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AbstractWe formalize the notion of optimal supervisory control of discrete event dynamical sys-tems (DEDS's) in the framework of Ramadge and Wonham. A DEDS is modeled as a statemachine, and is controlled by disabling some of its transitions. We de�ne two types of costfunctions: a cost of control function corresponding to disabling transitions in the state ma-chine, and a penalty of control function corresponding to reaching some undesired states, ornot reaching some desired states in the controlled system. The control objective is to designan optimal control mechanism, if it exists, so that the net cost is minimized. Since a DEDSis represented as a state machine|a directed graph|network ow techniques are naturallyapplied for designing optimal supervisors. We also show that our techniques can be usedfor solving supervisory control problems under complete as well as partial observation. Inparticular, we obtain, for the �rst time, techniques for computing the supremal controllableand normal sublanguage, and the in�mal controllable and normal/observable superlanguagewithout having to perform alternate computations of controllable and normal/observablelanguages.Keywords: Discrete Event Dynamical Systems, Supervisory Control, Automata Theory,Optimal Control, Max-ow Min-cut.AMS (MOS) Subject Classi�cation: 93



1 IntroductionResearch on supervisory control of discrete event dynamical system was pioneered byRamadge and Wonham [23]. In [23], a DEDS, also called plant, is modeled as a statemachine (SM), and the behavior of a DEDS is described by the language accepted by thecorresponding SM. A controller or a supervisor, based on its observation of the past behaviorof the plant, determines the transitions to be disabled in the plant, so that some desiredqualitative control objective is achieved. Usually, the control objective is to restrict the plantbehavior such that it remains con�ned within a speci�c range [24]. In some other cases, thecontrol objective is to design a supervisor so that the closed loop behavior eventually remainscon�ned to a prescribed range [3, 18, 12]. Recently, there has also been some work in whichthe control objective is to restrict the plant behavior so that a certain cost function de�nedalong the trajectory of the system is optimized [20, 19, 2, 26, 10].In [20, 19], a cost function is de�ned on the set of transitions, and the control objectiveis to restrict the plant behavior in such a way that after starting from a given initial statethe plant reaches one of the accepting states along a trajectory of optimal cost. Authorsprovide an e�cient heuristic search based algorithm for solving the problem. In [2] also, acost function is de�ned on the set of transitions and the control objective is to restrict theplant behavior so that after starting from any state the plant reaches one of the acceptingstates along a trajectory of optimal cost. In [26], two types of costs, a control cost and a pathcost, are de�ned on the graph representing a plant. The control objective is to determinethat subgraph of the plant graph for which the maximum of the total cost along all itstrajectories is minimum. The notions of cost of control and penalty of control considered inthis paper are some what similar to that of control cost and path cost in [26]. However, ourcontrol objective is to determine a state-feedback supervisor so that the net cost of disablingtransitions, that of reaching undesired states, and that of not reaching desired states isminimized. Thus our control objective is di�erent from that considered in [26].In this paper, we consider two types of cost functions: (i) A positive cost of controlfunction is de�ned on the set of transitions corresponding to the cost of disabling a transition.If a certain transition such as arrival of a customer in a queue is disabled by a supervisor ata certain point, then its cost of control is added to the net cost, otherwise|if the transitionis not disabled|no cost is added to the net cost; (ii) A penalty of control function is de�nedon the set of states corresponding to their reachability in the controlled system. The penaltyof control takes a negative or a positive value depending on whether the state is desired orundesired. If a state is desired|e.g. working or idle state of a machine, then a negativepenalty is associated with it. If such a state remains unreachable in the controlled plant,then a positive cost equal in magnitude to its penalty of control is added to the net cost,otherwise|if the state is reachable|no cost is added to the net cost. On the other hand, if astate is undesired|e.g. over/underow of a bu�er, then a positive penalty is associated withit. If such a state can be reached in the controlled plant, then a cost equal to its penalty ofcontrol is added to the net cost, otherwise|if it remains unreachable|no cost is added to thenet cost. The optimal control problem is to determine a state-feedback supervisor for which1



the net cost is minimized. State-feedback supervisors [8, 21, 13, 6], exercise control basedon the state of the plant rather than the sequence of events executed by it. However, thisdoes not result in any loss of generality, since a \string-feedback" supervision is equivalentto a state-feedback supervision on a suitably re�ned [7] model of a plant.Example 1 Consider for example a machine P shown in Figure 1. (For clarity, the statelabels have been omitted.) Initially P is in the \�rst idle" state (i.e. idle and unused state).
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replaceFigure 1: Diagram for Machine P of Example 1 with N = 4When event \start" is executed, it goes to the \�rst working" state. In the \kth working"state, where 1 � k < N , the machine may either \fail", in which case it goes to the \kthbroken" state; or it may complete its operation, execute \stop", and go to the \(k + 1)thidle" state. In the \kth broken" state, machine is either \repaired", in which case it goesback to the \kth idle" state; or it is \replaced", in which case it goes to the \�rst idle" state.In the \kth idle" state, either the event \start" is executed which sends the machine to the\kth working" state; or \replace" is executed which sends the machine to the \�rst idle"state; or \maintain" is executed which sends the machine to the \(maxf1; 2k �Ng)th idle"state. Thus, in the \Nth idle" state, execution of the \maintain" event does not result in achange in state. Note that the function maxf1; 2k � Ng is chosen only for an illustration,in general it is an increasing function of k taking values smaller than k except at k = 1 andk = N , where it equals k. An optimal control policy is needed to decide (i) whether to repairor replace the machine in a broken state, and (ii) whether to operate or maintain or replacethe machine in an idle state. An optimal control policy evidently depends on the cost ofreplacement of machine, cost of repair in the kth broken state, cost of maintenance in thekth idle state, payo� of operating the machine in the kth idle state, penalty of being in abroken state, payo� of being in an idle or a working state etc.Our setting is similar to that considered in [27], in which, appropriate cost and penalty2



