
FORMULAS FOR CALCULATINGSUPREMAL CONTROLLABLE AND NORMAL SUBLANGUAGES 1R. D. Brandt2, V. Garg3, R. Kumar3, F. Lin2, S. I. Marcus3, and W. M. Wonham42Department of ECE, Wayne State University, Detroit, MI 482023Department of ECE, The University of Texas at Austin, Austin, TX 787124Department of EE, University of Toronto, Toronto, Ontario M5S 1A4, CanadaABSTRACTSupremal controllable and normal sublanguages have been shown to play an im-portant role in supervisor synthesis. In this paper, we discuss the computation ofsupremal controllable and normal sublanguages. We derive formulas for both supre-mal controllable sublanguages and supremal normal sublanguages when the languagesinvolved are closed. As a result, those languages can be computed without applyingrecursive algorithms. We also discuss the computational aspects of these formulas.1. INTRODUCTIONIn supervisory control, discrete event systems are modeled by controlled automata,and their behaviors described by the associated formal languages [1]- [3], [5]-[17]Control is exercised by a supervisor, whose action is to enable or disable events sothat the controlled system generates some prespeci�ed desired language. The subsetof all events that can be selectively disabled by the supervisor is the set of controllableevents. The supervisor may also be constrained to observe only events in a speci�edset of observable events. It has been shown that such a supervisor exists if and only ifthe language to be synthesized is both controllable and observable [6],[9],[12]. Hence,the formal synthesis problem for a supervisor is posed as one of synthesizing the largestpossible controllable and observable sublanguage of a speci�ed \desirable" or \legal"language. This largest possible sublanguage is not necessarily unique. Therefore,in order to make the synthesis problem well-de�ned, a slightly stronger version ofobservability, called normality, has been introduced [6],[9]. It has been shown in [9]that normality implies observability, and that a unique supremal controllable andnormal sublanguage is guaranteed to exist. Hence, supremal controllable and normalsublanguages play an important role in supervisor synthesis.Supremal controllable sublanguages were discussed in [16] and a recursive algo-rithm was developed to compute the supremal controllable sublanguage of a given1This paper merges the results of Kumar, Garg, and Marcus[5] and Lin, Brandt, and Wonham[7]which were presented at the 27th Annual Allerton Conference on Communication, Control, andComputing, 1989. This work was supported in part by the Air Force o�ce of Scienti�c Researchunder Grant AFOSR-86-0029, in part by the National Science Fondation under Grant ECS-8617860,and in part by the Natural Sciences and Engineering Research Council of Canada under Grant A-7399. 1



language. However, no formula for such languages has previously been derived. Inthis paper, we will be primarily concerned with languages that are pre�x closed (everypre�x of a string in the language is also contained in the language). We will deriveformulas for supremal controllable as well as supremal normal sublanguages when thelanguages involved are closed. As a result, we can compute those languages withoutusing recursive algorithms.2. CONTROLLABILITY AND NORMALITYLet � denote the (�nite) set of events and �� the set of all �nite strings of eventsof � including the empty string �. A subset L � �� is a language. The closure L ofa language L is the set of all pre�xes of strings in L. L is closed if L = L. In thispaper, we will assume the languages involved to be closed.Let M be a �xed language over �, which represents \feasible" or \physicallypossible" behaviors. Let B � M be a language representing \desirable" or \legal"behavior. Methods for computing B from a set of speci�cations of operating rules wasdiscussed in [11]. Our task is to synthesize a supervisor when B is given. It is impor-tant to take into account the possibility that certain events cannot be disabled by thesupervisor or that certain events may not be observable to the supervisor. Thereforewe must introduce the concepts of controllability and normality [1],[6],[9],[12]. It isassumed that some events are controllable, in the sense that their occurrence can beprevented, and some events are observable, in the sense that their occurrence can beobserved. Thus, � is partitioned as� = �c _[ �uc = �o _[�uowhere �c denotes the set of controllable events, �uc the set of uncontrollable events,�o the set of observable events, and �uo the set of unobservable events.A language L is said to be controllable, if there does not exist any uncontrollableevent � 2 �uc which might possibly lead to an illegal behavior, i. e., s� 2 L for all ssuch that s� 2M .De�nition 1 A language L �M is controllable with respect to M if and only if, forall s 2 L and � 2 �uc, if s� 2M , then s� 2 L.A notion of observability has been de�ned in [1], [6], [9], but a stronger condition,called normality [6], [9], will be used in this paper. To de�ne normality, let us �rstde�ne P : �� ! ��o to beP� = �P� = � ; � 2 � ��oP� = � ; � 2 �o 2



