above statement with the standard form:x := F (x) if C(x) : �we obtain F (x) = x� 1, i.e. F�1(x) = x+ 1; and C(x) = [x > 0]. Thusspend rd(R(nr))= R(F�1(nr)) ^ C(F�1(nr))= [(nw = 0) _ (nw = 1 ^ nr + 1 = 0)] ^ [nr + 1 > 0]= [(nw = 0) ^ (nr + 1 > 0)] _ [(nw = 1) ^ (nr + 1 = 0) ^ (nr + 1 > 0)]= [(nw = 0) ^ true] _ false 13



= (nw = 0)� R:Next consider the event end wt:nw := nw � 1 if nw > 0 :Thus F (x) = x� 1 and C(x) = [x > 0] as before. Hencespend wt(R(nw))= R(F�1(nw)) ^ C(F�1(nw))= [(nw + 1 = 0) _ (nw + 1 = 1 ^ nr = 0)] ^ [nw + 1 > 0]= [nw + 1 = 0 ^ nw + 1 > 0] _ [nw + 1 = 1 ^ nr = 0 ^ nw + 1 > 0]= false _ [nw = 0 ^ nr = 0]= [nw = 0 ^ nr = 0]� R:Combining the results of the above two derivations, we thus obtain:spu(R)= (nw = 0) _ (nw = 0 ^ nr = 0) = (nw = 0)� R.Next, in order to verify (sp j R)?(I) = R, it can be easily shown by induction on n 2 Nthat (sp jR)n(I) = (nw = 0 ^ nr � n) _ (nw = 1 ^ nr = 0). Hence(sp jR)?(I)= Wn�0(nw = 0 ^ nr � n) _ (nw = 1 ^ nr = 0)= (nw = 0 ^ true) _ (nw = 1 ^ nr = 0)= (nw = 0) _ (nw = 1 ^ nr = 0)= R:It then follows that R is controllable and hence the SPCP is solvable. The supervisor Scan be computed as follows. For each controllable event � 2 (�� �u) of the type:x := F (x) if C(x) : �;the predicate on which the event � is disable by S is computed asC(x) ^ R(x) ^ wlp�(:R(x)):This is the weakest predicate stronger than R, where � is enabled (C(x) holds), and fromwhich a state in X:R (states where R does not hold) is reachable by a single execution of �.First consider the event st rd; then S disables st rd on the predicate:true ^ [(nw = 0) _ (nw = 1 ^ nr = 0)] ^ [wlpst rd([nw > 1] _ [nw = 1 ^ nr > 0])]= [(nw = 0) _ (nw = 1 ^ nr = 0)] ^ [(nw > 1) _ (nw = 1 ^ nr + 1 > 0)]= [(nw = 0) _ (nw = 1 ^ nr = 0)] ^ (nw � 1)= (nw = 1 ^ nr = 0).Thus S disables st rd on [nw = 1 ^ nr = 0].The predicate where S disables the other controllable event st wt can be computed as:true ^ [(nw = 0) _ (nw = 1 ^ nr = 0)] ^ [wlpst wr((nw > 1) _ (nw = 1 ^ nr > 0))]= [(nw = 0) _ (nw = 1 ^ nr = 0)] ^ [(nw + 1 > 1) _ (nw + 1 = 1 ^ nr > 0)]= [(nw = 0) _ (nw = 1 ^ nr = 0)] ^ [(nw > 0) _ (nw = 0 ^ nr > 0)]14



= [nw = 0^nw > 0]_ [nw = 0^ (nw = 0^nr > 0)]_ [(nw = 1^nr = 0)^nw > 0]_ [(nw =1 ^ nr = 0) ^ (nw = 0 ^ nr > 0)]= false _ (nw = 0 ^ nr > 0) _ (nw = 1 ^ nr = 0) _ (nw = 1 ^ nr = 0)= (nw = 0 ^ nr > 0) _ (nw = 1 ^ nr = 0).Thus S disables st wt in (nw = 0 ^ nr > 0) _ (nw = 1 ^ nr = 0).Thus it is clear that at states where (nw = 1^nr = 0) holds both the controllable eventsare disabled by S, and at states where (nw = 0 ^ nr > 0) holds only st wr is disabled.Thus S : X ! 2� is given by: (x is used to denote an arbitrary element of X = N 2, i.e.x = (nr; nw)): S(x) def= 8><>: �(x)� fst wt; st rdg if (nw = 1 ^ nr = 0)�(x)� fst wtg if (nw = 0 ^ nr > 0)�(x) otherwisewhere �(x) = f� 2 � j �(x; �) is de�nedg.Remark 4.7 This example illustrates that techniques based on predicates and predicatetransformers can be used for solving the supervisory control problem in an in�nite statespace setting. The computational complexity of computing the supervisor is linear in thenumber of variables used and the number of conditional assignment statements in the pro-gram description of the plant, and does not depend on the actual number of states andtransitions in the system which may be very large, possibly in�nite.Another advantage of using the theory based on predicate transformers is that it providesan automated technique for synthesizing supervisors as illustrated by the above example.4.1 Minimally Restrictive Supervisors for Predicate ControlIt follows from Theorem 4.5 that if the required predicate R is controllable, i.e. satis�esthe �u-invariance and the reachability constraint R � (sp jR)?(I), then the following controllaw can be used for solving the SPCP: for each x 2 XR, � 2 S(x) , �(x; �) 2 XR. In thissubsection, we address the problem of supervisory synthesis when the required predicate Ris not controllable. This problem was not addressed in [19]. If the required predicate Ris not controllable, then a supervisor cannot be constructed which solves the SPCP. In thenext Theorem we prove that in such a situation, the minimally restrictive supervisor can beconstructed.Theorem 4.8 The weakest controllable predicate stronger than a given predicate exists(and is unique).Proof: Let R 2 P be the required predicate. Assume that R is not controllable; then atleast one of the following two conditions is not satis�ed:1. spu(R) � R2. R � (sp jR)?(I)We show that the weakest solution to the following set of equations exists:15



