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AbstractThis paper studies the stability and stabilizability of Discrete Event Dynamical Systems(DEDS's) modeled by state machines. We de�ne stability and stabilizability in terms of thebehavior of the DEDS's, i.e. the language generated by the state machines (SM's). Thisgeneralizes earlier work where they were de�ned in terms of legal and illegal states ratherthan strings. The notion of reversal of languages is used to obtain algorithms for determiningthe stability and stabilizability of a given system. The notion of stability is then generalizedto de�ne the stability of in�nite or sequential behavior of a DEDS modeled by a B�uchiautomaton. The relationship between the stability of �nite and stability of in�nite behavioris obtained and a test for stability of in�nite behavior is obtained in terms of the test forstability of �nite behavior. We present an algorithm of linear complexity for computing theregions of attraction which is used for determining the stability and stabilizability of a givensystem de�ned in terms of legal states. This algorithm is then used to obtain e�cient testsfor checking su�cient conditions for language stability and stabilizability.Keywords: Discrete Event Dynamical Systems, Automata Theory, Supervisory Control,Stability, StabilizabilityAMS(MOS) Subject Classi�cation: 93



1 IntroductionRamadge and Wonham in their work [20] on supervisory control of discrete event dy-namical systems (DEDS) have modeled a DEDS, also called a plant, by a State Machine(SM), the event set of which is �nite and is partitioned into sets of controllable and uncon-trollable events. The language generated by such a SM is used as a model to describe thebehavior of the plant at the logical level. The control task is formulated as that of synthesisof a controller, also called a supervisor. The way a supervisor exercises closed-loop controlover the plant is by disabling some of the controllable events in order that the plant mayachieve a certain prescribed behavior, also called the legal behavior. Supervisors designedfor closed-loop control, so that none of the uncontrollable events that can occur in the plantbehavior are prevented from occurring in the closed loop system, are called complete.Since all uncontrollable events that can occur in the plant, can also occur in the closedloop system, there may not always exist a complete supervisor such that the closed loopsystem has a prespeci�ed desired behavior. We then restrict our attention to designing acomplete supervisor that is minimally restrictive [20, 19, 10, 1, 11] so that the closed loopsystem can engage in some maximal behavior and still maintain the prescribed behavioralconstraint. Thus the control objective is usually described as the synthesis of a minimallyrestrictive supervisor so that the controlled system has a maximally permissive legal behavior.Sometimes such a constraint on the system behavior leads to the design of a supervisorwhich results in a very restrictive behavior [14]. Recently there has been work [14] on posinga supervisory control problem that allows the system to engage in some illegal behavior whichcan be tolerated. In this paper, we also allow the possibility of the system behaving illegally.The supervisor is synthesized so that the behavior of the supervised system is \asymptoticallylegal". In other words, the system is initially allowed to make illegal transitions but aftera �nite number of transitions the supervised system makes only legal transitions. With theabove motivation, we de�ne the stability and stabilizability of DEDS's in terms of their legalbehavior.In [15, 17, 4, 3, 2] the notion of stability and stabilizability of DEDS's has been presentedin terms of the legal and illegal states of the system. In [4, 2] a stable system is one thatstarts from any arbitrary initial state and after �nitely many transitions goes to one of thelegal states and stays there; a stabilizable system is one for which there exists a supervisorso that the supervised system is stable. In [17] a system is said to be stable if after startingfrom any arbitrary initial state it visits the legal subset of states in�nitely often; a systemthat can be made stable in the above context by the synthesis of an appropriate supervisoris called stabilizable. We de�ne a system to be language-stable if its eventual behaviorremains con�ned to the legal behavior; if a supervisor exists such that the supervised systemis language-stable, then the system is called language- stabilizable. Thus the notion ofstability presented here di�ers from those in [17, 4, 2] in the sense that there need not beany �xed set of legal states. A state can eventually be reached by legal as well as illegalstrings, so none of the states can be prede�ned to be legal.In [17, 4, 2], the supervisors considered for stabilizing a system are assumed to be of1



static feedback type in which the next control actions are determined just on the basis of thecurrent state of the system. In general, however, a supervisor can be of dynamic feedbacktype, where the next control action is determined by the history of the system evolution. Were�ne the notion of stability and stabilizability by de�ning it in terms of languages ratherthan states and show that static feedback type supervisor cannot stabilize the system. In[15], the stability of systems under partial observation is studied. In this case, the supervisoris taken to be of dynamic feedback type; it can be represented as a cascade of a dynamicstate observer followed by a static feedback type controller. The supervisor considered foreventually restrictable systems in [16] is also of dynamic feedback type.We start with the description of DEDS's and present some of the notions of stabilityde�ned in terms of states. The computational complexity of the algorithms presented in[4, 2] for determining the stability and stabilizability of DEDS's based on computing theregions of attraction is quadratic in the number of states of the system. We present analgorithm that is linear in the number of states of the system and is thus computationallymore e�cient. We then introduce the notion of stability in terms of languages and providealgorithms for determining the stability and stabilizability of a given system by consideringan equivalent problem de�ned in terms of reversal of languages. We also discuss the com-putational complexity of these algorithms. Later, we provide computationally more e�cientalgorithms for testing the su�ciency of stability and stabilizability of systems based on ouralgorithm for computing the regions of attraction. In all this, we assume that perfect ob-servation of the system behavior is possible so that the control actions are determined onthe basis of observing the system evolution perfectly. We also introduce a weaker notion oflanguage stability that is preserved under union and provide a technique for constructingthe minimally restrictive stabilizing supervisor in this weaker sense of language stability.The notion of language stability is then generalized to study the stability of sequen-tial behaviors of DEDS's modeled by B�uchi automata. The notions of !-stability and !-stabilizability are introduced in this context, and tests for verifying stability and stabiliz-ability of sequential behavior are obtained by reducing the problem of testing them to theproblem of testing language stability. We introduce a equivalence relation on the space ofin�nite strings and obtain a necessary condition of !-stability in terms of this equivalencerelation.2 Notation and TerminologyA DEDS to be controlled, called a plant, is modeled as a deterministic trim [8] statemachine (SM) following the framework of [20]. Let the quintupleP def= (X;�; �; x0;Xm)denote a SM representing a plant, where X denotes the state set; � denotes the �nite eventor alphabet set; � : � � X ! X denotes the partial state transition function; x0 2 Xdenotes the initial state; and Xm � X denotes the set of marked states. The transition2



function �(�; �) is extended to �? � X in the natural way, where �? denotes the set of all�nite sequences of events belonging to �. The notation � 2 �? is used to denote the emptystring. The behavior of P is described by the language L(P ) � �? that it generates andLm(P ) � L(P ) that it marks or recognizes. Formally,L(P ) = fs 2 �? j �(s; x0)!g;Lm(P ) = fs 2 L(P ) j �(s; x0) 2 Xmg;where the notation \!" is used to denote \is de�ned". By de�nition, L(P ) is pre�x closedand also since P is trim, Lm(P ) = L(P ) [8].The event set is partitioned into � = �u [ �c, the set of uncontrollable and controllableevents. A supervisor S for controlling a plant is another DEDS, also represented as a SM,S def= (Y;�; �; y0; Ym)S operates synchronously with P , thus allowing only the synchronous transitions to occurin the closed loop system described by the SM [10, 11]P2S def= (Z;�; 
; z0; Zm), where Z � X � Y ; z0 = (x0; y0);Zm � Xm � Ym; and for s 2 �?; 
 : �? �Z ! Z is de�nedas: 
(s; z0)) = (�(s; x0); �(s; y0)) if �(s; x0)! and �(s; y0)!, unde�ned otherwise.The following states the control achieved by the synchronous operation of P and S.Remark 2.1 [11, 10] Let L(P2S) be the language generated and Lm(P2S) the languagemarked by P2S; then L(P2S) = L(P ) \ L(S), and Lm(P2S) = Lm(P ) \ Lm(S), whereL(S); Lm(S) denote the languages generated, recognized by S respectively.Also, since S can disallow only the controllable events from occurring, L(P ) \ �?u �L(P2S), where �?u is the set of �nite sequences of events belonging to �u.The supervisor as de�ned above represents a closed loop control policy. This di�ersfrom open loop control policy in which control actions are all prespeci�ed; in closed loopcontrol, control actions are determined by observing all or part of the history of the systemevolution.De�nition 2.2 Let the map f : L(P ) ! 2� denote a control policy as described in [20], i.e.for each string s 2 L(P ) generated by the plant P , f(s) � � is the set of events that arenot disabled by a supervisor. Then the control exercised by the synchronous operation ofa supervisor and the plant, as described above, de�nes the following control policy over theset of strings generated by the plant:f(s) def= ( f� 2 �j
(s�; z0)!g if 
(s; z0)!unde�ned otherwisewhere the string s 2 L(P ). 3



