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Abstract

We study the existence and computation of extremal solutions of a system of inequations
defined over lattices. Using the Knaster-Tarski fixed point theorem, we obtain sufficient
conditions for the existence of supremal as well as infimal solution of a given system of
inequations. Iterative techniques are presented for the computation of the extremal solutions
whenever they exist, and conditions under which the termination occurs in a single iteration
are provided. These results are then applied for obtaining extremal solutions of various
inequations that arise in computation of maximally permissive supervisors in control of
logical discrete event systems (DESs) first studied by Ramadge and Wonham. Thus our
work presents a unifying approach for computation of supervisors in a variety of situations.

Keywords: Fixed points, lattices, inequations, discrete event systems, supervisory control,
language theory.



1 Introduction

Given a set X and a function f: X — X, 2 € X is called a fized point of the function
if f(x) = x. Existence and computation of fixed points of functions defined over lattices
have been studied in computer science literature for applications such as theory of recursive
functions, program termination, algorithm design, etc., [24]. Lattices are partially ordered
sets with the property that least upper bound and greatest lower bound of any pair of lattice
elements is defined. A commonly encountered example of lattices is a power set—the set of
all subsets of a given set—together with the containment partial order.

One of the initial results on extremal fixed points of functions defined over lattices is due
to Knaster-Tarski [31]. It states that every monotone function possesses an infimal as well
as a supremal fixed point. Another result provides methods of computing the infimal and
supremal fixed points under stronger conditions than monotonicity. (Refer to Theorems 1
and 2 in section 2.) The paper by Lassez-Nguyen-Sonenberg [18] provides a nice historical
account of these fixed point theorems. Several other fixed point results have since been
discovered and are reported in papers such as [4, 23, 30, 9, 1, 6]. The notion of optimal fixed
points and their properties are discussed in [22, 17].

In this paper we study the existence and computation of extremal solutions of a system
of inequations {fi(z) < gi(x)}i<,, defined over lattices, where € X is the variable of
inequations and n € A is a fixed number. Since a fixed point equation f(z) = z can be
written as a pair of inequations, it is clear that the computation of extremal fixed points
of a certain function is a special case of that of computation of extremal solutions of a
system of inequations. We show that the converse is also true. We use the two fixed
point theorems informally described above for determining the existence and computation
of extremal solutions of inequations.

Our interest in studying the extremal solutions of a system of inequations stems from
computations of supervisors in control of logical behavior of DESs. DESs are systems that
involve quantities that are discrete and which evolve according to the occurrence of certain
discrete qualitative changes, called events, in the system. At the logical level of abstraction
[7], the behavior of a DES can be described using the set of all possible sequences of events
that it can execute [33, 8]. Thus the space of logical behaviors of DESs is a certain power
set, and so it can be studied from a lattice theoretic perspective.

The framework of supervisory control was introduced by Ramadge and Wonham [27, 28]
for developing the techniques for controlling the qualitative behavior of such systems. A
supervisor in this setting is event driven, and dynamically disables some of the events from
occurring so that certain desired or target behavior constraint is satisfied. It is desirable that
such a supervisor be mazimally permissive so that a maximal behavior satisfying the desired
behavior constraint is achieved under control. Computation of such supervisors requires
computation of extremal solutions of a certain system of inequations defined over the power
set lattice of behaviors of DESs.

We first introduce the notions of dual, co-dual, inverse, and converse of a function and
study their properties. Some of these terminology is taken from the work of Dijkstra-Scholten



[5] who first investigated these concepts in the setting of predicates and predicate transform-
ers. Kumar-Garg-Marcus [15] applied some of this work to supervisory control of DESs
represented as programs consisting of a finite number of conditional assignment statements.
In this paper, we further extend these work and apply it for obtaining conditions under
which supremal and infimal solutions of a system of inequations {fi(z) < gi(x)}i<, exists.
We also provide iterative techniques for computing the solutions whenever they exist, and
present conditions under which termination occurs in a single iteration. These techniques
are then used for computation of maximally permissive supervisors in a variety of settings.

Rest of the paper is organized as follows: Section 2 introduces several concepts from
lattice theory, and reviews basic results on extremal fixed points. In section 3 we define
the notions of dual, co-dual, conjugate, inverse, and converse of a function, and study some
of their properties. Section 4 studies existence and computation of extremal solutions of a
given system of inequations. Each result presented in sections 3 and 4 has a “primal” and
a “dual” version; we only present a proof for the primal version, as the dual version can be
proved analogously. These results are applied in section 5 to supervisory control of DESs.
In section 6 we conclude the work presented here, and in Appendix A we give an alternative
interpretation for the inverse operation.

2 Notation and Preliminaries

In this section we introduce the relevant notations and concepts of lattice theory and
review some of the basic results on existence and computation of extremal fixed points.
Given a set X, a partial order relation, denoted <, over X is a reflexive, anti-symmetric and
transitive relation. For z,y € X if # <y, then x is said to be smaller than y, and y is said
to be greater than x. < is said to be total order if for each x,y € X, either x <y or y < .
The containment relation defined on a power set is an example of a partial order which is
not a total order.

Definition 1 The pair (X, <), where X is a set and < is a partial order over X is called a
partially ordered set or a poset. A totally ordered subset of X is called a chain.

Given Y C X, x € X is said to be supremal of Y if

e (upper bound): Vy € Y : y < 2, and
e (least upper bound): Vz€ X : [Vy e Y 1y <z] = [z < z].
It is easy to check that the supremal of Y is unique whenever it exists. The notation sup Y
is used to denote the supremal of Y. We also use LY to denote sup Y. In particular, given
z,y € X, Uy is used to denote sup {z,y}.

Similarly, x € X is called infimal of ¥ C X if

e (lower bound): Yy € Y : 2 <y, and
e (greatest lower bound): V2 € X : [Vy e YV :z <y]= [z < z].



It is easy to check that the infimal of Y is unique whenever it exists. The notation inf Y
is used to denote the infimal of Y. We also use MY to denote inf Y. In particular, given
z,y € X, v My is used to denote inf {x,y}. For example, consider the interval [0,2) :=
{r € R |0 <2< 2} Then supl0,2) = 2 and inf[0,2) = 0. Note that it follows from the
above the definitions that sup() = inf X (whenever it exists), and inf § = sup X (whenever
it exists).

Definition 2 A poset (X, <) is said to be a lattice if supY,infY € X for any finite Y C
X. If supY,infY € X for arbitrary Y C X, then (X, <) is called a complete lattice. If
inf X € X, and supY € X for any chain Y C X, then (X, <) is called a complete partial
order (cpo).