E-1. Q : spu(Q) � QE-2. Q : Q � (sp jQ)?(I)E-3. Q : Q � REquations E-1 and E-2 correspond to conditions 1 and 2 respectively. Equation E-3 requiresthat the weakest solution be stronger than R. Consider the �rst equation; since spu isdisjunctive and Q as an identity function is monotone, it follows from Theorem 3.8 that theweakest solution of it exists. Similarly consider the second equation; since Q as an identityfunction is disjunctive and (sp jQ)?(I) as a function of Q is monotone, it follows that thesecond equation also has a weakest solution. Also, sinceR as a constant function is monotoneand Q as an identity function is disjunctive, the third equation possess a weakest solution aswell. Since the weakest solutions of all the equations E-1 through E-3 exist, it follows thatthe weakest solution of the above set of equation exists and by its de�nition it is unique.More formally, let � be an indexing set such that for each � 2 �; Q� satis�es the above setof equations. Then as explained above W�2�Q� satis�es all the equations E-1 through E-3individually. Thus W�2�Q� is the weakest solution of the above set of equations. 2We will use R" � R to denote the weakest solution of the above set of equations, thenR" denotes the weakest controllable predicate stronger than R. If R" also satis�es A-1, i.e. ifI � R", then since R" is controllable, it follows from Theorem 4.5 that there exists a staticcontrol law S such that sp?S(I) = R". A supervisor exercising such a control law is calledthe minimally restrictive supervisor. However, R" may not satisfy A-1, i.e. it is possible thatI 6� R", in which case the minimally restrictive supervisor does not exist.4.2 Computation of R"In Theorem 4.8 we proved the existence of the weakest controllable predicate R", whichis the weakest solution of equations E-1, E-2 and E-3, stronger than R. Now we present amethod for computing it. We proceed by �rst proving a few lemmas.First we note that the weakest solution of E-2 stronger than any predicate P 2 P exists.This follows easily from 1 and 2 below:1. E-2 has a weakest solution (follows from Theorem 4.8), and2. Equation Q : Q � P has a weakest solution, for Q as an identity predicate transformeris monotone and P as a constant predicate transformer is disjunctive.Lemma 4.9 If P 2 P is a solution of E-1 and E-3 and P 0 is the weakest solution of E-2stronger than P , then P 0 is also a solution of E-1 and E-3.Proof: We �rst show that P 0 is a solution of E-3.1. P 0 � P ;by assumption2. P � R ;P is a solution of E-33. P 0 � R ;from 1 and 24. P 0 is a solution of E-3 ;from 3Next we show that P 0 is also a solution of E-1.16



1. spu(P ) � P ;P is a solution of E-12. P 0 � P ;by assumption3. spu(P 0) � spu(P ) ;apply spu on 2, spu monotone4. spu(P 0) � P ;from 1 and 35. spu(P 0) _ P 0 � P ;from 2 and 46. P 0 � (sp jP 0)?(I) ;P 0 is a solution of E-27. P 0 � (sp jspu(P 0)_P 0)?(I) ;by weakening the RHS of 68. spu(P 0) � (sp jspu(P 0)_P 0)?(I) ;from 6 and de�nition of sp j(�)9. spu(P 0) _ P 0 � (sp jspu(P 0)_P 0)?(I) ;taking disjunct of 7 and 810. spu(P 0) _ P 0 is a solution of E-2 stronger than P ;from 9 and 511. spu(P 0) _ P 0 � P 0 ;from 10 and de�nition of P 012. spu(P 0) � P 0 ;simplifying 1113. P 0 is a solution of E-1 ;from 12This completes the proof. 2Thus the weakest solution of E-2 stronger than any solution of E-1 and E-3 is also asolution of E-1 and E-3 and hence a solution of the all the three equations.Lemma 4.10 Let P be the weakest solution of E-1 and E-3 and P 0 be the weakest solutionof E-2 stronger than P . Then P 0 is the weakest solution of E-1 through E-3.Proof: It follows from Lemma 4.9 that P 0 is a solution of E-1 through E-3. We need toshow that it is the weakest solution also, i.e. P 0 = R".1. P 0 � P ;by assumption2. P 0 � R" ;P 0 a solution of E-1, E-2, E-3and R" weakest solution of E-1, E-2, E-33. R" � P ;R" weakest solution of E-1, E-2, E-3and P weakest solution of E-1, E-34. R" � P 0 ;R" weakest solution of E-1, E-2, E-3 stronger than P (from 3)and P 0 weakest solution of E-2 stronger than P (from 1)5. R" = P 0 ;from 2 and 4Thus the proof is completed. 2It follows from Lemma 4.10 that one way to compute R" is by computing the weakestsolution of E-2 stronger than the weakest solution of E-1 and E-3.Theorem 4.11 The weakest solution of E-1 and E-3 is (wlpu)?(R).Proof: Note that by de�nition, (wlpu)?(R) = Vn�0 wlpu(R). We �rst show that (wlpu)?(R)is a solution of E-1.1. Vn�0 wlpu(R) � Vn�1 wlpu(R) ;trivially2. (wlpu)?(R) � wlpu(Vn�0 wlpu(R)) ;rewriting LHS and RHS of 13. (wlpu)?(R) � wlpu((wlpu)?(R)) ;rewriting RHS of 24. spu((wlpu)?(R)) � (wlpu)?(R) ;from 3 and C-35. (wlpu)?(R) is a solution of E-1 ;from 4Next we show that (wlpu)?(R) is a solution of E-3.1. Vn�0 wlpu(R) � Vn=0 wlpu(R) ;trivially2. (wlpu)?(R) � R ;rewriting LHS and simplifying RHS of 13. (wlpu)?(R) is a solution of E-3 ;from 217



