On Controllability and Normality of Discrete Event
Dynamical Systems *

Ratnesh Kumar Vijay Garg Steven I. Marcus

Department of Electrical and Computer Engineering,

The University of Texas at Austin,
Austin, Texas 78712-1084

Abstract

This paper studies the supervisor synthesis problem of Discrete Event Dynami-
cal Systems (DEDS’s) through the use of synchronous composition of the plant and the
supervisor and discusses some of the simplifications achieved by using the synchronous
composition to model supervisory control. An alternate definition of controllability is
presented. This definition of controllability is then used to derive an algorithm that
is computationally more efficient than previously existing ones for the construction of
the supremal controllable sublanguage; the algorithm is also shown to be optimal. The
observability and normality issues arising due to the partial observation of the system
dynamics under an arbitrary mask are then investigated. Closed form representations
of the supremal normal, and supremal closed and normal sublanguages are derived in
the more general setting of arbitrary mask and nonclosed languages, thus extending
earlier results of the authors and others.

*This research was supported in part by the Advanced Technology Program of the State of Texas under
Grant 003658-093, in part by the Air Force of Scientific Research under Grant AFOSR-86-0029, in part by
the National Science Foundation under Grant ECS-8617860, in part by the Air Force Office of Scientific
Research (AFSC) under Contract F49620-89-C-0044, in part by a University Research Institute Grant and
in part by a Bureau of Engineering Research Grant.

1 Introduction

Ramadge and Wonham in their work on supervisory control [13, 12] have modeled a
DEDS, also called a plant, by a state machine (SM), the event set of which is finite and is
partitioned into the set of controllable and uncontrollable events. The language generated by
such a SM is used as a model to describe the behavior of the plant at the logical level. The
control task is formulated as that of synthesis of a controller, also called a supervisor. The
way a supervisor exercises closed loop control over the plant is by disabling some of the events
in order that the plant may achieve a certain prescribed behavior. Supervisors designed for
closed loop control, so that none of the uncontrollable events that can occur in the plant
behavior are prevented from occurring in the closed loop system, are called complete.

Since under the closed-loop control of a complete supervisor, all uncontrollable events that
can occur in the plant, can also occur in the closed loop system, there may not always exist
a complete supervisor for a given plant such that the closed loop system has a prespecified
desired behavior. The question then arises as to how to construct a complete supervisor
which is minimally restrictive, so that the closed loop system can engage in some maximal
behavior and still maintain the prescribed behavioral constraint. Another problem related
to the design of such supervisors is to reduce the computational complezxity of finding the
minimally restrictive supervisor [13, 12, 11].

In [13, 12] the supervisor is modeled as another SM together with a feedback map that
is used to disable certain controllable events so that those events can no longer occur in
the controlled plant behavior. We use the notion of the synchronous composition [7, 5]
of the two machines, the plant and the supervisor, to describe the control achieved by
the supervisor over the plant behavior. In this way we avoid the notion of the feedback
map. This simplifies the analysis of supervisory synthesis problems, as demonstrated by our
treatment of some of the supervisory synthesis problems discussed below. Notions similar
to synchronous composition called prioritized synchronization for composition of SM’s in [6]
and weave and blend operators for composition of traces in [14, 15] have been used for control
of DEDS’s.

The computational complexity of the algorithm presented in [12] for constructing the
minimally restrictive supervisor is quadratic [11] in the product of the number of states in-
volved in the FSM realizations of the plant and that of the supervisor. It was mentioned
without proof in [17] that if the languages describing the plant as well as the desired behavior
are prefix closed, then the computational complexity of constructing the minimally restric-
tive supervisor is linear; however, no algorithm for the supervisor construction was given.
We present an algorithm (Algorithm 3.10 below) for determining the minimally restrictive
supervisor that is an order of magnitude faster than the algorithm described in [12] and show
the optimality of this algorithm (Theorems 3.11 and 3.13 below).

Next we study the case when the dynamics of the system under consideration is not
completely observed. It has been shown in [10, 4] that a supervisor for a partially observed
system exists if and only if the desired behavior is observable. A computationally efficient
algorithm for the verification of observability of a given language is given in [16]. Since the
class of observable sublanguages is not algebraically well behaved (a supremal element does
not exist) [2, 3, 10, 4], the notion of normality that is in some sense stronger than the notion
of observability and is preserved under union is used for synthesizing supervisors for partially

observed systems. We provide closed form expressions for representing the supremal normal,
and supremal closed and normal sublanguages in a general setting of arbitrary masks and
nonclosed languages (Theorems 4.3 and 4.4 below), and discuss the computational aspects
of these expressions. This generalizes our previously reported work in [9, 1].

These closed form expressions can be used for solving the Supervisory Control and Ob-
servation Problem [10] in a general setting where the mask is not necessarily the natural
projection map and the languages are not necessarily closed. These closed form represen-
tations can also be be used for the computation of the supremal controllable and normal
languages, as is demonstrated (Remark 4.5 below).