functions were de�ned on a suitably re�ned model of a given plant, and the dynamic pro-gramming algorithm was used to determine the existence of a supervisor for a given controlproblem. The computational complexity of the dynamic programming algorithm was usedto determine the computational complexity of the supervisory control problem thus solved.However, no technique for the synthesis of a supervisor, if it exists, was given in that refer-ence. Our approach to optimal supervisory control di�ers from that considered in [27] in twoways. Firstly, we show that an optimal supervisory control problem of the type describedabove can be solved using network ow algorithms. Thus a more general algorithm such asdynamic programming can also be used, although this will result in an increase in compu-tational complexity. Secondly, we show that our techniques are equally applicable for thesynthesis of supervisors, whenever they exist.The motivation of formulating an optimal supervisory control problem is twofold: �rstly,to introduce a formal framework for optimal supervisory control in which the control ob-jective is to optimize a suitably de�ned cost and penalty of exercising controls; secondly,to present a uni�ed technique for supervisory synthesis under complete as well as partialobservation. In particular we obtain techniques for computing the supremal controllable andnormal sublanguage [22, 16, 1, 11, 4], the in�mal controllable and normal superlanguage [14],the in�mal controllable and observable superlanguage [16, 5, 25, 9], without having to per-form alternate computations of controllable and normal/observable languages as is done in[4] (also refer to Remark 3). Our techniques also illustrate that a supervisory control problemunder complete or partial observation can be solved using a state-feedback type of controlon a suitably re�ned state machine representation of the plant. We provide techniques toobtain the the appropriate re�nements.In Section 2, we introduce our notation and formally describe the optimal supervisorycontrol problem under complete as well as partial state observation. In Section 3, we showhow the network ow algorithms can be used to solve the optimal supervisory control prob-lems. In Section 4, we show that by appropriately de�ning the cost and penalty functions,our techniques can be used for solving supervisory control problem under complete as wellas partial observation.2 Notation and Problem FormulationA discrete event dynamical system to be controlled, called plant, is modeled as a statemachine [7], denoted as a four tuple G := (X;�; �; x0), where X denotes the set of states,� denotes the �nite set of events, � : X � � ! X denotes the partial deterministic statetransition function, and x0 2 X denotes the initial state. A triple (x1; �; x2) 2 X � � �X,such that �(x1; �) = x2 is called a transition in G. The behavior of G is described by thelanguage L(G): L(G) := fs 2 �? j �(x0; s) is de�nedg;where �? denotes the set of �nite sequences of events belonging to �, including the zerolength sequence �; the transition function is extended in a natural way to � : X � �? ! X.3



In general, a supervisor or a controller determines the set of events to be disabled aftereach transition, based on the record of observed states and events. We consider a supervisor,denoted S, to be a map S : X ! 2� that determines the set of events S(x) � � to bedisabled at each state x 2 X. Events not belonging to the set S(x) remain enabled at x.A supervisor as de�ned above is called a state-feedback [21, 13, 12], as it exercises controlbased on the state of G (and not based on the record of observed states and events). Asis shown below, this does not result in any loss of generality, as a more general supervisor,which exercises control based on the observed sequence of events, can equivalently be viewedas a state-feedback supervisor on a suitably re�ned model of the plant. Readers are referredto [24] for a more general de�nition of a supervisor. The controlled plant, denoted GS , isanother state machine given as the 4-tuple GS := (X;�; �S ; x0), where X;�; x0 are as de�nedabove, and �S denotes the state transition function of the controlled plant GS :8x 2 X;� 2 � : �S(x; �) := ( �(x; �) if � 62 S(x)unde�ned otherwiseThe behavior of the closed-loop system is described by the language L(GS) generated by thecontrolled plant. It is clear that L(GS) � L(G).Next we formally describe the problem of optimal supervisory control. Let c : X � �!R+ denote a cost of control function, where R+ denotes the set of strictly positive reals,including in�nity. The cost c(x; �) represents the cost of disabling the event � 2 � at thestate x 2 X.We assume for simplicity that the cost of control is a \one-time" cost. A justi�cation forthis simplifying assumption is the following: In GS , a certain state may be visited either onlyonce (if it is not a node on any cycle in the graph of GS), or an unbounded number of times(otherwise). If a state is visited only once, then the corresponding transitions are controlledonly once. Hence, in this case, the cost of control ought to be one-time. On the otherhand, if a state is visited an unbounded number of times, then the corresponding transitionsare controlled each time the state is visited. However, due to the state-feedback nature ofsupervision, the same control is exercised on each occasion. Hence, in this case, the costof controlling such transitions can be associated with the �rst time the control is exercised.The one-time cost of control assumption can also be interpreted as follows: A transition oncedisabled/enabled at the corresponding state remains disabled/enabled in that state so thaton subsequent visits to that state no cost is incurred in disabling/enabling that transition.Alternatively, the cost of control is primarily of setting up a control mechanism|a switchfor example|and the cost of engaging or disengaging the switch is small compared to itsone time set up cost. In each case, the assumption of state-feedback supervision is crucial.Next, a penalty of control function p : X ! R, is de�ned on the state set, whereR denotes the set of reals, including positive and negative in�nity. It corresponds to thepenalty associated with reachability of a certain state in the controlled plant. The penaltyfunction may take a positive or a negative value depending on whether the correspondingstate is undesired or desired. Given a state x 2 X, if p(x) < 0, then x is a desired state, andit should remain reachable in the controlled plant. In case x is unreachable in the controlled4



