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AbstractWe study the existence and computation of extremal solutions of a system of inequationsde�ned over lattices. Using the Knaster-Tarski �xed point theorem, we obtain su�cientconditions for the existence of supremal as well as in�mal solution of a given system ofinequations. Iterative techniques are presented for the computation of the extremal solutionswhenever they exist, and conditions under which the termination occurs in a single iterationare provided. These results are then applied for obtaining extremal solutions of variousinequations that arise in computation of maximally permissive supervisors in control oflogical discrete event systems (DESs) �rst studied by Ramadge and Wonham. Thus ourwork presents a unifying approach for computation of supervisors in a variety of situations.Keywords: Fixed points, lattices, inequations, discrete event systems, supervisory control,language theory.



1 IntroductionGiven a set X and a function f : X ! X, x 2 X is called a �xed point of the functionif f(x) = x. Existence and computation of �xed points of functions de�ned over latticeshave been studied in computer science literature for applications such as theory of recursivefunctions, program termination, algorithm design, etc., [24]. Lattices are partially orderedsets with the property that least upper bound and greatest lower bound of any pair of latticeelements is de�ned. A commonly encountered example of lattices is a power set|the set ofall subsets of a given set|together with the containment partial order.One of the initial results on extremal �xed points of functions de�ned over lattices is dueto Knaster-Tarski [31]. It states that every monotone function possesses an in�mal as wellas a supremal �xed point. Another result provides methods of computing the in�mal andsupremal �xed points under stronger conditions than monotonicity. (Refer to Theorems 1and 2 in section 2.) The paper by Lassez-Nguyen-Sonenberg [18] provides a nice historicalaccount of these �xed point theorems. Several other �xed point results have since beendiscovered and are reported in papers such as [4, 23, 30, 9, 1, 6]. The notion of optimal �xedpoints and their properties are discussed in [22, 17].In this paper we study the existence and computation of extremal solutions of a systemof inequations ffi(x) � gi(x)gi�n de�ned over lattices, where x 2 X is the variable ofinequations and n 2 N is a �xed number. Since a �xed point equation f(x) = x can bewritten as a pair of inequations, it is clear that the computation of extremal �xed pointsof a certain function is a special case of that of computation of extremal solutions of asystem of inequations. We show that the converse is also true. We use the two �xedpoint theorems informally described above for determining the existence and computationof extremal solutions of inequations.Our interest in studying the extremal solutions of a system of inequations stems fromcomputations of supervisors in control of logical behavior of DESs. DESs are systems thatinvolve quantities that are discrete and which evolve according to the occurrence of certaindiscrete qualitative changes, called events, in the system. At the logical level of abstraction[7], the behavior of a DES can be described using the set of all possible sequences of eventsthat it can execute [33, 8]. Thus the space of logical behaviors of DESs is a certain powerset, and so it can be studied from a lattice theoretic perspective.The framework of supervisory control was introduced by Ramadge and Wonham [27, 28]for developing the techniques for controlling the qualitative behavior of such systems. Asupervisor in this setting is event driven, and dynamically disables some of the events fromoccurring so that certain desired or target behavior constraint is satis�ed. It is desirable thatsuch a supervisor be maximally permissive so that a maximal behavior satisfying the desiredbehavior constraint is achieved under control. Computation of such supervisors requirescomputation of extremal solutions of a certain system of inequations de�ned over the powerset lattice of behaviors of DESs.We �rst introduce the notions of dual, co-dual, inverse, and converse of a function andstudy their properties. Some of these terminology is taken from the work of Dijkstra-Scholten1



[5] who �rst investigated these concepts in the setting of predicates and predicate transform-ers. Kumar-Garg-Marcus [15] applied some of this work to supervisory control of DESsrepresented as programs consisting of a �nite number of conditional assignment statements.In this paper, we further extend these work and apply it for obtaining conditions underwhich supremal and in�mal solutions of a system of inequations ffi(x) � gi(x)gi�n exists.We also provide iterative techniques for computing the solutions whenever they exist, andpresent conditions under which termination occurs in a single iteration. These techniquesare then used for computation of maximally permissive supervisors in a variety of settings.Rest of the paper is organized as follows: Section 2 introduces several concepts fromlattice theory, and reviews basic results on extremal �xed points. In section 3 we de�nethe notions of dual, co-dual, conjugate, inverse, and converse of a function, and study someof their properties. Section 4 studies existence and computation of extremal solutions of agiven system of inequations. Each result presented in sections 3 and 4 has a \primal " anda \dual " version; we only present a proof for the primal version, as the dual version can beproved analogously. These results are applied in section 5 to supervisory control of DESs.In section 6 we conclude the work presented here, and in Appendix A we give an alternativeinterpretation for the inverse operation.2 Notation and PreliminariesIn this section we introduce the relevant notations and concepts of lattice theory andreview some of the basic results on existence and computation of extremal �xed points.Given a set X, a partial order relation, denoted �, over X is a re
exive, anti-symmetric andtransitive relation. For x; y 2 X if x � y, then x is said to be smaller than y, and y is saidto be greater than x. � is said to be total order if for each x; y 2 X, either x � y or y � x.The containment relation de�ned on a power set is an example of a partial order which isnot a total order.De�nition 1 The pair (X;�), where X is a set and � is a partial order over X, is called apartially ordered set or a poset. A totally ordered subset of X is called a chain.Given Y � X, x 2 X is said to be supremal of Y if� (upper bound): 8y 2 Y : y � x, and� (least upper bound): 8z 2 X : [8y 2 Y : y � z]) [x � z]:It is easy to check that the supremal of Y is unique whenever it exists. The notation sup Yis used to denote the supremal of Y . We also use tY to denote sup Y . In particular, givenx; y 2 X, x t y is used to denote sup fx; yg.Similarly, x 2 X is called in�mal of Y � X if� (lower bound): 8y 2 Y : x � y, and� (greatest lower bound): 8z 2 X : [8y 2 Y : z � y]) [z � x]:2



