
On Controllability and Normality of Discrete EventDynamical Systems �Ratnesh Kumar Vijay Garg Steven I. MarcusDepartment of Electrical and Computer Engineering,The University of Texas at Austin,Austin, Texas 78712-1084AbstractThis paper studies the supervisor synthesis problem of Discrete Event Dynami-cal Systems (DEDS's) through the use of synchronous composition of the plant and thesupervisor and discusses some of the simpli�cations achieved by using the synchronouscomposition to model supervisory control. An alternate de�nition of controllability ispresented. This de�nition of controllability is then used to derive an algorithm thatis computationally more e�cient than previously existing ones for the construction ofthe supremal controllable sublanguage; the algorithm is also shown to be optimal. Theobservability and normality issues arising due to the partial observation of the systemdynamics under an arbitrary mask are then investigated. Closed form representationsof the supremal normal, and supremal closed and normal sublanguages are derived inthe more general setting of arbitrary mask and nonclosed languages, thus extendingearlier results of the authors and others.
�This research was supported in part by the Advanced Technology Program of the State of Texas underGrant 003658-093, in part by the Air Force of Scienti�c Research under Grant AFOSR-86-0029, in part bythe National Science Foundation under Grant ECS-8617860, in part by the Air Force O�ce of Scienti�cResearch (AFSC) under Contract F49620-89-C-0044, in part by a University Research Institute Grant andin part by a Bureau of Engineering Research Grant. 1

1 IntroductionRamadge and Wonham in their work on supervisory control [13, 12] have modeled aDEDS, also called a plant, by a state machine (SM), the event set of which is �nite and ispartitioned into the set of controllable and uncontrollable events. The language generated bysuch a SM is used as a model to describe the behavior of the plant at the logical level. Thecontrol task is formulated as that of synthesis of a controller, also called a supervisor. Theway a supervisor exercises closed loop control over the plant is by disabling some of the eventsin order that the plant may achieve a certain prescribed behavior. Supervisors designed forclosed loop control, so that none of the uncontrollable events that can occur in the plantbehavior are prevented from occurring in the closed loop system, are called complete.Since under the closed-loop control of a complete supervisor, all uncontrollable events thatcan occur in the plant, can also occur in the closed loop system, there may not always exista complete supervisor for a given plant such that the closed loop system has a prespeci�eddesired behavior. The question then arises as to how to construct a complete supervisorwhich is minimally restrictive, so that the closed loop system can engage in some maximalbehavior and still maintain the prescribed behavioral constraint. Another problem relatedto the design of such supervisors is to reduce the computational complexity of �nding theminimally restrictive supervisor [13, 12, 11].In [13, 12] the supervisor is modeled as another SM together with a feedback map thatis used to disable certain controllable events so that those events can no longer occur inthe controlled plant behavior. We use the notion of the synchronous composition [7, 5]of the two machines, the plant and the supervisor, to describe the control achieved bythe supervisor over the plant behavior. In this way we avoid the notion of the feedbackmap. This simpli�es the analysis of supervisory synthesis problems, as demonstrated by ourtreatment of some of the supervisory synthesis problems discussed below. Notions similarto synchronous composition called prioritized synchronization for composition of SM's in [6]and weave and blend operators for composition of traces in [14, 15] have been used for controlof DEDS's.The computational complexity of the algorithm presented in [12] for constructing theminimally restrictive supervisor is quadratic [11] in the product of the number of states in-volved in the FSM realizations of the plant and that of the supervisor. It was mentionedwithout proof in [17] that if the languages describing the plant as well as the desired behaviorare pre�x closed, then the computational complexity of constructing the minimally restric-tive supervisor is linear; however, no algorithm for the supervisor construction was given.We present an algorithm (Algorithm 3.10 below) for determining the minimally restrictivesupervisor that is an order of magnitude faster than the algorithm described in [12] and showthe optimality of this algorithm (Theorems 3.11 and 3.13 below).Next we study the case when the dynamics of the system under consideration is notcompletely observed. It has been shown in [10, 4] that a supervisor for a partially observedsystem exists if and only if the desired behavior is observable. A computationally e�cientalgorithm for the veri�cation of observability of a given language is given in [16]. Since theclass of observable sublanguages is not algebraically well behaved (a supremal element doesnot exist) [2, 3, 10, 4], the notion of normality that is in some sense stronger than the notionof observability and is preserved under union is used for synthesizing supervisors for partially2