Example 1 Given a set X, (2%, C)—the set of all subsets of X together with the contain-
ment partial order—is called the power set lattice of X. A power set lattice is an example
of a complete lattice. The set of natural numbers with the natural ordering is an example
of a chain which is not a cpo.

As mentioned in introduction, at the qualitative or logical level of abstraction, the behav-
ior of a DES is described using the set of all possible sequences of events that it can execute.
Let ¥ denote the set of events that can occur in a DES, then the notation ¥* denotes the set
of all finite length sequences of events, including the zero length sequence €. Logical behavior
of a DES is a subset of ¥*, also called a language. Each member of ¥* is called a string or
a trace. In section 5 we study extremal solutions of inequations defined over the power set
lattice (257, C)—the set of all languages together with the containment partial order.

We next define a few useful properties of functions defined over lattices. Given a poset
(X, <), a function f: X — X is said to be idempotent if

Vee X: f(z) = [(f(2));
it is said to be monotone if
Ve,ye X[z <yl=[f(z) < fly)]
Given a complete lattice (X, <), a function f: X — X is said to be disjunctive if
VY C X f(UyerY) = Uyer f(y);
it is said to be conjunctive if
VY C X ¢ f(MyerY) = Myey f(y).

It is readily verified that disjunctive and conjunctive functions are also monotone. Note that
since sup) = inf X and inf ) = supX, by setting ¥ = ) in the last two definitions we
obtain for a disjunctive function that f(inf X) = inf X, and for a conjunctive function that

flsup X) = sup X.



Example 2 Consider the power set lattice of languages defined over the event set ¥. The
prefiz closure operation pr : 2% — 2% is defined as: Given K C Y%, pr(K) C ¥~ is the set
of prefixes of strings belonging to K, i.e.,

pr(K):={se¥ |t e Kst. s <t}

where the notation s < ¢ is used to denote that the string s is a prefix of string ¢. Clearly,
K C pr(K); K is said to be prefiz closed if K = pr(K). The extension closure operation
ext : 2% — 2% is defined as : Given K C ¥*, ext(K) C ¥ is the set of extensions of strings
in K, i.e.,
ext(K):={se ¥ |t e K st t<s).

Clearly, K C ext(K); K is said to be extension closed it K = ext(K).

Some other interesting functions are the concatenation and the quotient operations (with
a fixed language) defined as follows: Given a fixed language H C ¥*, and a language K C ¥*,
the concatenation of K with H, denoted K H, is the language obtained by concatenating
strings from K and H, i.e.,

KH:={ste¥ |se K,te H};

and the K quotient with H, denoted K/H, is the language obtained by removing suffixes
belonging to H from strings in K, i.e.,

K/H :={se ¥ |3te H s.t. st € K}.

It is easily verified that for a language K C ¥*, pr(K) = K/¥* and ext(K) = K¥*. Thus
prefix closure operation is an example of the quotient operation and extension closure oper-
ation is an example of concatenation operation. It can be checked that both concatenation
and quotient operations are disjunctive and thus monotone, however, none of them are con-
junctive. The prefix and extension closure operations are both idempotent.

The following fixed point theorem is due to Knaster and Tarski:

Theorem 1 [4, Theorem 4.11] Let (X, <) be a complete lattice and f : X — X be a
monotone function. Let Y := {z € X | f(2) = 2} be the set of fixed points of f. Then

LoanfY eY,and infY =inf {x € X | f(2) < a}.
2. supY €Y, and supY =sup{r € X |z < f(x)}.

It follows from Theorem 1 that a monotone function defined over a complete lattice always
has an infimal and a supremal fixed point. The following theorem provides a technique
for computing such fixed points under stronger conditions. We first define the notion of
disjunctive and conjunctive closure. Given a complete lattice (X, <), and a function f :
X — X, the disjunctive closure of f, denoted f*, is the map f*: X — X defined as:

Vee X f*(x):= uizofi(l');
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and the conjunctive closure of f, denoted f,, is the map f, : X — X defined as:
Vo € X @ fu(z) = Misof (),

where f° is defined to be the identity function, and for each 7 > 0, fit! := ff*. It is easy to
see that the disjunctive as well conjunctive closures of f are idempotent.

Theorem 2 [4, Theorem 4.5] Let (X, <) be a complete lattice and f : X — X be a function.
Let YV :={x € X | f(x) = 2} be the set of fixed points of f.

L. If fis disjunctive, then inf Y = f*(inf X).
2. If fis conjunctive, then supY = fi(sup X).

Remark 1 In the first part of Theorem 2, it is possible to compute the infimal fixed point
of a function in a weaker setting when it is defined over a cpo (not necessarily a complete
lattice) and it commutes with the supremal operation taken over a countable chain (so it is
not necessarily disjunctive) [4].

3 Dual, Co-Dual, Inverse, and Converse Operations

In this section we develop the notion of dual, co-dual, inverse, and converse operations
and study some of their properties. These concepts are used in the next section for obtaining
extremal solutions of a system of inequations. We begin by providing conditions for existence
of extremal solutions of simple inequations.

Lemma 1 [5] Consider a complete lattice (X, <) and functions f,¢g: X — X.

L. If f is disjunctive, then the supremal solution of the inequation f(z) < y, in the
variable z, exists for each y € X.

2. If ¢ is conjunctive, then the infimal solution of the inequation y < g(x), in the variable
x, exists for each y € X.

Proof: Since (X, <) is complete, inf X € X, and by definition inf X < y. Using the
disjunctivity of f we obtain f(inf X) = inf X < y. Thus the set of solutions of the inequation
f(z) < y is nonempty. Let [ be an indexing set such that for each i € [, x; € X is a
solution of the inequation f(x) < y. Then it suffices to show that U;esx; is also a solution
of the inequation. Since (X, <) is complete, it follows that U,crz; € X. Also, f(Uiera;) =
Uierf(x:) <y, where the equality follows from the fact that f is disjunctive and the inequality
follows from the fact that f(x;) <y for each ¢ € [I. [ |

Lemma 1 can be used to define the notion of dual of a disjunctive function and co-dual
of a conjunctive function.



Definition 3 Consider a complete lattice (X, <) and functions f,¢g : X — X. If f is dis-
junctive, then its dual, denoted f*(-), is defined to be the supremal solution of the inequation
f(x) < (+). If g is conjunctive, then its co-dual, denoted ¢'(-), is defined to be the infimal
solution of the inequation () < g(«). (¢ € X is the variable of the inequation.)

Example 3 Consider the power set lattice of languages defined over the event set ¥ and
the prefix and extension closure operations. Since these operations are disjunctive, their
dual exist. It follows from the definition of duality that for K C ¥*, prt(K) is the supre-
mal language whose prefix closure is contained in K. Thus prt(K) is the supremal prefiz
closed sublanguage of K, which we denote as sup P(K). Similarly, ext*(K) is the supremal
extension closed sublanguage of K, which we denote as sup F(K).