Closed loop controllers can further be classi�ed into static and dynamic control type.Given a deterministic SM, V def= (Q;�; �; q0; Qm), there is a natural equivalence relation RV[8, 6, 11, 10] induced by V on �?, which is de�ned by s �= t(RV ) , �(s; q0) = �(t; q0) (thisis meant to include the condition that �(s; q0) is unde�ned , �(t; q0) is unde�ned), wheres; t 2 �?. Thus all those strings which upon execution result in the same state in V belongto the same equivalence class. We use [s](RV ) to denote the equivalence class under theequivalence relation RV , containing the string s.De�nition 2.3 Consider the control policy f : L(P ) ! 2� de�ned by the synchronouscomposition operator as described in De�nition 2.2. We say that a closed loop control policyis static if s �= t(RP )) f(s) = f(t) whenever both f(s); f(t) are de�ned.In other words, in a static feedback type control, the same control action is applied afterthe execution of all strings that lead to the same state in the plant. Next we show that if asupervisor exercises a static closed loop control, then it can be represented as a SM havingstructure similar to that of the plant.De�nition 2.4 Let V1 def= (Q1;�; �1; q01; Qm1) and V2 def= (Q2;�; �2; q02; Qm2) be two SM's.V1 is said to be a subautomaton [5] of V2 if there exists a one-to-one map h : Q1 ! Q2 suchthat h(�1(s; q01)) = �2(s; q02) for each s 2 L(V1).Thus if V1 is a subautomaton of V2, then L(V1) � L(V2). Note that if the map h inDe�nition 2.3 is also onto, then V1 and V2 are structurally identical.Proposition 2.5 [9] The following are true:1. If S is a subautomaton of P , then the control policy f : L(P ) ! 2� de�ned by S isstatic.2. If f : L(P ) ! 2� is a static control policy, then there exists S which de�nes the samecontrol policy as f and is a subautomaton of P .De�nition 2.6 A closed loop control policy is said to be dynamic if it is not static.Example 2.7 Consider for example a plant P, with language L(P ) = (a+ b)? de�ned overthe event set � = fa; bg. Assume that �c = � (see Figure 1; \
" denotes the states,an entering arrow \�!" to \
" represents the initial state, and \
" denotes the markedstates). Then the language generated by the coupled system under a static feedback controlpolicy could be one of the following: L(P2S) = (a + b)? or a? or b? or � depending onwhether the events disabled in the only state of the system are ;; fbg; fag or fa; bg.On the other hand, the language marked by the coupled system can be made to be anysublanguage K � (a + b)? by using a dynamic feedback control policy. This can be donebecause all the events are controllable [10, 11] (pick the supervisor S, so that L(S) = K). Anexample for the case K = (ab)? is shown in Figure 1.4



Lm(P2S) = Lm(S) = (ab)? aaP a; b bS P2SbFigure 1: Diagram illustrating Example 2.73 Stability: Region of AttractionWith the above introduction on our supervisory control model, we next consider thestability issues for DEDS's. First we discuss the de�nitions and results of some of the earlierworks, in which the stability is de�ned in terms of a set of legal states of the system. Later,we present our own notions of stability de�ned in terms legal behavior of the system.Consider a plant P def= (X;�; �; x0;Xm). Let X̂ � X be the prescribed subset of statesor the legal states. The notions of strong and weak attraction [4, 2] are de�ned as follows:De�nition 3.1 A state x 2 X is said to be strongly attractable to X̂, if after starting fromthe state x, the system always reaches a state in the set X̂ after a �nite number of transitions.The set of all the strongly attractable states is called the region of strong attraction of X̂and is denoted by 
(X̂).Formally, let for s 2 �?; jsj denote the length of s, and for X 0 � X; jX 0j denote thenumber of states in the set X 0. x 2 X is strongly attractable to X̂ if for all s such that�(s; x)! and jsj � jX � X̂j there exists a pre�x us 2 �? of s with jusj � jX � X̂j so that�(us; x) 2 X̂ [4, 2].De�nition 3.2 A state x 2 X is said to be weakly attractable to X̂, if there exists asupervisor S such that x is strongly attractable to X̂ in the coupled system P2S. The setof all the weakly attractable states is called the region of weak attraction and is denoted by�(X̂).Clearly, 
(X̂) � �(X̂). If 
(X̂) = X, then P is said to be stable with respect to X̂and if �(X̂) = X, then P is said to be stabilizable with respect to X̂. The de�nitions ofstrongly and weakly attractable states are the same as those of prestable and prestabilizablestates, respectively [17]. Thus in order to test whether a given system is stable (stabilizable)with respect to a given set of legal states, one needs to compute the region of strong (weak)attraction.Remark 3.3 Algorithms of quadratic time complexity in number of states of the systemare presented in [17, 4, 2]. An algorithm of linear time complexity in number of states ofthe system for constructing the regions of strong and weak attraction is presented in theAppendix A of this paper. 5



4 Language-StabilitySo far we have discussed stability of DEDS's de�ned in terms of their legal states andprovided an e�cient algorithm for testing it by computing the regions of attraction. Nextwe provide motivation for a more general notion of stability which we call language-stabilityand discuss some of the issues related to stability in this framework.In some cases, it might be desirable that the eventual behavior (rather than the wholebehavior) of the system be legal, so the whole behavior of the system need not be con�nedto a legal language as in [20, 19]. Thus in these cases the control task can be formulated asthe synthesis of a supervisor such that the behavior of the supervised system is eventuallylegal. This leads to the design of supervisors that are less restrictive and as a result, thebehavior of the supervised system is a larger language. Hence, we will formalize the notion ofeventual behavior of the systems and de�ne stability and stabilizability of systems in termsof their behavior. As discussed in the previous sections, the notions of stability de�ned interms of languages can also be viewed as a generalization to the ones de�ned in terms ofstates [17, 15, 4, 3, 2].Example 4.1 Consider the machine P shown in Figure 2. P can either be in \idle", \work-ing", \broken" or \display" state. Assume that initially it is in the idle state and goes tothe working state when the action \start" is executed. While in the working state, P caneither \stop" and go back to the idle state or can \fail" and go to the broken state. Inthe broken state it can execute either the action \repair" and go to the display state or theaction \replace" and get back to the initial idle state. While in the display state, the action\reject" or \approve" can be executed, so the resulting state of P can either be broken (ifreject is executed) or idle (if approve is executed).
displaybroken workingidlereplaceapproverejectrepair fail stop startFigure 2: Machine P of Example 4.1Consider the above example for the stability analysis in the framework of [17, 15, 4, 3, 2].The states idle and working are the \good" or legal states of P. The actions start, repair andreplace are the controllable actions, whereas the actions stop, fail, reject and approve are theuncontrollable actions. Clearly, P is not stable with respect to its legal states (once P executes6



fail, it is not guaranteed to get back to the legal states). To show that P is stabilizable: onceit executes fail and goes to the broken state, it must execute the controllable action replaceto go back to the legal state either permanently (as in [3, 4, 2]) or temporarily (as in [17]).Suppose instead, it executes the controllable action repair and goes to the display state;there it might not execute the uncontrollable action approve in which case it would remainin the illegal state. Hence the only way P can be stabilized is by executing the action replaceafter it executes fail. This however, may not be desired, for replacing (and not repairing) Pwhenever it fails might be cost ine�ective. Thus in this example, the framework of [17, 15, 2]may be too restrictive for stabilizing the machine P.We would like the desired behavior of P to be such that it allows P to execute the repair{reject sequence for a �nite number of times. In other words, the desired behavior of P is thatif it executes fail, it should execute replace or approve after a �nite number of executionsof the repair{reject sequence; otherwise it should execute the start{stop sequence. The wayP is designed, after executing fail, it might never execute replace or approve and continueexecuting the repair{reject sequence, in which case the desired behavior is not achieved. Wenote that the desired behavior of P as described above cannot be achieved by use of a staticfeedback controller.Moreover, in the above example, P is allowed to execute \illegal" actions (the repair{reject sequence) after it executes fail, provided it eventually executes one of the \legal"actions (replace or approve). Thus the whole behavior of the system need not always becon�ned to a legal language as in [20, 19]. With these motivations, the notions of stabilityof systems is formally de�ned in terms of their legal behavior:With this motivation, we formally de�ne stability of systems in terms of their legalbehavior. For n 2 N , let �n denote the set of strings, each of length n, of events belongingto �. We use ��N to denote Sn�N �n for each N 2 N .De�nition 4.2 Let L;K � �? be two languages. L is said to be language stable (`-stable)with respect to K if there exists N 2 N such that L � ��NK.Since ��N � ��N 0 whenever N � N 0 (N;N 0 2 N ), it follows that if L is `-stable withrespect to K, then there exists a smallest integer N0 2 N such that L � ��N0K. Considers 2 �?. Assume that for n 2 N ,n � jsj, s can be written as s = unvn, where un; vn 2 �?and junj = n. We de�ne a map �n : �? ! �? in the following manner:�n(s) = ( vn for jsj > n� otherwiseThus the e�ect of the map �n(�) on a string s is to remove the initial n symbols of s.It follows from De�nition 4.2 that L � �? is `-stable with respect to K � �? if and onlyif there exists N 2 N such that for every string s 2 L there exists a pre�x us 2 �? of s withjusj � N such that �jusj(s) 2 K. Thus L is `-stable with respect to K if after removing apre�x of length at most N from a string in L, it matches some string in K. The language Lcan be thought to be representing the plant behavior and the language K can be thought to7