plant, a positive cost equal to �p(x) is added to the net cost as a penalty, else no cost isadded to the net cost. Similarly, if p(x) > 0 for some x 2 X, then x is an undesired state, andit should remain unreachable in the controlled plant. In case x is reachable in the controlledplant, a cost equal to p(x) is added to the net cost as a penalty, else no cost is added to thenet cost.We assume for simplicity, as above for the cost of control, that the penalty of controlis a one-time penalty, i.e. the penalty of reaching an undesired state does not depend onthe number of times that state is visited. The justi�cation for this simpli�ed assumption issimilar to that given above for the one-time cost of control assumption.Remark 1 If c(�; �) = 1 for an event � 2 �, then � should not be disabled by anysupervisor at any state of G. Thus an in�nite cost of control of an event captures the notionof uncontrollable events [23, 24]. The notion of desired or target behavior can be captured byde�ning the penalty function to be in�nity for those states that are reachable by the stringsin the undesired behavior, and any �xed negative real for those states that are reachableby strings in the desired behavior. However, this requires that the state machine G bere�ned [7, 11] with respect to the given target behavior, so that the states corresponding tothe desired and undesired behavior can be uniquely identi�ed, and the penalty function isunambiguously de�ned. This is explained formally in Section 4.With the above de�nitions of the cost and penalty of control functions we can de�ne theoptimal supervisory control problem.De�nition 1 For any supervisor S : X ! 2�, the net cost of using S, denoted C(S), isde�ned to be:C(S) := Xx2Re(GS)24 X�2S(x) c(x; �)35+ Xx2Re(GS);p(x)>0 p(x) + Xx 62Re(GS);p(x)<0 �p(x);where Re(GS) is the set of reachable states1 in GS.Thus the net cost of control of using S consists of sum of three terms: (i) The �rst termcorresponds to the cost of disabling the events by S. P�2S(x) c(x; �) is the total cost ofdisabling events at state x 2 X. Thus Px2Re(GS)P�2S(x) c(x; �) is the total cost of disablingthe events by S. (ii) The second term,Px2Re(GS);p(x)>0 p(x), denotes the penalty of reachingundesired states. (iii) Finally, the third term Px62Re(GS);p(x)<0�p(x), denotes the penalty ofnot reaching the desired states.Optimal Supervisory Control Problem 1 (OSCP1): Let a plant G := (X;�; �; x0), acost of control function c : X � � ! R+, and a penalty of control function p : X ! R begiven. Design a supervisor S : X ! 2� such that the net cost is minimized, i.e. determinearg �minS C(S)� :1Given a state machine V := (Q;�; �; q0), the set of reachable states Re(V ) is recursively de�ned as: (i)q0 2 Re(V ), and (ii) q 2 Re(V ); 9� 2 � : �(q; �) is de�ned ) �(q; �) 2 Re(V ).5



2.1 Partial State ObservationIn OSCP1, a supervisor while deciding its control actions assumes that a complete stateinformation of G is available. We pose another optimal supervisory control problem in whicha complete state information is not available, and there exists a mask 	 : X ! Y de�nedfrom the state space X to an observation space Y such that for each x 2 X, 	(x) 2 Y is thestate value observed by a supervisor. A supervisor in this case is given by a map S 0 : Y ! 2�.Since a supervisor takes a control action based on observing a state y 2 Y , given any y 2 Y ,the same control action is taken at all states in the set 	�1(y) := fx 2 X j 	(x) = yg.Thus corresponding to a supervisor S0 : Y ! 2�, we can equivalently de�ne a supervisorS : X ! 2� with the constraint C1:C1: 8x1; x2 2 X : 	(x1) = 	(x2)) S(x1) = S(x2).Optimal Supervisory Control Problem 2 (OSCP2): Let a plant G := (X;�; �; x0),a cost of control function c : X � � ! R+, a penalty of control function p : X ! R, anda mask 	 : X ! Y be given. Design a supervisor S0 : Y ! 2� (equivalently a supervisorS : X ! 2� satisfying C1) such that the net cost is minimized, i.e. determinearg � minS: C1 holdsC(S)� :Remark 2 The di�erence between OSCP1 and OSCP2 is that, in OSCP2, the minimizationis performed over all supervisors that also satisfy the constraint C1, whereas no such con-straint exists in OSCP1. It is easily seen that given an instance of OSCP1, it can be reducedto an instance of OSCP2 by setting the mask function to be the identity function. We showin the next section that given an instance of OSCP2, it can be reduced to an instance ofOSCP1 by suitably modifying the the cost of control function and the graph representingthe plant. Thus the two formulations are reducible to each other.In the formulation of OSCP2, a state based mask function is used. This is in contrastto the setting of supervisory control, where usually an event based mask is used. However,an event based mask can be used to obtain a state based mask by �rst constructing a stateestimator, as in [17], and next identifying all the states with identical state estimates to haveequal mask value. Thus it is possible to reduce an optimal control problem under partialobservation of events to one under partial observation of states.3 Solution using Network Flow AlgorithmIn this section we provide a solution to the optimal supervisory control problems intro-duced in section 2. The problem is to determine for each transition in the state machineG whether to disable or enable it, so that the net cost is minimized. We show that thisproblem is equivalent to determining an optimal partition of the state space X into the setof states that remain reachable in the controlled plant, and the set of remaining unreachablestates. The desired optimal partition is determined using the max-ow min-cut theorem[15], a technique for optimal partitioning of directed graphs.6