observed systems. We provide closed form expressions for representing the supremal normal,and supremal closed and normal sublanguages in a general setting of arbitrary masks andnonclosed languages (Theorems 4.3 and 4.4 below), and discuss the computational aspectsof these expressions. This generalizes our previously reported work in [9, 1].These closed form expressions can be used for solving the Supervisory Control and Ob-servation Problem [10] in a general setting where the mask is not necessarily the naturalprojection map and the languages are not necessarily closed. These closed form represen-tations can also be be used for the computation of the supremal controllable and normallanguages, as is demonstrated (Remark 4.5 below).2 Notation and TerminologyThe DEDS that is to be controlled, also called the plant, is represented as a deterministicSM. Letting P denote the plant, it is represented as a 5-tuple [8]: P def= (X;�; �; x0;Xm),where X denotes the states of the plant (X is �nite, if P is a FSM); � denotes the �niteevent set; � : ��X ! X is the partial state transition function; x0 2 X denotes the initialstate of the plant; and Xm � X denotes the marked states of the plant.The behavior of the plant is described in terms of the set of strings of events, called thelanguage, that the plant can generate. Formally, the languages generated and recognized (ormarked) by P are denoted by L(P) and Lm(P), respectively, and are de�ned as: L(P) = fs 2�? j �(s; x0)!g; Lm(P) = fs 2 L(P) j �(s; x0) 2 Xmg, where �? denotes the set of all the�nite strings of events belonging to �, and the notation \!" is used to denote \is de�ned".The state transition function � is extended to the domain �? �X in the natural way. Thelanguage L(P) is pre�x closed by its de�nition. Further, if the plant is given to be a FSM,then L(P) and Lm(P) both are regular languages [8].A supervisor for the given plant is another DEDS modeled as a deterministic SM (fora more general de�nition, see [13]). Note that we do not distinguish between the structureof a plant and that of a supervisor. Letting S denote the supervisor, it is represented as a5-tuple: S def= (Y;�; �; y0; Ym), where Y denotes the states of the supervisor; � denotes the�nite event set, the same as that of the plant; � : � � Y ! Y denotes the partial statetransition map; y0 2 Y denotes the initial state of the supervisor; and Ym � Y denotes themarked states of the supervisor.The supervisor executes synchronously with the plant and thereby controls the plantbehavior. Let the synchronous composition [7, 6] of the plant and the supervisor be denotedby the SM P2S, where \2" represents the synchronous composition operator. The notion ofsynchronous composition operator is similar to that of the weave operator de�ned in contextof the trace theory in [14, 15]. The synchronous composition of the plant and the supervisormeans that only those transitions which are allowed in both the plant P and the supervisorS, are allowed in the coupled SM P2S, when run synchronously. Thus, if some of thetransitions are not allowed in the supervisor then they also cannot occur in the plant. Thisis the way the supervisor controls the plant. Formally, P2S is another deterministic SM,represented by the 5-tuple: P2S def= (Z;�;
; z0; Zm), where Z = X � Y is the state set ofthe coupled SM, P2S; � denotes the �nite event set as before;
 : � � Z ! Z denotes thepartial state transition map for P2S. Let � 2 � and (x; y) 2 X � Y = Z; then we de�ne:3

(�; (x; y)) def= ((�(�; x); �(�; y)) if �(�; x)! and �(�; y)!unde�ned otherwisez0 = (x0; y0) denotes the initial state of the coupled SM P2S; and Zm = Xm�Ym denotes themarked states of the coupled SM. The synchronous composition of two SM's can be de�nedin a more general setting, in which the event sets of the two SM's are di�erent [7, 6].Remark 2.1 Let the map f : L(P) ! 2� denote a control policy as described in [13], i.e.for each string s 2 L(P) generated by the plant P , f(s) � � is the set of events that arenot disabled by a supervisor. Then the control exercised by the synchronous operation ofa supervisor and the plant, as described above, de�nes the following control policy over theset of strings generated by the plant:f(s) def= (f� 2 �j
(s�; z0)!g if
(s; z0)!unde�ned otherwisewhere the string s 2 L(P).Lemma 2.2 Let L(P2S) be the language generated and Lm(P2S) the language markedby P2S; then L(P2S) = L(P) \ L(S) and Lm(P2S) = Lm(P) \ Lm(S):Proof: First we show that L(P2S) = L(P) \ L(S). Consider s 2 �?. Then s 2 L(P2S) ifand only if