be representing the eventual legal behavior of plant. If L is not `-stable with respect to K,then it is said to be `-stabilizable with respect to K if there exists a supervisor S such thatthe closed loop behavior is `-stable with respect to K. Formally,De�nition 4.3 Consider L;K � �?. L is said to be `-stabilizable with respect to K if thereexists a nonempty controllable [20, 19, 10, 1, 11] sublanguage H � L such that H is `-stablewith respect to K.Assume that L is recognized by a plant P, i. e. Lm(P ) = L. Let S be a supervisor suchthat the language recognized by the closed loop system Lm(P2S) is `-stable with respect toK; then clearly L is `-stabilizable with respect to K with H = Lm(P2S). Thus De�nition4.3 can equivalently be stated as: L is said to be `-stabilizable with respect to K if thereexists a supervisor S such that Lm(P2S) is `-stable with respect to K. If S is complete,then H is controllable with respect to L [10, 11].Proposition 4.4 If P def= (X;�; �; x0;Xm) is stable (stabilizable) with respect to X̂ � X,then Lm(P ) is `-stable (`-stabilizable) with respect to Sx2X̂ Lm(P; x), where Lm(P; x) is thelanguage marked by P assuming the initial state to be x.Proof: Assume that the SM, P def= (X;�; �; x0;Xm) is stable with respect to the legal setX̂ � X. Let L = Lm(P ), and K = Sx2X̂ Lm(P; x). De�ne N def= jX � X̂ j. We will showthat L � ��NK. Consider s 2 L. If jsj � N , then s 2 ��N . Hence s 2 ��NK. Ifjsj > N , then there exists a pre�x us < s, jusj � N , such that �(us; x0) 2 X̂ (follows fromthe de�nition that x0 is strongly attractable to X̂). Thus �jusj(s) 2 K (by de�nition of K).Hence s 2 ��nK; which shows that L is `-stable with respect to K.Similarly, it can be shown that if P is stabilizable with respect to X̂ , then L is `-stabilizable with respect to K. 2Proposition 4.4 shows that stability (stabilizability) in terms of states in some senseimplies `-stability (`-stabilizability). We show in the next example that the converse doesnot necessarily hold, thus showing that the notion of `-stability (`-stabilizability) is �nerthan that of stability (stabilizability).Example 4.5 Let � = �u = fa; b; c; dg. Consider the languages L;K � �? given by:L = (ab)?cd? and K = d? + b(ab)i(ab)?cd?, where i 2 N , i � 1. Letting N def= 2i + 1, itcan be easily veri�ed that L � ��NK and also that N is the smallest integer for which thelast inclusion holds. Since L is `-stable with respect to K it follows that L is `-stabilizablewith respect to K. Let P; V be the minimal SM's generating L;K respectively. Then P; Vmust have 3; 2i+ 5 states respectively. It can also be easily shown that P is not stable withrespect to any of its subset of states. Since �u = �, P is not stabilizable with respect to anyof its subset of states either.Example 4.6 Consider the languages L = (ac + b)a(a + b)? and K = (ab)? de�ned over� = �c = fa; b; cg. We will show that L is not `-stable with respect to K, i.e. there existsno N 2 N such that L � ��NK. To prove this, we assume for contradiction that there8



exists N0 2 N is such that L � ��N0K. Consider the string baaN0 2 L. Any substring ofit obtained by removing an initial �nite segment of length less than N0 does not match anystring in K (a string in K contains the symbol b at the end, whereas the string baaN0 endswith the symbol a). ba Generator for H = (ac+ b)a(ab)?Generator for K = (ab)?Generator for L = (ac+ b)a(a+ b)? b aa; b ac baabca
Figure 3: Diagram illustrating Example 4.6Consider a supervisor S such that Lm(S) = (ac+b)a(ab)? (such a supervisor exists becauseall the events are controllable [10, 11]) as shown in Figure 3. Then Lm(P2S) = (ac+b)a(ab)?is `-stable with respect to K = (ab)? (consider any string from Lm(P2S) and remove theinitial segment, either aca or ba, whichever is appropriate; the resulting string belongs toK). Thus L is `-stabilizable to K.In this example, it is clear that a dynamic feedback type supervisor has been used to`-stabilize the given language. A static feedback type control cannot be used to stabilizeL = (ac+ b)a(a+ b)? with respect to K = (ab)?. This follows since any string in K containsan equal number of a's and b's, and L cannot be restricted to a language H � L with all itsstrings having an equal number of a's and b's at its end by using a static supervisor (referto Example 2.7). In [17, 4, 2], where stability is de�ned in terms of the legal states, thesupervisors considered for stabilizing DEDS's are all assumed to be of static feedback type.Thus a more general type of control is needed to `-stabilize the behavior of a given system,which also shows that the notion of `-stability (`-stabilizability) is a �ner notion.Next we present algorithms for testing `-stability and `-stabilizability of a language Lwith respect to another language K.4.1 Algorithms for testing `-stability and `-stabilizabilityIn order to test whether a language L is `-stable (`-stabilizable) with respect to anotherlanguage K, we need to test whether there exists an integer N 2 N such that L � ��NK9



(H � ��NK, where H � L). This problem can equivalently be posed in terms of thereversal [1] of languages that we de�ne next.De�nition 4.7 Given a string s 2 �?, its reversal sR 2 �?, is the string obtained byreversing s. Given a language L � �?, its reversal LR � �? is de�ned to be: LR def= fsR 2�?js 2 Lg.Next we discuss some of the properties of the reversal operator. We use L;L1; L2 todenotes languages de�ned on �.Lemma 4.81. Reversal preserves regularity, i.e. if L is regular, then so is LR.2. (LR)R = L.3. Reversal is monotone, i.e. if L1 � L2, then LR1 � LR2 .4. (L1L2)R = LR2 LR1 .Proof: 1. The proof is based on constructing a FSM that recognizes LR using a FSMrealization for L, and can be found in [1].2. Follows from the de�nition of the reversal of languages and the fact that for any strings 2 �?, (sR)R = s.3. Pick s 2 LR1 ; then sR 2 L1. Since L1 � L2, it follows that sR 2 L2, i.e. (sR)R = s 2 LR2 .4. We �rst show that (L1L2)R � LR2 LR1 . Pick s 2 (L1L2)R; then sR 2 L1L2, i.e. there existus 2 L1 and vs 2 L2 such that usvs = sR. Hence s = (sR)R = (usvs)R = vRs uRs 2 LR2 LR1 .Next we show that LR2 LR1 � (L1L2)R. Pick s 2 LR2 LR1 ; then there exist vs 2 L2 andus 2 L1 such that vRs uRs = s. Hence s = (sR)R = ((vRs uRs )R)R = (usvs)R 2 (L1L2)R. 2Corollary 4.9 L � ��NK if and only if LR � KR��N , where L;K � �? and N 2 N .Proof: Assume that L � ��NK; then it follows from part 3 of Lemma 4.8 LR � (��NK)R.Since (��N )R = ��N , it follows from part 4 of Lemma 4.8 that LR � KR��N .Assume next that LR � KR��N ; then from part 3 of Lemma 4.8 it follows that (LR)R �(KR��N )R. Thus from part 4 of Lemma 4.8 we obtain (LR)R � ��N (KR)R. It then followsfrom part 2 of Lemma 4.8 that L � ��NK. 2Thus the problem of testing `-stability of a language L with respect to another languageK can be equivalently posed as that of determining an integer N 2 N , if it exists, suchthat LR � KR��N . Hence, given two languages L;K � �?, we next analyze the problem ofdetermining an integer N 2 N , if it exists, such that LR � KR��N .Let P def= (X;�; �; x0;Xm) and V def= (Q;�; �; q0; Qm) be two SM's such that Lm(P ) = LRand Lm(V ) = KR. Assume further that P is trim [1] so that L(P ) = Lm(P ) = LR, andV is such that L(V ) = �?, i.e. V is a SM that recognizes KR and has an additional dump10



