FORMULAS FOR CALCULATING
SUPREMAL CONTROLLABLE AND NORMAL SUBLANGUAGES !
R. D. Brandt?, V. Garg®, R. Kumar®, F. Lin?, S. I. Marcus®, and W. M. Wonham*

?Department of ECE, Wayne State University, Detroit, MI 48202
*Department of ECE, The University of Texas at Austin, Austin, TX 78712
‘Department of EE, University of Toronto, Toronto, Ontario M5S 1A4, Canada

ABSTRACT

Supremal controllable and normal sublanguages have been shown to play an im-
portant role in supervisor synthesis. In this paper, we discuss the computation of
supremal controllable and normal sublanguages. We derive formulas for both supre-
mal controllable sublanguages and supremal normal sublanguages when the languages
involved are closed. As a result, those languages can be computed without applying
recursive algorithms. We also discuss the computational aspects of these formulas.

1. INTRODUCTION

In supervisory control, discrete event systems are modeled by controlled automata,
and their behaviors described by the associated formal languages [1]- [3], [5]-[17]
Control is exercised by a supervisor, whose action is to enable or disable events so
that the controlled system generates some prespecified desired language. The subset
of all events that can be selectively disabled by the supervisor is the set of controllable
events. The supervisor may also be constrained to observe only events in a specified
set of observable events. It has been shown that such a supervisor exists if and only if
the language to be synthesized is both controllable and observable [6],[9],[12]. Hence,
the formal synthesis problem for a supervisor is posed as one of synthesizing the largest
possible controllable and observable sublanguage of a specified “desirable” or “legal”
language. This largest possible sublanguage is not necessarily unique. Therefore,
in order to make the synthesis problem well-defined, a slightly stronger version of
observability, called normality, has been introduced [6],[9]. It has been shown in [9]
that normality implies observability, and that a unique supremal controllable and
normal sublanguage is guaranteed to exist. Hence, supremal controllable and normal
sublanguages play an important role in supervisor synthesis.

Supremal controllable sublanguages were discussed in [16] and a recursive algo-
rithm was developed to compute the supremal controllable sublanguage of a given

!This paper merges the results of Kumar, Garg, and Marcus[5] and Lin, Brandt, and Wonham[7]
which were presented at the 27th Annual Allerton Conference on Communication, Control, and
Computing, 1989. This work was supported in part by the Air Force office of Scientific Research
under Grant AFOSR-86-0029, in part by the National Science Fondation under Grant ECS-8617860,
and in part by the Natural Sciences and Engineering Research Council of Canada under Grant A-

7399.

language. However, no formula for such languages has previously been derived. In
this paper, we will be primarily concerned with languages that are prefix closed (every
prefix of a string in the language is also contained in the language). We will derive
formulas for supremal controllable as well as supremal normal sublanguages when the
languages involved are closed. As a result, we can compute those languages without
using recursive algorithms.

2. CONTROLLABILITY AND NORMALITY

Let ¥ denote the (finite) set of events and ¥* the set of all finite strings of events
of ¥ including the empty string e. A subset L C ¥* is a language. The closure L of
a language L is the set of all prefixes of strings in L. L is closed if L = L. In this
paper, we will assume the languages involved to be closed.

Let M be a fixed language over X, which represents “feasible” or “physically
possible” behaviors. Let B C M be a language representing “desirable” or “legal”
behavior. Methods for computing B from a set of specifications of operating rules was
discussed in [11]. Our task is to synthesize a supervisor when B is given. It is impor-
tant to take into account the possibility that certain events cannot be disabled by the
supervisor or that certain events may not be observable to the supervisor. Therefore
we must introduce the concepts of controllability and normality [1],[6],[9],[12]. It is
assumed that some events are controllable, in the sense that their occurrence can be
prevented, and some events are observable, in the sense that their occurrence can be
observed. Thus, X is partitioned as

Y= X UX,. = X, U,

where Y. denotes the set of controllable events, ¥,,. the set of uncontrollable events,
Y, the set of observable events, and X, the set of unobservable events.