(s; z0)!, i.e. if and only if �(s; x0)! and �(s; y0)!, i.e. if and only if s 2 L(P) ands 2 L(S), i.e. if and only if s 2 L(P) \ L(S).Similarly, it follows that Lm(P2S) = Lm(P) \ Lm(S). 2Remark 2.3 It has been shown in [14, 15] that a property analogous to that stated inLemma 2.2 also holds for the weave operator in trace theory. We observe that L(P2S) �L(P), and Lm(P2S) � Lm(P):Corollary 2.4 Let P denote the plant and S denote the supervisor. Then P2S is anothersupervisor for the plant P, and L(P2(P2S)) = L(P2S); also Lm(P2(P2S)) = Lm(P2S).Proof: Consider the SM P2(P2S). It follows from Lemma 2.2 and Remark 2.3 thatL(P2(P2S)) = L(P) \ L(P2S) = L(P2S). Similarly, Lm(P2(P2S)) = Lm(P2S). 2The event set � is partitioned into �u [�c, the uncontrollable and controllable eventsets.De�nition 2.5 A supervisor S is said to be complete [13] with respect to a given plant P ifand only if for s 2 �? and �u 2 �u, the conditions
(s; z0)! and �(s�u; x0)! together implythat
(s�u; z0)!: In other words, the conditions s 2 L(P2S) and s�u 2 L(P) together implythat s�u 2 L(P2S).Thus the language generated by the coupled system P2S under the control of a completesupervisor satis�es the following invariance property: L(P2S)�u \ L(P) � L(P2S). Suchan invariance property of languages is called controllability.4

De�nition 2.6 A language K is said to be controllable with respect to another language L,if K�u \ L � K, where the notation K is used to denote the pre�x closure [13, 12] of thelanguage K.Thus K is controllable if and only if K is controllable.Lemma 2.7 Let P denote the plant, S denote the supervisor and P2S denote the coupledsystem. Then L(P2S) is controllable with respect to L(P) if and only if the supervisor S iscomplete.Proof: Assume that the supervisor S is complete; then the language generated by thecoupled system satis�es the following invariance property (see De�nition 2.5): L(P2S)�u \L(P) � L(P2S). Since the language generated by any SM is closed, we have L(P2S) =L(P2S): Thus we obtain L(P2S)�u \ L(P) � L(P2S); which shows that L(P2S) iscontrollable with respect to L(P).Assume now that L(P2S) is controllable with respect to L(P); now since L(P2S) isclosed, we have the following: L(P2S)�u \ L(P) � L(P2S), showing that S is complete.2Proposition 2.8 Let K1 � K2 � L(P) be two given languages such that K1 � Lm(P) �L(P), and assume that K2 is pre�x closed. Then there exists a supervisor S such thatLm(P2S) = K1, and L(P2S) = K2.Proof: Let S1 and S2 be two supervisors for the plant P such that Lm(S1) = K1; L(S1) = �?and Lm(S2) = K2; L(S2) = K2; i. e. S1 is the recognizer for K1 and the S2 is the generatorfor K2. Since K2 and �? are closed, we can construct such SM's. All the states of S2 aremarked, while S1 can be viewed as a recognizer for K1 with an additional dump state inorder to generate �?. Let S def= S12S2. Then Lm(P2S) = Lm(P2(S12S2)) = Lm(P) \Lm(S1) \ Lm(S2) = Lm(P) \K1 \K2 = K1:Similarly, L(P2S) = L(P) \ L(S1) \ L(S2) = L(P) \ �? \K2 = K2: 2Remark 2.9 By Lemma 2.7, if the language K2 is given to be controllable as well, thenthe supervisor S thus constructed will be complete. Combining the results of Lemma 2.7and that of Proposition 2.8, we obtain the result stated in Proposition 5.1 in [13]. We notethe simpli�cation achieved in proving such a result due to the introduction of the notion ofsynchronous composition of two SM's in describing the control of DEDS's.3 Minimally Restrictive SupervisorIn the previous section we have shown that given any plant with uncontrolled behaviorL, there exists a supervisor which when run synchronously with the plant can restrict itsbehavior to any closed sublanguage K � L. We want the supervisor thus synthesized to becomplete, so by Lemma 2.7, we need the language K to be controllable with respect to L.In case the prescribed language K is not given to be controllable, we can construct acomplete supervisor which when run synchronously with the plant generates the supremalcontrollable sublanguage of K. Let K" denote the supremal controllable sublanguage of K(the supremal controllable language is well de�ned and is unique [12]; it is further shown in5