3.1 Max-Flow Min-Cut TheoremInterested readers are referred to [15] for a formal and elaborate description of the max-ow min-cut theorem. Informally described, in its simplest form, a ow network is repre-sented as a weighted directed graph having a single source node, from where the ow starts,and a single terminal node where the ow terminates. The weights on the directed edges ofthe graph represent the maximum ow capacities of the corresponding edges (the minimumcapacity is zero unless speci�ed). Formally,De�nition 2 A ow network N is a weighted directed graph described by a triple N =(V;E; u), where V denotes the set of vertices or nodes of N ; E � V 2|subset of orderedpairs of V 2|denotes the set of directed edges or links of N ; and u : E ! R+ denotes themaximum capacity function of links. V contains two special nodes s and t, the source nodeand the terminal node.The basic ow optimization problem is to determine for a given ow network a ow ofmaximum value between its source and terminal nodes subject to the edge capacity con-straints, where a ow and its value is de�ned as follows:De�nition 3 A ow for a network N is a map f : E !R+ such that1. 8e 2 E : f(e) � u(e); and2. Pv2V :(s;v)2E f((s; v)) =Pv02V :(v0;t)2E f((v0; t)), and3. 8v 2 V; v 6= s; v 6= t :Pv02V :(v;v0)2E f((v; v0)) =Pv002V :(v00;v)2E f((v00; v)).Pv2V :(s;v)2E f((s; v)) = Pv02V :(v0;t)2E f((v0; t)) is called the value of f . A max-ow is a owof maximum (ow) value.Thus a ow is an assignment of a positive number to each edge in the ow network whichcorresponds to the amount of ow on that edge, satisfying three constraints. Firstly, amountof ow through each edge is no greater than its capacity; secondly, the net ow out of sourcenode equals the net ow into the terminal node; and �nally, the net ow out of intermediatenodes is zero. The value of a ow equals the net ow out of the source node (equivalently,the net ow into the terminal node).De�nition 4 A cut of a network N is a partition of V such that s and t are in di�erentpartitions. Let Vs � V and Vt := V � Vs denote the partitions of a cut such that s 2 Vs andt 2 Vt. Then the capacity of this cut is de�ned as:X(i;j)2(Vs�Vt)\E u((i; j))A min-cut is a cut of minimum capacity. 7



Thus any partition of the nodes in N such that the source node and the terminal node belongto di�erent partitions is called a cut. The capacity of a cut equals the sum of capacity ofthose edges that emerge out of a node contained in the partition containing the source node,and terminate at a node contained in the partition containing the terminal node.Theorem 1 (Max-ow Min-cut) [15]: The value of a max-ow of a ow network equalsthe capacity of a min-cut of that network.Algorithms for computing a max-ow can be found in [15]. In this paper, we are interestedin computing a cost minimizing supervisor. This is shown to be equivalent to determining amin-cut for a suitably de�ned ow network, which in view of Theorem 1 can be computedusing any of the max-ow computations.3.2 Solution of OSCP1In this subsection we provide a solution for the OSCP1 using the network ow techniquediscussed in the previous subsection. It is clear that each supervisor S : X ! 2� partitionsthe state space X into Re(GS)[ (X �Re(GS)), the sets of reachable and unreachable statesin the controlled plant GS . We de�ne a supervisor to be parsimonious if and only if itdisables those transitions that are de�ned from a state in Re(GS) to a state in X �Re(GS).Formally,De�nition 5 A supervisor S : X ! 2� is said to be parsimonious if and only if for eachstate x 2 X and event � 2 �:� 2 S(x), [x 2 Re(GS); �(x; �) 62 Re(GS)]:We prove that parsimonicity is a necessary condition for optimality of a supervisor.Lemma 1 If S is an optimal supervisor, then S is parsimonious.Proof: Assume for contradiction that S is optimal but not parsimonious. Then there exist anevent � 2 �, states x1; x2 2 Re(GS) such that �(x1; �) = x2 and � 2 S(x1), i.e. � is disabledat x1. Consider a supervisor S0 that exercises same control action as S does, except that atstate x1 it does not disable the event �, i.e. � 62 S0(x1). Then C(S0) = C(S)�c(x1; �) < C(S),for c(x1; �) > 0. Thus we obtain a contradiction to the optimality of S.The following is an immediate Corollary of Lemma 1.Corollary 1 OSCP1 is equivalent to determiningarg � minS:S parsimoniousC(S)� :Proof: Follows from the fact that parsimonicity is a necessary condition for optimality, andthe de�nition of OSCP1.In the next Theorem we provide a technique for solving the OSCP1 using the max-owmin-cut theorem. First we de�ne a ow network NG corresponding to the state machine G,the cost of control function c, and the penalty of control function p as follows:8