state in order to generate �?. Consider the synchronous composition P2V of SM's P andV given by the following 5-tuple:P2V def= fR;�; �; r0; Rmgwhere the state set R, the transition function �(�; �), the initial state r0 are as de�ned above(refer to the de�nition of synchronous composition), and Rm � Xm � Q (this is a slightvariation to the earlier de�nition of the marked states in synchronous composition of twomachines).Note that all the transitions are present in V , i.e. given any event � 2 � and any stateq 2 Q, �(�; q)!. Hence for any event � 2 � and state r = (x; q) 2 R, �(�; (x; q)) is de�ned ifand only if �(�; x) is de�ned.Lemma 4.10 Let P and V be the two SM's as de�ned above. Then Lm(P2V ) = Lm(P ),and L(P2V ) = L(P ).Proof: First we show that Lm(P2V ) � Lm(P ). Pick s 2 Lm(P2V ); then �(s; r0)! and�(s; r0) 2 Rm. Since �(s; r0) is de�ned if only if �(s; x0) is de�ned and Rm � Xm � Q, itfollows that �(s; x0)! and �(s; x0) 2 Xm. Thus s 2 Lm(P ). Next we show that Lm(P ) �Lm(P2V ). Pick s 2 Lm(P ); then �(s; x0)! and �(s; x0) 2 Xm. It follows from the de�nitionsof �(�; �) and Rm that �(s; r0)! and �(s; r0) 2 Rm. Thus s 2 Lm(P2V ).Since L(P2V ) = L(P ) \ L(V ) = L(P ) \ �?=L(P), the other result follows. 2 Giventwo languages L;K � �?, next we present a necessary and su�cient condition to determinewhether there exists an integer N 2 N such that LR � KR��N in terms of the graphicalstructure of SM's recognizing the languages LR;KR.Consider R, the state set of P2V . Let R? denote the set of all �nite sequences of statesbelonging to R. Consider p 2 R? such that p = (r1r2 : : : ri : : : rn) 2 R?, where ri 2 R for each1 � i � n and n 2 N . Then p is said to be a path starting at r1 and ending at rn in P2V ,if there exist a string sp 2 �?; sp = �1�2 : : : �i : : : �n�1, where �i 2 � for each 1 � i � n� 1,such that �((�1 : : : �i�1); r1) = ri for each 1 < i � n. sp 2 �? as described above is calledthe string corresponding to path p. Thus given a path p in P2V , there exists at least onestring sp 2 �? corresponding to p. A state r 2 R is said to be a path-state of the path p ifr = ri for some 1 � i � n. p is said to be a loop-path if there exist i; j with 1 � i < j � nsuch that ri = rj; in which case the portion ri : : : rj of p is called the loop-portion of p. p issaid to be a loopfree-path if p is not a loop-path.Theorem 4.11 Let LR;KR � �? be the languages recognized by the SM's P; V respectivelyas described above. Then there exists an integer N 2 N such that LR � KR��N if and onlyif the following hold in the SM P2V :C1 For each rm 2 Rm and for every path p in P2V that starts at r0 and ends at rm, thereexists a path-state r = (x; q) 2 X �Q of p such that q 2 Qm.C2 For each r = (x; q) 2 X �Qm and each rm 2 Rm, if a path p in P2V that starts at rand ends at rm has none of its path-states in X �Qm (other than the one at which itstarts), then p is a loop-free path. 11



Proof: Assume that there exists an integer N 2 N such that LR � KR��N ; then we �rstshow that C1 holds.Fix a path p in P2V such that p starts at r0 and ends at rm 2 Rm. Then there existsa string sp 2 Lm(P2V ) such that �(sp; r0) = rm. Since Lm(P2V ) = Lm(P ) = LR (Lemma4.8 and de�nition of P), sp 2 LR. Thus it follows from the assumption that sp 2 KR��N ,i.e. there exist usp 2 KR and vsp 2 ��N such that sp = uspvsp. Consider the path-stater = (x; q) = �(usp; r0) of p. Since usp 2 KR, the state q reached by accepting usp in Vbelongs to Qm, i.e. r = (x; q) 2 X �Qm.Next we show that C2 holds. Fix a path p in P2V such that p starts at r = (x; q) 2X � Qm and ends at rm 2 Rm and none of the path-states of p other than the �rst oneare in X � Qm. Assume for contradiction that C2 is false, i.e. p is a loop-path. Considerthe string s 2 L(P2V ) such that �(s; r0) = r = (x; q). Since q 2 Qm, s 2 Lm(V ) = KR.Let tp = upvpwp 2 �? be a string corresponding to the path p, where vp represents thestring corresponding to the loop-portion of p. Then stp = supvpwp 2 Lm(P2V ) = LR (since�(stp; r0) = rm 2 Rm). Hence the string tup(vp)N+1wp 2 LR. Then there exists no pre�xs0 2 KR of the string sup(vp)N+1wp such that �js0j(sup(vp)N+1wp) 2 ��N , which contradictsthe fact that LR � KR��N . This completes the proof of the fact that C1 and C2 arenecessary conditions for an integer N 2 N to exist such that LR � KR��N . It remains toshow that C1 and C2 are su�cient conditions also.Assume then that C1 and C2 hold for SM P2V . Since C2 holds, any path p in P2V ,that starts at r = (x; q) 2 X � Qm and ends at rm 2 Rm with none of its path-states(other than the �rst one) in X �Qm, is a loopfree-path. Let P denote the collection of allsuch paths (paths that satisfy condition C2). De�ne N def= maxp2P jpj, where jpj denotes thelength of path p. Then we will show that LR � KR��N . Note that since C2 holds, all thepaths p 2 P are loopfree-paths, hence the maximum in the de�nition of N exists. In orderto show that LR � KR��N , pick s 2 LR. Then s 2 Lm(P2V ). Let �(s; r0) = rm 2 Rm.Consider the path ps in P2V corresponding to string s. Since P2V is deterministic, ps isunique. Also, ps starts at r0 and ends at rm 2 Rm. Hence by C1, there exists a path-stater = (x; q) of ps such that r = (x; q) 2 X � Qm. Let r0 be the last such path-state of ps,i.e. r0 2 X � Qm and all the path-states of ps that follow r0 do not belong to X �Qm. Letthe portion of ps that starts at r0 and ends at rm be denoted by p0; then from C2 p0 is aloopfree-path, also p0 2 P. It follows from the de�nition of N that jp0j � N . Let u0 2 �?be such that �(u0; r0) = r0, then u0 2 K (since r0 2 X � Qm), and �ju0j(s) 2 ��N . Thuss 2 KR��N . This completes the proof of Theorem 4.11. 2Remark 4.12 The conditions C1 and C2 can be tested in P2V in the following manner:1. Consider the state set R of P2V and remove all the states r = (x; q) 2 R (and thetransitions entering or leaving these states) for which q 2 Qm. Then for C1 to hold,there must not exist any path connecting r0 to any rm 2 Rm in the machine obtainedby removing the above states. Thus C1 can be veri�ed by doing a connectivity test onthe reduced machine as described above.12



2. Next �x a state r = (x; q) 2 R with q 2 Qm and remove from P2V all the other statesr0 = (x0; q0) 2 R (and the transitions entering or leaving these states) having q0 2 Qm.Then for C2 to hold for this state r, any path connecting r to any rm 2 Rm in themachine obtained by removing the above states must be acyclic. Repeat the above forevery state r00 = (x00; q00) 2 R with q00 2 Qm and test for acyclicity.Letting jP2V j denote the number of states in P2V , it follows from above that C1 andC2 can be tested in O(jP2V j2) time. Let m;n 2 N be the number of states in the minimalSM's recognizing L;K respectively, then the number of states in SM's P; V recognizingLR;KR respectively is 2m; 2n respectively (reversal operation requires nondeterministic todeterministic conversion of SM's). Hence the computational complexity of testing `-stabilityof L with respect to K is O(22(m+n)).Corollary 4.13 Consider two regular languages L;K � �?. Let m;n 2 N be the numberof states in the minimal SM's recognizing L;K respectively. If L is `-stable with respect toK, then there exists an integer N 2 N , N � 2m+n such that L � ��NK.Proof: By Corollary 4.9, L � ��NK if and only if LR � KR��N . Since the number ofstates in SM's recognizing L;K is m;n respectively, the number of states in SM's recognizingLR;KR is 2m; 2n respectively (reversal operation requires nondeterministic to deterministicconversion of SM's [1]). Thus it follows from Theorem 4.11 that N � (2m)(2n) = 2m+n. 2Remark 4.14 Thus `-stability of a given language L with respect to another language Kcan also be determined by testing whether L � ��2m+nK, where m;n 2 N are the numbersof states present in SM's recognizing L;K respectively.Next we consider the problem of testing `-stabilizability of a given language L � �?with respect to another language K � �?. Let P; V be the SM's recognizing languageL;K respectively. The supervisor that disables all the controllable transitions of P (treatedas a plant) is called the maximally restrictive supervisor. The behavior of P under themaximally restrictive control is given by L \ �?u. Note that since L \ �?u is the closed loopbehavior under the control of the maximally restrictive supervisor, given any nonemptycontrollable sublanguage H � L, L \ �?u � H. Also, note that L \ �?u is controllable, for(L \ �?u)�u \ L(P ) = L \ �?u.Theorem 4.15 L is `-stabilizable with respect to K if and only if L \�?u is nonempty and`-stable with respect to K.Proof: Assume that L is `-stabilizable with respect to K. Then there exists N 2 N and anonempty controllable sublanguage H � L such that H � ��NK. Note that L \ �?u � H(by de�nition of maximally restrictive control). Hence L \ �?u � ��NK. Thus L \ �?u is`-stable with respect to K.Next assume that L \ �?u is nonempty and `-stable with respect to K. Since L \ �?u iscontrollable, it follows that L is `-stabilizable with respect to K. 213