[12] that if the given languages K and L are regular then the language K" is also regular,i.e. can be generated by a FSM). For the case when the languages L and K are regular, analgorithm for constructing the language K" is given in [12].De�nition 3.1 A complete supervisor is said to be minimally restrictive [12] if, when runsynchronously with the given plant, it generates the supremal controllable sublanguage ofthe prescribed language.Next we prove a theorem that provides an alternative de�nition of controllability of anarbitrary language K with respect to a closed language L. This is used later for deriving anoptimal algorithm for the minimally restrictive supervisor.Theorem 3.2 Consider K;L � �?, and let L be closed. Then K is controllable with respectto L if and only if K�?u \L � K, where �?u denotes the set of �nite strings of uncontrollableevents.Proof: Assume that K�?u \ L � K . Then K�u \ L � K, since �u � �?u. Thus K iscontrollable.Conversely, assume that K is controllable, i. e. K�u \ L � K. For n 2 N , let �nu denotethe set of strings of size n consisting only of uncontrollable events. Then �?u = Sn2N �nu .To prove that K�?u \ L � K, we will prove that K�nu \ L � K for each n 2 N . SinceK�0u = K, K�nu \ L � K is trivially true for n = 0. We will assume that K�nu \ L � Kfor some n 2 N and show that K�n+1u \ L � K; hence the proof will follow by induction.Pick s 2 K and un+1 = un�u 2 �n+1u , where un 2 �nu and �u 2 �u, such that sun+1 2 L.Since L is closed, sun 2 L. So using the induction hypothesis we obtain sun 2 K. Thuswe have sun 2 K; sun+1 = (sun)�u 2 L; hence from the controllability of K it follows that(sun)�u = sun+1 2 K. 2Corollary 3.3 If K � �? is closed, then K is controllable with respect to a closed languageL � �? if and only if K�?u \ L � K.Given a deterministic SM V def= (Q;�; �; q0; Qm), there is a natural equivalence relationRV [8, 3] induced by V on �?, which for strings s; t 2 �? is de�ned by s �= t(RV) ,�(s; q0) = �(t; q0) (this is meant to include the condition that �(s; q0) is unde�ned , �(t; q0)is unde�ned). We use [s](RV) to denote the equivalence class under the equivalence relationRV , containing the string s.De�nition 3.4 SM V1 is said to re�ne SM V2, if for s; t 2 �?; s �= t(RV1)) s �= t(RV2).Lemma 3.5 If s; t 2 L(P2S) is such that s �= t(RP2S); then s �= t(RP), i.e. P2S re�nes P.Proof: s; t 2 L(P2S) implies s; t 2 L(P). Thus, if s �= t(RP2S), then
(s; z0) =
(t; z0).So it follows from the de�nition of the transition function
(�; �) that �(s; x0) = �(s; x0),showing that s �= t(RP). 2Let P def= (X;�; �; x0;Xm) denote the plant with L(P) = L, and S def= (Y;�; �; y0; Ym)denote a supervisor with L(S) = K � L, and P2S def= (Z;�;
; z0; Zm) denote the coupledsystem. Then by Lemma 2.2, L(P2S) = K is the closed language generated by the coupled6

system. Assume that S is not complete; then by Lemma 2.7, K is not controllable. Wewant to construct the minimally restrictive supervisor that would generate K", the supremalcontrollable sublanguage of K. Since K is closed, so is K"; hence by Proposition 2.8, it ispossible to construct a generator for K". This could be treated as the minimally restrictivesupervisor.Since K is not controllable, by Corollary 3.3 there exists s 2 K such that su 2 L(P)and su 62 K for some u 2 �?u (and conversely). We say that such a string s 2 K isan uncontrollable string. Let s 2 K be an uncontrollable string, and z(= (xz; yz)) 2 Zbe such that z =
(s; z0), i. e. z is the state reached by the SM, P2S, by accepting thestring s. Then xz = �(s; x0) and yz = �(s; y0). We now de�ne: �?u(P)(xz) def= fu 2 �?u j�(u; xz)!g; and �?u(P2S)(z) def= fu 2 �?u j
(u; z)!g. It is clear from the above discussionthat s is uncontrollable if and only if �?u(P)(xz) 6� �?u(P2S)(z).Proposition 3.6 Let s 2 K be an uncontrollable string. Then all the strings t 2 K suchthat t �= s(RP2S) are uncontrollable.Proof: s 2 K implies s 2 L(P). Let z(= (xz; yz)) =
(s; z0) be the state reached by P2S,by accepting the string s; then xz = �(s; x0) is the state reached by the P by accepting thestring s. Since s is uncontrollable, we have �?u(P)(xz) 6� �?u(P2S)(z).Assume that t �= s(RP2S); then t �= s(RP); since by Lemma 3.5, P2S re�nes P. Thismeans that the states reached by P2S and P by accepting the string t are again z and xz ,respectively. But �?u(P)(xz) 6� �?u(P2S)(z), so t is uncontrollable. 2From Proposition 3.6 it is clear that s is uncontrollable if and only if all the strings inthe equivalence class [s](RP2S) are uncontrollable. Thus we have that all the strings in theequivalence class [s](RP2S) are uncontrollable if and only if �?u(P)(xz) 6� �?u(P2S)(z). Wede�ne the set of \bad states" Zb to be the following subset of Z: Zb def= fz 2 Z j �?u(P)(xz) 6��?u(P2S)(z)g.Remark 3.7 The deletion of the uncontrollable strings from K in order to obtain K", isequivalent to the elimination of the states in the set Zb from the SM realization of P2S.De�ne �u(P)(xz) def= f�u 2 �u j �(�u; xz)!g; and �u(P2S)(z) def= f�u 2 �u j
(�u; z)!g.We partition Zb into two sets Z0b [Z?b as follows: Z0b def= fz 2 Z j �u(P)(xz) 6� �u(P2S)(z)gand Z?b def= fz 2 Z � Z0b j
(u; z) 2 Z0b for some u 2 �?ug.Proposition 3.8 Let Zb; Z0b ; and Z?b be as de�ned above; then Zb = Z0b [Z?b :Proof: We �rst show that Z0b [Z?b � Zb: We have Z0b � Zb, since �u � �?u. To showthat Z?b � Zb, let ~z 2 Z?b ; then there exists z 2 Z0b such that