2 Notation and Terminology

The DEDS that is to be controlled, also called the plant, is represented as a deterministic

SM. Letting P denote the plant, it is represented as a 5-tuple [8]: P & X, XN, o, 20, X),
g

where X denotes the states of the plant (X is finite, if P is a FSM); ¥ denotes the finite
event set; a : ¥ x X — X is the partial state transition function; vo € X denotes the initial
state of the plant; and X,, C X denotes the marked states of the plant.

The behavior of the plant is described in terms of the set of strings of events, called the
language, that the plant can generate. Formally, the languages generated and recognized (or
marked) by P are denoted by L(P) and L,,(P), respectively, and are defined as: L(P) = {s €
L a(s,zo)}ys L (P) ={s € L(P) | a(s,x0) € X,,}, where ¥* denotes the set of all the
finite strings of events belonging to ¥, and the notation “!” is used to denote “is defined”.
The state transition function « is extended to the domain ¥* x X in the natural way. The
language L(P) is prefiz closed by its definition. Further, if the plant is given to be a FSM,
then L(P) and L,,(P) both are regular languages [8].

A supervisor for the given plant is another DEDS modeled as a deterministic SM (for
a more general definition, see [13]). Note that we do not distinguish between the structure
of a plant and that of a supervisor. Letting S denote the supervisor, it is represented as a
5-tuple: S & (Y, X, 3,y0, V), where Y denotes the states of the supervisor; ¥ denotes the
finite event set, the same as that of the plant; 5 : ¥ x Y — Y denotes the partial state
transition map; yo € Y denotes the initial state of the supervisor; and Y,, C Y denotes the
marked states of the supervisor.

The supervisor executes synchronously with the plant and thereby controls the plant
behavior. Let the synchronous composition [7, 6] of the plant and the supervisor be denoted
by the SM POS| where “0” represents the synchronous composition operator. The notion of
synchronous composition operator is similar to that of the weave operator defined in context
of the trace theory in [14, 15]. The synchronous composition of the plant and the supervisor
means that only those transitions which are allowed in both the plant P and the supervisor
S, are allowed in the coupled SM POS, when run synchronously. Thus, if some of the
transitions are not allowed in the supervisor then they also cannot occur in the plant. This
is the way the supervisor controls the plant. Formally, POS is another deterministic SM,
represented by the 5-tuple: POS & (Z,%,7, 20, Zm), where Z = X x Y is the state set of
the coupled SM, POS; X denotes the finite event set as before; v : ¥ x Z — Z denotes the
partial state transition map for POS. Let 0 € ¥ and (z,y) € X X Y = Z; then we define:

e oo, x o if a(o,z)! and B(o,y)!
V(o (2,y)) = { Em(de}in)édﬂ() othér\;\/is)e o)

zo = (@0, yo) denotes the initial state of the coupled SM POS; and Z,, = X,,, XY, denotes the
marked states of the coupled SM. The synchronous composition of two SM’s can be defined
in a more general setting, in which the event sets of the two SM’s are different [7, 6].

Remark 2.1 Let the map f : L(P) — 2% denote a control policy as described in [13], i.e.
for each string s € L(P) generated by the plant P, f(s) C ¥ is the set of events that are
not disabled by a supervisor. Then the control exercised by the synchronous operation of
a supervisor and the plant, as described above, defines the following control policy over the
set of strings generated by the plant:

| undefined otherwise

f(s) { {7 € Sly(s,20)1} il 5(s, 20)!

where the string s € L(P).

Lemma 2.2 Let L(POS) be the language generated and L,,(POYS) the language marked
by POS; then L(POS) = L(P)N L(S) and L,,(POS) = L, (P)N L,(5).

Proof: First we show that L(POS) = L(P) N L(S). Consider s € ¥*. Then s € L(POS) if
and only if y(s, z9)!, i.e. if and only if a(s, z)! and B(s,yo)!, i.e. if and only if s € L(P) and
s € L(9),i.e if and only if s € L(P) N L(S).

Similarly, it follows that L,,(POS) = L,,(P) N L, (S). a

Remark 2.3 It has been shown in [14, 15] that a property analogous to that stated in
Lemma 2.2 also holds for the weave operator in trace theory. We observe that L(PDOS) C
L(P), and L,,(POS) C L,,(P).

Corollary 2.4 Let P denote the plant and S denote the supervisor. Then POS is another
supervisor for the plant P, and L(PO(POS)) = L(POS); also L, (PO(POS)) = L, (POS).

Proof: Consider the SM PO(POS). It follows from Lemma 2.2 and Remark 2.3 that
L(PO(POS)) = L(P)N L(POS) = L(POS). Similarly, L,,(PO(POS)) = L, (POS). O

The event set Y is partitioned into ¥, U Y., the uncontrollable and controllable event
sets.