De�nition 6 Given a SM G := (X;�; �; x0) with cost of control function c : X ��! R+,and penalty of control function p : X ! R, a ow network, denoted NG, is de�ned to beNG := (VG; EG; uG), where1. VG := X [ fs; tg with s; t 62 X2. EG :=f(x1; x2) 2 X �X j 9� 2 � s.t. �(x1; �) = x2g[f(x; t) 2 X � ftg j p(x) > 0g[f(s; x) 2 fsg �X j p(x) < 0g3. 8(x1; x2) 2 EG \ (X �X) : uG((x1; x2)) :=P�2�:�(x1;�)=x2 c(x1; �)8x 2 X s.t. p(x) > 0 : uG((x; t)) := p(x)8x 2 X s.t. p(x) < 0 : uG((s; x)) := �p(x)Thus the node set of NG is obtained by adding, to the state set X of G, two extra nodess and t|the source and the terminal node, respectively. The edge set of NG consists of: (i)An edge from x1 2 X to x2 2 X if there exists a transition from x1 to x2 in G. The capacityof such an edge equals the sum of cost of disabling each transition from x1 to x2. (ii) Anedge from each x 2 X for which p(x) > 0 to the terminal node t, with capacity p(x). (iii)An edge from the source node s to each x 2 X for which p(x) < 0, with capacity �p(x).Example 2 Consider the plant G shown in Figure 2, with the state set X = f1; 2g, theevent set � = fa; bg, the initial state x0 = 1, and the transition function �(1; a) = 2; �(2; a) =�(2; b) = 2. Then L(G) = a(a+ b)?. Let the cost of control function be de�ned as c(a) = 10
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c(a) = 10, c(b) = 5, p(1) = -10, p(2) = 5Figure 2: Diagram illustrating Construction of NGand c(b) = 5, and the penalty of control function be de�ned as p(1) = �10 and p(2) = 5.Then the ow network NG, corresponding to the plant G, obtained using De�nition 6 isshown in Figure 2.De�nition 7 Given a supervisor S : X ! 2�, the cut of ow network NG induced by S isde�ned to be: [Re(GS)[fsg][ [(X�Re(GS))[ftg]. Given a cut Vs[(VG�Vs) of NG, whereVs � VG, s 2 Vs and t 62 Vs, the parsimonious supervisor S : X ! 2� induced by the cut isde�ned to be: for each x 2 X and � 2 �, � 2 S(x) if and only if x 2 Vs and �(x; �) 62 Vs.9



Theorem 2 (Solution of OSCP1) The supervisor induced by a min-cut of NG is a solutionof OSCP1.We prove a Lemma before proving Theorem 2.Lemma 2 If S is a parsimonious supervisor, then C(S) equals the capacity of the cut ofNG induced by S.Proof: Consider the cut [Re(GS)[fsg][ [(X�Re(GS))[ftg) induced by S. Then capacityof this cut is given by the sum of capacities of all the edges that originate from a node inthe set Re(GS) [ fsg, and terminate at a node in the set (X � Re(GS)) [ ftg. Let the setof such edges be denoted as ES , i.e.,ES := f(x1; x2) 2 EG j x1 2 Re(GS) [ fsg and x2 2 (X �Re(GS)) [ ftggThen the capacity of the cut of NG induced by S equals Pe2ES uG(e). We note thatES = f(x1; x2) 2 Re(GS)� (X �Re(GS)) j 9� 2 � s.t. �(x1; �) = x2g[f(x; t) j x 2 Re(GS); p(x) > 0g[f(s; x) j x 62 Re(GS); p(x) < 0gHenceXe2ES uG(e) = Xx2Re(GS)24 X�2�:�(x;�)2X�Re(GS) c(x; �)35+ Xx2Re(GS):p(x)>0p(x)+ Xx62Re(GS):p(x)<0�p(x):Since S is parsimonious, for each x 2 Re(GS), the set f� 2 � j �(x; �) 2 X � Re(GS)g =f� 2 � j � 2 S(x)g. Hence Pe2ES uG(e) = C(S).Proof (of Theorem 2): Consider the parsimonious supervisor S induced by a min-cut ofNG. Then, from the result of Lemma 2, we obtain that C(S) equals capacity of min-cut ofNG. In view of Corollary 1, in order to prove the optimality of S it su�ces to show that ifS0 is any other parsimonious supervisor, then C(S0) � C(S). Since S0 is also parsimonious,it follows from Lemma 2 that C(S0) equals the capacity of cut of NG induced by S 0 which isgreater than or equal to the capacity of the min-cut (by de�nition of min-cut). Since C(S)equals the capacity of the min-cut (by construction of S), we obtain the desired inequality:C(S0) � C(S).3.3 Solution of OSCP2In this subsection we provide a solution for the OSCP2. In this setting, given a plantG, a cost of control function c, a penalty of control function p, and an observation mask	, the control objective is to determine an optimal supervisor S : X ! 2� satisfying theconstraint C1. The constraint C1 can be satis�ed by making a few modi�cations in G, andin the cost of control function c as described below. Firstly, we modify the state machine G;the modi�ed state machine is denoted as G0.10