The following proposition provides an alternative definition of duality as well as of co-
duality.

Proposition 1 Consider a complete lattice (X, <), a disjunctive function f: X — X and
a conjunctive function ¢ : X — X. Then the following are equivalent.

1. ff=g.
2. Ve,y e X :[f(z) <yl e [ < g(y)

3.9" = f.

Proof: We only prove the equivalence of the first and the second assertion; the equivalence
of the second and the third assertion can be proved analogously. Since f is disjunctive, f*
is defined. Suppose the first assertion is true. In order to see the forward implication of the
second assertion, suppose f(x) < y, which implies  is a solution of the inequation. Since
f*+(y) = g(y) is the supremal solution of the inequation, it follows that = < g(y). Next in
order to see the backward implication, suppose x < ¢(y). So from monotonicity of f we
obtain that f(z) < f(g(y)). Since g(y) = f*(y) is a solution of the inequation, we have
flgy)) <y. So f(x) < f(g(y)) <y, as desired.

Next suppose the second assertion holds. By setting @ = ¢(y) in the second assertion, we
obtain that for all y € X, f(¢(y)) < y. This shows that g(y) is solution of the inequation.
Finally using the forward implication of the second assertion we conclude that if = is a
solution of the inequation, then @ < g(y). This shows that ¢g(y) is the supremal solution of
the inequation. So ¢(y) = f*(y) for all y € X. [ |

Note that the equivalence of the first two assertions in Proposition 1 does not require ¢
to be conjunctive. Hence if we replace g by ft, then the first assertion is identically true;
consequently, the second assertion is also identically true. Similarly it can be argued that
the second assertion is identically true with f replaced by ¢. This is stated in the following
corollary.

Corollary 1 Consider a complete lattice (X, <), and functions f,¢g: X — X.



1. If fis disjunctive, then Va,y € X : [f(2) < y] & [z < fH(y)].
2. If ¢ is conjunctive, then Vz,y € X : [¢(2) < y] & [z < g(y)].

Corollary 1 can be used to obtain several interesting properties of the dual and co-dual
operations. We first show that dual of a disjunctive function is conjunctive, and co-dual of
a conjunctive function is disjunctive.

Lemma 2 Consider a complete lattice (X, <) and functions f,¢g: X — X.
1. If f is disjunctive, then f* is conjunctive.
2. If g is conjunctive, then ¢ is disjunctive.

Proof: Pick Y C X. We need to show that f*(M,eyy) = Myey f*(y). The forward inequality
can be shown as follows:

[fJ‘(I_lery) < fL(l_lery)] Lf ( ( yEYy)) < l_lyEYy]

Yy € Y fF(fH(Myery)) < vl
Yy € Vi fH(Myevy) < FH(y)]
Lf

( yevy) < |_|y€Yf ()],

=
=
=
=

where the first and the third equivalence follow from Corollary 1.
Next the reverse inequality can be obtained as follows:

VyeY : My [H(y) < fHy)] & [VyeY: [(Myerf*(y) <yl
~ [f(r'erfL(y) < Myevy]
g [l_lerfL(y) < fL(l_lyEYy)]v

where the first and the final equivalence follow from Corollary 1. ]

It follows from Lemma 2 that it is possible to define co-dual of the dual of a disjunc-
tive function and dual of the co-dual of a conjunctive function. The following proposition
describes some other properties of dual and co-dual operations.

Proposition 2 Consider a complete lattice (X, <), disjunctive functions f, fi, fo : X — X,
and conjunctive functions ¢, ¢1,¢92 : X — X.

1. (* and T inverses) (a) (fH)T = f (b) (¢")r =g
2. (composition) (a) (fif2)* = f3(fi) (b) (9192)7 = 9;(9 )
3. (idempotence) (@) [ff=felff-=11 blg=dels =g']

Proof: 1. Since f is disjunctive, it follows from Lemma 2 that f* is conjunctive, so (f+)7

is defined. By replacing ¢ with f in Proposition 1 we obtain from its third assertion that
(fH)T = f, as desired.



2. Since disjunctivity is preserved under composition of functions, f; f2 is disjunctive, so
that its dual is defined. Fix =,y € X. Then the repeated application of Corollary 1 yields
the following series of equivalences:

[Nifa(x) <yl & [fal2) < fi(y)]
& o< fi i)l

Since f3 fi is conjunctive (follows from Lemma 2, and the fact that conjunctivity is preserved
under composition of functions), if we replace f by fif, and g by fifi- in Proposition 1, we

obtain (f1fe)* = fi fi, as desired.

3. The forward implication can be shown as follows: f+ = (ff)* = f*f*, where the first
equality follows from hypothesis, and the second from part 2. The backward implication can
be obtained as follows: f = (f*)T = (f*f5)T = ff, where the first equality follows from
part 1, the second from hypothesis, and the final from parts 2 and 1. [ ]

Example 4 Consider the power set lattice of languages defined over the event set ¥. We
showed in Example 3 that prt = sup P and extt = sup E. Then it follows from Lemma, 2
that sup P as well as sup F are conjunctive. Moreover, Proposition 2 implies that (sup P)T =
(prt)T = pr and (sup E)T = (extT)* = ext. Finally, since pr and ext are idempotent, it
follows from Proposition 2 that prt = sup P and ext’ = sup E are idempotent.

3.1 Conjugate Operation

The notions of duality and co-duality can be defined for functions defined over complete
lattices. However, if the lattice is also a Boolean lattice, so that each lattice element can
be uniquely complemented, then the notion of conjugate of a function can also be defined.
This is then used to define inverse of a disjunctive function and converse of a conjunctive
function.

Definition 4 A lattice (X, <) is said to be a Boolean lattice, if

e (Bounded): inf X,sup X € X, and
e (Distributive): Va,y,z€ X :aM(yUz) = (zNy)U (xMz), and
e (Complement): Vo € X : Junique 2° € X s.t. aMNa® =inf X; aUa® = sup X.

For a pair x,y of elements of a Boolean lattice (X, <), the notation = — y is used to
denote x M y°. A power set lattice is an example of a Boolean lattice that is also complete.
The following hold for a Boolean lattice:

Lemma 3 [4, Lemma 7.3] Let (X, <) be a Boolean lattice. Then
L. (enf X)° = sup X and (sup X)° =inf X.
2. Ve e X : (2°)° = x.



3. (de Morgan’s Law): Yo,y € X : (aMy)*=2°Uy% (2Uy) = aTy"
4. Ve,y e X [z <y] & [Ny =nf X].