Definition 2.5 A supervisor S is said to be complete [13] with respect to a given plant P if
and only if for s € ¥* and o, € ¥,, the conditions ¥(s, z9)! and a(so,, x¢)! together imply
that v(soy, 20)!. In other words, the conditions s € L(POS) and so,, € L(P) together imply
that so, € L(POS).

Thus the language generated by the coupled system POS under the control of a complete
supervisor satisfies the following invariance property: L(POS)Y, N L(P) C L(POS). Such
an invariance property of languages is called controllability.

Definition 2.6 A language K is said to be controllable with respect to another language L,
if K, N L C K, where the notation K is used to denote the prefiz closure [13, 12] of the
language K.

Thus K is controllable if and only if K is controllable.

Lemma 2.7 Let P denote the plant, S denote the supervisor and POS denote the coupled
system. Then L(POS) is controllable with respect to L(P) if and only if the supervisor S is
complete.

Proof: Assume that the supervisor S is complete; then the language generated by the
coupled system satisfies the following invariance property (see Definition 2.5): L(POS)Y, N
L(P) C L(POS). Since the language generated by any SM is closed, we have L(POS) =
L(POS). Thus we obtain L(POS)Y, N L(P) C L(POS), which shows that L(POS) is
controllable with respect to L(P).

Assume now that L(POYS) is controllable with respect to L(P); now since L(POYS) is

closed, we have the following: L(POS)Y, N L(P) C L(POYS), showing that S is complete.O

Proposition 2.8 Let Ky C Ky C L(P) be two given languages such that Ky C L,,(P) C
L(P), and assume that K3 is prefix closed. Then there exists a supervisor S such that
L, (POS) = Ki, and L(POS) = K.

Proof: Let Sy and S3 be two supervisors for the plant P such that L,,(51) = Ky, L(S1) = ¥*
and L,,(52) = Ky, L(S2) = Ky; i. e. Sy is the recognizer for K and the Sy is the generator
for Ky. Since Ky and ¥* are closed, we can construct such SM’s. All the states of S; are
marked, while S; can be viewed as a recognizer for K; with an additional dump state in
order to generate ¥*. Let § def 5108;. Then L, (POS) = L, (PO(S1083)) = L,(P)N
Ly(S1)N L (S2) = Lp(P)N K1 N Ky = K.

Similarly, L(POS) = L(P) N L(S1) N L(Sy) = L(P)NY N Ky = Ks. a

Remark 2.9 By Lemma 2.7, if the language K, is given to be controllable as well, then
the supervisor S thus constructed will be complete. Combining the results of Lemma 2.7
and that of Proposition 2.8, we obtain the result stated in Proposition 5.1 in [13]. We note
the simplification achieved in proving such a result due to the introduction of the notion of
synchronous composition of two SM’s in describing the control of DEDS’s.

3 Minimally Restrictive Supervisor

In the previous section we have shown that given any plant with uncontrolled behavior
L, there exists a supervisor which when run synchronously with the plant can restrict its
behavior to any closed sublanguage K C L. We want the supervisor thus synthesized to be
complete, so by Lemma 2.7, we need the language K to be controllable with respect to L.

In case the prescribed language K is not given to be controllable, we can construct a
complete supervisor which when run synchronously with the plant generates the supremal
controllable sublanguage of K. Let K denote the supremal controllable sublanguage of K
(the supremal controllable language is well defined and is unique [12]; it is further shown in

[12] that if the given languages K and L are regular then the language K is also regular,
i.e. can be generated by a FSM). For the case when the languages L and K are regular, an
algorithm for constructing the language K is given in [12].

Definition 3.1 A complete supervisor is said to be minimally restrictive [12] if, when run
synchronously with the given plant, it generates the supremal controllable sublanguage of
the prescribed language.

Next we prove a theorem that provides an alternative definition of controllability of an
arbitrary language K with respect to a closed language L. This is used later for deriving an
optimal algorithm for the minimally restrictive supervisor.

Theorem 3.2 Consider K, L C ¥*, and let L be closed. Then K is controllable with respect
to L if and only if KX N L C K, where ¥ denotes the set of finite strings of uncontrollable
events.

Proof: Assume that FZZ NL C K. Then KX, N L C K, since ¥, C ¥r. Thus K is
controllable.