De�nition 8 Given G = (X;�; �; x0), the modi�ed state machine G0 corresponding to theconstraint C1 is the quadruple G0 = (X;�0; �0; x0), where1. �0 := � [ f�g with � 62 �2. 8x 2 X;8�0 2 �0 : �0(x; �0) := �(x; �0) if �0 6= �3. 8� 2 �; x1; x2 2 X s.t. 	(x1) = 	(x2); �(x1; �) 6= �(x2; �):�0(�(x1; �); �) := �(x2; �) and �0(�(x2; �); �) := �(x1; �).Thus G0 is obtained by adding in G, an oppositely directed pair of transitions labeled �,between the pair of states reached by executing a common event from a pair of states thatlook alike under 	. No such transition is added if the same state is reached after executinga common event from a pair of states that look alike under 	.Next, the cost of control function c : X ��!R+ is extended to c0 : X � �0 ! R+ as:8x 2 X;�0 2 �0 : c0(x; �0) := ( c(x; �0) if �0 2 �1 if �0 = �Thus the cost of control function c0 is the extension of c obtained by assigning the cost ofdisabling the event � to be in�nity. For simplicity of notation, Let OSCP1 with respect toG0, with cost of control c0, and penalty of control p be denoted as OSCP10.Theorem 3 (Solution of OSCP2) OSCP2 is equivalent to OSCP10.We prove a few Lemmas before proving Theorem 3.Lemma 3 If S is parsimonious, then S disables a transitions leading from states in Re(GS)into a state x 2 X if and only if it disables all transitions from states in Re(GS) leading intox.Proof: If S disables some transitions, but not all transitions from states in Re(GS) leadinginto a state x 2 X, then x remains reachable in GS , i.e. x 2 Re(GS), which contradicts thatS is parsimonious.Lemma 4 There exists a solution S : X ! 2�0 of OSCP10 such that1. S never disables the event �.2. S satis�es constraint C1.Proof: 1. Let S : X ! 2�0 be a solution of OSCP10. If C(S) < 1, then it is clear that Snever disables the event �. Next consider the case when C(S) = 1. If S ever disables theevent �, then consider a supervisor S0 which takes the same control action as S does, exceptthat it never disables the event �. Then by optimality of S, C(S0) � C(S) = 1, whichimplies that C(S0) =1. Hence S0 is optimal, and it never disables the event �.11



2. Let S : X ! 2�0 be a solution of OSCP10. We show that if x1; x2 2 Re(GS) are suchthat 	(x1) = 	(x2), then S(x1) = S(x2). In other words, if an event � 2 � is de�ned atsuch a pair of states x1; x2 2 Re(GS), then either � is disabled at both x1 and x2, or it isdisabled at neither of x1 and x2. Consider such a pair of states x1; x2 2 Re(GS) and anevent � 2 �. Then either �(x1; �) = �(x2; �), or �(x1; �) 6= �(x2; �). If �(x1; �) = �(x2; �),then S disables the event � at both the states, or at neither of the states. This follows fromthe fact that any optimal supervisor is also parsimonious (Lemma 1), and any parsimonioussupervisor disables either all transition leading into a state, or none of them (Lemma 3).Thus constraint C1 is satis�ed in this case. If �(x1; �) 6= �(x2; �), then according to theconstruction of G0, these states are connected by a pair of oppositely directed transitionslabeled �. Since S never disables the event � (from part 1 above), the states �(x1; �) and�(x2; �) do not belong to separate partitions induced by S. Suppose that they both are inRe(GS), then due to parsimonicity of S, � is enabled at both x1 and x2. On the other hand,if they both are in X �Re(GS), then clearly, � is disabled at x1 and x2.Proof (of Theorem 3): We �rst show that if S : X ! 2�0 is a solution of OSCP10, thenit is also a solution for OSCP2. In view of Lemma 4, it can be assumed, without loss ofgenerality, that S never disables the event � and satis�es C1. Since S never disables theevent � and satis�es C1, it can be viewed as a map S : X ! 2� satisfying C1, and hence itcan also be used as a supervisor under partial state observation. Assume for contradictionthat S is not a solution of OSCP2. Let S0 : X ! 2� with S0 6= S be a solution of OSCP2,then we must have C(S0) < C(S), where S; S0 are treated as feasible solutions of OSCP2.Let C 0(S); C 0(S0) denote the net costs of using S and S0 respectively, when S; S0 are treatedas feasible solutions of OSCP10. Since (i) S and S0 do not disable the event �, and (ii) foreach x 2 X and � 2 �, c0(x; �) = c(x; �), we have C 0(S) = C(S) and C 0(S0) = C(S0). SinceC(S0) < C(S), we obtain C 0(S0) < C 0(S). This contradicts the optimality of S (treated as asolution of OSCP10).Next we show that if S : X ! 2� is a solution of OSCP2, then it is also a solutionof OSCP10. It is clear that S can also be viewed as a map S : X ! 2�0 . Assume forcontradiction that S is not a solution for OSCP10. Let S0 : X ! 2�0 with S0 6= S be asolution of OSCP10, then we must have C 0(S0) < C 0(S). Also, from Lemma 4, S0 neverdisables the event � and satis�es C1. Thus S 0 can be used as a supervisor under partial stateobservation. As above, C 0(S) = C(S) and C 0(S0) = C(S0). However, since C 0(S0) < C 0(S),we obtain C(S0) < C(S). This is a contradiction to the optimality of S (treated as a solutionof OSCP2).4 Applications to Supervisory ControlIt is clear from Theorem 3 that an instance of OSCP2 can be reduced to an instanceof OSCP1 by suitably modifying the graph of the plant and the cost of control function.We show in this section that supervisory control problems under complete as well as partialobservation can also be reduced to instances of OSCP1. We begin with the problem of com-12