It is easy to check that the in�mal of Y is unique whenever it exists. The notation inf Yis used to denote the in�mal of Y . We also use uY to denote inf Y . In particular, givenx; y 2 X, x u y is used to denote inf fx; yg. For example, consider the interval [0; 2) :=fx 2 R j 0 � x < 2g. Then sup [0; 2) = 2 and inf [0; 2) = 0. Note that it follows from theabove the de�nitions that sup ; = inf X (whenever it exists), and inf ; = supX (wheneverit exists).De�nition 2 A poset (X;�) is said to be a lattice if sup Y; inf Y 2 X for any �nite Y �X. If sup Y; inf Y 2 X for arbitrary Y � X, then (X;�) is called a complete lattice. Ifinf X 2 X, and sup Y 2 X for any chain Y � X, then (X;�) is called a complete partialorder (cpo).Example 1 Given a set X, (2X ;�)|the set of all subsets of X together with the contain-ment partial order|is called the power set lattice of X. A power set lattice is an exampleof a complete lattice. The set of natural numbers with the natural ordering is an exampleof a chain which is not a cpo.As mentioned in introduction, at the qualitative or logical level of abstraction, the behav-ior of a DES is described using the set of all possible sequences of events that it can execute.Let � denote the set of events that can occur in a DES, then the notation �� denotes the setof all �nite length sequences of events, including the zero length sequence �. Logical behaviorof a DES is a subset of ��, also called a language. Each member of �� is called a string ora trace. In section 5 we study extremal solutions of inequations de�ned over the power setlattice (2�� ;�)|the set of all languages together with the containment partial order.We next de�ne a few useful properties of functions de�ned over lattices. Given a poset(X;�), a function f : X ! X is said to be idempotent if8x 2 X : f(x) = f(f(x));it is said to be monotone if 8x; y 2 X : [x � y]) [f(x) � f(y)]:Given a complete lattice (X;�), a function f : X ! X is said to be disjunctive if8Y � X : f(ty2Y Y ) = ty2Y f(y);it is said to be conjunctive if 8Y � X : f(uy2Y Y ) = uy2Y f(y):It is readily veri�ed that disjunctive and conjunctive functions are also monotone. Note thatsince sup ; = inf X and inf ; = supX, by setting Y = ; in the last two de�nitions weobtain for a disjunctive function that f(inf X) = inf X, and for a conjunctive function thatf(supX) = supX. 3



Example 2 Consider the power set lattice of languages de�ned over the event set �. Thepre�x closure operation pr : 2�� ! 2�� is de�ned as: Given K � ��, pr(K) � �� is the setof pre�xes of strings belonging to K, i.e.,pr(K) := fs 2 �� j 9t 2 K s.t. s � tg;where the notation s � t is used to denote that the string s is a pre�x of string t. Clearly,K � pr(K); K is said to be pre�x closed if K = pr(K). The extension closure operationext : 2�� ! 2�� is de�ned as : Given K � ��, ext(K) � �� is the set of extensions of stringsin K, i.e., ext(K) := fs 2 �� j 9t 2 K s.t. t � sg:Clearly, K � ext(K); K is said to be extension closed if K = ext(K).Some other interesting functions are the concatenation and the quotient operations (witha �xed language) de�ned as follows: Given a �xed language H � ��, and a language K � ��,the concatenation of K with H, denoted KH, is the language obtained by concatenatingstrings from K and H, i.e., KH := fst 2 �� j s 2 K; t 2 Hg;and the K quotient with H, denoted K=H, is the language obtained by removing su�xesbelonging to H from strings in K, i.e.,K=H := fs 2 �� j 9t 2 H s.t. st 2 Kg:It is easily veri�ed that for a language K � ��, pr(K) = K=�� and ext(K) = K��. Thuspre�x closure operation is an example of the quotient operation and extension closure oper-ation is an example of concatenation operation. It can be checked that both concatenationand quotient operations are disjunctive and thus monotone, however, none of them are con-junctive. The pre�x and extension closure operations are both idempotent.The following �xed point theorem is due to Knaster and Tarski:Theorem 1 [4, Theorem 4.11] Let (X;�) be a complete lattice and f : X ! X be amonotone function. Let Y := fx 2 X j f(x) = xg be the set of �xed points of f . Then1. inf Y 2 Y , and inf Y = inf fx 2 X j f(x) � xg.2. sup Y 2 Y , and sup Y = sup fx 2 X j x � f(x)g.It follows from Theorem 1 that a monotone function de�ned over a complete lattice alwayshas an in�mal and a supremal �xed point. The following theorem provides a techniquefor computing such �xed points under stronger conditions. We �rst de�ne the notion ofdisjunctive and conjunctive closure. Given a complete lattice (X;�), and a function f :X ! X, the disjunctive closure of f , denoted f�, is the map f� : X ! X de�ned as:8x 2 X : f�(x) := ti�0f i(x);4



and the conjunctive closure of f , denoted f�, is the map f� : X ! X de�ned as:8x 2 X : f�(x) := ui�0f i(x);where f0 is de�ned to be the identity function, and for each i � 0, f i+1 := ff i. It is easy tosee that the disjunctive as well conjunctive closures of f are idempotent.Theorem 2 [4, Theorem 4.5] Let (X;�) be a complete lattice and f : X ! X be a function.Let Y := fx 2 X j f(x) = xg be the set of �xed points of f .1. If f is disjunctive, then inf Y = f�(inf X).2. If f is conjunctive, then sup Y = f�(supX).Remark 1 In the �rst part of Theorem 2, it is possible to compute the in�mal �xed pointof a function in a weaker setting when it is de�ned over a cpo (not necessarily a completelattice) and it commutes with the supremal operation taken over a countable chain (so it isnot necessarily disjunctive) [4].3 Dual, Co-Dual, Inverse, and Converse OperationsIn this section we develop the notion of dual, co-dual, inverse, and converse operationsand study some of their properties. These concepts are used in the next section for obtainingextremal solutions of a system of inequations. We begin by providing conditions for existenceof extremal solutions of simple inequations.Lemma 1 [5] Consider a complete lattice (X;�) and functions f; g : X ! X.1. If f is disjunctive, then the supremal solution of the inequation f(x) � y, in thevariable x, exists for each y 2 X.2. If g is conjunctive, then the in�mal solution of the inequation y � g(x), in the variablex, exists for each y 2 X.Proof: Since (X;�) is complete, inf X 2 X, and by de�nition inf X � y. Using thedisjunctivity of f we obtain f(inf X) = inf X � y. Thus the set of solutions of the inequationf(x) � y is nonempty. Let I be an indexing set such that for each i 2 I, xi 2 X is asolution of the inequation f(x) � y. Then it su�ces to show that ti2Ixi is also a solutionof the inequation. Since (X;�) is complete, it follows that ti2Ixi 2 X. Also, f(ti2Ixi) =ti2If(xi) � y, where the equality follows from the fact that f is disjunctive and the inequalityfollows from the fact that f(xi) � y for each i 2 I.Lemma 1 can be used to de�ne the notion of dual of a disjunctive function and co-dualof a conjunctive function. 5