A language L is said to be controllable, if there does not exist any uncontrollable
event o € Y, which might possibly lead to an illegal behavior, i. e., so € L for all s
such that soc € M.

Definition 1 A language I C M is controllable with respect to M if and only if, for
all s € L and o € ¥, if so € M, then so € L.

A notion of observability has been defined in [1], [6], [9], but a stronger condition,
called normality [6], [9], will be used in this paper. To define normality, let us first
define P : ¥* — ¥* to be

Pe = ¢
Po = ¢, 0€eX -3,

Po = o0, 0€},

P(so) = (Ps)(Po), se ¥, c € X

That is, P is a projection whose effect on a string s € ¥* is just to erase the elements,
o, of s that do not belong to ¥,.

A language L is said to be normal if one can check whether a string is legal,
by checking whether its projection belongs to PL. In other words, information on
occurrences of unobservable events is not needed in determining the legal status of a
string.

Definition 2 A language L C M is normal with respect to M if and only if, for all
s € M, s e Lif and only if Ps € PL.

The following theorem shows that the class of controllable and normal languages
are algebraically well-behaved, in the sense that the supremal controllable and supre-
mal normal sublanguages of any given language exist and are unique [9], [16].

Theorem 1 Let B C M and consider the classes of languages

C(B)={L C B: L is closed and controllable}

N(B)={L C B: L is closed and normal}

Then C(B) and N(B) are nonempty and closed under arbitrary unions. Therefore,
supC(B) exists in C'(B) and supN(B) exists in N(B).

3. MAIN RESULTS

Let us first discuss supC(B). A recursive algorithm to compute supC(B) (for
languages that may or may not be closed), has been presented in [16] but no formula
has been obtained. When languages are closed we can derive a formula for supC(B).
To prove the formula, we need the following lemma, which states that, in the definition
of controllability, o € ¥, can be replaced by a string u € ¥* .

Lemma 1 Let . C M; then L is controllable with respect to M if and only if
LYr N M C L, where ¥ denotes the set of finite strings of uncontrollable events.

Proof: (If): Assume that LY} N M C L. Then
L[S NMCLS. AMCL

{since ¥,. C ¥* _}
Thus L is controllable.
(Only if): Assume now that L is controllable. We prove that

LY AMC L

by induction on n, where X", denotes the set of strings of uncontrollable events of
lenght n. Clearly it is true for n = 0. Suppose that it is true for n = :. Then

Ly nm
CLY Ye.NM

CLY Y N MY, .0 M
{since LY’ ¥, N M C MY, }
C (LY, NnM)Y,.NM

CLY,.0OM
{by induction hypothesis}
CL
Thus LY. N M C L. O

The formula for supC(B) involves the application of a mapping from ¥* to ¥~
which has the effect of cutting off the “uncontrollable tail” of strings. Let D, : ¥* —
¥* be defined by

Dy.(s) = the longest prefix of s whose last event is controllable

If s contains no controllable events, then D,.(s) = e. Intuitively, M — B consists
of the illegal strings and D,.(M — B) consists of the strings that have the potential
of becoming illegal (by adding uncontrollable events). Therefore, they have to be
removed from B. To guarantee that the resulting language is closed, ¥* must be
concatenated to D,.(M — B). Thus, the formula for supN(B) is presented in the
following theorem.