Remark 4.16 Thus `-stabilizability of a given language L with respect to another languageK can be determined by testing whether L \ �?u is nonempty and `-stable with respect toK. As stated in Remark 4.12, the algorithm for testing `-stability of L with respect K is ofcomputational complexity that is exponential in the number of states present in SM's recog-nizing L and K. Hence so is the complexity of the algorithm that tests the `-stabilizabilityof L with respect to K. Next we present a su�cient condition for `-stability of L withrespect to K that can be tested in polynomial time. Let P def= (X;�; �; x0;Xm) andV def= (Q;�; �; q0; Qm) be two SM's recognizing L and K respectively. De�ne the follow-ing subset of states XS � X: XS = fx 2 X j Lm(P; x) � Kgwhere Lm(P; x) is the language recognized by P assuming its initial state to be x 2 X.Proposition 4.17 Consider SM's P; V as de�ned above. If x0 2 
(XS), then L is `-stablewith respect to K.Proof: De�ne N def= jX �XS j; then to prove `-stability of L with respect to K, we need toshow that L � ��NK. Consider s 2 L. If jsj � N , then clearly s 2 ��NK. So let s 2 Lbe such that jsj > N . Then it follows from the de�nition of region of strong attraction thatthere exists a pre�x us 2 �?; jusj � N , of s such that �(us; x0) 2 XS . Also, by the de�nitionof XS, �jusj(s) 2 K, which shows that s 2 ��NK. 2Thus if x0 is strongly attractable to a state in XS , then P after starting from x0 reachesa state in XS in at most jX �XS j transitions, and then onwards follows a string in K. Thefollowing algorithm checks the su�cient condition of Proposition 4.17:Algorithm 4.181. Determine the subset of states XS � X de�ned above.2. Compute 
(XS) using Algorithm A.1.3. If x0 2 
(XS), then L is `-stable with respect to K.Let P; V be the minimal SM's recognizing L;K respectively and let m;n 2 N be thenumber of states in P; V respectively. Then step 1 of Algorithm 4.18 can be determined inO(m2n) time, and step 2 and 3 can both be determined in O(m) time (refer to Theorem A.2).Hence the computational complexity of Algorithm 4.18 is O(m2n) which is polynomial inm;n. Note that Algorithm 4.18 tests only for the su�ciency condition of `-stability. Henceif the condition in step 3 of Algorithm 4.18 is not satis�ed, `-stability of L with respect to Kis determined by testing conditions C1 and C2 of Theorem 4.11 as described in Remark 4.12.Next we present a su�cient condition for `-stabilizability of L with respect to K, which canalso be tested in polynomial time. 14



Proposition 4.19 Consider the SM's P; V . Let X 0S def= fx 2 X j Lm(P j�u ; x) � Kg, whereLm(P j�u ; x) = Lm(P; x) \ �?u. If x0 2 �(X 0S), then L is `-stabilizable with respect to K.Proof: Similar to the proof of Proposition 4.17. 2The following algorithm will test the condition of Proposition 4.19:Algorithm 4.201. Compute X 0S � X.2. Compute �(X 0S) using the modi�cation to Algorithm A.1 described in Remark A.3.3. If x0 2 �(X 0S), then L is `-stabilizable with respect to K.The computational complexity of Algorithm 4.20 is also O(m2n), where m;n is the num-ber of states in P; V respectively.5 On Stabilizing SupervisorsIn the previous section we showed that given a plant P with physical behavior L � �?and desired eventual behavior K � �?, it can be veri�ed whether or not L is `-stable or `-stabilizable with respect to K. In case L is `-stable with respect to K, the eventual behaviorof P is contained in K; hence no supervisor is needed. If L is not `-stable but is `-stabilizablewith respect to K, then a supervisor must be constructed to insure that the eventual closedloop behavior of the system is a sublanguage of K. The `-stabilizability of L guarantees theexistence of a stabilizing supervisor, but a minimally restrictive stabilizing supervisor neednot in general exist. This is evident from the following proposition:Proposition 5.1 `-stability is not preserved under union.Proof: We show by the following example that `-stabilizability is not preserved under union.Let � = �c = fa; bg, L = a?b? denote the plant behavior and K = b? denote the desiredeventual behavior. Then there does not exist any integer N 2 N such that L � ��NK, i.e.L is not `-stable with respect to K.Next consider the following family of sublanguages fLigi2N of L with Li = aib? for eachi 2 N . Then it is clear that for each i 2 N , Li is controllable (since �c = �) and also`-stable (since Li � ��iK) sublanguage of L. But Si2N Li = L is not `-stable with respectto K; thus showing that `-stability is not preserved under union. 2The implication of Proposition 5.1 is that if the plant behavior L is not `-stable withrespect to the desired eventual behaviorK, then the minimally restrictive stabilizing supervi-sor, which will restrict the plant behavior to the supremal `-stable sublanguage of L, cannotin general be constructed. Next we de�ne a weaker notion of language stability that we callweak `-stability which is preserved under union so that the minimally restrictive stabilizingsupervisor can be constructed. 15



De�nition 5.2 A language L � �? is said to be weakly `-stable with respect to anotherlanguage K � �? if L � �?K. If there exists a nonempty controllable sublanguage H � Lsuch that H is weakly `-stable with respect to K, then L is said to be weakly `-stabilizablewith respect to K.Thus if L is weakly `-stable with respect to K, then every string in L after removing apre�x from it, matches some string in K. Notice that here no uniform bound on the size ofpre�x to be removed from a string in L is assumed.Remark 5.3 Since ��N � �? for any N 2 N , it follows that `-stability implies weak `-stability. However, the converse does not hold in general. Consider for example the languagesL = a?b? and K = b? de�ned over the event set � = fa; bg. Then as stated in the proof ofProposition 5.1, L is not `-stable with respect to K. But clearly L is weakly `-stable withrespect to K, for a?b? � �?b?.The following result analogous to that stated in Theorem 4.15 holds also for weak `-stabilizability.Theorem 5.4 L is weakly `-stabilizable with respect to K if and only if L\�?u is nonemptyand weakly `-stable respect to K.Proof: Similar to the proof of Theorem 4.15. 2Next we discuss how to verify weak `-stability and weak `-stabilizability of a given plantbehavior with respect to its desired eventual behavior. Let P def= (X;�; �; x0;Xm); V def=(Q;�; �; q0; Qm) be the minimal SM's recognizing the languages L;K respectively. Assumingthat the languages L;K are regular, let m;n be the number of states in P; V respectively. ASM that recognizes �?K is constructed by �rst adding the self-loop corresponding to �? atthe initial state of V and then converting it to a deterministic SM. Let this SM be denotedby V 0; then the number of states in V 0 is 2n.Remark 5.5 The weak `-stability of L with respect to K can be veri�ed by determiningwhether Lm(P ) � Lm(V 0). Since the number of states in P; V 0 is m; 2n respectively, thecomputational complexity of verifying weak `-stability of L with respect to K is O(m2n).It also follows, in view of Theorem 5.4, that the computational complexity of testing weak`-stabilizability of L with respect to K is again O(m2n).Since `-stability (`-stabilizability) implies weak `-stability (weak `-stabilizability), thecondition in Proposition 4.17 (Proposition 4.19) is su�cient for weak `-stability (weak `-stabilizability). Thus Algorithm 4.18 (Algorithm 4.20) can be employed to test this su�cientcondition for weak `-stability (weak `-stabilizability), the computational complexity of whichis polynomial in m;n.Thus given a plant behavior L and desired eventual behaviorK, we �rst verify whether ornot L is `-stable with respect to K. If L is `-stable with respect to K, then no supervisor isneeded; otherwise, we check whether L is weakly `-stabilizable with respect to K. Note thatsince `-stabilizability is not preserved under union, it is not possible in general to construct16