De�nition 3 Consider a complete lattice (X;�) and functions f; g : X ! X. If f is dis-junctive, then its dual, denoted f?(�), is de�ned to be the supremal solution of the inequationf(x) � (�). If g is conjunctive, then its co-dual, denoted g>(�), is de�ned to be the in�malsolution of the inequation (�) � g(x). (x 2 X is the variable of the inequation.)Example 3 Consider the power set lattice of languages de�ned over the event set � andthe pre�x and extension closure operations. Since these operations are disjunctive, theirdual exist. It follows from the de�nition of duality that for K � ��, pr?(K) is the supre-mal language whose pre�x closure is contained in K. Thus pr?(K) is the supremal pre�xclosed sublanguage of K, which we denote as supP (K). Similarly, ext?(K) is the supremalextension closed sublanguage of K, which we denote as supE(K).The following proposition provides an alternative de�nition of duality as well as of co-duality.Proposition 1 Consider a complete lattice (X;�), a disjunctive function f : X ! X, anda conjunctive function g : X ! X. Then the following are equivalent.1. f? = g.2. 8x; y 2 X : [f(x) � y], [x � g(y)].3. g> = f .Proof: We only prove the equivalence of the �rst and the second assertion; the equivalenceof the second and the third assertion can be proved analogously. Since f is disjunctive, f?is de�ned. Suppose the �rst assertion is true. In order to see the forward implication of thesecond assertion, suppose f(x) � y, which implies x is a solution of the inequation. Sincef?(y) = g(y) is the supremal solution of the inequation, it follows that x � g(y). Next inorder to see the backward implication, suppose x � g(y). So from monotonicity of f weobtain that f(x) � f(g(y)). Since g(y) = f?(y) is a solution of the inequation, we havef(g(y)) � y. So f(x) � f(g(y)) � y, as desired.Next suppose the second assertion holds. By setting x = g(y) in the second assertion, weobtain that for all y 2 X, f(g(y)) � y. This shows that g(y) is solution of the inequation.Finally using the forward implication of the second assertion we conclude that if x is asolution of the inequation, then x � g(y). This shows that g(y) is the supremal solution ofthe inequation. So g(y) = f?(y) for all y 2 X.Note that the equivalence of the �rst two assertions in Proposition 1 does not require gto be conjunctive. Hence if we replace g by f?, then the �rst assertion is identically true;consequently, the second assertion is also identically true. Similarly it can be argued thatthe second assertion is identically true with f replaced by g>. This is stated in the followingcorollary.Corollary 1 Consider a complete lattice (X;�), and functions f; g : X ! X.6



1. If f is disjunctive, then 8x; y 2 X : [f(x) � y], [x � f?(y)].2. If g is conjunctive, then 8x; y 2 X : [g>(x) � y], [x � g(y)].Corollary 1 can be used to obtain several interesting properties of the dual and co-dualoperations. We �rst show that dual of a disjunctive function is conjunctive, and co-dual ofa conjunctive function is disjunctive.Lemma 2 Consider a complete lattice (X;�) and functions f; g : X ! X.1. If f is disjunctive, then f? is conjunctive.2. If g is conjunctive, then g> is disjunctive.Proof: Pick Y � X. We need to show that f?(uy2Y y) = uy2Y f?(y). The forward inequalitycan be shown as follows:[f?(uy2Y y) � f?(uy2Y y)] , [f(f?(uy2Y y)) � uy2Y y], [8y 2 Y : f(f?(uy2Y y)) � y], [8y 2 Y : f?(uy2Y y) � f?(y)], [f?(uy2Y y) � uy2Y f?(y)];where the �rst and the third equivalence follow from Corollary 1.Next the reverse inequality can be obtained as follows:[8y 2 Y : uy2Y f?(y) � f?(y)] , [8y 2 Y : f(uy2Y f?(y)) � y], [f(uy2Y f?(y) � uy2Y y], [uy2Y f?(y) � f?(uy2Y y)];where the �rst and the �nal equivalence follow from Corollary 1.It follows from Lemma 2 that it is possible to de�ne co-dual of the dual of a disjunc-tive function and dual of the co-dual of a conjunctive function. The following propositiondescribes some other properties of dual and co-dual operations.Proposition 2 Consider a complete lattice (X;�), disjunctive functions f; f1; f2 : X ! X,and conjunctive functions g; g1; g2 : X ! X.1. (? and > inverses) (a) (f?)> = f (b) (g>)? = g2. (composition) (a) (f1f2)? = f?2 (f?1 ) (b) (g1g2)> = g>2 (g>1 )3. (idempotence) (a) [ff = f ], [f?f? = f?] (b) [gg = g], [g>g> = g>]Proof: 1. Since f is disjunctive, it follows from Lemma 2 that f? is conjunctive, so (f?)>is de�ned. By replacing g with f? in Proposition 1 we obtain from its third assertion that(f?)> = f , as desired. 7



2. Since disjunctivity is preserved under composition of functions, f1f2 is disjunctive, sothat its dual is de�ned. Fix x; y 2 X. Then the repeated application of Corollary 1 yieldsthe following series of equivalences:[f1f2(x) � y] , [f2(x) � f?1 (y)], [x � f?2 f?1 (y)]:Since f?2 f?1 is conjunctive (follows from Lemma 2, and the fact that conjunctivity is preservedunder composition of functions), if we replace f by f1f2 and g by f?2 f?1 in Proposition 1, weobtain (f1f2)? = f?2 f?1 , as desired.3. The forward implication can be shown as follows: f? = (ff)? = f?f?, where the �rstequality follows from hypothesis, and the second from part 2. The backward implication canbe obtained as follows: f = (f?)> = (f?f?)> = ff , where the �rst equality follows frompart 1, the second from hypothesis, and the �nal from parts 2 and 1.Example 4 Consider the power set lattice of languages de�ned over the event set �. Weshowed in Example 3 that pr? = supP and ext? = supE. Then it follows from Lemma 2that supP as well as supE are conjunctive. Moreover, Proposition 2 implies that (supP )> =(pr?)> = pr and (supE)> = (ext>)? = ext. Finally, since pr and ext are idempotent, itfollows from Proposition 2 that pr? = supP and ext> = supE are idempotent.3.1 Conjugate OperationThe notions of duality and co-duality can be de�ned for functions de�ned over completelattices. However, if the lattice is also a Boolean lattice, so that each lattice element canbe uniquely complemented, then the notion of conjugate of a function can also be de�ned.This is then used to de�ne inverse of a disjunctive function and converse of a conjunctivefunction.De�nition 4 A lattice (X;�) is said to be a Boolean lattice, if� (Bounded): inf X; supX 2 X, and� (Distributive): 8x; y; z 2 X : x u (y t z) = (x u y) t (x u z), and� (Complement): 8x 2 X : 9 unique xc 2 X s.t. xuxc = inf X; xtxc = supX.For a pair x; y of elements of a Boolean lattice (X;�), the notation x � y is used todenote x u yc. A power set lattice is an example of a Boolean lattice that is also complete.The following hold for a Boolean lattice:Lemma 3 [4, Lemma 7.3] Let (X;�) be a Boolean lattice. Then1. (inf X)c = supX and (supX)c = inf X.2. 8x 2 X : (xc)c = x. 8