Conversely, assume that K is controllable, i. e. KX, N L C K. Forn € N/, let ¥* denote
the set of strings of size n consisting only of uncontrollable events. Then ¥ = U,cn 0.
To prove that K¥* N L C K, we will prove that kX" N[C K for each n € N. Since
KY? = K, K¥"N L C K is trivially true for n = 0. We will assume that KX" N L C K
for some n € A" and show that KX N L C K; hence the proof will follow by induction.
Pick s € K and w4y = u,0o, € Y+ where u, € X" and o, € X, such that su,y; € L.
Since L is closed, su, € L. So using the induction hypothesis we obtain su, € K. Thus
we have su, € K, stu,4q = (suy)o, € L; hence from the controllability of K it follows that
(sup)o, = supq € K. O

Corollary 3.3 If K C ¥* is closed, then K is controllable with respect to a closed language
L C¥*ifand only if K¥* N L C K.

Given a deterministic SM V &' (Q,%,9,q0,Qm), there is a natural equivalence relation

Ry [8, 3] induced by V on ¥*, which for strings s, € ¥* is defined by s = t(Ry) <
6(s,q90) = 6(%,qo) (this is meant to include the condition that 6(s, qo) is undefined < 6(%, go)
is undefined). We use [s](Ry) to denote the equivalence class under the equivalence relation
Ry, containing the string s.

Definition 3.4 SM V; is said to refine SM V3, if for s,t € ¥* s X {(Ry,) = s 2 t(Ry,).
Lemma 3.5 If s, € L(POYS) is such that s = {(Rpggs); then s = t(Rp), i.e. POS refines P.

Proof: s,t € L(POS) implies s,t € L(P). Thus, if s = t(Rpas), then y(s,z0) = (1, 20).
So it follows from the definition of the transition function (-,-) that a(s,z) = a(s, o),
showing that s = ¢(Rp). O

Let P & (X, Y, a, 20, X;,) denote the plant with L(P) = L, and S & (Y, X, B,y0, Vi)
denote a supervisor with L(S) = K C L, and POS & (Z,%,7, 20, Zm) denote the coupled

system. Then by Lemma 2.2, L(POS) = K is the closed language generated by the coupled

6

system. Assume that S is not complete; then by Lemma 2.7, K is not controllable. We
want to construct the minimally restrictive supervisor that would generate KT, the supremal
controllable sublanguage of K. Since K is closed, so is K; hence by Proposition 2.8, it is
possible to construct a generator for K. This could be treated as the minimally restrictive
supervisor.

Since K is not controllable, by Corollary 3.3 there exists s € K such that su € L(P)
and su ¢ K for some u € ¥* (and conversely). We say that such a string s € K is
an uncontrollable string. Let s € K be an uncontrollable string, and z(= (z.,y.)) € Z

be such that z = ~(s,z), i. e. z is the state reached by the SM, POS, by accepting the

string s. Then x, = a(s,z0) and y, = B(s,y0). We now define: ¥ (P)(x.) o {u e ¥ |

a(u,z.)!}, and ¥ (POS)(2) Ly e x| y(u, 2)!}. Tt is clear from the above discussion
that s is uncontrollable if and only if ¥%(P)(x,) € X5 (POS)(z).

Proposition 3.6 Let s € K be an uncontrollable string. Then all the strings ¢ € K such
that ¢ 2 s(Rpas) are uncontrollable.

Proof: s € K implies s € L(P). Let z(= («.,y.)) = 7(s, z0) be the state reached by POS,
by accepting the string s; then @, = a(s, x) is the state reached by the P by accepting the
string s. Since s is uncontrollable, we have ¥*(P)(x.) € X5 (POS)(z).

Assume that t = s(Rpgs); then ¢t =2 s(Rp), since by Lemma 3.5, POS refines P. This
means that the states reached by POS and P by accepting the string ¢ are again z and z, .
respectively. But ¥*(P)(z.) € ¥5(P0OS)(z), so t is uncontrollable. O

From Proposition 3.6 it is clear that s is uncontrollable if and only if all the strings in
the equivalence class [s](Rpas) are uncontrollable. Thus we have that all the strings in the

equivalence class [s](Rpgs) are uncontrollable if and only if ¥*(P)(x,) € Y5 (POS)(z). We

define the set of “bad states” Z, to be the following subset of Z: Z, % {z € Z | YH(P)(x,) €
YX(POS)(2)}.

Remark 3.7 The deletion of the uncontrollable strings from K in order to obtain KT, is
equivalent to the elimination of the states in the set Z, from the SM realization of POS.

Define 3, (P)(z.) ¥ {o, € 3, | a(oy, 2.)!}, and 3, (POS)(2) ¥ {0, € By | ¥(ou, 2)!}.
We partition Z, into two sets Z) U Z} as follows: Z) & {z € Z|2,(P)(x,) € X, (POS)(2)}

and 77 o {z€Z -2 | v(u,z) € Z) for some u € ¥} }.

Proposition 3.8 Let 7Z,, Z, and Z; be as defined above; then Z, = Z) U Z}.