Next we prove that (wlpu)?(R) is the weakest solution of E-1 and E-3. Assume P is also asolution of E-1 and E-3.1. spu(P ) � P ;P is a solution of E-12. P � wlpu(P ) ;from 1 and C-33. P � (wlpu)?(P ) ;from 2 and Lemma 3.54. P � R ;P is a solution of E-35. (wlpu)?(P ) � (wlpu)?(R) ;apply (wlpu)? on 4, (wlpu)? monotone6. P � (wlpu)?(R) ;from 3 and 57. (wlpu)?(R) is the weakest solution ;from 6This completes the proof of Theorem 4.11. 2Thus it follows from Theorem 4.11 that the weakest �u-invariant predicate stronger thanR (i.e. the weakest solution of E-1 and E-3) is given by (wlpu)?(R). Finally we have thefollowing Theorem for computing R". This is one of the main results of this paper.Theorem 4.12 R" = (sp j(wlpu)?(R))?(I).Proof: Let Q def= (sp j(wlpu)?(R))?(I). In view of Lemma 4.10 it su�ces to show that Q isthe weakest solution of E-2 stronger than the weakest solution of E-1 and E-3. Since theweakest solution of E-1 and E-3 is (wlpu)?(R) (Theorem 4.11), we need to show that Q isthe weakest solution of E-2 stronger than (wlpu)?(R), i.e. satis�es Q � (wlpu)?(R). First weshow that Q is a solution of E-2 and Q � (wlpu)?(R).1. (sp j(wlpu)?(R))?(I) � (wlpu)?(R) ;by de�nition of restriction2. Q � (wlpu)?(R) ;from 1 and de�nition of Q3. Q = (sp jQ)?(I) ;from Lemma 4.34. Q � (sp jQ)?(I) ;from 35. Q is a solution of E-2 ;from 4Next we show that Q is the weakest solution of E-2 stronger than (wlpu)?(R). Let P beanother solution of E-2 stronger than (wlpu)?(R). Since we have already shown above thatQ is stronger than (wlpu)?(R), it su�ces to show that P � Q.1. P � (wlpu)?(R) ;by assumption (P stronger than (wlpu)?(R))2. P � (sp jP )?(I) ;by assumption (P solution of E-2)3. P � (sp j(wlpu)?(R))?(I) ;by weakening RHS of 2 using 14. P � Q ;from 3 and de�nition of QHence the proof is completed. 2Remark 4.13 The set of states XR" corresponding to the weakest controllable predicatestronger than R can be easily computed in two steps:1. Compute Ru def= (wlpu)?(R)2. Compute (sp jRu)?(I)The �rst step corresponds to the computation of the supremal �u-invariant subset of XR.This we denote by XRu . The second step consists of computing the set of states reachablefrom the initial state set XI in the state space restricted to XRu. If G is represented as a�nite state machine, then the set XRu as well as the states reachable from XI in the statespace restricted to XRu can be computed (in the worst case) in time linear in the number of18