3. (de Morgan's Law): 8x; y 2 X : (x u y)c = xc t yc; (x t y)c = xc u yc:4. 8x; y 2 X : [x � y], [x u yc = inf X].De�nition 5 Given a complete Boolean lattice (CBL) (X;�) and a function f : X ! X,the conjugate of f , denoted f , is de�ned as:8x 2 X : f (x) := (f(xc))c:If f is disjunctive, then its inverse, denoted f�1, is de�ned to be the function f?; and if fis conjunctive, then its converse, denoted f ], is de�ned to be the function (f)?.Note that if f is disjunctive (respectively, conjunctive), then it follows from de Morgan'slaw that f is conjunctive (respectively, disjunctive). Hence inverse (respectively, converse)of a disjunctive (respectively, conjunctive) function is well de�ned. Moreover, it followsfrom Lemma 2 that the inverse of a disjunctive function is disjunctive, and converse of aconjunctive function is conjunctive. Appendix A provides a justi�cation for the choice of thename inverse for the operation conjugate of dual.Example 5 Consider the power set lattice of languages de�ned over the event set � and thepre�x and extension closure operations. It follows from the de�nition of conjugate that fora language K � ��, pr(K) = �� � pr(�� �K) = supE(K), the supremal extension closedsublanguage of K. Similarly, ext(K) = �� � ext(�� �K) = supP (K), the supremal pre�xclosed sublanguage of K. These relations between pre�x and extension closure operationsare not coincidental, rather they can be derived as we show below.The following lemma lists a few properties of the conjugate operation.Lemma 4 Consider a CBL (X;�) and functions f; g : X ! X.1. (self-inverse) f = f2. (composition) fg = fg3. (idempotence) [ff = f ], [f f = f ]Proof: The �rst assertion is obvious. In order to see the second assertion, pick x 2 X.Then we have fg(x) = (fg(xc))c = (f(g(x))c)c = fg(x). The forward implication of thethird assertion is obtained as follows: f f = ff = f , where the �rst equality follows frompart 2, and the second from hypothesis. The backward implication of the third assertion isobtained as follows: f = f = f f = ff , where the �rst equality follows from part 1, thesecond from hypothesis, and the third from parts 2 and 1.Next we provide a few properties of the inverse and the converse operations. The followingproposition provides an alternative de�nition of inverse as well as converse.Proposition 3 Consider a CBL (X;�), and functions f; g; h : X ! X.9



1. If f is disjunctive, then f�1 = h if and only if8x; y 2 X : [f(x) u y = inf X], [x u h(y) = inf X]: (1)2. If g is conjunctive, then g] = h if and only if8x; y 2 X : [g(x) t y = supX], [x t h(y) = supX]:Proof: Since f�1 := (f?), it follows from the �rst part of Lemma 4 that f�1 = h if andonly if f? = h. Thus it su�ces to show that f? = h is equivalent to (1). From Proposition1, f? = h is equivalent to 8x; y 2 X : [f(x) � y], [x � h(y)]: (2)Hence it su�ce to show the equivalence of (2) and (1). Replacing y by yc in (2) we obtain8x; y 2 X : [f(x) � yc], [x � (h(y))c]:Thus the desired equivalence follows from the part 4 of Lemma 3.The following proposition provides additional properties of inverse and converse opera-tions.Proposition 4 Consider a CBL (X;�), disjunctive functions f; f1; f2 : X ! X, and con-junctive functions g; g1; g2 : X ! X.1. (commutation) (a) f? = f> (b) g> = g?2. (self-inverse) (a) (f�1)�1 = f (b) (g])] = g3. (composition) (a) (f1f2)�1 = f�12 f�11 (b) (g1g2)] = g]2g]14. (idempotence) (a) [ff = f ], [f�1f�1 = f�1] (b) [gg = g], [g]g] = g]]Proof: 1. Since f? = f�1, it follows from the �rst part of Proposition 3 that it su�ces toshow that (1) holds with h replaced by f>. This can be shown as follows:[f(x) u y = inf X] , [f(x) � yc], [y � (f(x))c], [y � f (xc)], [f>(y) � xc], [f>(y) u x = inf X];where the fourth equivalence follows from the second part of Corollary 1, and the otherequivalences follow from Lemma 3.2. From part 1, f�1 = f>. Hence from Proposition 1, (f�1)? = f . By applying conjugateoperation on both sides of this identity, we obtain (f�1)�1 = f .10



3. We have (f1f2)�1 = ((f1f2)?) = f?2 f?1 = f?2 f?1 = f�12 f�11 , as desired.4. The forward implication can be obtained as follows: f�1 = (ff)�1 = f�1f�1, wherethe �rst equality comes from hypothesis, and the second from part 3. The backward impli-cation can be obtained as follows: f = (f�1)�1 = (f�1f�1)�1 = ff , where the �rst equalitycomes from part 2, the second from hypothesis, and the �nal from parts 3 and 2.Remark 2 The commutative diagram of Figure 1 summarizes the relationship among thevarious operations that we have obtained above. Note that given any disjunctive func-CONJUNCTIVEDISJUNCTIVEf? f
f�1f conjugate conjugateconverse

inverse co-dualdualco-dualdualFigure 1: Commutative diagram for dual, co-dual, conjugate, inverse, and conversetion f , by applying (�)?; (�)> and (�) any number of times, we get four unique functions:(f; f�1; f?; f), the �rst two of which are disjunctive and the last two are conjunctive.The commutative diagram of Figure 1 yields the commutative diagram shown in Figure2 for operations of pr, ext, supP , and supE.conjugate conjugateconverse
inverse co-dualdualco-dualdual supEsupP

extpr
Figure 2: Commutative diagram for pr, ext, supP , and supE operations11



4 Extremal Solutions of InequationsGiven a complete lattice (X;�) and a �nite family of functions ffi; gi : X ! Xgi�n,where n 2 N , we next consider computation of extremal solutions of the system of inequa-tions: [8i � n : fi(x) � gi(x)];where x 2 X is the variable of the system of inequations. Note that this also allows usto obtain extremal solutions of a system of equations, as each equation can equivalently bewritten as a pair of inequations. We show that the computation of extremal solutions of theabove system of inequations can be reduced to extremal �xed point computations of certaininduced functions. We need the result of the following lemma:Lemma 5 Consider the system of inequations ffi(x) � gi(x)gi�n over a complete lattice(X;�). De�ne functions h1; h2 : X ! X as:8y 2 X : h1(y) := ui�nf?i (gi(y)); 8y 2 X : h2 := ti�ng>i (fi(y)): (3)1. If fi is disjunctive and gi is monotone for each i � n, then h1 is monotone, and8y; z 2 X : [y � h1(z)], [8i� n : fi(y) � gi(z)]:2. If fi is monotone and gi is conjunctive for each i � n, then h2 is monotone, and8y; z 2 X : [h2(y) � z], [8i� n : fi(y) � gi(z)]:Proof: In order to show the monotonicity of h1, it su�ces to show that for each i � n, f?i gi ismonotone. This follows from the facts that gi is given to be monotone, f?i is conjunctive (referto Lemma 2), so that it is also monotone, and monotonicity is preserved under compositionof functions.In order to see the second claim, �x y; z 2 X. Then we have the following series ofequivalences: [y � h1(z)] , [y � ui�nf?i (gi(z))], [8i� n : y � f?i (gi(z))], [8i� n : fi(y) � gi(z)];where the �nal equivalence follows from the �rst part of Corollary 1.Theorem 3 Consider the system of inequations ffi(x) � gi(x)gi�n over a complete lattice(X;�). Let Y := fy 2 X j 8i � n : fi(y) � gi(y)g (4)be the set of all solutions of the system of inequations; andY1 := fy 2 X j h1(y) = yg; Y2 := fy 2 X j h2(y) = yg (5)be the sets of all �xed points of h1 and h2, respectively, where h1 and h2 are de�ned by (3).12