Proof: We first show that Z) U Z; C Z,. We have 7 C 7, since ¥, C ¥*. To show
that 7y C 7, let 2 € Z7; then there exists z € ZP such that v(u, 2) = z for some u € ¥7.
Since z € Z}, there exists o, € ¥, such that o, € ¥,(P)(z.) and o, € ¥, (POS)(2).
Thus, uo, € X7 (since u € ¥7 and o, € ¥,), uo, € ¥(P)(xz), and uo, € X5(POS)(Z).
This implies that ¥*(P)(x:) € EX(POS)(2), so 2 € Z,. Thus Z; C Z,. Hence we obtain
720U ZF Chy.

Next we show that 7, C ZP U Z;. Let z € Z; then there exists u € X% such that
€ Y (P)(x,), and u ¢ Y5 (POS)(z). Let u be the smallest such string; then either (i)
= o, for some o, € X,, in which case ¥,(P)(z.) € Y, (POS)(z), i. e. z € Z or (ii)
= vo, for some v € ¥* and o, € X,, in which case y(v,2) € Z, i. e. z € ZF. Thus, if
z € Zy, then either z € Z or z € Z;. Thus, Z, C Z) U Z7. O

& <

7

Remark 3.9 Thus, in order to construct the generator for KT, we need to eliminate the
states in the set Z and those in Z} from the SM realization of POS.

Algorithm 3.10 (for constructing the generator for K1) We assume that all the SM’s are
finite state (this is needed for the algorithm terminate in finite time), i.e. L(P) and K are

regular languages; K is further assumed to be closed.

1.

2.

Construct the FSM POS.

Determine the states in the set Z) = {z € Z | S.,(P)(z,) € T, (POS)(z)}. This is
done by comparing the set of uncontrollable events defined at each state z € Z in the
SM POS to the set of uncontrollable events defined at the corresponding state x, € X
in the SM P.

Construct the FSM POS |gud:ef (Z,%0,7 |2uxz, 20, Zm) by deleting all the transitions

corresponding to the controllable events.

. Determine the states in the set Z; by picking those states z € Z — Z which have a

path of transitions leading to some state in 77 in the FSM POS |y, .

Delete the states Z U Z; (and all the transitions entering or leaving these states) from
the FSM realization of POS to obtain the generator for K.

Theorem 3.11 Let m and n denote the number of states in the minimal FSM realizations
of the languages L(P) and K respectively. Then computational complexity of Algorithm 3.10
is O(mn).

Proof: The proof to Theorem 3.11 follows from the following arguments:

1.

The FSM POS can be constructed in order O(mn) time, since the FSM POS can have
a maximum number mn of states.

The states in the set Zf can be identified in order O(mn) time, because the maximum
number of possible bad states is mn.

The FSM POS |y, can again be constructed in order O(mn) time, because in order
to delete the transitions caused by the controllable events, we need to consider the
transitions in all the possible mn states.

. The states in the set Z} can also be identified in order O(mn) time, because, if we

consider the FSM POS |5, with all its transitions reversed, then the states in the set
Z; are those states that are reachable from the states in the set 7).

Let the number of states in the set Z be p(< mn). Then the states (other than those in
7)) that can be reached by a single transition from these p states in the FSM POS |y,
with all its transitions reversed, can be identified in order O(e,) time, where ¢, is the
total number of uncontrollable transitions leading into the state set Z7. Let the set of
these states be denoted by 7! and let the number of such states be ¢(< (mn — p)).
Then the states that can be reached (other than those in Z U Z}) from these ¢ states

8

in the FSM POS |y, with all its transitions reversed, due to a single transition, can be
identified in order O(e,) time, where ¢, is the total number of uncontrollable transitions
leading into the above ¢ states. Thus the states reachable from the states in the set 7}
in the FSM, POS |y, with all its transitions reversed, due to two successive transitions,
can be identified in order O(e, + ¢,)(< O(e)) time, where e is the total number of
uncontrollable transitions present in POS. If we continue identifying the states that
are reachable from the states in the set Z in the above fashion, then it is easy to see
that all such states can be identified in order < O(e) time. Since the total number of
uncontrollable transitions present in POS is at most equal to |, |mn, O(e) = O(mn).
This completes the proof (while determining the states reachable from the set 77, care
is taken so that none of the transitions is explored more than once).

5. Since the states in the set Z) U Z} have been identified, these states (and the transitions
entering and leaving these states) can be deleted in O(mn) time, for the maximum
number of such states is mn. O

Remark 3.12 In the above analysis we have neglected the dependence of the computational
complexity on any parameter other than m and n. Algorithm 3.10 for constructing the
generator for K is an order of magnitude faster than that in [12]. The computational
complexity of the algorithm in [12] is of order O(m?*n?) [11].

In [17], it has been mentioned without proof that if the languages L(P) and K are
both assumed to be closed, then the computational complexity of constructing minimally
restrictive supervisor is of order O(mn); however, no algorithm for the construction of the
minimally restrictive supervisor is given.