transitions present in G (refer to [11, 15] for more elaborate discussions on computationallyoptimal algorithmic techniques for similar computations). If G has in�nite states, thenthe computation of R" based on the state machine approach as described above will notterminate, as it involves the computation of the \?" operator - disjunctive and conjunctiveclosure. However, computation based on predicates and predicate transformers can be usedto automatically construct the minimally restrictive supervisor in an in�nite state spacesetting using e�cient techniques such as those reported in [7]. Further research on this issueis currently under investigation.Example 4.14 Consider the following re�nement of the Readers-Writers program of Exam-ple 2.10. We use variables ar; aw to denote the number of active readers, writers, respectively,and the variables wr;ww to denote the number of waiting readers, writers, respectively.The event set consists of: � = fst rd; st wt; end rd; end wt; req rd; req wt; ovflog. Infor-mally described, readers and writers are �rst bu�ered in separate queues of �nite capacity,and whenever req rd or req wt occurs, the size of the corresponding queue increases. Thenumber of active readers/writers is increased (decreased) according to the occurrence ofst rd=st wt(end rd=end wt). If the number of waiting readers is more than a positive num-ber B, then the number of active readers increases by one whenever the event ovflo occurs.Formally,Program Rd Wr 1declare wr;ww; ar; aw : integerst rd; st wt; ovflo;end rd; end wt;req rd; req wt : eventinitially wr;ww; ar; aw = 0,0,0,0assign wr; ar := wr + 1; ar : req rdwr � 1; ar + 1 if wr > 0 : st rdwr; ar + 1 if wr � B : ovflowr; ar � 1 if ar > 0 : end rdww; aw := ww + 1; aw : req wtww � 1; aw + 1 if ww > 0 : st wtww; aw � 1 if aw > 0 : end wtend fRd Wr 1gLet the uncontrollable event set be given by �u = fovflog. As in Example 4.6, the mu-tual exclusion constraint for the above program is given as the required predicate R = (aw =0) _ (aw = 1 ^ ar = 0). It can be readily veri�ed that R is not a controllable predicate, forspu(R) 6� R. In order to show that R is not controllable consider the uncontrollable eventovflo. Note that F (ar) = ar + 1 and C(wr) = (wr � B) for the event ovflo. Thenspovflo(R(ar; aw))= (aw = 0 _ (aw = 1 ^ ar � 1 = 0)) ^ (wr � B)= (aw = 0 _ (aw = 1 ^ ar = 1)) ^ (wr � B)6� R:In order to compute R", we �rst compute (wlpovflo)?(R) = Vn�0(wlpovflo)n(R). We needto compute (wlpovflo)n(R) for each n 2 N . First we compute wlpovflo(R):wlpovflo(R) 19



= wlpar:=ar+1 if wr�B((aw = 0) _ (aw = 1 ^ ar = 0))= [((aw = 0) _ (aw = 1 ^ ar + 1 = 0)) ^ (wr � B)] _ [wr < B]= [(aw = 0) ^ (wr � B)] _ [wr < B]= [(aw = 0) _ (wr < B)] ^ [(wr � B) _ (wr < B)]= [(aw = 0) _ (wr < B)]Similarly we compute (wlpovflo)2(R):(wlpovflo)2(R)= wlpovflo(aw = 0 _ wr < B)= [(aw = 0 _ wr < B) ^ (wr � B)] _ [wr < B]= (aw = 0 _ wr < B)= wlpovflo(R)Hence (wlpovflo)n(R) = wlpovflo(R) for each n � 1. Thus(wlpovflo)?(R)= R ^ wlpovflo(R)= [(aw = 0) _ (aw = 1 ^ ar = 0)] ^ [(aw = 0) _ (wr < B)]= [(aw = 0) ^ (aw = 0)] _ [(aw = 0) ^ (wr < B)] _ [(aw = 1 ^ ar = 0) ^ (aw = 0)] _ [(aw =1 ^ ar = 0) ^ (wr < B)]= (aw = 0) _ (aw = 0 ^ wr < B) _ false _ (aw = 1 ^ ar = 0 ^ wr < B)= (aw = 0) _ (aw = 1 ^ ar = 0 ^ wr < B)Thus Ru def= (wlpu)?(R) = (aw = 0) _ (aw = 1 ^ ar = 0 ^ wr < B). In order to computeR", we need to compute (sp jRu)?(I). This can be easily shown to equal Ru. ThusR" = (aw = 0) _ (aw = 1 ^ ar = 0 ^ wr < B):Using the technique described in Example 4.6, the predicate on which the minimally restric-tive supervisor disables a given controllable event can be computed. Essentially, if � 2 ���uis a controllable event of the type:x := F (x) if C(x) : �;then � is disabled by S in the predicate C(x) ^ R"(x) ^ wlp�(:R"(x)) = C(x) ^ R"(x) ^:R"(F (x)). The following minimally restrictive control S : X ! 2� can be used for achievingthe mutual exclusion constraint (we use x to denote an arbitrary element of X = N 4:S(x) def= 8>>><>>>: �(x)� fst wt; st rd; req rdg if (aw = 1 ^ ar = 0 ^ wr = B � 1)�(x)� fst wt; st rdg if (aw = 1 ^ ar = 0 ^ wr < B � 1)�(x)� fst wtg if (aw = 0 ^ ar > 0)�(x) otherwise5 Observability of PredicatesSo far we have considered the supervisory predicate control problem assuming that com-plete information about the system states is available. Next we generalize the theory ofsupervisory predicate control developed above to the case where the system states are notnecessarily completely observed. In order to formulate the problem of supervisory predicatecontrol under partial state observation, consider a mask M , which is a map from the system20