puting the supervisors under complete observation, which requires computation of supremalcontrollable sublanguage, and in�mal controllable superlanguage.4.1 Computations related to Controllability of DEDS'sWe �rst consider the computation of supremal controllable sublanguage: Given a desiredpre�x closed behavior K � L(G), compute the supremal sublanguage K" � K such thatit is controllable [23], i.e. K"�u \ L(G) � K", where �u � � denotes the set of uncontrol-lable events. A closed form expression for K" is given in [1], and an optimal algorithm forcomputing K" is given in [11].In order to reduce the problem of computing K" to an instance of OSCP1, we re�ne Gwith respect to K so that the states corresponding to strings in K are uniquely identi�ed.This is done as follows. Let V := (Q;�; �; q0) be a trim deterministic state machine thatgenerates K. The graph of V is made \complete" by adding a dump state d to its state set.If a certain event � is not de�ned at some state q 2 Q, then a transition labeled � fromthe state q to the dump state d is added. Also, execution of any event in the dump state,leaves the system in that state. Formally, the completion of V is another state machineV 0 := (Q0;�; �0; q0), where Q0 := Q [ fdg with d 62 Q, and8q0 2 Q0; � 2 � : �0(q0; �) := ( �(q0; �) if q0 2 Q and �(q0; �) is de�nedd otherwiseIt is clear that L(V 0) = �?. Consider the synchronous composition [8, 11] of G and V 0:G2V 0 := (X �Q0;�; �; (x0; q0)), where8x 2 X; q0 2 Q0; � 2 � : �((x; q0); �) := ( (�(x; �); �0(q0; �)) if �(x; �); �0(q0; �) are de�nedunde�ned otherwiseIt is easily shown that L(G2V 0) = L(G) \ L(V 0) = L(G) \ �? = L(G). G2V 0 is calledre�nement of G with respect to K. Note that the the �rst coordinate of a state in G2V 0corresponds to a state of G, and the second coordinate to a state of V 0.Example 3 Let G be the plant as in Example 2, and the target language K be given byK = (ab)? � L(G) = a(a+ b)?. The generator V for the language K is shown in Figure3, with the state set Q = f10; 20g, the initial state q0 = 10, and the transition function�(10; a) = 20; �(20; b) = a. The state machine V 0 obtained by completing the graph of V , andthe state machine G2V 0 obtained by synchronous composition of G and V 0 are both shownin Figure 3. Note that L(V 0) = (a+ b)? = ��, and L(G2V 0) = a(a+ b)? = L(G).Lemma 5 Given a string s 2 �?, s 2 L(G) �K if and only if the second coordinate of thestate reached by executing s in G2V 0 is d.Proof: Straightforward. 13
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SM, V SM, V’ SM, G V’Figure 3: Diagram illustrating construction of G2V 0Example 4 Consider the state machine G2V 0 of Example 3. Then the strings, executionof which take to the state (2; d), belong to L(G)�K = a(a+ b)� � (ab)�. Also, the strings,execution of which take to states (1; 10) or (2; 20) or (2; 10) belong to the language K = (ab)�.The result of Lemma 5 can be used to unambiguously identify the desired and the unde-sired states in G2V 0. The next Lemma proves that it is also possible to obtain the generatorfor K" by partitioning the graph of G2V 0 into sets of reachable and unreachable states.Lemma 6 [11, Proposition 3.6] Let s; t 2 K be such that �((x0; q0); s) = �((x0; q); t), thens 2 K" if and only if t 2 K".Based on the result of Lemma 5, we de�ne a penalty of control function p : X �Q0 ! Rfor G2V 0 as: 8(x; q0) 2 X �Q0 : p((x; q0)) := ( 1 if q0 = d�p0 otherwise, (1)where p0 2 R+ is any positive real. Since the penalty of control of a state in G2V 0 withsecond coordinate d is in�nity, it should remain unreachable in an optimally controlled plant,and since the penalty of control of all other states is �p0, as many such states as possibleshould remain reachable in an optimally controlled plant.Example 5 Consider the state machineG2V 0 of Example 3. Then in order to compute thesupremal controllable sublanguage of K = (ab)� with respect to G of Example 2, we de�nethe penalty of control function as: p[(2; d)] =1; p[(1; 10)] = p[(2; 20)] = p[(2; 10)] = �p0.Next we de�ne a cost of control function c : X � �! R+ as:8x 2 X;� 2 � : c(x; �) := ( 1 if � 2 �up0jej+1 otherwise, (2)where jej denotes the total number of transitions in the graph of G2V 0. Since the costof control of an uncontrollable event is in�nity, it should not be disabled by an optimalsupervisor, and since the cost of control of a controllable event is p0jej+1 , as few such eventsas possible should be disabled. With the above de�nitions of cost and penalty of controlfunctions, we prove in the following Theorem that the computation of K" can be posed asan instance of OSCP1. 14