(u; ~z) = z for some u 2 �?u.Since z 2 Z0b , there exists �u 2 �u such that �u 2 �u(P)(xz) and �u 62 �u(P2S)(z).Thus, u�u 2 �?u (since u 2 �?u and �u 2 �u), u�u 2 �?u(P)(x~z), and u�u 62 �?u(P2S)(~z).This implies that �?u(P)(x~z) 6� �?u(P2S)(~z), so ~z 2 Zb. Thus Z?b � Zb: Hence we obtainZ0b [Z?b �Zb.Next we show that Zb � Z0b [Z?b . Let z 2 Zb; then there exists u 2 �?u such thatu 2 �?u(P)(xz), and u 62 �?u(P2S)(z). Let u be the smallest such string; then either (i)u = �u for some �u 2 �u, in which case �u(P)(xz) 6� �u(P2S)(z), i. e. z 2 Z0b or (ii)u = v�u for some v 2 �?u and �u 2 �u, in which case
(v; z) 2 Z0b , i. e. z 2 Z?b . Thus, ifz 2 Zb, then either z 2 Z0b or z 2 Z?b . Thus, Zb � Z0b [Z?b . 27

Remark 3.9 Thus, in order to construct the generator for K", we need to eliminate thestates in the set Z0b and those in Z?b from the SM realization of P2S.Algorithm 3.10 (for constructing the generator for K") We assume that all the SM's are�nite state (this is needed for the algorithm terminate in �nite time), i.e. L(P) and K areregular languages; K is further assumed to be closed.1. Construct the FSM P2S.2. Determine the states in the set Z0b = fz 2 Z j �u(P)(xz) 6� �u(P2S)(z)g: This isdone by comparing the set of uncontrollable events de�ned at each state z 2 Z in theSM P2S to the set of uncontrollable events de�ned at the corresponding state xz 2 Xin the SM P .3. Construct the FSM P2S j�udef= (Z;�u;
 j�u�Z ; z0; Zm) by deleting all the transitionscorresponding to the controllable events.4. Determine the states in the set Z?b by picking those states z 2 Z � Z0b which have apath of transitions leading to some state in Z0b in the FSM P2S j�u :5. Delete the states Z0b [Z?b (and all the transitions entering or leaving these states) fromthe FSM realization of P2S to obtain the generator for K".Theorem 3.11 Let m and n denote the number of states in the minimal FSM realizationsof the languages L(P) and K respectively. Then computational complexity of Algorithm 3.10is O(mn).Proof: The proof to Theorem 3.11 follows from the following arguments:1. The FSM P2S can be constructed in order O(mn) time, since the FSM P2S can havea maximum number mn of states.2. The states in the set Z0b can be identi�ed in order O(mn) time, because the maximumnumber of possible bad states is mn.3. The FSM P2S j�u can again be constructed in order O(mn) time, because in orderto delete the transitions caused by the controllable events, we need to consider thetransitions in all the possible mn states.4. The states in the set Z?b can also be identi�ed in order O(mn) time, because, if weconsider the FSM P2S j�u with all its transitions reversed, then the states in the setZ?b are those states that are reachable from the states in the set Z0b .Let the number of states in the set Z0b be p(� mn). Then the states (other than those inZ0b) that can be reached by a single transition from these p states in the FSM P2S j�uwith all its transitions reversed, can be identi�ed in order O(ep) time, where ep is thetotal number of uncontrollable transitions leading into the state set Z0b . Let the set ofthese states be denoted by Z1b and let the number of such states be q(� (mn � p)).Then the states that can be reached (other than those in Z0b [Z1b) from these q states8

in the FSM P2S j�u with all its transitions reversed, due to a single transition, can beidenti�ed in order O(eq) time, where eq is the total number of uncontrollable transitionsleading into the above q states. Thus the states reachable from the states in the set Z0bin the FSM, P2S j�u with all its transitions reversed, due to two successive transitions,can be identi�ed in order O(ep + eq)(� O(e)) time, where e is the total number ofuncontrollable transitions present in P2S. If we continue identifying the states thatare reachable from the states in the set Z0b in the above fashion, then it is easy to seethat all such states can be identi�ed in order � O(e) time. Since the total number ofuncontrollable transitions present in P2S is at most equal to j�ujmn;O(e) = O(mn).This completes the proof (while determining the states reachable from the set Z0b , careis taken so that none of the transitions is explored more than once).5. Since the states in the set Z0b [Z?b have been identi�ed, these states (and the transitionsentering and leaving these states) can be deleted in O(mn) time, for the maximumnumber of such states is mn. 2Remark 3.12 In the above analysis we have neglected the dependence of the computationalcomplexity on any parameter other than m and n. Algorithm 3.10 for constructing thegenerator for K" is an order of magnitude faster than that in [12]. The computationalcomplexity of the algorithm in [12] is of order O(m2n2) [11].In [17], it has been mentioned without proof that if the languages L(P) and K areboth assumed to be closed, then the computational complexity of constructing minimallyrestrictive supervisor is of order O(mn); however, no algorithm for the construction of theminimally restrictive