Theorem 2
supC(B) = B — Dy.(M — B)¥"

Proof: (D): Let the right hand side be denoted H. First, we show that supC(B) 2

H. Clearly H is closed and contained in B. Therefore, we only need to show that it
is controllable. Consider s € ¥*,0 € Y,.; and let s/ € ¥* be the longest prefix of s
with a controllable event at its end (s’ is the empty string if s € ¥7) such that

(s€e HYN(so e M)

= (s € B)A(s & Dyo(M — B)X*) A (so € M)

4

{since H = B — D,.(M — B)X*}
= (s € BYA(s' € Dye(M — B)) A (s0 € M)
{By definition of (-)S*}
= (se B)A(so ¢ (M —B))A(soc € M)
{By definition of D,,(-)
= (s € B)A(so € B)
{(soc € M)A (so & (M — B)) = so € B}
= (s € B)A(s0 € B)A (s0 € Dyo(M — B))
{t € D,.(-) = no uncontrollable event at the end of ¢}
= (s € B)A(so € B)A (s0 & Dyo(M — B)X*)
{D..(M — B) is closed (since M, B are closed) = no prefix of so € D,.(M — B)}
= (sc € H)

{H =B — Dy (M — B)Y*} Thus H is controllable with respect to M.
(C) : Next we show that supC(B) C H. Since supC(B) C B, we only need to show

Dye(M — B)Y" NsupC(B) =10
Assume the contrary. Then there exists s € D,.(M — B) and ¢t € ¥* such that

(st) € Do M = BYE") A ((st) € supC(B))

= (s € Dye(M — B)) A (s € supC(B))
{since supC(B) is closed}
= ((Fue) s. t.(sue M= DB))A(s € supC(B))
{by definition of Dy.()}
= (Jue) s. t. (sud B)A(sue M)A(s € supC(B))
{by expanding su € (M — B)}
= (Juexr) s. t. (sud B)A(su€ supC(B))

{since from Lemma 1 , (su € M) A (s € supC(B)) = (su € supC(B))}
Contradiction! {(su € B) A (su € supC(B))} O

5

Let L1/Ly denote the quotient of language L with respect to Ly defined as:
Li/Ly ={se ¥ :3t e Ly such that st € L;}
Then the above formula for supC(B) can equivalently be written as:
supC(B) = B — (M — B)/S5,)5"

The above expressions for supC(B) can be used to develop an algorithm for gen-
erating the language supC(B). Let m and n be the number of states in the minimal
finite state machine (FSM) realizations of the languages M and B respectively. Then
the FSM that generates supC'(B) = B — D,.(M — B)X* is constructed in O(mn?)
time, because the FSM that generates the language (M — B) has O(mn) states, the
FSM for generating D,.(M — B)YX* is constructed in O(mn) time and finally the
FSM that generates B — D,.(M — B)X* has O(mn?) states. Thus, the computa-
tional complexity of the algorithm that computes supC(B) using the above formula,
is O(mn?).

Next, we present the formula for supN(B). Intuitively, M — B are illegal strings
and P~!' P(M — B) are the strings that look the same as illegal strings. Therefore, they
have to be removed from B. To guarantee that the resulting langauge is closed, ¥*
must be concatenated to P~'P(M — B). Thus, the formula for sup/N(B) is presented
in the following theorem.

Theorem 3
supN(B) = B — P_IP(M - B)Y”

Proof: (D): Denote the right hand side by H. First, we show that supN(B) 2 H.
Clearly H is closed and contained in B. Therefore, we only need to show that it is
normal. Assume the contrary; then there exists s € ¥* such that

(se M)N(Pse PH)N(s ¢ H)
{by definition of normality}
= (seM)A((FS'€eX) s. t. (Ps=PsYAN(s'€e H))N(s¢ H)
{by expanding Ps € PH}

= (se M)A €X) s. t. (Ps=Ps)N((s € BYA(s' & PT'P(M — B)X"))
AM(s € B)V (s € PT'P(M — B)X))

{since H =B — P~'P(M — B)X*}
= (3 € ¥*) s. t. (Ps=Ps')A (s ¢ PT'P(M — B)Y™)
AN(s € M —B)V (s € PT'P(M — B)Y"))

6

{since (se M)A (s¢ B)=se (M —B)}
= (3 € X*) s. t. (Ps=Ps')A(s'€ PT'P(M — B)Y™)
A(s € PT'P(M — B)Y)

{since (M — B) C P~'P(M — B)X*}
= (3 € ¥*) s. t. (Ps=Ps')A (s ¢ PT'P(M — B)Y™)
A(s" € PT'P(M — B)X™)