1. If fi is disjunctive and gi is monotone, then sup Y 2 Y , sup Y1 2 Y1 and sup Y = sup Y1.2. If fi is monotone and gi is conjunctive, then inf Y 2 Y , inf Y2 2 Y2 and inf Y = inf Y2.Proof: It follows from the �rst part of Lemma 5 that h1 is monotone. Hence it follows fromthe second part of Theorem 1 that sup Y1 2 Y1, andsup Y1 = sup Y 01 ; where Y 01 := fy 2 X j y � h1(y)g: (6)It remains to show that sup Y 2 Y and sup Y = sup Y1. In view of (6), it su�ces to showthat Y = Y 01 , i.e, y 2 X is a solution of the system of inequations if and only if y � h1(y).This follows from the �rst part of Lemma 5 by setting z = y.The following corollary follows from Theorems 3 and 2.Corollary 2 Consider the system of inequations ffi(x) � gi(x)gi�n over a complete lattice(X;�); the set Y of all solutions of the system of inequations as de�ned by (4); and functionsh1 and h2 de�ned by (3). If fi is disjunctive and gi is conjunctive for each i � n, thensup Y = (h1)�(supX) and inf Y = (h2)�(inf X).Proof: Since fi is disjunctive and gi is conjunctive (which implies fi as well as gi aremonotone) Theorem 3 implies that sup Y = sup Y1 and inf Y = inf Y2, where Y1; Y2 are thesets of �xed points of h1; h2, respectively. Using the facts that f?i is conjunctive, and gi isconjunctive, it is easily shown that h1 is conjunctive. Hence it follows from the second partof Theorem 2 that sup Y1 = (h1)�(supX). Similarly, using the facts that g>i is disjunctive,and fi is disjunctive, it is easily shown that h2 is disjunctive. Hence it follows from the �rstpart of Theorem 2 that inf Y = (h2)�(inf X), as desired.The result of Corollary 2 is applicable whenever fi is disjunctive and gi is conjunctivefor each i � n. The following theorem provides techniques for the computation of extremalsolutions of the system of inequations under di�erent conditions.Theorem 4 Consider the system of inequations ffi(x) � gi(x)gi�n over a complete lattice(X;�); and the set Y of all solutions of the system of inequations as de�ned by (4).1. Let fi be disjunctive and gi be monotone. Consider the following iterative computation:� y0 := supX,� 8k � 0 : yk+1 := h1(yk),where h1 is de�ned by (3). Suppose m 2 N is such that ym+1 = ym; then ym = sup Y .2. Let fi be monotone and gi be conjunctive. Consider the following iterative computa-tion: � y0 := inf X,� 8k � 0 : yk+1 := h2(yk), 13



where h2 is de�ned by (3). Suppose m 2 N is such that ym+1 = ym; then ym = inf Y .Proof: It follows from Theorem 3 that the supremal solution of the system of inequations,sup Y , exists. We �rst show that ym 2 Y , i.e., it is a solution of the system of inequations.Since ym+1 = ym, we have h1(ym) = ym, which implies that ym � h1(ym). Thus by settingy = z = ym in the equivalence of the �rst part of Lemma 5, we obtain that ym 2 Y .Next we show that if z 2 Y is another solution of the system of inequations, then z � ym.We use induction to show that for each k � 0, z � yk. If k = 0, then yk = supX, so thatz � yk = supX. Thus the base step trivially holds. Suppose for induction hypothesis thatz � yk for some k � 0. From the �rst part of Lemma 5 we have that h1 is monotone. Thistogether with the induction hypothesis implies that h1(z) � h1(yk) = yk+1. Thus it su�cesto show that z � h1(z). Since z 2 Y , fi(z) � gi(z) for each i � n. Thus by setting y = z inthe �rst part of Lemma 5, we obtain that z � h1(z).4.1 Specializations of Extremal Solutions of InequationsIn many applications we are interested in �nding the supremal solution smaller than agiven element w 2 X, and/or the in�mal solution greater than the given element w, of asystem of inequations: ffi(x) u vi � gi(x)gi�n, where fvi 2 Xgi�n is a given family of �xedelements. Note that if w = vi = supX, then this problem reduces to the problem analyzedin Theorems 3 and 4. Conversely, we show that the problem just described can be analyzedusing techniques developed in Theorems 3 and 4 provided the lattice is also Boolean, so thatlattice elements can be uniquely complemented.First note that the constraint that the supremal solution be smaller than w can becaptured by adjoining the following additional inequation:fa(x) � ga(x);where fa is the identity function, i.e., fa(x) := x, and ga is the constant function ga(x) := w.Similarly the constraint that the in�mal solution should be greater than w can be capturedby adjoining the following additional inequation:fb(x) � gb(x);where fb is the constant function fb(x) := w, and gb(x) is the identity function. Next notethat [fi(x) u vi � gi(x)], [fi(x) � gi(x) t vci ]:Thus if we de�ne g0i(x) := gi(x) t vci and f 0i(x) := fi(x) u vi, then we obtain[fi(x) u vi � gi(x)], [fi(x) � g0i(x)], [f 0i(x) � gi(x)]:It can be checked that (i) g0i is monotone if and only if gi is monotone; f 0i is monotoneif and only if fi is monotone, (ii) the identity function is disjunctive as well as conjunctive,14