P (s�) = (Ps)(P�); s 2 ��; � 2 �That is, P is a projection whose e�ect on a string s 2 �� is just to erase the elements,�, of s that do not belong to �o.A language L is said to be normal if one can check whether a string is legal,by checking whether its projection belongs to PL. In other words, information onoccurrences of unobservable events is not needed in determining the legal status of astring.De�nition 2 A language L �M is normal with respect to M if and only if, for alls 2M , s 2 L if and only if Ps 2 PL.The following theorem shows that the class of controllable and normal languagesare algebraically well-behaved, in the sense that the supremal controllable and supre-mal normal sublanguages of any given language exist and are unique [9], [16].Theorem 1 Let B �M and consider the classes of languagesC(B) = fL � B : L is closed and controllablegN(B) = fL � B : L is closed and normalgThen C(B) and N(B) are nonempty and closed under arbitrary unions. Therefore,supC(B) exists in C(B) and supN(B) exists in N(B).3. MAIN RESULTSLet us �rst discuss supC(B). A recursive algorithm to compute supC(B) (forlanguages that may or may not be closed), has been presented in [16] but no formulahas been obtained. When languages are closed we can derive a formula for supC(B).To prove the formula, we need the following lemma, which states that, in the de�nitionof controllability, � 2 �uc can be replaced by a string u 2 ��uc.Lemma 1 Let L � M ; then L is controllable with respect to M if and only ifL��uc \M � L, where ��uc denotes the set of �nite strings of uncontrollable events.Proof: (If): Assume that L��uc \M � L. ThenL�uc \M � L��uc \M � L fsince �uc � ��ucgThus L is controllable.(Only if): Assume now that L is controllable. We prove thatL�nuc \M � L 3



by induction on n, where �nuc denotes the set of strings of uncontrollable events oflenght n. Clearly it is true for n = 0. Suppose that it is true for n = i. ThenL�i+1uc \M� L�iuc�uc \M� L�iuc�uc \M�uc \M fsince L�iuc�uc \M �M�ucg� (L�iuc \M)�uc \M� L�uc \M fby induction hypothesisg� LThus L��uc \M � L. 2The formula for supC(B) involves the application of a mapping from �� to ��which has the e�ect of cutting o� the \uncontrollable tail" of strings. Let Duc : �� !�� be de�ned byDuc(s) = the longest pre�x of s whose last event is controllableIf s contains no controllable events, then Duc(s) = �. Intuitively, M � B consistsof the illegal strings and Duc(M �B) consists of the strings that have the potentialof becoming illegal (by adding uncontrollable events). Therefore, they have to beremoved from B. To guarantee that the resulting language is closed, �� must beconcatenated to Duc(M � B). Thus, the formula for supN(B) is presented in thefollowing theorem.Theorem 2supC(B) = B �Duc(M �B)��Proof: (�): Let the right hand side be denoted H. First, we show that supC(B) �H. Clearly H is closed and contained in B. Therefore, we only need to show that itis controllable. Consider s 2 �?; � 2 �uc; and let s0 2 �? be the longest pre�x of swith a controllable event at its end (s0 is the empty string if s 2 �?uc) such that(s 2 H) ^ (s� 2M)) (s 2 B) ^ (s 62 Duc(M �B)�?) ^ (s� 2M)4