a minimally restrictive supervisor so that the closed loop behavior of the system is `-stablewith respect to K. Hence whenever L is not `-stable with respect to K, we check for theweak `-stabilizability (instead of `-stabilizability) of L with respect to K. Next we provethat weak `-stability is preserved under union, i.e. the supremal weakly `-stable sublanguageof a given language exists.Proposition 5.6 The supremal weakly `-stable sublanguage of a given language exists andis unique.Proof: Let L;K denote the plant, desired eventual behavior respectively. Let � be anindexing set such that the family of weakly `-stable sublanguages of L is given by fL�g�2�,i.e. L� is weakly `-stable sublanguage of L for each � 2 �. Such a family is nonemptybecause ; is weakly `-stable sublanguage of L. Consider the language H def= S�2� L�; thenclearly H � L and H is weakly `-stable. The last assertion follows from the fact thatL� � �?K for each � 2 � which implies that S�2� L� = H � �?K. This completes theproof of Proposition 5.6. 2Corollary 5.7 The supremal controllable and weakly `-stable sublanguage of a given lan-guage exists and is unique.Proof: Follows from Proposition 5.6 and the fact that controllability is preserved underunion [20, 19]. 2We proved the existence and uniqueness of the supremal controllable and weakly `-stablesublanguage of a given language. Next we present a closed form expression for it. We use thenotation H" to denote the supremal controllable sublanguage of a given language H � �?[19, 1, 10].Theorem 5.8 Let L;K � �? denote the plant, desired eventual behavior respectively. Thenthe supremal controllable and weakly `-stable sublanguage of L is given by (L \ �?K)".Proof: Let H � �? denote the supremal controllable and weakly `-stable sublanguage of Lwith respect to K. Then we need to show that H = (L \ �?K)".First we show that (L \ �?K)" � H. Since H is the supremal controllable and weakly`-stable sublanguage of L, it su�ces to show that (L \ �?K)" is a controllable and weakly`-stable sublanguage of L. By its de�nition, (L \ �?K)" is a controllable sublanguage of L.Also, since (L \ �?K)" � L \ �?K � �?K, it follows that (L \ �?K)" is weakly `-stablewith respect to K. Thus (L\�?K)" is a controllable and weakly `-stable sublanguage of L.Next we prove that H � (L\�?K)". SinceH is weakly `-stable, it follows that H � �?K;also, H � L, hence H � L \ �?K. Note that H is controllable also. Thus H is controllableand is contained in L \ �?K. Since (L \ �?K)" is the supremal controllable sublanguagecontained in L \ �?K, it follows that H � (L \ �?K)". 2Thus if L is not `-stable with respect to K, but is weakly `-stabilizable with respect to K,then a minimally restrictive stabilizing supervisor can be constructed so that the behaviorof the closed loop system is given by (L\�?K)". Algorithms for constructing the supremalcontrollable sublanguages are described in [19, 1, 11].17



6 Stability of Sequential BehaviorSo far we have discussed the stability of the �nite behavior of a DEDS. We will showhow the notions of `-stability and `-stabilizability de�ned above can be easily generalizedto describe the stability of in�nite or sequential behaviors of DEDS's. In this section, weintroduce the notion of !-stability for formally describing the the notion of eventual sequentialbehavior.In [18, 21, 13, 12, 22] the supervisory control problem for controlling the sequential behav-ior of a DEDS is studied, and conditions under which a supervisor can be constructed so thatthe sequential behavior of the controlled system is equal to some desired sequential behaviorare obtained. As discussed above, such a control problem formulation may lead to synthesisof a very restrictive supervisor. In some cases, it might su�ce to design a supervisor whichwould ensure that the sequential behavior of the controlled system is eventually contained inthe desired sequential behavior. So we introduce the notion of the desired eventual sequen-tial behavior and obtain conditions under which the plant's sequential behavior is eventuallycontained in this sequential behavior. We follow the framework of [18] for addressing thesupervisory control problem of sequential behavior.Let �! denote the set of all in�nite strings of events belonging to �. An in�nite or!-language is a sublanguage of �!. Let en 2 �? denote the pre�x of size n of the in�nitestring e 2 �!. A suitable metric can be de�ned on the space �! [7]. Given two in�nitestrings e1; e2 2 �!, the distance d(e1; e2) between the two in�nite strings is de�ned to be:d(e1; e2) def= ( 1=(n + 1) if en1 = en2 and en+11 6= en+12 (n 2 N )0 if e1 = e2Given a language L � �?, its limit, denoted as L1, is the !-language de�ned as:L1 def= fe 2 �! j en 2 L for in�nitely many n 2 NgWe will use t � s to denote that t 2 �? is a pre�x of s 2 �? [ �!. If t is a proper pre�x ofs, then it is written as t < s. Given an in�nite sequence of strings s1 < s2 < : : : < sn < : : :with sn 2 �? for each n, there exists a unique in�nite string e 2 �! such that sn < e for eachn. In this case, the in�nite string e is also written as e = limn!1 sn. Given an !-languageL � �!, its pre�x, denoted by prL, is the language:prL def= fs 2 �? j 9e 2 L s.t. s < egNote that prL = prL, where L denotes the topological closure1 of L in the metric space(�!; d) [7]. It can be proved [7] that for a !-language L � �!,(prL)1 = L1The notation L is used to denote topological closure whenever L � �! , and the notation L is used todenote the pre�x closure whenever L � �?. 18



With the above preliminary notions we can address the issue of stability of the in�nitebehavior of a given DEDS. Let P � (X;�; �; x0;Xm) denote the plant. Then as de�nedabove, Lm(P ); L(P ) � �? denote its (�nite) marked, generated languages respectively. The!-language generated by P, denoted by L(P ), is de�ned to be:L(P ) def= fe 2 (L(P ))1 j 9 in�nitely many n 2 N s.t. �(en; x0) 2 Xmg = (Lm(P ))1Note that the !-language L(P ) generated by P as de�ned above is also the !-languagegenerated by P viewed as a B�uchi automaton [7]. P is said to nonblocking if prL(P ) = L(P ).Let S � (Y;�; �; y0; Ym) denote the supervisor that controls P by synchronization as de�nedabove. Then the !-language generated by the closed loop system P2S is de�ned to be:L(P2S) def= (L(P2S))1 \ L(P )Let K � L(P ) be the desired !-language. It is shown in [18] that a complete, nonblockingsupervisor exists for achieving the desired sequential behavior if and only ifK is !-controllablewith respect to P .De�nition 6.1 An !-language K � �! is said to be !-controllable with respect to the plantP if prK is controllable with respect to P , and K is topologically closed with respect to L(P );i. e.1. pr(K)�u \ L(P ) � prK, and2. K \ L(P ) = K.It is further shown in [18] that if K is not !-controllable, but is topologically closed withrespect to L(P ), then the supremal !-controllable sublanguage, denoted by K", of K exists2.Thus the construction of the minimally restrictive supervisor is possible. A closed formexpression for the supremal !-controllable sublanguage, as well as an e�cient algorithm forcomputing it, is presented in [13, 12].Next, let K � �! represent the desired eventual sequential behavior of the plant P �(X;�; �; x0;Xm). The notion of !-stability is de�ned as follows:De�nition 6.2 The plant sequential behavior L(P ) is said to be !-stable with respect tothe desired eventual sequential behavior K if there exists an integer N 2 N such thatL(P ) � ��NK. L(P ) is said to be !-stabilizable with respect to K if there exists a nonempty!-controllable sublanguage H � L(P ) such that H is !-stable with respect to K.Let e 2 �! be a in�nite string and for each n 2 N , let fn 2 �! be such that e = enf .Then the projection operator �n : �! ! �! (n 2 N ) is de�ned in the following manner:�n(e) = fn2The notation K" is used to denote the supremal !-controllable sublanguage of K � �! , and the notationK" is used to denote the supremal controllable sublanguage of K � �?.19



In other words, given a in�nite string e 2 �!, its projection �n(e) is obtained by deleting itspre�x of size n from it. Thus if L(P ) is !-stable with respect to K, then for each e 2 L(P )there exists an integer ne � N such that �ne(e) 2 K. In other words, each in�nite stringin L(P ) after removing a pre�x of size at most N matches a in�nite string in K. The!-language K thus can be thought of to be representing the desired eventual sequentialbehavior. If L(P ) is not !-stable but !-stabilizable with respect to K, then there exists anonempty !-controllable sublanguage H � L(P ) which is !-stable with respect to K also.Thus a nonblocking and complete [18] supervisor, that can restrict the sequential behaviorof the plant to H which \stabilizes" to the desired eventual sequential behavior K, can beconstructed.6.1 Tests for !-stability and !-stabilizabilityIn this subsection we show that under certain assumptions !-stability can be tested byperforming the test for `-stability. First we de�ne the notion of complete languages which isuseful in the context of studying the stability of in�nite behaviors.De�nition 6.3 Consider a language L � �?. A string s 2 L is said to have an extension inL if there exists a t 2 L such that s < t. L is said to be complete3 if for every string s 2 L,there exists an extension in L.Note that a language is complete if and only if a trim SM recognizing it is live (has atleast one transition de�ned at each of its states) [13]. First we show that `-stability of agiven language with respect to another implies !-stability of the limit of the given languagewith respect to the limit of the other.Theorem 6.4 Consider L;K � �?. If L is `-stable with respect to K, then L1 is !-stablewith respect to K1.We prove the following lemma before proving the result of Theorem 6.4.Lemma 6.5 Consider L � �?. Then for any N 2 N , (��NL)1 = ��NL1.Proof: First we show that ��NL1 � (��NL)1. Pick e 2 ��NL1. Then e can be writtenas e = enf , where n � N and f 2 L1. Thus there exist in�nitely many m 2 N such thatfm 2 L. Then the strings enfm 2 ��NL for each m 2 N . Hence limm!1 enfm 2 (��NL)1.Also, since enf1 < enf2 < : : : < enfm < : : : < e, it follows that limm!1 enfm = e; whichshows that e 2 (��NL)1.Next we show that (��NL)1 � ��NL1. Pick e 2 (��NL)1. Then there exist in�nitelymany n 2 N such that en 2 ��NL. Thus each en can be written as en = unvn, whereun 2 ��N and vn 2 L. Since the set ��N is �nite, it follows that there exists at least oneinteger n0 2 N such that un0 = un for in�nitely many n. Let fnkgk2N be a subsequence3Completeness is also de�ned to be a property of supervisors; here we de�ne it to be a property oflanguages. The two de�nitions are unrelated and not to be confused with.20