We show now that Algorithm 3.10 for constructing the supremal controllable sublanguage
is also an optimal algorithm, i. e. given the plant P that generates the language L(P) and
another closed language K with m and n states in their minimal FSM realizations, respec-
tively, the supremal controllable sublanguage of K with respect to L(P) cannot in general be
computed with time complexity less than O(mn).

Theorem 3.13 Algorithm 3.10 is computationally optimal.

Proof: We provide an example of languages L(P) and K with m and n states in their
minimal FSM realizations such that the generator for K1 has O(mn) states in its minimal
FSM realization. This shows that any algorithm that constructs the generator for KT must
be of space complexity O(mn), and hence of time complexity O(mn) [8].

Let ¥ ={a,b,c,d,e} and ¥, = {e}. Let L(P) and K be as given below:

L(P)={s e ¥ | 0< #(a,s) —F(b,s) < (m — 1), and for all prefixes of the form
we (w S Z*) of S, 0< #(avw) - #(bvw) < (m - 2)}
K={se¥ |0< #(c,s) — #(d,s) < (n— 1), and for all prefixes of the form we (w € ¥*)
of s, 0 < #(c,w) — #(d,w) < (n —2)};

where the notation #(x, y) denotes the number of events “a” in the string “y”. The language
K is not controllable with respect to L(P), for the string ¢"~'e € L(P) but ¢"~'e ¢ K. If we
delete all such uncontrollable strings from K we get the the following language as K':

9

Kl ={se ¥ |0< #(a,s)— #(b,s) < (m —2),and 0 < #(c,s) — #(d,s) < (n—2)}U
{s €{a,b,e,d}* |0 < (a s)—#(b,s)=(m—1),and 0 < #(¢,s) — #(d,s) < (n—1)}.

The generators of languages L(P), K and K are shown in Figure 1.

In the above example L(P) and K have m and n states, respectively, in their minimal
FSM realizations, whereas K has m(n — 1) + 1 states in its minimal FSM realization, i.e.
the space complexity of any algorithm that computes K1 is O(mn); thus any algorithm that
computes K1 has O(mn) time complexity [8]. O

4 On Normality of Languages

In our previous discussions we have assumed that the supervisor has complete information
about the plant behavior, i. e. the supervisor observes all the events that occur in the plant
pertectly. However, in many situations the supervisor has only partial information about
the plant behavior. Let M : ¥ — A U {¢} be a map, called a mask, where A is the set of
events that are observed by the supervisor. Let P denote the plant and L = L(P) denote its
behavior. Consider the extension of the mask M to the set ¥* as: M(¢) = €, and M(so) =
M(s)M (o), where s € ¥* and o € ¥. Then the plant behavior observed by a supervisor is
given by M(L). Here we do not impose any restriction on the type of mask M; the mask
M was assumed to be the natural projection map from the event set X to its subset ¥, the
set of observable events in [10, 1]. The work presented here is thus a generalization of our
previously reported work in [1]. An example of a mask that cannot be represented as the
natural projection map is treated in [4, p. 59]. Also, a problem in which the supervisor can
observe the occurrence of two events, but cannot distinguish between them is considered
in [4] (c.f., the Alternating Bit Protocol, p. 259). Thus, using the results presented in this
section we can solve the Supervisory Control and Observation Problem [10] in a general
setting of non-closed languages and non-projection masks.

Let the closed language K C L be the desired plant behavior. In order to be able to
construct a supervisor so that the coupled system generates K, the language K must be
observable [10, 4] with respect to L and M.

Definition 4.1 Consider two closed languages K, C ¥* and a mask M : ¥* — A*. K is
said to be observable (also called (L, X, M)-controllable) [3, 2, 4, 10] with respect to L and
M,ifs,t € LN K, M(s)=M(t),o0 € ¥,s0 € LNK, and to € L implies that to € K.

An algorithm of polynomial complexity for testing the observability of a closed language
K with respect to another closed language L. and a mask M is given in [16]. It is further
shown in [16] that even though the test for observability can be conducted in polynomial
time, the problem of constructing a supervisor (in partially observed case) for a desired
observable behavior is NP-complete.

4.1 Supremal normal languages

Though one needs the desired behavior of the system to be observable in order to be able
to construct the appropriate supervisor, the observable languages are not algebraically well-
behaved — such languages are not closed under union [10, 4]. Thus if the desired behavior is

10

not observable, construction of a “minimally restrictive supervisor” is not possible, for the
supremal observable language does not exist. However mazimal observable languages exist
[3], and algorithms for constructing such languages are given in [3]. The notion of normality
[10, 4], that is in some sense stronger than the notion of observability, is preserved under
union, so that the existence of the supremal normal language is guaranteed [10, 4].

Definition 4.2 K C ¥* is said to be normal ((M, L) recognizable) with respect to L C ¥*
and a mask M if and only if given s € LN K, t € L, M(t) = M(s) implies t € K.