Definition 5 Given a complete Boolean lattice (CBL) (X, <) and a function f: X — X,
the conjugate of f, denoted f, is defined as:

Ve e X : f(z):= (f(29))"

If f is disjunctive, then its inverse, denoted f~', is defined to be the function f*; and if f
is conjunctive, then its converse, denoted f*, is defined to be the function (f)*.

Note that if f is disjunctive (respectively, conjunctive), then it follows from de Morgan’s
law that f is conjunctive (respectively, disjunctive). Hence inverse (respectively, converse)
of a disjunctive (respectively, conjunctive) function is well defined. Moreover, it follows
from Lemma 2 that the inverse of a disjunctive function is disjunctive, and converse of a
conjunctive function is conjunctive. Appendix A provides a justification for the choice of the
name inverse for the operation conjugate of dual.

Example 5 Consider the power set lattice of languages defined over the event set ¥ and the
prefix and extension closure operations. It follows from the definition of conjugate that for
a language K C ¥*, pr(K) = ¥* — pr(¥* — K) = sup F(K), the supremal extension closed
sublanguage of K. Similarly, ext(K) = ¥* — ext(X* — K) = sup P(K), the supremal prefix
closed sublanguage of K. These relations between prefix and extension closure operations
are not coincidental, rather they can be derived as we show below.

The following lemma lists a few properties of the conjugate operation.

Lemma 4 Consider a CBL (X, <) and functions f,¢: X — X.

L. (self-inverse) ?_: I
2. (composition) fg = fg L
3. (idempotence) [ff=fl<e[f f=/T]

Proof: The first assertion is obvious. In order to see the second assertion, pick = € X.

Then we have fg(z) = (fg(2°))° = (f(G(2))°)¢ = fg(z). The forward implication of the
third assertion is obtained as follows: f f = ff = f, where the first equality follows from
part 2, and the second from hypothesis. The backward implication of the third assertion is
obtained as follows: f = f = f f = ff, where the first equality follows from part 1, the
second from hypothesis, and the third from parts 2 and 1. [ ]

Next we provide a few properties of the inverse and the converse operations. The following

proposition provides an alternative definition of inverse as well as converse.

Proposition 3 Consider a CBL (X, <), and functions f,g,h: X — X.



1. If f is disjunctive, then f~! = h if and only if

Ve,y € X [f(e)Ny =inf X] & [T h(y) = inf X]. (1)
2. If ¢ is conjunctive, then ¢* = A if and only if

Ve,y € X [g(a) Uy =sup X] & [z U h(y) = sup X].

Proof: Since f~! := (f1), it follows from the first part of Lemma 4 that f~!' = h if and
only if fi = h. Thus it suffices to show that f* = & is equivalent to (1). From Proposition
1, f+ = h is equivalent to

Va,y € X [f(2) Syl & [¢ < R(y)]- (2)
Hence it suffice to show the equivalence of (2) and (1). Replacing y by y° in (2) we obtain
Yo,y € X:[f(z) <yl e [z < (hy))].

Thus the desired equivalence follows from the part 4 of Lemma 3. ]
The following proposition provides additional properties of inverse and converse opera-
tions.

Proposition 4 Consider a CBL (X, <), disjunctive functions f, fi, fo : X — X, and con-
junctive functions ¢, ¢1,¢92 : X — X.

l. (commutation) (a) f*+ = fT (b) g7 =g+

2. (self-inverse) (a) (fFHt=f (b) (") =g

3. (composition)  (a) (fif2)™' = At (b) (glgg)ﬁ = gggg

4. (idempotence) (a) [ff = fl & [f7'f7 =[] (b) lgg =] & [¢°¢* = ¢]

Proof: 1. Since fL = f~', it follows from the first part of Proposition 3 that it suffices to
show that (1) holds with & replaced by TT. This can be shown as follows:

[fe)Ny =inf X] & [f(z) <y
& [y < (f@)]
& [y < f(2)]
& [J(y) <
& [Fl(y)Ne=inf X],

where the fourth equivalence follows from the second part of Corollary 1, and the other
equivalences follow from Lemma 3.

2. From part 1, f~! = TT. Hence from Proposition 1, (f~1)* = f. By applying conjugate
operation on both sides of this identity, we obtain (=)' = f.
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3. We have (fi/2)™ = (if2)") = & [t = [ i = [ 77, as desired.

4. The forward implication can be obtained as follows: f~' = (ff)™' = f~'f~! where
the first equality comes from hypothesis, and the second from part 3. The backward impli-
cation can be obtained as follows: f = (f~')~' = (f~' /=1~ = ff, where the first equality
comes from part 2, the second from hypothesis, and the final from parts 3 and 2. ]

Remark 2 The commutative diagram of Figure 1 summarizes the relationship among the
various operations that we have obtained above. Note that given any disjunctive func-

f inverse f—l
conjugate conj
DISJUNCTIVE co-dual
dual CONJUNCTIVE
f+ converse S

Figure 1: Commutative diagram for dual, co-dual, conjugate, inverse, and converse

tion f, by applying (-)*,(-)T and (-) any number of times, we get four unique functions:
(f, 7Y f+, F), the first two of which are disjunctive and the last two are conjunctive.
The commutative diagram of Figure 1 yields the commutative diagram shown in Figure

2 for operations of pr, ext, sup P, and sup E.

inverse

pr ext
conjugate corjugate
co-dual
dual dual
sup P sup k£

converse

Figure 2: Commutative diagram for pr, ext, sup P, and sup £ operations
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4 Extremal Solutions of Inequations

Given a complete lattice (X, <) and a finite family of functions {f;,¢; : X — X}ic,,
where n € N, we next consider computation of extremal solutions of the system of inequa-
tions:

Vi <n: fi(x) < gi()],
where © € X 1is the variable of the system of inequations. Note that this also allows us
to obtain extremal solutions of a system of equations, as each equation can equivalently be
written as a pair of inequations. We show that the computation of extremal solutions of the
above system of inequations can be reduced to extremal fixed point computations of certain
induced functions. We need the result of the following lemma:

Lemma 5 Consider the system of inequations {fi(z) < g¢i(x)}i<n over a complete lattice
(X, <). Define functions hy, hy : X — X as:

Vye X :hi(y) :=Nicafi (9:(y)); Yy € X : ha = Uicag (fiy))- (3)

1. If f; is disjunctive and ¢; is monotone for each ¢+ < n

gz e X:ily < hiz)] & Vi<n: fi(y) < g.(2))

, then Ay is monotone, and

2. If f; is monotone and ¢; is conjunctive for each ¢ < n, then h; is monotone, and

Vy,z € X :lha(y) < 2] & Vi< n: fily) < g:(2)].

Proof: In order to show the monotonicity of Ay, it suffices to show that for each i < n, fig; is
monotone. This follows from the facts that ¢; is given to be monotone, f is conjunctive (refer
to Lemma 2), so that it is also monotone, and monotonicity is preserved under composition
of functions.