such that un1 = un2 = : : : = unk = : : : = un0. Then enk = un0vnk for each k 2 N . Hencee = limk!1 enk = un0 limk!1 vnk . Since un0 2 ��N and vnk 2 L for each k 2 N , it followsthat e 2 ��NL1. 2Proof (of Theorem 6.4): Since L is `-stable with respect to K, there exists an integerN 2 N such that L � ��NK. Hence, by taking limits on both sides of the last inclusion, weobtain L1 � (��NK)1. It then follows from Lemma 6.5 that L1 � ��NK1; which showsthat L1 is !-stable with respect to K1. 2Next we prove that under certain assumptions the converse of Theorem 6.4 holds.Theorem 6.6 Consider L;K � �?. Assume that L is complete and K is pre�x closed.Then !-stability of L1 with respect to K1 implies `-stability of L with respect to K.Before proving the result of Theorem 6.6, we prove the following lemma.Lemma 6.7 Consider two languages L1; L2 � �?. Assume that L1 is complete and L2 isclosed. Then (L1)1 � (L2)1 if and only if L1 � L2.Proof: It is clear that L1 � L2 implies L11 � L12 . Hence it su�ces to show that if(L1)1 � (L2)1, then L1 � L2. Pick s 2 L1. Since L1 is complete, there exists a sequenceof strings s1 < s2 < : : : < sn < : : : such that sn 2 L1 for each n 2 N and s < s1. Lete = limn!1 sn; then e 2 (L1)1. It then follows from the assumption that e 2 (L2)1. Hencethere exist in�nitely many n 2 N such that en 2 L2. Pick m 2 N such that s < em. Sinceem 2 L2 and L2 is closed, it follows that s 2 L2. 2Proof (of Theorem 6.6): Assume that L1 is !-stable with respect to K1. Then thereexists an integer N 2 N such that L1 � ��NK1. Thus it follows from Lemma 6.5 thatL1 � (��NK)1. Note that since ��N is closed, and pre�x closure is preserved underconcatenation of languages ��NK is a closed language (by assumption K is closed). SinceL is complete (by assumption) and ��NK is closed, we obtain from Lemma 6.7 that L1 �(��NK)1 if and only if L � ��NK. 2The results of Theorem 6.4 and Theorem 6.6 can be combined to arrive at a test for!-stability based on the test for `-stability (Theorem 4.11).Theorem 6.8 Assume that there exist L;K � �?, where L is complete and K is pre�xclosed such that L(P ) = L1 and K = K1. Then L(P ) is !-stable with respect to K if andonly if L is `-stable with respect to K.Remark 6.9 Since L(P ) = (Lm(P ))1, the plant sequential behavior can always be writtenas the limit of a language. Also, Lm(P ) is complete if and only if P is live. Thus L(P ) canbe written as the limit of a complete language if and only if P is live. On the other hand, thedesired eventual sequential behavior can be written as the limit of a pre�x closed languageif and only if it is topologically closed. Thus if P is live and K is topologically closed (i.e.K = K = (prK)1), then L(P ) is !-stable with respect to K if and only if Lm(P ) is `-stablewith respect to prK.Next we relate the notion of !-stabilizability to that of !-stability through the followingtheorem. 21



Theorem 6.10 L(P ) is !-stabilizable with respect to K if and only if L(P )\�!u is nonemptyand !-stable with respect to K, where �!u = (�?u)1.Proof: We �rst show that L(p) \ �!u is the in�mal !-controllable sublanguage of L(P ),i.e. it is the sequential behavior of P under the control of maximally restrictive completeand nonblocking supervisor [18]. Consider the supervisor that disables all the controllableevents in P . Then the behavior of the closed loop system under this control law is givenby L(P ) \ �?u. Hence the sequential behavior of the closed loop system is given by (L(P ) \�?u)1 \L(P ) = (L(P ))1 \ (�?u)1 \L(P ) = L(P )\�!u , where the �rst equality follows fromthe fact that L(P );�?u are both closed languages and the second equality follows from thefact that L(P ) � (L(P ))1 and (�?u)1 = �!u . Note that the supervisor that disables all thecontrollable transitions in P is complete (it never disables any uncontrollable transition) andnonblocking (since pr(L(P ) \ �!u ) = L(P ) \ �?u). Hence L(P ) \ �!u is !-controllable [18].Since it is the sequential behavior under the maximally restrictive complete and nonblockingcontrol law, if H � L(P ) is any !-controllable sublanguage of L(P ), then L(P ) \�!u � H.Assume then that L(P ) is !-stabilizable with respect to K. Then by the de�nition of !-stabilizability, there exists a nonempty !-controllable sublanguage H � L(P ) and an integerN 2 N such that H � ��NK. Since L(P ) \�!u � H, it follows that L(P ) \�!u � ��NK;which shows that L(P ) \�!u is !-stable with respect to K.Assume next that L(P )\�!u is nonempty and !-stable with respect to K. Since L(P )\�!u � L(P ) and is !-controllable (proved above), it follows that L(P ) is !-stabilizable withrespect to K. 2Remark 6.11 Note that L(P )\�!u = (Lm(P ))1\(�?u)1 = (Lm(P )\�?u)1, where the lastequality follows from the fact that �?u is pre�x closed. Thus, if P is live and K is topologicallyclosed, then from Theorem 6.8 and Theorem 4.15 it follows that the !-stabilizability of L(P )with respect to K is equivalent to `-stabilizability of Lm(P ) with respect to prK.Remark 6.12 A necessary condition for !-stability is obtained using an equivalence relationon the space �! introduced in Appendix B. It is also shown in Appendix B that if a weakerde�nition of !-stability is used the necessary condition obtained in terms of the equivalencerelation is also a su�cient condition.7 ConclusionIn this paper, we have introduced the notions of stability and stabilizability of DEDS'sin terms of their behavior. In many situations, since the behavior rather than the states ofthe system is observed directly, it is more natural to study the stability of systems in termsof their behavior. Also, in some cases, it might be desired that the eventual (rather thanthe whole) behavior of the system be legal, so it is necessary to de�ne formally the notionof language stability. Earlier works concerning stability of DEDS's [17, 4, 2] are all based interms of the states of the systems and can be viewed as a special case of the work presentedhere (refer to Proposition 4.4). The earlier works [17, 4, 2] on stability in terms of states22



assume the control to be of static feedback type; however, more general supervisors thatexercise dynamic feedback have been used here for making the systems `-stable.We have shown that the problem of determining `-stability (`-stabilizability) of a givenlanguage with respect to another language is equivalent to another problem posed in termsof the reversal of languages (refer to Corollary 4.9) and have provided a solution to thisequivalent problem (refer to Theorem 4.11 and Theorem 4.15). We have also provided anupper bound to the value of the integer N in the de�nition of `-stability (`-stabilizability)using the solution to the equivalent problem (refer to Corollary 4.9). Next we have presenteda weaker notion of language stability in which no uniform upper bound on the length of thepre�x to be removed from a string in a language (for it to `-stable with respect to anotherlanguage) exists and have provided the construction of the minimally restrictive supervisor[10, 20, 19, 11] to `-stabilize a given language in this weaker sense of language stability.The notion of `-stability and `-stabilizability is then generalized to describe the notion ofstability of sequential behavior of DEDS's and the notions of !-stability and !-stabilizabilityis introduced in this context. We have introduced an equivalence relation on the space ofin�nite strings and have obtained a necessary condition of !-stability in terms of this relation.A necessary and su�cient condition for !-stability is obtained in terms of `-stability, whichis used to arrive at tests for !-stability and !-stabilizability.References[1] R. D. Brandt, V. K. Garg, R. Kumar, F. Lin, S. I. Marcus, and W. M. Wonham.Formulas for calculating supremal controllable and normal sublanguages. Systems andControl Letters, 15(8):111{117, 1990.[2] Y. Brave and M. Heymann. On stabilization of discrete event processes. Technicalreport, Department of Electrical Engineering, Technion-Israel Institute of Technology,Ha�a 32000, Israel, 1989.[3] Y. Brave and M. Heymann. On optimal attraction in discrete event processes. Tech-nical Report CIS-9019, Department of Compter Science, Technion-Israel Institute ofTechnology, Ha�a 32000, Israel, 1990.[4] Y. Brave and M. Heymann. On stabilization of discrete event processes. InternationalJournal of Control, 51(5):1101{1117, 1990.[5] H. Cho and S. I. Marcus. On supremal languages of class of sublanguages that arise insupervisor synthesis problems with partial observations. Mathematics of Control Signalsand Systems, 2:47{69, 1989.[6] H. Cho and S. I. Marcus. Supremal and maximal sublanguages arising in supervisorsynthesis problems with partial observations. Mathematical Systems Theory, 22:177{211, 1989. 23
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(X̂) and �(X̂)As before, let P def= (X;�; �; x0;Xm) be the plant and X̂ � X be the set of legal states.The following algorithm can be used to compute 
(X̂) (we assume that the plant P has�nite number of states so that the algorithm terminates in �nite number of steps):Algorithm A.11. Initiation step:Set 
�1(X̂) = ;;
0(X̂) = X̂, and k = 0.2. Iteration step:(a) Let Xk � X be the set of states from which 
k(X̂)�
k�1(X̂) can be reached ina single transition, i. e.Xk = fx 2 X j 9� 2 � s.t. �(�; x) 2 
k(X̂)� 
k�1(X̂)gDetermine the set Xk by considering the SM P�1 def= (X;�; ��1; x0;Xm), where��1(�; x2) def= fx1 2 X j �(�; x1) = x2g (P�1 is the SM obtained by reversingall the transitions of P), and by �nding the states that can be reached from
k(X̂)� 
k�1(X̂) by a single transition in P�1.(b) Consider x 2 Xk. If all the transitions from x lead to 
k(X̂), then 
k+1(X̂) =
k(X̂) [ fxg. Repeat this for all x 2 Xk. Thus, if all the transitions from a statex 2 Xk lead to states in 
k(X̂), then x is a strongly attractable state, i. e.
k+1(X̂) = 
k(X̂) [ fx 2 Xk j �(�; x) 2 
k(X̂) for all � 2 �(P )(x)gwhere �(P )(x) � � is the set of all the transitions that are de�ned in the statex 2 X in P and is given by, �(P )(x) = f� 2 � j �(�; x)!g:3. Termination step:If 
k+1(X̂) = 
k(X̂), then stop and set 
(X̂) = 
k(X̂); else set k = k + 1 and go tostep 2.Theorem A.2 Algorithm A.1 computes the region of strong attraction 
(X̂) of the set oflegal states X̂ � X. 25