fsince H = B �Duc(M �B)�?g) (s 2 B) ^ (s0 62 Duc(M �B)) ^ (s� 2M) fBy de�nition of (�)�?g) (s 2 B) ^ (s� 62 (M �B)) ^ (s� 2M) fBy de�nition of Duc(�)) (s 2 B) ^ (s� 2 B) f(s� 2M) ^ (s� 62 (M �B))) s� 2 Bg) (s 2 B) ^ (s� 2 B) ^ (s� 62 Duc(M �B))ft 2 Duc(�)) no uncontrollable event at the end of tg) (s 2 B) ^ (s� 2 B) ^ (s� 62 Duc(M �B)�?)fDuc(M �B) is closed (since M, B are closed) ) no pre�x of s� 2 Duc(M �B)g) (s� 2 H)fH = B �Duc(M �B)�?g Thus H is controllable with respect to M.(�) : Next we show that supC(B) � H. Since supC(B) � B, we only need to showDuc(M �B)�� \ supC(B) = ;Assume the contrary. Then there exists s 2 Duc(M �B) and t 2 �� such that((st) 2 Duc(M �B)��) ^ ((st) 2 supC(B))) (s 2 Duc(M �B)) ^ (s 2 supC(B)) fsince supC(B) is closedg) ((9u 2 ��uc) s: t: (su 2M �B)) ^ (s 2 supC(B))fby de�nition of Duc(�)g) (9u 2 ��uc) s: t: (su 62 B) ^ (su 2 M) ^ (s 2 supC(B))fby expanding su 2 (M �B)g) (9u 2 ��uc) s: t: (su 62 B) ^ (su 2 supC(B))fsince from Lemma 1 , (su 2M) ^ (s 2 supC(B))) (su 2 supC(B))gContradiction! f(su 62 B) ^ (su 2 supC(B))g 25



Let L1=L2 denote the quotient of language L1 with respect to L2 de�ned as:L1=L2 = fs 2 �� : 9t 2 L2 such that st 2 L1gThen the above formula for supC(B) can equivalently be written as:supC(B) = B � ((M �B)=��uc)��The above expressions for supC(B) can be used to develop an algorithm for gen-erating the language supC(B). Let m and n be the number of states in the minimal�nite state machine (FSM) realizations of the languages M and B respectively. Thenthe FSM that generates supC(B) = B � Duc(M � B)�� is constructed in O(mn2)time, because the FSM that generates the language (M �B) has O(mn) states, theFSM for generating Duc(M � B)�� is constructed in O(mn) time and �nally theFSM that generates B � Duc(M � B)�� has O(mn2) states. Thus, the computa-tional complexity of the algorithm that computes supC(B) using the above formula,is O(mn2).Next, we present the formula for supN(B). Intuitively, M � B are illegal stringsand P�1P (M�B) are the strings that look the same as illegal strings. Therefore, theyhave to be removed from B. To guarantee that the resulting langauge is closed, ��must be concatenated to P�1P (M �B). Thus, the formula for supN(B) is presentedin the following theorem.Theorem 3supN(B) = B � P�1P (M �B)��Proof: (�): Denote the right hand side by H. First, we show that supN(B) � H.Clearly H is closed and contained in B. Therefore, we only need to show that it isnormal. Assume the contrary; then there exists s 2 �� such that(s 2M) ^ (Ps 2 PH) ^ (s 62 H) fby de�nition of normalityg) (s 2M) ^ ((9s0 2 ��) s: t: (Ps = Ps0) ^ (s0 2 H)) ^ (s 62 H)fby expanding Ps 2 PHg) (s 2M) ^ (9s0 2 ��) s: t: (Ps = Ps0) ^ ((s0 2 B) ^ (s0 62 P�1P (M �B)��))^((s 62 B) _ (s 2 P�1P (M �B)��))fsince H = B � P�1P (M �B)��g) (9s0 2 ��) s: t: (Ps = Ps0) ^ (s0 62 P�1P (M �B)��)^((s 2M �B) _ (s 2 P�1P (M �B)��))6