Z*
Z*
{since Ps’' = Ps}
Contradiction! {(s' ¢ P'P(M — B)YX*) A (s’ € P~'P(M — B)¥*)}
(C): Next we show that supN(B) C H. Since supN(B) C B, we only need to show

P7'P(M — B)Y* NsupN(B) =0
Assume the contrary; then there exists s € ¥* such that

(s € P7'P(M — B)) A (s € supN(B))

= ((3s' € ¥*) s. t. (Ps=Ps')A(s"€ M — B)) A (s € supN(B))
{by definition of P~'P(-)}
= (3 € X)) s. t. (Ps=Ps"YA((s€ B)A(s"€ M)) A (s € supN(B))

= (38 € ¥%) s. t. (Ps=Ps')A(s"¢ B)A (s € supN(B))

{supN(B) is normal, so (Ps= Ps')A (s €supN(B))A(s'e M) = (s €
supN(B))}
Contradiction! {(s' € B) A (s’ € supN(B))} 0
The above formula for the supremal normal sublanguage of B with respect to
M can be used to develop an algorithm to compute supN(B). We can show that
the computational complexity of this algorithm is exponential in the product of the
number of states in the FSM realizations of the languages M and B. This is so
because the FSM that generates P(M — B) is non-deterministic and the algorithm
that transforms a non-deterministic FSM into a deterministic FSM is of exponential
complexity [4].
Finally, we prove the following theorem, which shows that we can decompose

the computation of supCN(B) and apply the previous two formulas to compute
supCN(B).

Theorem 4
supCN(B) = M N P~ tsupC,(PsupN(B))
where for D C PM, C,(D) is defined to be:
Co(D)={L C D: L is controllable w.r.t. PM}

Proof: (2) : Denote the right hand side by H. First, we show that supCN(B) 2 H.
Clearly H is closed and normal. Also, H C B, for

H C M0 P PsupN(B)(=supN(B)) C B

It can be shown that H is controllable (Proposition 3.1 of [8]). Thus, supC'N(B) 2 H.
(C) : Next we show that supC'N(B) C H. Since supCN(B) = M N P~ PsupC N(B),
We only need show

PsupCN(B) C supC,(PsupN(B))
This is true because first,
supCN(B) C supN(B) = PsupCN(B) C PsupN(B)

and secondly, PsupCN(B) is controllable w.r.t. PM. Assume the contrary; then
there exist s € ¥* and ¢ € X such that

(s € PsupCN(B)) A (0 € ¥ye NE,) A (s0 € PM) A (so & PsupCN(B))
= (s € PsupCN(B)) A (0 € X NE,) A ((Fs' € X7)
s. t. (Ps'=3s)A(s'c e M)A (so & PsupCN(B))
{by expanding so € PM}
= (s € supCN(B)) A (0 € B, NE,) A((3s" € E7)
s. t. (Ps'=3s)A(s'c e M)A (so & PsupCN(B))
{since supC' N (B) is normal, (Ps' = s) A (s € PsupCN(B) = (s’ € supCN(B))}
= (3’ € ¥*) s. t. (Ps' =3)A(s'c € supCN(B)) A (so ¢ PsupCN(B))
{since supC N(B) is controllable, (s'c € M) A (s € supCN(B)) = (s'o
€ supCN(B))}
= (s € ¥*) 5. t. (Ps' = s) A (P(s'0) € PsupCN(B)) A (so & PsupCN(B))

But P(s'0) = so, thus we obtain a contradiction. {(so € PsupCN(B)) A (so ¢
PsupCN(B))} O

The formula that results from the theorem is

supCN(B) = M 0N P~ (PsupN(B) — D,.(PM — PsupN(B))X?)

[

where
supN(B) = B — P_IP(M — B)Y”

The above formula for the supremal controllable and normal sublanguage of B with
respect to M can be used to construct an algorithm to compute supCN(B). We
can show that the computational complexity of this algorithm is exponential in the
product of the number of states in the FSM realizations of the languages M and B.