Alternatively, K is normal with respect to L and M if and only if L N M~'M(K) =

K. Assume that the FSM’s P & (X, Y, o, 20, X;,) and S e (Y, X, 3,y0, V) recognize

languages [, and K, respectively, as before. Consider a deterministic FSM G that recognizes
the language M~*M(K') constructed in the following way:

1. Construct a FSM that recognizes M(K) by replacing each transition ¢ € ¥ in machine
S with M (o) € AU {e}. This machine will in general be non-deterministic.

2. Convert the machine obtained in step 1 to a deterministic machine [1].
3. Construct a FSM G

(a) by replacing each transition 6 € A in the machine obtained in step 2 by the
transitions {oc € ¥ | M(0) = 6}, and

(b) by adding transitions that correspond to looping on a single state, labeled with
the events o € ¥ which have M (o) = ¢, at each state of the machine obtained in

step 3 (a).

Then G by construction recognizes the language M~'M(K). This is true because the SM
obtained in step 1 (and in step 2) recognizes the language M(K); and the SM obtained
in step 3 recognizes the language M~'(-), where (-) is the language recognized by the SM
obtained in step 2. Note that the above assertions could be made because the map M
distributes over concatenation.

Thus normality of K can be checked by considering the machines GOP and S that
recognize languages M~'M(K)NL and K respectively. In case K is not normal, the supremal
normal sublanguage of K can be computed. Next we present a closed form expression for
the supremal normal sublanguage. The notation K° will be used to denote the supremal
normal sublanguage of K.

Theorem 4.3 Consider K, L C ¥*, and a mask M. Then K°, the supremal normal sublan-
guage of K with respect to L and M, is given by K — M~*M(L — K).
Proof: Let H % K — M=*M(L — K). Then we need to show that K° = H.

First, we show that H C K°. Since K° is the supremal normal sublanguage of K, and
H C K, it suffices to show that H is normal. Pick s € H; then s € K, and there does not
exist t € L — K such that M(t) = M(s). We need to show that there is no such t € L. — H.
Assume for contradiction that there exists such a t € L — H so that M(t) = M(s); then
te K—H (since L—H=(L-K)U(K—-H),andt ¢ L—K). Sincet € K — H,

11

t € KNMM(L — K). Hence there exists ' € [— K such that M(t') = M(t). But
M(t) = M(s), showing that M(s) = M(¢'). This contradicts the fact that s € H (since
el —K).

Next we show that K° C H. Since K°, H C K, it suffices to show that K — H C K — K°.
Pick s € K — H; then s € KN M™'M(L — K). Thus s € K, and there exists t € L — K
such that M(¢) = M(s). Hence s ¢ K°, and thus s € K — K°. 0

The supremal normal sublanguage of K may or may not be closed. A closed form
expression for the supremal closed and normal sublanguage of a given closed language is
presented in the theorem that follows next. Thus if K is not observable, a supervisor can
be constructed so that the closed loop system generates the supremal closed and normal
sublanguage of K. The notation K° will be used to denote the supremal closed and normal
sublanguage of K.

Theorem 4.4 Consider K,L C Y*, and a mask M. Let K be closed. Then K°, the
supremal closed and normal sublanguage of K with respect to L. and M, is given by K —
(M~'M(L — K))X*.

Proof: Let H % K — (M~'M(L — K))S*. Then we need to show that K° = H.

First, we show that I C K°. Since K° is the supremal closed and normal sublanguage
of K, and H C K is closed (the operation K — (-)X* on K preserves the prefix closure),
it suffices to show that H is normal. Pick s € H; then s € K, and there does not exist a
t € L — K such that M(t) = M(s) (s ¢ (M™'M(L — K))X* implies s ¢ M~'M(L — K)).
We need to show that there is no such t € . — H. Assume for contradiction that there exists
such at € L — H so that M(t) = M(s);thent e K — H,for L—H=(L—-K)U(K —H)
and t ¢ L — K. Sincet € K — H,t € KN(M~'M(L — K))X*. Hence there exists a prefix
u e X of t,and ' € L — K such that M(t') = M(u). But M(t) = M(s), so there exists a
prefix v € ¥* of s such that M(v) = M(u) = M(t'). Since H is closed, v € H. This is a
contradiction; for v € H, and there exists ¢ € L — K with M(¥') = M(v).

Next we show that K° C H. Since K°, H C K, it suffices to show that K — H C K — K°.
Pick s € K — H; then s € KN (M™*M(L — K))¥*. Thus s € K, and there exists a prefix
v € X ofs,and t € L — K such that M(t) = M(v). Since K is closed, v € K; therefore
v & K° (since K° is normal, and v € K N M~'M(L — K)). But K° is closed, so s ¢ K°,
showing that s € K — K°. O

Remark 4.5 Theorems 4.3 and 4.4 generalize the result presented in [1] where the mask
was assumed to be the natural projection map, and the languages were assumed to be closed.
The assumptions of projection type mask and closed language are relaxed in obtaining the
result of Theorem 4.3, and Theorem 4.4 is derived again without assuming the mask to be
a projection.