fsince (s 2M) ^ (s 62 B)) s 2 (M �B)g) (9s0 2 ��) s: t: (Ps = Ps0) ^ (s0 62 P�1P (M �B)��)^(s 2 P�1P (M �B)��)fsince (M �B) � P�1P (M �B)��g) (9s0 2 ��) s: t: (Ps = Ps0) ^ (s0 62 P�1P (M �B)��)^(s0 2 P�1P (M �B)��) fsince Ps0 = PsgContradiction! f(s0 62 P�1P (M �B)��) ^ (s0 2 P�1P (M �B)��)g(�): Next we show that supN(B) � H. Since supN(B) � B, we only need to showP�1P (M �B)�� \ supN(B) = ;Assume the contrary; then there exists s 2 �� such that(s 2 P�1P (M �B)) ^ (s 2 supN(B))) ((9s0 2 ��) s: t: (Ps = Ps0) ^ (s0 2M �B)) ^ (s 2 supN(B))fby de�nition of P�1P (�)g) (9s0 2 ��) s: t: (Ps = Ps0) ^ ((s0 62 B) ^ (s0 2M)) ^ (s 2 supN(B))) (9s0 2 ��) s: t: (Ps = Ps0) ^ (s0 62 B) ^ (s0 2 supN(B))fsupN(B) is normal; so (Ps = Ps0) ^ (s0 2 supN(B)) ^ (s0 2 M)) (s0 2supN(B))gContradiction! f(s0 62 B) ^ (s0 2 supN(B))g 2The above formula for the supremal normal sublanguage of B with respect toM can be used to develop an algorithm to compute supN(B). We can show thatthe computational complexity of this algorithm is exponential in the product of thenumber of states in the FSM realizations of the languages M and B. This is sobecause the FSM that generates P (M � B) is non-deterministic and the algorithmthat transforms a non-deterministic FSM into a deterministic FSM is of exponentialcomplexity [4].Finally, we prove the following theorem, which shows that we can decomposethe computation of supCN(B) and apply the previous two formulas to computesupCN(B).Theorem 4supCN(B) =M \ P�1supCp(P supN(B))where for D � PM , Cp(D) is de�ned to be:Cp(D) = fL � D : L is controllable w:r:t: PMg7



Proof: (�) : Denote the right hand side by H. First, we show that supCN(B) � H.Clearly H is closed and normal. Also, H � B, forH �M \ P�1P supN(B)(= supN(B)) � BIt can be shown that H is controllable (Proposition 3.1 of [8]). Thus, supCN(B) � H.(�) : Next we show that supCN(B) � H. Since supCN(B) =M \P�1P supCN(B),We only need showP supCN(B) � supCp(P supN(B))This is true because �rst,supCN(B) � supN(B)) P supCN(B) � P supN(B)and secondly, P supCN(B) is controllable w.r.t. PM . Assume the contrary; thenthere exist s 2 �� and � 2 � such that(s 2 P supCN(B)) ^ (� 2 �uc \ �o) ^ (s� 2 PM) ^ (s� 62 P supCN(B))) (s 2 P supCN(B)) ^ (� 2 �uc \ �o) ^ ((9s0 2 ��)s: t: (Ps0 = s) ^ (s0� 2M)) ^ (s� 62 P supCN(B))fby expanding s� 2 PMg) (s0 2 supCN(B)) ^ (� 2 �uc \ �o) ^ ((9s0 2 ��)s: t: (Ps0 = s) ^ (s0� 2M)) ^ (s� 62 P supCN(B))fsince supCN(B) is normal, (Ps0 = s) ^ (s 2 P supCN(B)) (s0 2 supCN(B))g) (9s0 2 ��) s: t: (Ps0 = s) ^ (s0� 2 supCN(B)) ^ (s� 62 P supCN(B))fsince supCN(B) is controllable, (s0� 2M) ^ (s0 2 supCN(B))) (s0�2 supCN(B))g) (9s0 2 ��) s: t: (Ps0 = s) ^ (P (s0�) 2 P supCN(B)) ^ (s� 62 P supCN(B))But P (s0�) = s�, thus we obtain a contradiction. f(s� 2 P supCN(B)) ^ (s� 62P supCN(B))g 2The formula that results from the theorem issupCN(B) =M \ P�1(P supN(B)�Duc(PM � P supN(B))��o)wheresupN(B) = B � P�1P (M �B)��The above formula for the supremal controllable and normal sublanguage of B withrespect to M can be used to construct an algorithm to compute supCN(B). Wecan show that the computational complexity of this algorithm is exponential in theproduct of the number of states in the FSM realizations of the languages M and B.8
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