In order to see the second claim, fix y,z € X. Then we have the following series of

equivalences:

ly <hi(2)] & [y < ﬂignfiL(gi(Z))]
& [Vi<n:y < fHg:(2))]
& [Vi<n: fily) <g(2)],

where the final equivalence follows from the first part of Corollary 1. ]

Theorem 3 Consider the system of inequations {f;(z) < gi(x)}i<, over a complete lattice
(X, <). Let

Vi={ye X|Vi<n: fily) <gily)} (4)
be the set of all solutions of the system of inequations; and
Vic={ye X [lly) =y}, Yar={y € X|hly)=y} ()

be the sets of all fixed points of hy and hy, respectively, where hy and hy are defined by (3).
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1. If f; i1s disjunctive and g¢; is monotone, then supY € Y, sup Y] € ¥j and supY = sup Y].
2. If f; is monotone and ¢; is conjunctive, then inf Y € Y inf Y, € Y5 and inf Y = inf V5.

Proof: It follows from the first part of Lemma 5 that hy is monotone. Hence it follows from
the second part of Theorem 1 that supY; € Yi, and

supYy = supYy, where Y/ :={y € X |y < hi(y)}. (6)

It remains to show that supY € Y and supY = supYi. In view of (6), it suffices to show
that Y =Y/, i.e, y € X is a solution of the system of inequations if and only if y < hy(y).
This follows from the first part of Lemma 5 by setting z = y. ]

The following corollary follows from Theorems 3 and 2.

Corollary 2 Consider the system of inequations {f;(2) < ¢;()}i<n over a complete lattice
(X, <); the set YV of all solutions of the system of inequations as defined by (4); and functions
hy and hy defined by (3). If f; is disjunctive and g¢; is conjunctive for each ¢ < n, then
supY = (hy)«(sup X) and inf Y = (he)*(inf X).

Proof: Since f; is disjunctive and g¢; is conjunctive (which implies f; as well as ¢; are
monotone) Theorem 3 implies that supY = supY; and inf Y = inf Y3, where Y1, Y3 are the
sets of fixed points of hy, hy, respectively. Using the facts that f is conjunctive, and g; is
conjunctive, it is easily shown that Ay is conjunctive. Hence it follows from the second part
of Theorem 2 that supY; = (hy).(sup X). Similarly, using the facts that ¢, is disjunctive,
and f; is disjunctive, it is easily shown that f5 is disjunctive. Hence it follows from the first
part of Theorem 2 that inf Y = (h2)*(inf X), as desired. [ |

The result of Corollary 2 is applicable whenever f; is disjunctive and g¢; is conjunctive
for each ¢ < n. The following theorem provides techniques for the computation of extremal
solutions of the system of inequations under different conditions.

Theorem 4 Consider the system of inequations {f;(z) < gi(x)}i<, over a complete lattice
(X, <); and the set Y of all solutions of the system of inequations as defined by (4).

1. Let f; be disjunctive and ¢; be monotone. Consider the following iterative computation:

o o :=supX,
o Yk >0 yipr = halyr),

where hy is defined by (3). Suppose m € N is such that y,,41 = ym; then y,, = supY’.

2. Let f; be monotone and ¢; be conjunctive. Consider the following iterative computa-
tion:

13



where hy is defined by (3). Suppose m € A is such that y,,11 = y,; then y,, = inf Y.

Proof: It follows from Theorem 3 that the supremal solution of the system of inequations,
supY, exists. We first show that y,, € Y, i.e., it is a solution of the system of inequations.
Since Ymi1 = Ym, we have hy(yym) = Ym, which implies that y,, < h1(ym). Thus by setting
Y = z = Y, in the equivalence of the first part of Lemma 5, we obtain that y,, € Y.

Next we show that if z € YV is another solution of the system of inequations, then z < y,,.
We use induction to show that for each £ > 0, z < yi. If £ = 0, then y = sup X, so that
z < yr = sup X. Thus the base step trivially holds. Suppose for induction hypothesis that
z <y, for some k > 0. From the first part of Lemma 5 we have that 2 is monotone. This
together with the induction hypothesis implies that h1(z) < h1(yx) = yg41. Thus it suffices
to show that z < hy(2). Since z € Y, fi(2) < ¢i(z) for each ¢ < n. Thus by setting y = z in
the first part of Lemma 5, we obtain that z < hq(z). ]

4.1 Specializations of Extremal Solutions of Inequations

In many applications we are interested in finding the supremal solution smaller than a
given element w € X, and/or the infimal solution greater than the given element w, of a
system of inequations: {fi(x) Mv; < gi(x)}icn, where {v; € X}, is a given family of fixed
elements. Note that if w = v; = sup X, then this problem reduces to the problem analyzed
in Theorems 3 and 4. Conversely, we show that the problem just described can be analyzed
using techniques developed in Theorems 3 and 4 provided the lattice is also Boolean, so that
lattice elements can be uniquely complemented.

First note that the constraint that the supremal solution be smaller than w can be
captured by adjoining the following additional inequation:

fa(@) < ga(w),

where f, is the identity function, i.e., f,(z) := x, and g, is the constant function g,(x) := w.
Similarly the constraint that the infimal solution should be greater than w can be captured
by adjoining the following additional inequation:

Jo(z) < go(),

where f, is the constant function fy(x) := w, and g,(x) is the identity function. Next note
that

[fi(z) M < gi(2)] & [fi(z) < gi(x) U o]
Thus if we define ¢/(x) := g;(«) Uvf and f/(x) := fi(x) Mwv;, then we obtain
[fi(z) Noi < gi(2)] & [filx) < gi@)] & [fi(z) < gi(2)].

It can be checked that (i) ¢/ is monotone if and only if g; is monotone; f/ is monotone

if and only if f; is monotone, (ii) the identity function is disjunctive as well as conjunctive,
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(iii) a constant function is monotone, (iv) [ (g.(x)) = g, (fo(2)) = w, and (v) (¢gi(x))° =
(gi(x) Uof) = v; T (g:(x))® = v; — gi(x). We also have
[Mi<u [ (g1 @D N [ (9a(2)) = Mical /7 [vi = gi(@)]]" M w0
= W [U,f7 oi — gi(2)])°
= w— Ui f ' vi — 9i(y)]-

Thus the following result can be obtained as a corollary of Theorems 3 and 4.