supervisor is given.We show now that Algorithm 3.10 for constructing the supremal controllable sublanguageis also an optimal algorithm, i. e. given the plant P that generates the language L(P) andanother closed language K with m and n states in their minimal FSM realizations, respec-tively, the supremal controllable sublanguage of K with respect to L(P) cannot in general becomputed with time complexity less than O(mn).Theorem 3.13 Algorithm 3.10 is computationally optimal.Proof: We provide an example of languages L(P) and K with m and n states in theirminimal FSM realizations such that the generator for K" has O(mn) states in its minimalFSM realization. This shows that any algorithm that constructs the generator for K" mustbe of space complexity O(mn), and hence of time complexity O(mn) [8].Let � = fa; b; c; d; eg and �u = feg. Let L(P) and K be as given below:L(P) = fs 2 �? j 0 � #(a; s) �#(b; s) � (m� 1), and for all pre�xes of the formwe (w 2 �?) of s, 0 � #(a;w)�#(b; w) � (m� 2)gK = fs 2 �? j 0 � #(c; s)�#(d; s) � (n� 1), and for all pre�xes of the form we (w 2 �?)of s, 0 � #(c; w)�#(d;w) � (n� 2)g;where the notation #(x; y) denotes the number of events \x" in the string \y". The languageK is not controllable with respect to L(P), for the string cn�1e 2 L(P) but cn�1e 62 K. If wedelete all such uncontrollable strings from K we get the the following language as K":9

K" = fs 2 �? j 0 � #(a; s)�#(b; s) � (m� 2), and 0 � #(c; s)�#(d; s) � (n� 2)g[fs 2 fa; b; c; dg? j 0 � #(a; s)�#(b; s) = (m� 1), and 0 � #(c; s)�#(d; s) � (n� 1)g.The generators of languages L(P), K and K" are shown in Figure 1.In the above example L(P) and K have m and n states, respectively, in their minimalFSM realizations, whereas K" has m(n� 1) + 1 states in its minimal FSM realization, i.e.the space complexity of any algorithm that computes K" is O(mn); thus any algorithm thatcomputes K" has O(mn) time complexity [8]. 24 On Normality of LanguagesIn our previous discussions we have assumed that the supervisor has complete informationabout the plant behavior, i. e. the supervisor observes all the events that occur in the plantperfectly. However, in many situations the supervisor has only partial information aboutthe plant behavior. Let M : � ! � [f�g be a map, called a mask, where � is the set ofevents that are observed by the supervisor. Let P denote the plant and L = L(P) denote itsbehavior. Consider the extension of the mask M to the set �? as: M(�) = �, and M(s�) =M(s)M(�), where s 2 �? and � 2 �. Then the plant behavior observed by a supervisor isgiven by M(L). Here we do not impose any restriction on the type of mask M; the maskM was assumed to be the natural projection map from the event set � to its subset �o, theset of observable events in [10, 1]. The work presented here is thus a generalization of ourpreviously reported work in [1]. An example of a mask that cannot be represented as thenatural projection map is treated in [4, p. 59]. Also, a problem in which the supervisor canobserve the occurrence of two events, but cannot distinguish between them is consideredin [4] (c.f., the Alternating Bit Protocol, p. 259). Thus, using the results presented in thissection we can solve the Supervisory Control and Observation Problem [10] in a generalsetting of non-closed languages and non-projection masks.Let the closed language K � L be the desired plant behavior. In order to be able toconstruct a supervisor so that the coupled system generates K, the language K must beobservable [10, 4] with respect to L and M.De�nition 4.1 Consider two closed languages K;L � �? and a mask M : �? ! �?. K issaid to be observable (also called (L;�;M)-controllable) [3, 2, 4, 10] with respect to L andM, if s; t 2 L \K;M(s) =M(t); � 2 �; s� 2 L \K; and t� 2 L implies that t� 2 K.An algorithm of polynomial complexity for testing the observability of a closed languageK with respect to another closed language L and a mask M is given in [16]. It is furthershown in [16] that even though the test for observability can be conducted in polynomialtime, the problem of constructing a supervisor (in partially observed case) for a desiredobservable behavior is NP-complete.4.1 Supremal normal languagesThough one needs the desired behavior of the system to be observable in order to be ableto construct the appropriate supervisor, the observable languages are not algebraically well-behaved { such languages are not closed under union [10, 4]. Thus if the desired behavior is10