8

4. CONCLUSION

In this paper, we have shown that when the legal language is closed (contains
all its prefixes), there are simple formulas for the supremal controllable sublanguage
and the supremal normal sublanguage of the legal language. We have discussed the
computational aspects of the algorithms that can be constructed using these formulas.

The closure condition is not restrictive in investigating “safety” properties of sys-
tems (e.g. a system should never leave a desired region), because in such cases, legal
languages are in fact closed. In investigating “liveness” properties of systems (e.g. a
system should eventually accomplish some task from a prescribed set of completed or
terminal tasks), the closure condition may not be satisfied. In such cases, the recur-
sive algorithm developed in [16] is applicable, as would be a recursive application of
the formula we have given for closed languages.

REFERENCES

[1] R. Cieslak, C. Desclaux, A. Fawaz and P. Varaiya, 1988. Supervisory control
of discrete-event processes with partial observations. [EEE Transactions on

Automatic Control 33(3), pp. 249-260.

[2] H. Cho and S. I. Marcus. Supremal and maximal sublanguages arising in super-
visor synthesis problems with partial observations. to appear in Mathematical
Systems Theory.

[3] H. Cho and S. . Marcus. On supremal languages of class of sublanguages that
arise in supervisor synthesis problems with partial observations. Math. Control
Stgnal Systems 2, pp. 47-69.

[4] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, 1979.

[5] R. Kumar, V. Garg and S. I. Marcus, 1989. Supervisory Control of Discrete
Event Systems: Supremal Controllable and Observable Languages. to appear
in the Proceedings of 1989 Allerton Conference.

[6] F. Lin, 1987. On Controllability and Observability of Discrete Event Systems.
Ph. D. Thesis, Department of Electrical Engineering, University of Toronto.

[7] F. Lin, R. D. Brandt, and W. M. Wonham, 1989. A Note on Supremal Control-
lable and Normal Sublanguages. to appear in the Proceedings of 19589 Allerton
Conference.

[8] F. Lin and W. M. Wonham, 1988. Decentralized supervisory control of discrete-
event systems. Information Sciences, 44(3), pp. 199-224.

[9] F. Lin and W. M. Wonham, 1988. On observability of discrete event systems.

Information Sciences, 44(3), pp. 173-198.

[10] F. Lin and W. M. Wonham, 1988. Decentralized control and coordination of

[11]

[12]

[13]

[14]

discrete event systems with partial observation. Systems Control Group Report
No. 8909, Department of Electrical Engineering, University of Toronto.

F. Lin, A. F. Vaz and W. M. Wonham, 1988. Supervisor specification and
synthesis for discrete event systems. [International Journal of Control, 48(1),

pp. 321-332.

P. J. Ramadge and W. M. Wonham, 1987. Supervisory control of a class of
discrete event processes. SIAM J. Control and Optimization, 25(1), pp. 206-
230.

P. J. Ramadge and W. M. Wonham, 1988. Modular supervisory control of
discrete event systems. Mathematics of Control, Signal and Systems, 1(1), pp.
13-30.

P. J. Ramadge and W. M. Wonham, 1989. The control of Discrete Event
Systems. Proceedings of IEEE, 77(1), pp. 81-98.

[15] W. M. Wonham, 1988. A control theory for discrete-event systems. Advanced

Computing Concepts and Techniques in Control Engineering (M. J. Denham
and A. J. Laub Ed.), NATO ASI Series, F47, Springer-Verlag, Berlin, pp. 129-
169.

[16] W. M. Wonham and P. J. Ramadge, 1987. On the supremal controllable sub-

language of a given language. SIAM .J. Control and Optimization, 25(3), pp.
635-659.

[17] H. Zhong, 1987. Control of discrete-event systems: decentralized and hierarchi-

cal control. M. A. Sec. Thesis, Department of Flectrical Engineering, University
of Toronto.

10