state space X to the observation space Y , i.e. M : X ! Y . Note that the mask M isnot necessarily injective, and it is possible that two di�erent states may yield an identicalobservation under the mask M .The supervisory predicate control problem under partial observation was �rst studiedin [19]. However, the conditions of observability of a predicate were obtained under veryrestrictive assumptions on the mask M . It was assumed in [19] that given any pair of statesx1; x2 2 X and any event � 2 � such that �(x1; �); �(x2; �) are both de�ned, the mask Mis such that M(x1) = M(x2),M(�(x1; �)) = M(�(x2; �)). Note that this assumption maybe violated even when the mask M equals the identity function, which corresponds to thecase of complete observation. Thus the observability theory developed in [19] is applicableonly to a very small class of systems. We extend the condition of observability of predicateswithout assuming any restriction on the mask M .Supervisory Predicate Control and Observation Problem (SPCOP): Consider theplant G def= (PX; �; sp; I) and the observation mask M : X ! Y . Let R 2 PX denote therequired predicate. The control task is to obtain a dynamic control law D : Y ?� (2�)? ! 2�such that (spD)?(I) = R.The notation Y ?; (2�)? is used to denote the set of �nite sequences of observations in Y ,the set of �nite sequences of control actions, respectively. The supervisor uses all the in-formation available corresponding to the entire past to determine the current control action(the set of events to be enabled). Thus the supervisor is dynamic. The supervisor consid-ered for the SPCOP in [19] is static (current control actions are determined by the currentobservation only) and can be obtained as a special case of the supervisor considered in thissection.We propose the following algorithm for dynamically estimating the current state of thesystem using the information available from the entire past. The notation yk 2 Y for eachk 2 N is used to denote the observation at the kth step.Algorithm 5.1Initiation step: P0 = trueXRecursion step: Pk+1 = sp(Pk) ^M�1(yk+1); k � 0where M�1(yk+1) corresponds to the predicate which holds in those states which have thesame mask value yk+1, and Pk for each k � 0 denotes the predicate corresponding to thestate estimate at the kth step.Thus initially when no observation is made the set of states corresponding to the initialstate estimate equals the entire state space; hence P0 is set equal to trueX. The set of statescorresponding to the state estimate at the (k + 1)th step, where the predicate Pk+1 holds,equals the set of states that correspond to the observation yk+1 and are reachable from astate where Pk holds. Algorithm 5.1 can be used to de�ne the following dynamic observerfor the system G.De�nition 5.2 Consider the plant G def= (PX ; �; sp; I) and the mask M : X ! Y . Thedynamic observer for estimating the current state of G is a DEDS O def= (PX ; Y; spO; trueX),21



where PX corresponds to the state set of the observer O; Y corresponds to the event setof O; trueX corresponds to the initial condition of O; and spO, the strongest postconditionpredicate transformer of O, is de�ned to be (spO)y(P ) = sp(P ) ^M�1(y) for each P 2 PXand y 2 Y .A similar de�nition of dynamic observer is presented in [3], which uses the past sequenceof observations as well as the past sequence of control inputs for estimating the current state.5.1 Static and Dynamic Control LawsAn algorithm similar to Algorithm 5.1 can be used to simultaneously observe the evolutionof the plant and control its behavior. Since the goal of the SPCOP is to obtain a dynamiccontrol law D : Y ?� (2�)? ! 2� such that the required predicate R remains invariant underthe evolution of the controlled system, we assume that the system never starts in a statewhere R does not hold. This is stated as assumption A-1 in the previous section. Keepingassumption A-1 in mind, a dynamic control law D� is obtained in the manner describedbelow. The notations yk; PD�k are used to denote the observation at the kth step, and thepredicate corresponding to the state estimate at the kth step under the control law D�respectively. The control action at the kth step, k � 1, depends on the observation sequenceup to the kth step and the control sequence up to the (k � 1)th step; using this availableinformation at the kth step, �rst the predicate PD�k corresponding to the state estimate atthe kth step is obtained and then an identical control action is de�ned for each of the statesin the set XPD�k . Thus a dynamic controller D� : Y ?�(2�)? ! 2� can equivalently be viewedas a map D� : PX ! 2�.Algorithm 5.3Initiation step: PD�1 = M�1(y1) ^ I� 2 D�(PD�1 ), sp�(PD�1 ) � RRecursion step: PD�k+1 = spS(PD�k ) ^M�1(yk+1)� 2 D�(PD�k+1), sp�(PD�k+1) � R; k � 1where � 2 D�(P ) for any � 2 � and P 2 P means that � is enabled by the control law D�in every state in the set XP .Since the system is assumed to start in I � R (Assumption A-1), the initial state estimateafter the �rst observation y1 2 Y is given by the predicate M�1(y1) ^ I. For every statex 2 XPD�1 , a transition � 2 � is enabled by the control law if and only if the states reachedby executing � in XPD�1 are all contained in XR. The predicate PD�k+1 corresponding to thestate estimate at the (k+1)th step is obtained by determining the states that correspond tothe (k+1)th observation yk+1, and that are reachable in G under the control lawD� from thestates where PD�k holds. Since all the states in the set XPD�k+1 (at step (k+ 1)) correspond tothe same past observation and control sequence up to step (k+1), the same control action isapplied at all of them; and the controller enables an event � 2 � at all the states x 2 XPD�k+1if and only if the states reached by executing � in the states XPD�k+1 are all contained in XR.22