not observable, construction of a \minimally restrictive supervisor" is not possible, for thesupremal observable language does not exist. However maximal observable languages exist[3], and algorithms for constructing such languages are given in [3]. The notion of normality[10, 4], that is in some sense stronger than the notion of observability, is preserved underunion, so that the existence of the supremal normal language is guaranteed [10, 4].De�nition 4.2 K � �? is said to be normal ((M, L) recognizable) with respect to L � �?and a mask M if and only if given s 2 L \K, t 2 L, M(t) = M(s) implies t 2 K.Alternatively, K is normal with respect to L and M if and only if L \ M�1M(K) =K. Assume that the FSM's P def= (X;�; �; x0;Xm) and S def= (Y;�; �; y0; Ym) recognizelanguages L and K, respectively, as before. Consider a deterministic FSM G that recognizesthe language M�1M(K) constructed in the following way:1. Construct a FSM that recognizes M(K) by replacing each transition � 2 � in machineS with M(�) 2 � [f�g. This machine will in general be non-deterministic.2. Convert the machine obtained in step 1 to a deterministic machine [1].3. Construct a FSM G(a) by replacing each transition � 2 � in the machine obtained in step 2 by thetransitions f� 2 � jM(�) = �g, and(b) by adding transitions that correspond to looping on a single state, labeled withthe events � 2 � which have M(�) = �, at each state of the machine obtained instep 3 (a).Then G by construction recognizes the language M�1M(K). This is true because the SMobtained in step 1 (and in step 2) recognizes the language M(K); and the SM obtainedin step 3 recognizes the language M�1(�), where (�) is the language recognized by the SMobtained in step 2. Note that the above assertions could be made because the map Mdistributes over concatenation.Thus normality of K can be checked by considering the machines G2P and S thatrecognize languagesM�1M(K)\L andK respectively. In case K is not normal, the supremalnormal sublanguage of K can be computed. Next we present a closed form expression forthe supremal normal sublanguage. The notation K� will be used to denote the supremalnormal sublanguage of K.Theorem 4.3 Consider K;L � �?, and a mask M. Then K�, the supremal normal sublan-guage of K with respect to L and M, is given by K �M�1M(L �K).Proof: Let H def= K �M�1M(L�K). Then we need to show that K� = H.First, we show that H � K�. Since K� is the supremal normal sublanguage of K, andH � K, it su�ces to show that H is normal. Pick s 2 H; then s 2 K, and there does notexist t 2 L�K such that M(t) =M(s). We need to show that there is no such t 2 L�H.Assume for contradiction that there exists such a t 2 L � H so that M(t) = M(s); thent 2 K � H (since L � H = (L � K) [(K � H), and t 62 L � K). Since t 2 K � H,11

t 2 K \ M�1M(L � K). Hence there exists t0 2 L � K such that M(t0) = M(t). ButM(t) = M(s), showing that M(s) = M(t0). This contradicts the fact that s 2 H (sincet0 2 L�K).Next we show that K� � H. SinceK�;H � K, it su�ces to show that K�H � K�K�.Pick s 2 K �H; then s 2 K \M�1M(L �K). Thus s 2 K, and there exists t 2 L �Ksuch that M(t) =M(s). Hence s 62 K�, and thus s 2 K �K�. 2The supremal normal sublanguage of K may or may not be closed. A closed formexpression for the supremal closed and normal sublanguage of a given closed language ispresented in the theorem that follows next. Thus if K is not observable, a supervisor canbe constructed so that the closed loop system generates the supremal closed and normalsublanguage of K. The notation K� will be used to denote the supremal closed and normalsublanguage of K.Theorem 4.4 Consider K;L � �?, and a mask M . Let K be closed. Then K�, thesupremal closed and normal sublanguage of K with respect to L and M , is given by K �(M�1M(L�K))�?.Proof: Let H def= K � (M�1M(L�K))�?. Then we need to show that K� = H.First, we show that H � K�. Since K� is the supremal closed and normal sublanguageof K, and H � K is closed (the operation K � (�)�? on K preserves the pre�x closure),it su�ces to show that H is normal. Pick s 2 H; then s 2 K, and there does not exist at 2 L �K such that M(t) = M(s) (s 62 (M�1M(L �K))�? implies s 62 M�1M(L �K)).We need to show that there is no such t 2 L�H. Assume for contradiction that there existssuch a t 2 L�H so that M(t) =M(s); then t 2 K �H, for L �H = (L �K) [(K �H)and t 62 L�K. Since t 2 K �H, t 2 K \ (M�1M(L �K))�?. Hence there exists a pre�xu 2 �? of t, and t0 2 L �K such that M(t0) = M(u). But M(t) = M(s), so there exists apre�x v 2 �? of s such that M(v) = M(u) = M(t0). Since H is closed, v 2 H. This is acontradiction; for v 2 H, and there exists t0 2 L �K with M(t0) =M(v).Next we show that K� � H. SinceK�;H � K, it su�ces to show that K�H � K�K�.Pick s 2 K �H; then s 2 K \ (M�1M(L �K))�?. Thus s 2 K, and there exists a pre�xv 2 �? of s, and t 2 L � K such that M(t) = M(v). Since K is closed, v 2 K; thereforev 62 K� (since K� is normal, and v 2 K \M�1M(L �K)). But K� is closed, so s 62 K�,showing that s 2 K �K�. 2Remark 4.5 Theorems 4.3 and 4.4 generalize the result presented in [1] where the maskwas assumed to be the natural projection map, and the languages were assumed to be closed.The assumptions of projection type mask and closed language are relaxed in obtaining theresult of Theorem 4.3, and Theorem 4.4 is derived again without assuming the mask to bea projection.The above closed form representations of the supremal (closed and) normal sublanguageof K can be used for constructing algorithms for computing the supremal (closed and) normalsublanguage of K with respect to L and M, the computational complexity of which wouldbe exponential in the product of the number of states in the minimal FSM realizations of Kand L, as expected [2]. 12