(iii) a constant function is monotone, (iv) f>a (ga(x)) = g>b (fb(x)) = w, and (v) (g0i(x))c =(gi(x) t vci )c = vi u (gi(x))c = vi � gi(x). We also have[ui�nf?i (g0i(x))] u f?a (ga(x)) = ui�n[f�1i [vi � gi(x)]]c u w= w u [ti�nf�1i [vi � gi(x)]]c= w �ti�nf�1i [vi � gi(y)]:Thus the following result can be obtained as a corollary of Theorems 3 and 4.Corollary 3 Given a CBL (X;�), a �xed w 2 X, and a family of lattice elements fvi 2Xgi�n, consider the system of inequations ffi(x)uvi � gi(x)gi�n over the given CBL. De�nefunctions h01; h02 : X ! X as:8y 2 X : h01(y) := w � [ti�nf�1i (vi � gi(y))]; h02(y) := w t [ti�ng>i (vi u fi(y))]: (7)1. Suppose fi is disjunctive and gi is monotone for each i � n. Then(a) h01 is monotone; and the supremal solution smaller than w of the given system ofinequations exists and equals the supremal �xed point of the function h01.(b) Consider the following iterative computation:� y0 := w,� 8k � 0 : yk+1 := h01(yk).Suppose m 2 N is such that ym+1 = ym; then ym equals the supremal solutionsmaller than w of the given system of inequations.2. Suppose fi is monotone and gi is conjunctive for each i � n. Then(a) h02 is monotone; and the in�mal solution greater than w of the given system ofinequations exists and equals the in�mal �xed point of the function h02.(b) Consider the following iterative computation:� y0 := w,� 8k � 0 : yk+1 := h02(yk).Suppose m 2 N is such that ym+1 = ym; then ym equals the in�mal solutiongreater than w of the given system of inequations.We next apply Theorem 4 and Corollary 3 to compute the extremal solution of a singleinequation.Theorem 5 Consider a CBL (X;�), a disjunctive and idempotent function f : X ! X,and �xed lattice elements w; v 2 X.1. The supremal solution smaller than w of f(x) u v � x equals w � f�1(v � w).15



2. The in�mal solution greater than w of f(x) u v � x equals w t [f(w) u v].Proof: Since f is disjunctive, and identity function is monotone, it follows from the �rstpart of Corollary 3 that the supremal solution smaller than w of f(x) u v � x exists. Also,the function h01 de�ned by (7) simpli�es to:8y 2 X : h01(y) = w � f�1(v � y):We apply the iterative computation of Corollary 3 for computing the desired supremal solu-tion. Then y0 = w. This impliesy1 = h01(y0) = h01(w) = w � f�1(v � w) (8)y2 = h01(y1) = w � f�1(v � y1) (9)We show that y1 = y2. First note that y1 = w � f�1(v � w) � w = y0. Hence monotonicityof h01 (refer to part 1(a) of Corollary 3) implies that y2 = h01(y1) � h01(y0) = y1. Thus itsu�ces to show that y2 � y1. Using (8) we obtainf�1(v � y1) = f�1(v � [w � f�1(v � w)])= f�1(v u [w u [f�1(v � w)]c]c)= f�1(v u [wc t f�1(v � w)])= f�1[(v u wc) t (v u f�1(v � w)]= f�1(v �w) t f�1(v u f�1(v � w));where the last equality follows from the fact that f�1 is disjunctive. Hence from (9) weobtain y2 = w � f�1(v � w)� f�1(v u f�1(v � w))� w � f�1(v � w)� f�1(f�1(v � w))= w � f�1(v � w)= y1;where the inequality follows from the fact that f�1 is disjunctive, so that it is also monotone,and the second equality follows from the fact that f�1 is idempotent. Thus it follows frompart 1(b) of Corollary 3 that y1 = y2 = w�f�1(v�w) is the supremal solution smaller thanw of f(x) u v � x.In Theorem 5, it is required that the function f be idempotent. However, if this is notthe case, then we can replace f by its disjunctive closure f�. We need the result of thefollowing lemma:Lemma 6 Consider a CBL (X;�), a disjunctive function f : X ! X, and a �xed v 2 X.Then 8x 2 X : [f(x) u v � x], [f�(x) u v � x]:16



Proof: It su�ces to show the forward inequality, as the reverse inequality is obvious. Again,it su�ces to show that for each i 2 N ,[f(x) u v � x]) [f i(x) u v � x]:We show this using induction on i. If i = 0, then f i(x) u v = x u v � x. Thus the base steptrivially holds. Suppose for induction hypothesis that f i(x) u v � x, i.e., f i(x) � x t vc.Then by applying f on both sides of the last inequation and using monotonicity of f weobtain: f i+1(x) � f(x t vc) = f(x) t f(vc) � (x u vc) t (vc t vc) = x t vc;where the �rst equality follows from disjunctivity of f , and the second inequality followsfrom the hypothesis that for each x 2 X, f(x) u v � x, i.e., f(x) � x t vc. This establishesthe induction step and completes the proof.Since the disjunctive closure of any function is idempotent, and preserves disjunctivity,the following result can be obtained as a corollary of Theorem 5 and Lemma 6.Corollary 4 Consider a CBL (X;�), a disjunctive function f : X ! X, and �xed latticeelements w; v 2 X.1. The supremal solution smaller than w of f(x) u v � x equals w � (f�)�1(v � w).2. The in�mal solution greater than w of f(x) u v � x equals w t [f�(w) u v].It is evident from Theorem 5 and Corollary 4 that the extremal solution of a singleinequation of the type f(x) u v � x can be easily obtained. We show in the followingtheorem that under certain conditions this can be used for computing the extremal solutionsof a system of inequations in a modular fashion, i.e., it is possible to �rst compute theextremal solution of inequations of the type f(x) u v � x as in Theorem 5 and Corollary 4,and then compute the extremal solutions of the remaining inequations. Thus the iterativecomputation scheme can be considerably simpli�ed. For simplicity of illustration we onlyconsider a pair of inequations.Theorem 6 Given a CBL (X;�), a �xed w 2 X, and a pair of lattice elements fvi 2 Xgi�2,consider a pair of inequations ffi(x) u vi � gi(x)gi�2 over the given CBL, where f1 isdisjunctive and idempotent and g1 is the identity function.1. Let f2 be disjunctive and g2 be monotone, and f?1 f?2 = f?2 (or equivalently, f�11 f�12 =f�12 ). Consider the following iterative computation:� y0 := w � f�11 (v1 � w)� 8k � 0 : yk+1 := yk � f�12 (v2 � g2(yk))Suppose m 2 N is such that ym+1 = ym, then ym is the supremal solution smaller thanw of ffi(x) u vi � gi(x)gi�2. 17