The above closed form representations of the supremal (closed and) normal sublanguage
of K can be used for constructing algorithms for computing the supremal (closed and) normal
sublanguage of K with respect to . and M, the computational complexity of which would
be exponential in the product of the number of states in the minimal FSM realizations of K
and L, as expected [2].

12

5 Conclusion

In this paper, we have used the notion of synchronous composition of two SM’s for
describing the control of DEDS’s. This considerably simplifies the problem of synthesizing
supervisors for controlling the uncontrolled plant behavior.

We have defined the notion of a complete supervisor in the context of synchronous com-
position of plants and supervisors and have shown that the language generated by the syn-
chronous composition of a plant and a complete supervisor is controllable, and conversely.
An equivalent representation of controllable languages has been developed (Theorem 3.2),
and has been used to construct an algorithm (Algorithm 3.10) for computing the supremal
controllable sublanguage (equivalently, for constructing the minimally restrictive supervi-
sor). The computational complexity of this algorithm is linear in the product of the number
of states in the FSM realizations of the language generated by the plant and the prescribed
language that is not controllable (Theorem 3.11). Computational optimality of the above
algorithm has been proved (Theorem 3.13).

Next the case, when the supervisor can observe only the partial behavior of the plant, has
been considered. We present closed form expressions for computing the supremal normal,
and supremal closed and normal sublanguages in general setting of non closed languages
and arbitrary masks (Theorem 4.3 and Theorem 4.4). These closed form expressions can be
used for solving the supervisory control and observation problem [10] and also for deriving
algorithms that do not require any iterative schemes to compute the supremal normal, and
supremal closed and normal sublanguages.

References

[1] R. D. Brandt, V. K. Garg, R. Kumar, F. Lin, S. I. Marcus, and W. M. Wonham.
Formulas for calculating supremal controllable and normal sublanguages. Systems and

Control Letters, 15(8):111-117, 1990.

[2] H. Cho and S. I. Marcus. On supremal languages of class of sublanguages that arise in
supervisor synthesis problems with partial observations. Mathematics of Control Signals

and Systems, 2:47-69, 1989.

[3] H. Cho and S. I. Marcus. Supremal and maximal sublanguages arising in supervisor
synthesis problems with partial observations. Mathematical Systems Theory, 22:177—
211, 1989.

[4] R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya. Supervisory control of discrete
event processes with partial observation. IEEFE Transactions on Automatic Control,

33(3):249-260, 1988.

[5] V. K. Garg. Specification and Analysis of Distributed Systems with a large number of
processes. PhD thesis, Department of Electrical Engineering and Computer Science,
University of California at Berkeley, 1988.

13

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

M. Heymann. Concurrency and discrete event control. IEFEFE Control Systems Magazine,

10(4):103-112, 1990.

C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, Inc., Englewood

Cliffs, NJ, 1985.

J. E. Hopcroft and J. D. Ullman. [Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading, MA, 1979.

R. Kumar, V. K. Garg, and S. [. Marcus. Supervisory control of discrete event sys-
tems: supremal controllable and observable languages. In Proceedings of 1989 Allerton

Conference, pages 501-510, Allerton, 1L, September 1989.

F. Lin and W. M. Wonham. On observability of discrete-event systems. Information
Sciences, 44(3):173-198, 1988.

P. J. Ramadge. The complexity of basic problems for discrete event systems. In M. J.
Denham and A. J. Laub, editors, Advanced Computing Concepts and Techniques in
Control Engineering, volume F47 of NATO ASI, pages 171-190. Springer-Verlag, 1988.

P. J. Ramadge and W. M. Wonham. On the supremal controllable sublanguage of a
given language. STAM Journal of Control and Optimization, 25(3):637-659, 1987.

P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event

processes. SIAM Journal of Control and Optimization, 25(1):206-230, 1987.

R. Smedinga. Using trace theory to model discrete events. In P. Varaiya and A. B.
Kurzhanski, editors, Discrete Event Systems: Models and Applications, pages 81-99.
Springer-Verlag, 1987.

R. Smedinga. Control of Discrete Fvents. PhD thesis, Department of Computing
Science, University of Groningen, 1988.

J. N. Tsitsiklis. On the control of discrete event dynamical systems. Mathematics of
Control Signals and Systems, 2(2):95-107, 1989.

W. M. Wonham and P. J. Ramadge. Modular supervisory control of discrete event
systems. Mathematics of Control Signals and Systems, 1(1):13-30, 1988.

14