Proof: The proof that the Algorithm A.1 computes 
(X̂) is based on the following twofacts:Firstly, the above algorithm computes 
(X̂) if in step 2, 
k(X̂) � 
k�1(X̂) is replacedby 
k(X̂) (for proof refer to Proposition 2.7 of [17]).Secondly, at the end of the kth iteration, to determine the states that might be stronglyattractable, we just need to consider the states that have transitions leading into the set
k+1(X̂) � 
k(X̂) (rather than into the set 
k+1(X̂)) in P , so that the replacement asdescribed above is justi�ed (see Figure 4). In other words, we must show that at the endof kth iteration, if all the transitions in �(P )(x) from the state x 2 X � 
k+1(X̂) lead tothe set 
k+1(X̂), then there exists � 2 �(x) such that �(�; x) 2 
k+1(X̂) � 
k(X̂). Toshow this, we �rst partition �(P )(x) into the set �1(P )(x) [ �2(P )(x), the set �1(P )(x) oftransitions leading to 
k(X̂) and the set �2(P )(x) of transitions leading to 
k+1(X̂)�
k(X̂).Then it is enough to show that the set �2(x) is nonempty. Assume that it is empty; thenx 2 
(
k(X̂)) and therefore it belongs to the set 
k+1(X̂), which is contradictory to thefact that x 2 X � 
k+1(X̂). This proves the second claim. 2Remark A.3 In order to determine the region of weak attraction �(X̂) of X̂ , we replacestep 2(b) in the iteration step of the previous algorithm by the following step 2(b0):2(b0) Consider x 2 Xk. If all the uncontrollable transitions from x lead to 
k(X̂), then
k+1(X̂) = 
k(X̂) [ fxg, i. e.
k+1(X̂) = 
k(X̂) [ fx 2 Xk j �(�; x) 2 
k(X̂) for all � 2 �u(P )(x)g;where �u(P )(x) = �(P )(x) \ �u.This can be tested by considering the transitions in P j�u (P with all its controllabletransitions deleted). Formally, P j�udef= (X;�u; � j�u�X ; x0;Xm).This would result in the construction of the region of weak attraction �(X̂) of X̂. Noticethat with an abuse of notation we have used 
k(X̂) in the algorithm for determining �k(X̂).Theorem A.4 The time complexity of Algorithm A.1 for constructing 
(X̂) and �(X̂) isO(j�jn), where j�j denotes the number of events in the event set � and n is the number ofstates in P.Proof: Assume that at the end of kth iteration, the number of transitions (of length one)leading into the set 
k+1(X̂)� 
k(X̂) from X �
k+1(X̂) is ek. We show that step 2 of thealgorithm can be computed in O(ek) time, as follows.Firstly, the states in the set Xk can be computed in O(ek) time, for in order to determinethe states reachable from the states in the set 
k+1(X̂) � 
k(X̂) by a single transition inP�1, we need consider only the ek transitions. Secondly, since there could be at most eksuch states, the states in the set 
k+1(X̂) can also be computed in O(ek) time. This is truebecause to test whether a state x 2 Xk belongs to 
k+1(X̂) requires only O(j�j) time whichis constant. 26



Since the sets 
k+1(X̂) � 
k(X̂) for each value of k are all disjoint, the transitions (oflength one) leading into them from X � 
k+1(X̂) are also all disjoint. Hence the computa-tional complexity of Algorithm A.1 is of order O(Pk ek) = O(e), where e is the number oftransitions in P. Since P is deterministic, e � j�jn, hence the theorem follows. Similarly, thecomplexity of the algorithm for determining �(X̂) is also O(j�jn). 2This is signi�cant improvement over the computational complexity of the algorithm givenin [4, 2], which is O(n2). Notice that our algorithm requires the construction of the SM P�1which could be nondeterministic, but has same number of transitions as P.The above algorithm can also be used to construct the prestable and prestabilizable statesof a given invariant state set as de�ned in [17]. In fact, the set of prestable states and the setof prestabilizable states with respect to a given invariant or legal set of states is the same as
(X̂) and �(X̂) respectively, where X̂ denotes the set of invariant states. The computationalcomplexity of the algorithms provided in [17] is also quadratic in the number of states of P.B An Equivalence Relation on �! and !-StabilityA necessary condition for !-stability of a given !-language with respect to another can beobtained in terms of an equivalence relation de�ned on the space �!. In this appendix wede�ne this relation and show its close relation to the notion of !-stability.De�nition B.1 For e1; e2 2 �!, e1 �= e2 if and only if there exist m;n 2 N such that�m(e1) = �n(e2).Note that for each n 2 N , �n : �! ! �! is the map such that for e 2 �!, �n(e) is thein�nite string obtained by removing the pre�x of length n from e.Theorem B.2 The relation �= as de�ned is an equivalence relation.Proof: We need to show that the relation �= is re
exive, symmetric and transitive.It is clear that for any vector e1 2 �!, e1 �= e1, i.e. �= is re
exive. Also, if e1 �= e2, thenclearly e2 �= e1 for any two vectors e1; e2 2 �!, i.e. �= is symmetric. It remains to show thatthe relation �= is transitive. Pick any e1; e2; e3 2 �!. We will show that e1 �= e2 and e2 �= e3implies e1 �= e3. Let m;n; p; q 2 N be such that �m(e1) = �n(e2) and �p(e2) = �q(e3). Wemay have either n � p or p � n. If n � p, then �m+(p�n)(e1) = �q(e3), i.e. e1 �= e3; if p � n,then �m(e1) = �q+(n�p)(e3), i.e. e1 �= e3. 2A necessary condition for !-stability can be obtained using the equivalence relation de-�ned above.Proposition B.3 If plant sequential behavior L(P ) is !-stable with respect to the desiredeventual behavior K, then for each e 2 L(P ), there exists e0 2 K such that e �= e0.Proof: Assume L(P ) is !-stable with respect to K, i.e. there exist N 2 N such thatL(P ) � ��NK. Then given e 2 L(P ), there exists n � N and e0 2 K such that e = ene0.Thus �n(e) = e0, i.e. e �= e0. 227



Remark B.4 Proposition B.3 gives a necessary condition for !-stablity. This condition willbe a necessary as well as su�cient condition if a weaker de�nition of !-stability is used. Letthe projection operator be extended to the space 2�! in the obvious manner, i.e. for anyn 2 N , �n : 2�! ! 2�! is de�ned to be:�n(L) = fe 2 �! j 9e0 2 L s.t. �n(e0) = egwhere L � �!. We use �?(�) to denote the operator Sn2N �n(�). The plant sequentialbehavior L(P ) is said to be weakly !-stable with respect to the desired eventual sequentialbehavior K if L(P ) � �?�?(K). Thus if L(P ) is weakly !-stable with respect to K, then forevery e 2 L(P ) there exist n;m 2 N and e0 2 K such that �n(e) = �m(e0). It is clear that!-stability implies weak !-stability. It can easily be veri�ed that L(P ) is weakly !-stablewith respect to K if and only if given any e 2 L(P ) there exists e0 2 K such that e �= e0.
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x� 2 �2(x) � 2 �1(x)
k(X̂) 
k+1(X̂)X̂Figure 4: Constructing region of strong attraction
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