2. Let f2 be monotone and g2 be conjunctive, and f1g>2 = g>2 . Consider the followingiterative computation:� y0 := w t [f1(w) u v1]� 8k � 0 : yk+1 := yk t g>2 (v2 u f2(yk))Suppose m 2 N is such that ym+1 = ym, then ym is the in�mal solution greater thanw of ffi(x) u vi � gi(x)gi�2.Proof: It follows from part 1(a) of Corollary 3 that the required supremal solution exists.Also, it follows from the �rst part of Theorem 5 that the supremal solution smaller thanw of f1(x) u v1 � g1(x) = x is w � f�1(v1 � w). Hence we obtain from part 1(b) ofCorollary 3 that ym � w equals the supremal solution of f2(x) u v2 � g2(x) smaller thanthe supremal solution of f1(x) u v1 � g1(x) = x. Hence if z � w denotes the supremalsolution of ffi(x) u vi � gi(x)gi�2, then z � ym. Since z � w is the supremal solution offfi(x) u vi � gi(x)gi�2, in order to show that ym � z, it su�ces to show that ym � w is asolution of ffi(x) u vi � gi(x)gi�2.As noted above ym � w is a solution of f2(x)uv2 � g2(x). We show using induction thatfor each k � 0, yk is a solution of f1(x) u v1 � g1(x) = x, i.e.,[f1(yk) u v1 � yk] , [f1(yk) u (v1 � yk) = inf X], [yk u f�11 (v1 � yk) = inf X], [f�11 (v1 � yk) � yck];where the second equivalence follows from (1). Since y0 � w is the supremal solution off1(x) u v1 � x (refer to the �rst part of Theorem 5), it follows that the base step holds.Assume for induction hypothesis that f�11 (v1� yk) � yck for some k � 0. Then the inductionstep can be established as follows:f�11 (v1 � yk+1) = f�11 (v1 � [yk � f�12 (v2 � g2(yk))])= f�11 [(v1 � yk) t (v1 u f�12 (v2 � g2(yk)))]= f�11 (v1 � yk) t f�11 [v1 u f�12 (v2 � g2(yk))]� yck t f�11 (f�12 (v2 � g2(yk)))= yck t f�12 (v2 � g2(yk))= yck+1;where the �rst equality follows from the de�nition of yk, the third equality follows from thefact that f�11 is disjunctive, the inequality follows from induction hypothesis and the factthat f�11 is monotone (as it is disjunctive), the fourth equality follows from the fact thatf?1 f?2 = f?2 , which is equivalent to f�11 f�12 = f�12 , and the �nal equality follows from thede�nition of yk+1. 18



5 Applications to DES Supervisory ControlIn this section we demonstrate how the techniques for computation of extremal solutionof inequations developed above can be applied for computation of maximally permissivesupervisors in control of logical behavior of DESs.Given a discrete event plant G with event set �, its logical behavior is described using apair of languages (Lm(G); L(G)) satisfying Lm(G) � L(G) = pr(L(G)) 6= ;. L(G) � �� iscalled the generated language of G, and consists of the event sequences that the plant canexecute. It is pre�x closed since for a sequence of events to occur, all its pre�xes must alsooccur. Lm(G) � L(G) is called the marked language of G and consists of those strings whoseexecution imply completion of a certain task. A desired generated behavior is a certainsublanguage of L(G) and a desired marked behavior is a certain sublanguage of Lm(G). Acontrol mechanism is needed so that the plant executes only those sequences of events whichare desired.The event set � is partitioned into �u[(���u), the sets of uncontrollable and controllableevents. A supervisor is event driven, and at each event execution epoch it dynamicallydisables some of the controllable events from occurring so that the behavior of the controlledplant satis�es the desired behavior constraint. Due to the inability of a supervisor to preventuncontrollable events from occurring, a certain behavior can be achieved under control onlyif it is controllable [27]. A language H � L(G) is said to be controllable ifpr(H)�u \ L(G) � pr(H): (10)If in addition it is also desired that the supervisor be non-blocking so that any string inthe generated language of the controlled plant can be extended to a string in its markedlanguage, then the desired behavior must also be relative closed (also known as Lm-closed)[27]. A language H � Lm(G) is called relative closed ifpr(H) \ Lm(G) � H: (11)Furthermore, if the supervisor's observation is �ltered through a mask function M de�nedover the event set �, then the desired behavior can be achieved under control only when itis also observable [20, 3]. A language H � L(G) is said to be observable if8s; t 2 pr(H); � 2 � : [M(s) = M(t); s� 2 pr(H); t� 2 L(G)]) [t� 2 pr(H)]: (12)In case the supervisor is local so that it is only able to control those events that it observes[11, 19, 21], then the desired behavior must satisfy a condition stronger than observability,called normality. A language H � L(G) is said to be normal ifM(pr(H)) \ L(G) � pr(H); (13)where M : 2�� ! 2�� is the map induced by the mask function M and is de�ned as:8H � �� :M(H) := fs 2 �� j 9t 2 H s.t. M(t) = M(s)g:19



ThusM maps a certain string to all those string which look alike under the maskM . It canbe veri�ed that M is disjunctive and idempotent. Also,M�1 =M.In case the desired behavior fails to satisfy one or more of the required conditions, asupervisor is synthesized that achieves a supremal sublanguage or in�mal superlanguage ofthe desired behavior satisfying the required conditions. We next discuss computation ofsuch languages; this requires computation of extremal solutions of inequations of the type(10)-(13) de�ned over the power set lattice (2��;�). Since a power set lattice is also a CBL,the results developed in the previous section can be applied.5.1 Extremal Relative Closed LanguagesConsider the de�nition of relative closure given by (11). It is of the formf(H) \ Lm(G) � g(H);where f is the pre�x closure operation which is disjunctive and idempotent, and g is theidentity function which is conjunctive and idempotent. Hence it follows from Corollary 3that the supremal relative closed sublanguage as well as in�mal relative closed superlanguageof a given language K � Lm(G), denoted supR(K) and inf R(K), respectively, exist, asexpected [12]. Furthermore it follows from the �rst part of Theorem 5 thatsupR(K) = K � pr�1(Lm(G)�K) = K � (Lm(G) �K)��:On the other hand, it follows from the second part of Theorem 5 thatinf R(K) = K [ (pr(K) \ Lm(G)) = pr(K) \ Lm(G);where the second equality follows from the fact that K � Lm(G).5.2 Extremal Controllable LanguagesConsider the de�nition of controllability given by (10). It is of the formf(H) \ L(G) � g(H);where f is the composition of the pre�x closure operation and the operation of concatenationwith the event set �u, and g is the pre�x closure operation, which is monotone but notconjunctive. Since pre�x closure as well as concatenation operations are disjunctive, anddisjunctivity is preserved under composition of functions, it follows that f is disjunctive.Hence it follows from Corollary 3 that the supremal controllable sublanguage of a languageK � L(G), denoted supC(K), exists, as expected [26]. However, since g is not conjunctive,the in�mal controllable superlanguage of K need not exist, as expected.Since f(�) = pr(�)�u, it follows from Figure 2 and Proposition 4 that f�1(�) = [(�)=�u]��.Hence the following iterative scheme of Corollary 3 can be used to compute supC(K):20