Remark 5.4 It is clear that if the mask M is the identity map (or is injective), then thedynamic control law D� de�ned in Algorithm 5.3 is the same as the static control law Sde�ned in section 4. In other words, if complete state observation is possible, then staticand dynamic control laws are identical. This, as we will see, is not the case when incompletestate observations are made.Lemma 5.5 Consider the plant G and the mask M . Let G be controlled by the dynamiccontrol law D� described in Algorithm 5.3. Then Wfykg2Y � Wk�1 PD�k � R.Proof: It su�ces to show that for any yk 2 Y �, Wk�1 PD�k � R. The controller D� is de�nedrecursively in Algorithm 5.3. We use induction on k for obtaining the desired result.1. I � R ;Assumption A-12. PD�1 � I ;initiation step of Algorithm 5.33. PD�1 � R ;from 1 and 2 (base case)4. PD�k � R ;induction hypothesis5. PD�k+1 � R ;recursion step of Algorithm 5.3 and 36. 8k � 1; PD�k � R ;from 3, 4, 5 and induction7. Wk�1 PD�k � R ;taking disjunct wrt k in 6This completes the proof. 2Thus under the dynamic control law described in Algorithm 5.3, the state trajectoriesof the system remain con�ned to the states where R holds. In fact, it follows from Lemma5.5 that Wfykg2Y � Wk�1 PD�k is the weakest predicate stronger than R to which the statetrajectories of the partially observed controlled system G are con�ned. The property, thatthis weakest predicate stronger than R equals R, is termed observability of R.De�nition 5.6 The required predicateR of the partially observed systemG under the maskM is said to be observable if and only if Wfykg2Y � Wk�1 PD�k = R, where PD�k for each k � 1is recursively de�ned in Algorithm 5.3.Algorithm 5.3 can be specialized to de�ne a static control law S : Y ! 2� in which thecontrol action at any step depends only on the observation at that step:Algorithm 5.7Initiation step: P S1 = M�1(y1) ^ I� 2 S(M�1(y1) ^ I), sp�(M�1(y1) ^ I) � RRecursion step: P Sk+1 = spS(P Sk ) ^M�1(yk+1)� 2 S(M�1(yk+1)), sp�(M�1(yk+1)) � R; k � 1Note that the control law S at each step k � 1 depends only on the kth observationyk 2 Y , and an identical control action is applied at each of the states in the set whereM�1(y1) holds (except for the case k = 1, where an identical control is applied at eachof the states in the set where M�1(y1) ^ I holds). Since by de�nition, P Sk � M�1(yk),S(P Sk ) = S(M�1(yk)). Thus the term spS(P Sk ) in the recursion step is well de�ned.23



Remark 5.8 It can be proved, similar to Lemma 5.5, that under the control of the staticcontroller S de�ned in Algorithm 5.7, the state trajectories of the system remain con�ned toR, i.e. Wfykg2Y � Wk�1 P Sk � R. However, the static control law S is more restrictive than thedynamic control lawD�, for at every step k � 1, S depends onM�1(yk), whereas D� dependson PD�k , and PD�k � M�1(yk); as a result, Wk�1 P Sk � Wk�1 PD�k . Thus in case of incompletestate observations, a static control law is of course more restrictive than a dynamic controllaw. In fact, the dynamic control law D� de�ned in Algorithm 5.3 is the minimally restrictivecontrol law, i.e. if D0 : Y ?� (2�)? ! 2� is any other control law, then Wk�1 PD0k � Wk�1 PD�k .The dynamic control law D� de�ned in Algorithm 5.3 and the static control law de�nedin Algorithm 5.7 can both be implemented by controllers of the type:De�nition 5.9 Consider the plant G def= (PX ; �; sp; I) and the mask M : X ! Y . Thecontroller that implements the dynamic control law of Algorithm 5.3 is another DEDS C def=(PX; Y �2�; spC; IC), where PX is the state set of the controller C; Y �2� is the event set ofC; IC =M�1(y1)^I is initial condition of C; and spC , the strongest postcondition predicatetransformer of C, is de�ned to be (spC)(y;�0)(P ) = sp�0(P )^M�1(y) for each P 2 PX , y 2 Yand �0 � � (sp�0 = W�2�0 sp�).Finally, we present a necessary and su�cient condition under which a solution to SPCOPexists, the proof of which is constructive so that a dynamic control law D that solves SPCOPis automatically obtained.Theorem 5.10 Consider the partially observed plant G under the mask M . Let R be therequired predicate. Then a solution to SPCOP exists if and only if R is controllable andobservable.Proof: Assume �rst that R is controllable and observable. We will show that there existsa dynamic control law D such that (spD)?(I) = R. Let D = D�, where D� is as de�nedin Algorithm 5.3. Since R is �u-invariant (R is controllable) and Pk � R for each k � 1(Lemma 5.5), D�(= D) in Algorithm 5.3 can be rewritten to yield the same dynamic controllaw: 8� 2 (�� �u); � 2 D�(Pk), sp�(Pk) � R; k � 1In other words, D�(= D) never disables any uncontrollable events.1. (spD�)?(I) = Wfykg2Y � Wk�1 PD�k ;by de�nition of D�2. Wfykg2Y � Wk�1 PD�k = R ;R is observable3. (spD�)?(I) = R ;from 1 and 24. (spD)?(I) = R ;from 3 and D = D�Next we show that if there exists a dynamic control law D such that (spD)?(I) = R, then Ris controllable and observable. 24