Corollary 3 Given a CBL (X, <), a fixed w € X, and a family of lattice elements {v; €
X }icn, consider the system of inequations { f;(z)Mv; < g;(x)}i<n over the given CBL. Define
functions A{, Ay : X — X as:

Vy € Xt hi(y) == w — Ui /7 (0 = giy))l; - Bo(y) = wU [Uicag (v M fiy))]. (7)
1. Suppose f; is disjunctive and ¢; is monotone for each ¢+ < n. Then
(a) A} is monotone; and the supremal solution smaller than w of the given system of
inequations exists and equals the supremal fixed point of the function Aj.
(b) Consider the following iterative computation:

® Yp = W,

o Vk>0: ypr1 := Al (yr)
Suppose m € N is such that y,,41 = y.; then y,, equals the supremal solution
smaller than w of the given system of inequations.
2. Suppose f; is monotone and g; is conjunctive for each ¢ < n. Then
(a) h% is monotone; and the infimal solution greater than w of the given system of
inequations exists and equals the infimal fixed point of the function Aj.
(b) Consider the following iterative computation:

® iy = w,

o Vk>0: ypr1 = hy(yr).

Suppose m € N is such that 9,11 = ym; then y,, equals the infimal solution
greater than w of the given system of inequations.

We next apply Theorem 4 and Corollary 3 to compute the extremal solution of a single
inequation.

Theorem 5 Consider a CBL (X, <), a disjunctive and idempotent function f: X — X,
and fixed lattice elements w,v € X.

1. The supremal solution smaller than w of f(z)Mv < equals w — f~! (v — w).
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2. The infimal solution greater than w of f(x)Mv < x equals w U [f(w) Mo].

Proof: Since f is disjunctive, and identity function is monotone, it follows from the first
part of Corollary 3 that the supremal solution smaller than w of f(x)Mv < & exists. Also,
the function h} defined by (7) simplifies to:

Vye X :hi(y)=w—f"(v—y).

We apply the iterative computation of Corollary 3 for computing the desired supremal solu-
tion. Then yo = w. This implies
y1 = hi(yo) = hi(w) = w — [~ (v —w) (8)
y2 = hi(y) =w— [ (v —y) (9)
We show that y; = y2. First note that y; = w — f~'(v — w) < w = yo. Hence monotonicity

of A} (refer to part 1(a) of Corollary 3) implies that yo = Ri(y1) < hi(yo) = y1. Thus it
suffices to show that yy > y;. Using (8) we obtain

VR CETY

_ v w N[ (v —w)]T)
v M wU f_l(v —w)])
R ) U (e o )]

where the last equality follows from the fact that f~' is disjunctive. Hence from (9) we
obtain

o7 o —w))
0 = w))

w— (v —w)
w [0 w)
- w- - w

= U,

Y2 - [~
—f

Y

where the inequality follows from the fact that f=! is disjunctive, so that it is also monotone,
and the second equality follows from the fact that f=! is idempotent. Thus it follows from
part 1(b) of Corollary 3 that y; = y2 = w— f~!(v—w) is the supremal solution smaller than
wof f(a)Mov <. [ |

In Theorem 5, it is required that the function f be idempotent. However, if this is not
the case, then we can replace f by its disjunctive closure f*. We need the result of the
following lemma:

Lemma 6 Consider a CBL (X, <), a disjunctive function f: X — X, and a fixed v € X.
Then
Vee X:[f(e)Nv<z]& [f(z)Nv <2
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Proof: It suffices to show the forward inequality, as the reverse inequality is obvious. Again,
it suffices to show that for each : € NV,

[flz) Mo <a] = [fi(z)No < al.

We show this using induction on z. If s = 0, then f*(z)Mv = 2 Mv < . Thus the base step
trivially holds. Suppose for induction hypothesis that fi(x)Mv < z, ie., fi(z) < z U 0"
Then by applying f on both sides of the last inequation and using monotonicity of f we
obtain:

fi"'l(:z;) < flaUo®) = flz)U f(o°) < (xMof) U (v U v°) = 2 U oS,

where the first equality follows from disjunctivity of f, and the second inequality follows
from the hypothesis that for each « € X, f(x) Mo < a, ie., f(x) < xUv® This establishes
the induction step and completes the proof. [ ]

Since the disjunctive closure of any function is idempotent, and preserves disjunctivity,
the following result can be obtained as a corollary of Theorem 5 and Lemma 6.

Corollary 4 Consider a CBL (X, <), a disjunctive function f: X — X, and fixed lattice
elements w,v € X.

1. The supremal solution smaller than w of f(x)Mv < x equals w — (f*)™' (v — w).
2. The infimal solution greater than w of f(a)Mv < x equals w U [f*(w) Mo].

It is evident from Theorem 5 and Corollary 4 that the extremal solution of a single
inequation of the type f(x) Mov < a can be easily obtained. We show in the following
theorem that under certain conditions this can be used for computing the extremal solutions
of a system of inequations in a modular fashion, i.e., it is possible to first compute the
extremal solution of inequations of the type f(z)Mv < @ as in Theorem 5 and Corollary 4,
and then compute the extremal solutions of the remaining inequations. Thus the iterative
computation scheme can be considerably simplified. For simplicity of illustration we only
consider a pair of inequations.

Theorem 6 Given a CBL (X, <), afixed w € X, and a pair of lattice elements {v; € X }i<s,
consider a pair of inequations {fi(z) Mv; < gi(x)}ico over the given CBL, where fi is
disjunctive and idempotent and ¢; is the identity function.

1. Let f; be disjunctive and g, be monotone, and fi fi+ = fi+ (or equivalently, f;'f;' =
f3"). Consider the following iterative computation:

o yoi=w— f7 (0 — )
o VE>0:yrsr :=yr — f7 (va— g2(wi))

Suppose m € A is such that y,,41 = ¥, then y,, is the supremal solution smaller than
w of {fi(x) Mv; < gi(x)}i<o.
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2. Let f, be monotone and g, be conjunctive, and fig; = g, . Consider the following
iterative computation:

o yo:=wU[fi(w) Mo
o Vk>0:yppr =y Ugy (021 folyr))

Suppose m € N is such that 3,41 = ¥, then y,, is the infimal solution greater than
w of {fi(x) Mv; < gi(x)}i<o.

Proof: It follows from part 1(a) of Corollary 3 that the required supremal solution exists.
Also, it follows from the first part of Theorem 5 that the supremal solution smaller than
w of fi(z)Mv; < gi(z) = is w— f~'(vy — w). Hence we obtain from part 1(b) of
Corollary 3 that y, < w equals the supremal solution of fy(x) M vy < go(x) smaller than
the supremal solution of fi(x) Moy < ¢i(2) = x. Hence if z < w denotes the supremal
solution of {fi(z) Mv; < gi(x)}i<z, then z < y,,. Since z < w is the supremal solution of
{filz) M v; < gi(x)}i<o, in order to show that y,, < z, it suffices to show that y,, < w is a
solution of {fi(z) Mv; < gi(2)}i<a.