� K0 := K,� Ki+1 := Ki � [(L(G)�Ki)=�u]��.If there exists m 2 N such that Km+1 = Km, then Km = supC(K). Using the argumentssimilar to those given in [26] it can be shown that such an m exists whenever K and L(G)are regular languages [10].If we require that the extremal language be controllable as well as pre�x closed, then wemust consider the extremal solution of the following two inequations:pr(H)�u \ L(G) � pr(H); pr(H) � H; (14)where H � L(G) is the variable of inequation. Using the fact that H � L(G), we show thatthe two inequations of (14) is equivalent to the following single inequation:pr(H)�u \ L(G) � H: (15)It is clear that (14) implies (15). Also, since H � pr(H), the �rst inequation of (14) followsfrom (15). It remains to show that (15) implies pr(H) � H. First note that if f(�) = pr(�)�u,then f�(�) = pr(�)��u. Hence it follows from Lemma 6 that (15) is equivalent topr(H)��u \ L(G) � H: (16)This equivalence was �rst demonstrated in [2] under the assumption that K is pre�x closed,and without this assumption in [13]. Since pr(H) � pr(H)��u and pr(H) � L(G) (asH � L(G)), it follows from (16) that pr(H) � pr(H)��u \ L(G) � H, as desired.It follows from the above discussions that (15), or equivalently (16), can be used tocompute the extremal pre�x closed and controllable language. We consider (16), which is ofthe form f(H) \ L(G) � g(H);where f(�) = pr(�)��u, which is disjunctive as well as idempotent, and g is the identity func-tion. Consequently, it follows from Corollary 3 that the supremal pre�x closed and control-lable sublanguage and in�mal pre�x closed controllable superlanguage of K � L(G), denotedsupPC(K) and inf PC(K), respectively, exist. Furthermore, it follows from Theorem 5 thatsupPC(K) = K � f�1(L(G)�K) = K � [(L(G)�K)=��u]��inf PC(K) = K [ (f(K) \ L(G)) = K [ (pr(K)��u \ L(G)) = pr(K)��u \ L(G):The above formula for supPC(K) was �rst reported in [2] under the assumption that K ispre�x closed. Our derivation shows that we do not need to impose this assumption. Theformula for inf PC(K) was �rst reported in [16].We can also study the computation of extremal languages that are relative closed (ratherthan pre�x closed) and controllable. In this case we must consider the extremal solutions ofthe following two inequations:pr(H) \ Lm(G) � H; pr(H)�u \ L(G) � pr(H);21



where H � L(G) is the variable of inequations. It can be argued as above that the supremalrelative closed and controllable sublanguage of K � Lm(G), denoted supRC(K), exists;however, the in�mal relative closed and controllable sublanguage need not exist, as expected.Moreover, if we de�ne f1(�) := pr(�); f2(�) := pr(�)�u;then f�11 (f�12 (�)) = f�11 [((�)=�u)��] = [((�)=�u)��]�� = ((�)=�u)�� = f�12 (�):Hence it follows from the �rst part of Theorem 6 that it is possible to modularly computesupRC(K), i.e., supRC(K) = supC(supR(K)):So the following iterative computation of Theorem 6 can be used for computing supRC(K):� K0 := K � (Lm(G) �K)��,� Ki+1 := Ki � [(L(G)�Ki)=�u]��.Ifm 2 N is such thatKm+1 = Km, thenKm = supRC(K). It can be shown using argumentssimilar to those given in [26] that such an m exists whenever K and L(G) are regular.5.3 Extremal Normal LanguagesConsider the de�nition of normality given by (13). It is of the formf(H) \ L(G) � g(H);where f(�) = M(pr(�)) which is disjunctive as well as idempotent (as disjunctivity andidempotency is preserved under composition of functions), and g = pr which is monotonebut not conjunctive. So the supremal normal sublanguage of a language K � L(G), denotedsupN(K) exists, as expected [20], whereas the in�mal normal superlanguage need not exist,also as expected [20]. Since M�1 = M, the following iterative computation for computingsupN(K) results from Corollary 3:� K0 := K,� Ki+1 := Ki � [M(L(G)�Ki)]��.If there exists m 2 N such that Km+1 = Km, then Km = supN(K). That such an m existscan be shown whenever K and L(G) are regular languages.It can be argued as in the previous subsection that the supremal pre�x closed and normalsublanguage and in�mal pre�x closed and normal superlanguage of a language K � L(G),denoted supPN(K) and inf PN (K), respectively, exist. Moreover,supPN(K) = K � [M(L(G)�K)]��; inf PN(K) =M(pr(K)) \ L(G):The formula for supPN(K) was reported in [2, 13] under the assumption that K is pre�xclosed. We do not need this assumption here. Similarly, one can argue that the supremal rel-ative closed and normal sublanguage of K � Lm(G), denoted supRN(K), exists. However,22



the in�mal relative closed and normal superlanguage need not exist. It can be veri�ed thatthe hypothesis of Theorem 6 holds so that supRN(K) = supN(supR(K)), i.e., a modularcomputation is possible.6 ConclusionWe have studied the existence and computation of extremal solutions of a system ofinequations de�ned over complete lattices. We have shown that under certain conditions ourtechniques provide closed form formulas for extremal solutions of a single inequation. Wehave demonstrated the applicability of our work to computation of supervisors in control oflogical behaviors of DESs, represented as languages over a certain event set, under completeas well as partial observation. The results presented here can also be applied for computationof modular [34] and decentralized [19, 29] supervisors, and also for computing supervisorsfor controlling the non-terminating behaviors [25, 14, 32]. The work presented here thuspresents a unifying approach for existence and computation of supervisory control policiesin a variety of settings.A Remark on Inverse OperationIn this appendix we present a justi�cation for using the terminology inverse for theoperation of conjugate of dual. We present an intuitive de�nition of inverse of a functionde�ned over a power set lattice, say (2X ;�), and show that the this de�nition coincides withone given earlier. Elements of the set X are called the atoms of the lattice. A power setlattice possesses the additional feature that its lattice elements can be described using theatoms of the lattice, i.e., 8Y � X : Y = fx 2 X j fxg \ Y 6= ;g:Given a function f : 2X ! 2X , we have the following intuitive de�nition of its inverse:8Y � X : f�1(Y ) := fx 2 X j f(fxg) \ Y 6= ;g:Then we have the following proposition:Proposition 5 Consider a power set lattice (2X ;�) and a function f : 2X ! 2X . If f isdisjunctive, then 8Y;Z � X : [f(Y ) \ Z = ;], [Y \ f�1(Z) = ;]: (17)Proof: We begin by proving the contrapositive of (17). First suppose f(Y ) \ Z 6= ;. Sincef is disjunctive, f(Y ) = Sy2Y f(fyg). Hence f(Y ) \ Z 6= ; implies there exists y 2 Ysuch that f(fyg) \ Z 6= ;. Consequently, y 2 f�1(Z), i.e., Y \ f�1(Z) 6= ;. Next supposeY \ f�1(Z) 6= ;. Then there exists y 2 Y such that y 2 f�1(Z). This implies thatf(fyg) \ Z 6= ;. Since f is disjunctive, it is also monotone. Hence f(Y ) \ Z 6= ;.23
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