1. (spD)?(I) = R ;by assumption2. (spD)?(I) = Wfykg2Y � Wk�1 PDk ; de�nition of D3. Wfykg2Y � Wk�1 PDk = R ;from 1 and 24. Wfykg2Y � Wk�1 PDk � Wfykg2Y � Wk�1 PD�k ;D� is minimally restrictive (Remark 5.8)5. R � Wfykg2Y � Wk�1 PD�k ;from 3 and 46. Wfykg2Y � Wk�1 PD�k � R ;from Lemma 5.57. Wfykg2Y � Wk�1 PD�k = R ;from 5 and 68. R is observable ;from 79. (spD)?(I) = (spD)?(R) ;apply sp?D on 110. (spD)?(R) = R ;from 1 and 911. sp?u(R) � (spD)?(R) ;spu is maximally restrictive control12. sp?u(R) � R ;from 10 and 1113. spu(R) � R ;using Lemma 3.514. (spD jR)?(I) = R ;from 1 and Lemma 4.315. (spD jR)?(I) � (sp jR)?(I) ;D restricts behavior16. R � (sp jR)?(I) ;from 14 and 1517. R is controllable ;from 13 and 16This completes the proof. 2Example 5.11 Consider the problem of mutual exclusion discussed in Example 4.6 for theReaders-Writers program of Example 2.10. Assume that the mask M : X ! Y is such thatthe number of writers always appears to be the same, namely, zero; however, the numberof readers can be observed completely, i.e. M((nr = p; nw = q)) = (nr = p; nw = 0) for all(p; q) 2 N 2. As discussed in Example 4.6, the mutual exclusion constraint is written as therequired predicate R = ((nw = 0) _ (nw = 1 ^ nr = 0)), and it is controllable. However, Rmay or may not be observable, depending on the initial condition I.Case 1: I = ((nr; nw) = (0; 0)) as in Example 2.10. Then R is observable, as in this casethe number of writers is completely determined by observing the occurrences of eventsst wt and end wt. Algorithm 5.3 yields the required dynamic supervisor.Case 2: I = (nr = 0)^ ((nw = 0)_ (nw = 1)). In this case the number of writers cannot befully determined by the past observations, and R is not observable. Hence a dynamicsupervisor cannot constructed to solve SPCOP. Under the control of the dynamicsupervisor D� : Y ?� (2�)? ! 2� as described in Algorithm 5.3, the closed-loop systemcan only achieve the predicate (nw = 0), i.e. (spD�)?(I) = (nw = 0) � R.6 ConclusionWe have presented in this paper a methodology for designing controllers for a wide vari-ety of systems described in terms of a set of predicates and a set of predicate transformers.Predicates can concisely represent an in�nite state space, hence many of the discrete eventsystems including clocks, queues with unbounded bu�ers etc. can be modeled in this frame-work. The above theory can also be useful in synthesizing controller programs for programsdescribing possibly complex DEDS's. Thus the framework is quite general.25



The strongest postcondition transformer has been presented as a fundamental concept fordescribing the state space evolution of a DEDS. We have presented the notion of duality ofpredicates and shown that sp and wlp are duals of each other. Many of the basic propertiesof a predicate transformer have been highlighted, and the relation of these properties tothe existence of extremal solutions of some predicate equations has been pointed out. Wehave shown how these properties and extremal solutions of boolean equations can be appliedfor supervisory synthesis purposes. The notion of controllability of a required predicatedescribing the set of legal states has been de�ned, and it has been shown that controllabilityis a necessary and su�cient condition for the existence of a supervisor that guarantees theinvariance of the required predicate under system evolution. The supervisory predicatecontrol problem has been presented and solved using the notion of controllability. It hasfurther been shown that the weakest controllable predicate stronger than the given predicateexists, and hence the construction of minimally restrictive supervisors is possible in case therequired predicate is not controllable. We have presented a method for computing theweakest controllable predicate; this is one of the main results in this paper.We also address the problem of designing supervisors for a partially observed plant. Weintroduce the notion of observability which, together with controllability, is a necessary andsu�cient condition for the existence of a supervisor that solves the supervisory predicatecontrol and observation problem introduced in this paper.A Proof of TheoremProof: We prove Theorem 3.10 by way of cyclic implication. First we show that C-1 )C-2. Note that since f is disjunctive, the weakest solution in C-1 exists.1. f(g(P )) � P ;from C-12. conjunct 1 of C-2 holds ;from 13. P is a solution of Q : f(Q) � f(P ) ;f(P ) � f(P )4. g(f(P )) is weakest solution of Q : f(Q) � f(P ) ;from C-15. P � g(f(P )) ;from 3 and 46. conjunct 2 of C-2 holds ;from 5Next we show that C-2 ) C-3. This we show by showing that under C-2 the LHS of C-3implies RHS of C-3 and vice versa.1. f(P ) � Q ;assume LHS of C-32. g(f(P )) � g(Q) ;apply g on 1, g is monotone (Lemma 3.3)3. P � g(f(P )) ;conjunct 2 of C-24. P � g(Q) ;from 2 and 35. RHS of C-3 holds ;from 46. P � g(Q) ;assume RHS of C-37. f(P ) � f(g(Q)) ;apply f on 6, f monotone (Lemma 3.3)8. f(g(Q)) � Q ;conjunct 1 of C-2 with P replaced by Q9. f(P ) � Q ;from 7 and 810. LHS of C-3 holds ;from 9Next we show that C-3) C-4. Since g is conjunctive and P , treated as a constant predicatetransformer, is monotone, it follows from Theorem 3.8 that the strongest solution in C-426