As noted above y,, < w is a solution of fy()Mvy < go(a). We show using induction that
for each k > 0, y;, is a solution of fi(x) Moy < g1(x) = x, i.e.,

ilye) Mor <yl & [filye) T (v — yi) = inf X]
& [y 7 v —yr) = inf X]
& [t o —wr) < il
where the second equivalence follows from (1). Since yo < w is the supremal solution of
fi(z) Moy < @ (refer to the first part of Theorem 5), it follows that the base step holds.

Assume for induction hypothesis that f;'(v; —yi) < y§ for some k > 0. Then the induction
step can be established as follows:

ST o = [yk — f7 (02 — g2(y))])

ST (or =y U (00 11 f57H (02 = g2(y)))]
St o =y U f o 11 f5 (02 = ga(yn)]
yi U (02 = g2(yn))

=y U Sy (02— g2(wn))

St (o1 = yag)

IA

&
Ye+1s

where the first equality follows from the definition of g, the third equality follows from the
fact that f;' is disjunctive, the inequality follows from induction hypothesis and the fact
that fi' is monotone (as it is disjunctive), the fourth equality follows from the fact that
fitfi+ = fi+, which is equivalent to f;'f;' = f;', and the final equality follows from the
definition of yjyq. [
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5 Applications to DES Supervisory Control

In this section we demonstrate how the techniques for computation of extremal solution
of inequations developed above can be applied for computation of maximally permissive
supervisors in control of logical behavior of DESs.

Given a discrete event plant G with event set X, its logical behavior is described using a
pair of languages (L,,(G), L(G)) satistying L,,(G) C L(G) = pr(L(G)) £ 0. L(G) C ¥* is
called the generated language of (¢, and consists of the event sequences that the plant can
execute. It is prefix closed since for a sequence of events to occur, all its prefixes must also
occur. L, (G) C L(G) is called the marked language of G and consists of those strings whose
execution imply completion of a certain task. A desired generated behavior is a certain
sublanguage of L((/) and a desired marked behavior is a certain sublanguage of L,,(G). A
control mechanism is needed so that the plant executes only those sequences of events which
are desired.

The event set ¥ is partitioned into ¥, U(X—3,), the sets of uncontrollable and controllable
events. A supervisor is event driven, and at each event execution epoch it dynamically
disables some of the controllable events from occurring so that the behavior of the controlled
plant satisfies the desired behavior constraint. Due to the inability of a supervisor to prevent
uncontrollable events from occurring, a certain behavior can be achieved under control only
if it is controllable [27]. A language H C L(() is said to be controllable if

pr(H)X, N L(G) C pr(H). (10)

It in addition it is also desired that the supervisor be non-blocking so that any string in
the generated language of the controlled plant can be extended to a string in its marked
language, then the desired behavior must also be relative closed (also known as L,,-closed)

[27]. A language H C L,,(() is called relative closed if
pr(H)N L, (G) C H. (11)

Furthermore, if the supervisor’s observation is filtered through a mask function M defined
over the event set Y, then the desired behavior can be achieved under control only when it

is also observable [20, 3]. A language H C L(() is said to be observable if
Vs,tepr(H),oc € ¥:[M(s)=M(t),soc € pr(H),to € L(G)] = [to € pr(H)]. (12)

In case the supervisor is local so that it is only able to control those events that it observes
[11, 19, 21], then the desired behavior must satisfy a condition stronger than observability,
called normality. A language H C L(() is said to be normal if

M(pr(H)) 0 L(G) € pr(H), (13)
where M : 2¥" — 2% is the map induced by the mask function M and is defined as:

VHCY  M(H):={se X" |JteHst M(t)=M(s)}.
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Thus M maps a certain string to all those string which look alike under the mask M. It can
be verified that M is disjunctive and idempotent. Also, M~ = M.

In case the desired behavior fails to satisty one or more of the required conditions, a
supervisor is synthesized that achieves a supremal sublanguage or infimal superlanguage of
the desired behavior satistfying the required conditions. We next discuss computation of
such languages; this requires computation of extremal solutions of inequations of the type
(10)-(13) defined over the power set lattice (2=°, C). Since a power set lattice is also a CBL,
the results developed in the previous section can be applied.

5.1 Extremal Relative Closed Languages
Consider the definition of relative closure given by (11). It is of the form

JH) 0 Ly (G) € g(H),

where f is the prefix closure operation which is disjunctive and idempotent, and ¢ is the
identity function which is conjunctive and idempotent. Hence it follows from Corollary 3
that the supremal relative closed sublanguage as well as infimal relative closed superlanguage
of a given language K C L,,((), denoted sup R(K) and inf R(K), respectively, exist, as
expected [12]. Furthermore it follows from the first part of Theorem 5 that

supR(K) =K —pr Y L,(G)—K)=K — (L,,(G) — K)X*.
On the other hand, it follows from the second part of Theorem 5 that
inf R(K) = K U (pr(K)N L, (G)) = pr(K)N L, (G),

where the second equality follows from the fact that K C L,,(G).

5.2 Extremal Controllable Languages
Consider the definition of controllability given by (10). It is of the form

FH) N L(G) S g(H),

where f is the composition of the prefix closure operation and the operation of concatenation
with the event set ¥,, and ¢ is the prefix closure operation, which is monotone but not
conjunctive. Since prefix closure as well as concatenation operations are disjunctive, and
disjunctivity is preserved under composition of functions, it follows that f is disjunctive.
Hence it follows from Corollary 3 that the supremal controllable sublanguage of a language
K C L(G), denoted sup C(K), exists, as expected [26]. However, since ¢ is not conjunctive,
the infimal controllable superlanguage of K need not exist, as expected.
Since f(-) = pr(-)X,, it follows from Figure 2 and Proposition 4 that f~'(-) = [(-)/X.]X*

Hence the following iterative scheme of Corollary 3 can be used to compute sup C'(K):
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o Ky:=K,
o Kipy = K — [(L(G) — K:)/2,)5".

If there exists m € N such that K,,14 = K,,, then K,, = supC(K). Using the arguments
similar to those given in [26] it can be shown that such an m exists whenever K and L(()
are regular languages [10].

If we require that the extremal language be controllable as well as prefix closed, then we
must consider the extremal solution of the following two inequations:

pr(H)E, N L(G) S pr(H);  pr(H) C H, (14)

where H C L(() is the variable of inequation. Using the fact that H C L((G), we show that
the two inequations of (14) is equivalent to the following single inequation:

pr(H)X, N L(G) C H. (15)

It is clear that (14) implies (15). Also, since H C pr(H), the first inequation of (14) follows
from (15). It remains to show that (15) implies pr(H) C H. First note that if f(-) = pr(-)X,,
then f*(-) = pr(-)X:. Hence it follows from Lemma 6 that (15) is equivalent to

pr(H)X: N L(G) C H. (16)

This equivalence was first demonstrated in [2] under the assumption that K is prefix closed,
and without this assumption in [13]. Since pr(H) C pr(H)Y: and pr(H) C L(G) (as
H C L(G)), it follows from (16) that pr(H) C pr(H)X: N L(G) C H, as desired.