5 ConclusionIn this paper, we have used the notion of synchronous composition of two SM's fordescribing the control of DEDS's. This considerably simpli�es the problem of synthesizingsupervisors for controlling the uncontrolled plant behavior.We have de�ned the notion of a complete supervisor in the context of synchronous com-position of plants and supervisors and have shown that the language generated by the syn-chronous composition of a plant and a complete supervisor is controllable, and conversely.An equivalent representation of controllable languages has been developed (Theorem 3.2),and has been used to construct an algorithm (Algorithm 3.10) for computing the supremalcontrollable sublanguage (equivalently, for constructing the minimally restrictive supervi-sor). The computational complexity of this algorithm is linear in the product of the numberof states in the FSM realizations of the language generated by the plant and the prescribedlanguage that is not controllable (Theorem 3.11). Computational optimality of the abovealgorithm has been proved (Theorem 3.13).Next the case, when the supervisor can observe only the partial behavior of the plant, hasbeen considered. We present closed form expressions for computing the supremal normal,and supremal closed and normal sublanguages in general setting of non closed languagesand arbitrary masks (Theorem 4.3 and Theorem 4.4). These closed form expressions can beused for solving the supervisory control and observation problem [10] and also for derivingalgorithms that do not require any iterative schemes to compute the supremal normal, andsupremal closed and normal sublanguages.References[1] R. D. Brandt, V. K. Garg, R. Kumar, F. Lin, S. I. Marcus, and W. M. Wonham.Formulas for calculating supremal controllable and normal sublanguages. Systems andControl Letters, 15(8):111{117, 1990.[2] H. Cho and S. I. Marcus. On supremal languages of class of sublanguages that arise insupervisor synthesis problems with partial observations. Mathematics of Control Signalsand Systems, 2:47{69, 1989.[3] H. Cho and S. I. Marcus. Supremal and maximal sublanguages arising in supervisorsynthesis problems with partial observations. Mathematical Systems Theory, 22:177{211, 1989.[4] R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya. Supervisory control of discreteevent processes with partial observation. IEEE Transactions on Automatic Control,33(3):249{260, 1988.[5] V. K. Garg. Speci�cation and Analysis of Distributed Systems with a large number ofprocesses. PhD thesis, Department of Electrical Engineering and Computer Science,University of California at Berkeley, 1988.13

[6] M. Heymann. Concurrency and discrete event control. IEEE Control Systems Magazine,10(4):103{112, 1990.[7] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, Inc., EnglewoodCli�s, NJ, 1985.[8] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages andComputation. Addison-Wesley, Reading, MA, 1979.[9] R. Kumar, V. K. Garg, and S. I. Marcus. Supervisory control of discrete event sys-tems: supremal controllable and observable languages. In Proceedings of 1989 AllertonConference, pages 501{510, Allerton, IL, September 1989.[10] F. Lin and W. M. Wonham. On observability of discrete-event systems. InformationSciences, 44(3):173{198, 1988.[11] P. J. Ramadge. The complexity of basic problems for discrete event systems. In M. J.Denham and A. J. Laub, editors, Advanced Computing Concepts and Techniques inControl Engineering, volume F47 of NATO ASI, pages 171{190. Springer-Verlag, 1988.[12] P. J. Ramadge and W. M. Wonham. On the supremal controllable sublanguage of agiven language. SIAM Journal of Control and Optimization, 25(3):637{659, 1987.[13] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete eventprocesses. SIAM Journal of Control and Optimization, 25(1):206{230, 1987.[14] R. Smedinga. Using trace theory to model discrete events. In P. Varaiya and A. B.Kurzhanski, editors, Discrete Event Systems: Models and Applications, pages 81{99.Springer-Verlag, 1987.[15] R. Smedinga. Control of Discrete Events. PhD thesis, Department of ComputingScience, University of Groningen, 1988.[16] J. N. Tsitsiklis. On the control of discrete event dynamical systems. Mathematics ofControl Signals and Systems, 2(2):95{107, 1989.[17] W. M. Wonham and P. J. Ramadge. Modular supervisory control of discrete eventsystems. Mathematics of Control Signals and Systems, 1(1):13{30, 1988.
14