exists.1. f(P ) � f(P ), P � g(f(P )) ;replace Q by f(P ) in C-32. true, P � g(f(P )) ;from 13. f(P ) a solution in C-4 ;from 24. P � g(Q), f(P ) � Q ;rewriting C-35. f(P ) strongest solution in C-4 ;from 5Next we show that C-4 ) C-1.1. P � g(Q), f(P ) � Q ;f(P ) is the strongest solution in C-42. g(P ) � g(P ), f(g(P )) � P ;replace P;Q by g(P ); P respectively in 13. true, f(g(P )) � P ;simplifying 24. f(P ) a solution in C-1 ;from 35. f(P ) � Q, P � g(Q) ;rewritting 16. f(Q) � P , Q � g(P ) ;replace P;Q by Q;P respectively in 57. g(P ) weakest solution in C-1 ;from 6This completes the proof of Theorem 3.10. 2B AcknowledgementAuthors would like to thank Shigemasa Takai, Department of Electronics Engineering,Osaka University, Japan for pointing out an omission in the de�nition of observability.References[1] A. Arnold and M. Nivat. Controlling behaviors of systems: Some basic concepts andsome applications. In MFSC 1980 (Lecture Notes in Computer Science, 88), pages113{122. Springer-Verlag, New York, 1980.[2] R. D. Brandt, V. K. Garg, R. Kumar, F. Lin, S. I. Marcus, and W. M. Wonham.Formulas for calculating supremal controllable and normal sublanguages. Systems andControl Letters, 15(8):111{117, 1990.[3] P. E. Caines, R. Greiner, and S. Wang. Dynamical logic observers for �nite automaton.In Proceedings of the 1988 Conference on Decision and Control, pages 226{233, Austin,Texas, December 1988.[4] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley,Reading, MA, 1988.[5] E. W. Dijkstra. A Discipline of Programming. Prentice Hall, Inc., Englewood Cli�s,NJ, 1976.[6] E. W. Dijkstra and C. S. Scholten. Predicate Calculus and Program Semantics. Springer-Verlag, New York, 1990.[7] V. K. Garg and R. Kumar. State-variable approach for controlling discrete event systemswith in�nite states. In Proceedings of 1992 American Control Conference, pages 2809{2813, Chicago, IL, July 1992. 27



[8] D. Gries. The Science Of Programming. Springer-Verlag, New York, NY, 1985.[9] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, Inc., EnglewoodCli�s, NJ, 1985.[10] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages andComputation. Addison-Wesley, Reading, MA, 1979.[11] R. Kumar, V. K. Garg, and S. I. Marcus. On controllability and normality of discreteevent dynamical systems. Systems and Control Letters, 17(3):157{168, 1991.[12] R. Kumar, V. K. Garg, and S. I. Marcus. On !-controllability and !-normality of deds.In Proceedings of 1991 ACC, pages 2905{2910, Boston, MA, June 1991.[13] R. Kumar, V. K. Garg, and S. I. Marcus. Stability of discrete event system behavior. InProceedings of 1991 IFAC Symposium on Distributed Intelligent Systems, pages 13{18,August 1991.[14] R. Kumar, V. K. Garg, and S. I. Marcus. Using predicate transformers for supervisorycontrol. In Proceedings of 1991 IEEE Conference on Decision and Control, pages 98{103, Brighton, UK, December 1991.[15] R. Kumar, V. K. Garg, and S. I. Marcus. On supervisory control of sequential behaviors.IEEE Transactions on Automatic Control, 37(12):1978{1985, December 1992.[16] R. Kumar, V. K. Garg, and S. I. Marcus. Language stability and stabilizability of dis-crete event dynamical systems. SIAM Journal of Control and Optimization, 31(5):1294{1320, September 1993.[17] R. Kumar and L. E. Holloway. Supervisory control of Petri net languages. In Proceed-ings of 1992 IEEE Conference on Decision and Control, pages 1190{1195, Tucson, AZ,December 1992.[18] S. Lam and A. U. Shankar. Re�nement and projection of relational speci�cations. InStepwise Re�nement of Distributed Systems: Models, Formalisms, Correctness, NewYork, NY, May 1989. REX Workshop, Springer-Verlag.[19] Y. Li and W. M.Wonham. Controllability and observability in the state feedback controlof discrete event systems. In Proceedings of the 27th CDC, pages 203{208, Austin, Texas,December 1988.[20] F. Lin and W. M. Wonham. On observability of discrete-event systems. InformationSciences, 44(3):173{198, 1988.[21] P. J. Ramadge. Observability of discrete event systems. In Proceedings of 1986 IEEEConference on Decision and Control, pages 1108{1112, Athens, Greece, December 1986.[22] P. J. Ramadge and W. M. Wonham. Modular feedback logic for discrete event systems.SIAM Journal of Control and Optimization, 25(5):1202{1218, 1987.28



[23] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete eventprocesses. SIAM Journal of Control and Optimization, 25(1):206{230, 1987.[24] P. J. Ramadge and W. M. Wonham. The control of discrete event systems. Proceedingsof IEEE: Special Issue on Discrete Event Systems, 77:81{98, 1989.[25] R. Smedinga. Using trace theory to model discrete events. In P. Varaiya and A. B.Kurzhanski, editors, Discrete Event Systems: Models and Applications, pages 81{99.Springer-Verlag, 1987.[26] R. S. Sreenivas and B. H. Krogh. On Petri net models of in�nite state supervisors.IEEE Transactions of Automatic Control, 37(2):274{277, February 1992.

29