It follows from the above discussions that (15), or equivalently (16), can be used to
compute the extremal prefix closed and controllable language. We consider (16), which is of
the form

TH) O L(G) € g(H),
where f(-) = pr(-)X%, which is disjunctive as well as idempotent, and ¢ is the identity func-
tion. Consequently, it follows from Corollary 3 that the supremal prefiz closed and control-

lable sublanguage and infimal prefiz closed controllable superlanguage of K C L(G), denoted
sup PC(K) and inf PC(K), respectively, exist. Furthermore, it follows from Theorem 5 that

sup PO(K) = K — [TN(L(G)— K) = K — [(L(G) — K)/5]%"
inf PO(K) = KU(f(K)NL(G)) = K U (pr(K)Y: 0 LIG)) = pr(K)S: N L(G).

The above formula for sup PC(K) was first reported in [2] under the assumption that K is
prefix closed. Our derivation shows that we do not need to impose this assumption. The
formula for inf PC(K) was first reported in [16].

We can also study the computation of extremal languages that are relative closed (rather
than prefix closed) and controllable. In this case we must consider the extremal solutions of
the following two inequations:

pr(H)N L, (G)C H; pr(H)S, N L(G) Cpr(H),
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where H C L(() is the variable of inequations. It can be argued as above that the supremal
relative closed and controllable sublanguage of K C L,,(G), denoted sup RC(K), exists;
however, the infimal relative closed and controllable sublanguage need not exist, as expected.
Moreover, if we define

AC)=pr() fol) =pr()2.,
then

FHEEE) = O/ = (/2028 = (()/Z)Z" = f71()-

Hence it follows from the first part of Theorem 6 that it is possible to modularly compute
sup RC(K), i.e.,

sup RC(K) = sup C(sup R(K)).

So the following iterative computation of Theorem 6 can be used for computing sup RC(K):

o Ko:i=K — (L,(G)— K)¥,
o Kiyii=K; — [(L(G) — K))/S,]5",

If m € N issuch that K,,,4y = K,,, then K,, = sup RC(K). It can be shown using arguments
similar to those given in [26] that such an m exists whenever K and L(() are regular.

5.3 Extremal Normal Languages

Consider the definition of normality given by (13). It is of the form
TH) O L(G) € g(H),

where f(-) = M(pr(-)) which is disjunctive as well as idempotent (as disjunctivity and
idempotency is preserved under composition of functions), and ¢ = pr which is monotone
but not conjunctive. So the supremal normal sublanguage of a language K C L((), denoted
sup N(K) exists, as expected [20], whereas the infimal normal superlanguage need not exist,
also as expected [20]. Since M™' = M, the following iterative computation for computing
sup N(K) results from Corollary 3:

o Ky:=K,
L [(i-l—l = [X’Z — [M(L(G) - [(z)]Z*

If there exists m € N such that K, 41 = K,,, then K,, = sup N(K). That such an m exists
can be shown whenever K and L(() are regular languages.

It can be argued as in the previous subsection that the supremal prefiz closed and normal
sublanguage and infimal prefix closed and normal superlanguage of a language K C L(G),
denoted sup PN(K) and inf PN(K), respectively, exist. Moreover,

sup PN(K) = K — [M(L(G) — K)]S% inf PN(K) = M(pr(K)) N L(G).

The formula for sup PN(K) was reported in [2, 13] under the assumption that K is prefix
closed. We do not need this assumption here. Similarly, one can argue that the supremal rel-
ative closed and normal sublanguage of K C L,,((), denoted sup RN(K), exists. However,
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the infimal relative closed and normal superlanguage need not exist. It can be verified that
the hypothesis of Theorem 6 holds so that sup RN(K) = sup N(sup R(K)), i.e., a modular
computation is possible.

6 Conclusion

We have studied the existence and computation of extremal solutions of a system of
inequations defined over complete lattices. We have shown that under certain conditions our
techniques provide closed form formulas for extremal solutions of a single inequation. We
have demonstrated the applicability of our work to computation of supervisors in control of
logical behaviors of DESs, represented as languages over a certain event set, under complete
as well as partial observation. The results presented here can also be applied for computation
of modular [34] and decentralized [19, 29] supervisors, and also for computing supervisors
for controlling the non-terminating behaviors [25, 14, 32]. The work presented here thus
presents a unifying approach for existence and computation of supervisory control policies
in a variety of settings.

A Remark on Inverse Operation

In this appendix we present a justification for using the terminology inverse for the
operation of conjugate of dual. We present an intuitive definition of inverse of a function
defined over a power set lattice, say (2%, C), and show that the this definition coincides with
one given earlier. Elements of the set X are called the atoms of the lattice. A power set
lattice possesses the additional feature that its lattice elements can be described using the
atoms of the lattice, i.e.,

VWCX:YV={eeX|{z}nY #£0}.
Given a function f: 2% — 2% we have the following intuitive definition of its inverse:
VWWCX:f ' (Y)={zeX]|f{z})NY #0}.
Then we have the following proposition:

Proposition 5 Consider a power set lattice (2¥,C) and a function f : 2% — 2% If f is
disjunctive, then

VW ZCX:[fY)NZ=0<[Ynf(Z)=10. (17)

Proof: We begin by proving the contrapositive of (17). First suppose f(Y)N Z # . Since
[ is disjunctive, f(Y) = U,ey f({y}). Hence f(Y)N Z # 0 implies there exists y € Y
such that f({y}) N Z # 0. Consequently, y € f~(Z), i.e., Y N f71(Z) # 0. Next suppose
Y N f~YZ) # 0. Then there exists y € Y such that y € f~'(Z). This implies that
f{y}) N Z #£ 0. Since f is disjunctive, it is also monotone. Hence f(Y)N Z # 0. [ |

23



It follows from the first part of Proposition 3 that (17) uniquely defines the inverse of
a disjunctive function. Thus the two definitions of inverse coincide. Note that the first
definition of inverse is only defined for a disjunctive function over a CBL, whereas the
second definition of inverse is defined for any function over a power set lattice. However, the
equivalence of (17) only holds when the function is also disjunctive.

Example 6 Consider for example the prefix closure operation defined over the power set
lattice of languages. Then it follows from above that

VHCY :pr Y (H)={sc ¥ | pr({s}) N H # 0} = ext(H),

as expected.
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