Theorem 4 If K" 6= ;, then K" equals the language generated by G2V 0 under the controlof a solution of OSCP1 with respect to G2V 0, with cost of control of function as in Equation2, and penalty of control function as in Equation 1.Proof: Let S : X � Q0 ! 2� be the parsimonious supervisor induced by the partition ofG2V 0 into the set of states that correspond to the supremal controllable sublanguage, andthe set of remaining states, i.e., S disables those transitions that are de�ned from statescorresponding to the supremal controllable sublanguage to the set of remaining states. Thatsuch a partition exists follows from Lemma 6 and the fact that K" 6= ;. It is clear that Sdoes not disable any uncontrollable events (otherwise the controlled system behavior is nota controllable language), and no state with second coordinate d remains reachable under thecontrol of S (otherwise the controlled system behavior is not a sublanguage of K). HenceC(S) < 1. Let S0 : X � Q0 ! 2� be a solution of OSCP1. Then it follows from theoptimality of S 0 that C(S0) � C(S) < 1. Thus S 0 does not disable any uncontrollableevent and no state with second coordinate d remains reachable in the controlled system(otherwise C(S0) = 1). Since S 0 does not disable any of the uncontrollable events, thecontrolled system behavior under its control is controllable [11, Lemma 2.7]. Also, sinceno state with second coordinate d remains reachable under the control of S0, the controlledsystem behavior under the control of S0 is a sublanguage of K. Assume for contradictionthat the controlled system behavior under the control of S0 is not the supremal controllablesublanguage of K. So, there exists at least one state with second coordinate unequal to dsuch that it is reachable under the control of S, and it is unreachable under the control ofS0. Hence C(S0) � C(S) � p0 � n p0jej+1 , where n is the di�erence between the number ofcontrollable transitions disabled by S and the number of controllable transition disabled byS0. Since n � jej, the total number of transitions in G2V 0, n p0jej+1 < p0. In other words,C(S0)� C(S) > 0. This is a contradiction to the optimality of S0.Next we consider the problem of computing the in�mal controllable superlanguage: Givena desired pre�x closed behavior K � L(G), compute the in�mal superlanguage K# � K suchthat it is controllable. A closed form expression for K# and an algorithm for computing it isgiven in [14]. We use the same notations as above. The following modi�cation is made tothe penalty of control function.8(x; q0) 2 X �Q0 : p((x; q0)) := ( p0 if q0 = d�1 otherwise (3)Since penalty of control of a state with second coordinate d is p0, as few such states aspossible should remain reachable in the controlled system, and since the penalty of controlof a state with second coordinate unequal to d is �1, all such states should remain reachablein the controlled system.Example 6 Consider the state machineG2V 0 of Example 3. Then in order to compute thein�mal controllable superlanguage ofK = (ab)� with respect to G of Example 2, we de�ne thepenalty of control function as follows: p[(2; d)] = p0; p[(1; 10)] = p[(2; 20)] = p[(2; 10)] = �1.15



With the above modi�cation in the penalty function, we prove in the following Theoremthat the computation of K# can be posed as an instance of OSCP1.Theorem 5 K# equals the language generated by G2V 0 under the control of a solution ofOSCP1 with respect to G2V 0, with cost of control function as in Equation 2, and penaltyof control function as in Equation 3.Proof: Similar to that of Theorem 4.4.2 Computations related to Observability of DEDS'sSuppose that the supervisor's observation of events is �ltered through a mask of the typeM : � ! � [ f�g. Computation of a supervisor under such a partial observation requirescomputation of languages such as supremal normal sublanguage, in�mal normal/observablesuperlanguage, supremal controllable and normal sublanguage, in�mal controllable and nor-mal/observable superlanguage etc. We show that each of these computations can be reducedto instances of OSCP1. Our techniques illustrate how supervisory control under partial ob-servation can be solved using a state-feedback type control on a suitably re�ned state machinerepresentation of the plant.We �rst consider the problem of computing the supremal normal sublanguage: Given adesired pre�x closed language K � L(G), compute the supremal sublanguage K� � K, suchthat it is normal, i.e. M�1(M(K�))\L(G) � K�. The existence of K� is shown in [16], anda closed form expression for K� is given in [1, 11]. We �rst re�ne the state machine G withrespect to V (the generator forK), and mask functionM , so that the states corresponding toK� are uniquely identi�ed. We begin by constructing the machine G1 := G2V 0. Recall thatL(G1) = L(G). Using G1 we construct a machine that generates the languageM�1M(L(G1))by employing the following algorithm:Algorithm 11. Replace each transition � 2 � in G1 by the transition M(�) 2 � [ f�g. Call thismachine G2; clearly, L(G2) = M(L(G1)).2. Construct a deterministic machine G3 which is language equivalent to G2 [7]. Thenthe state space of G3 is 2X�Q0, and L(G3) = L(G2) = M(L(G1)).3. Replace each transition � 2 � in machine G3 by the events in the set M�1(�) :=f� 2 � j M(�) = �g. Also, at each state in G3, add self-loops corresponding to theevents in the set M�1(�) = f� 2 � j M(�) = �g. Call this machine G4; clearly,L(G4) = M�1(L(G3)) = M�1(L(G2)) = M�1M(L(G1)).G4 has a nice property that if two strings s; t 2 L(G4) are such that M(s) = M(t), thenthe state reached by executing them are the same. This follows from the observations that (i)the state reached by executing s in G4 is the same as that reached by executing M(s) in G3(by construction), (ii) since M(s) =M(t) and G3 is deterministic, the same state is reached16



by executing M(t) in G3; and (iii) by construction, this is the state reached by t in G4. Weexploit the above property of G4 in identifying the states corresponding to the strings in thelanguage K�. This, however, requires the construction of machine G5 := G12G4, for whichit is clear that L(G5) = L(G1)\L(G4) = L(G)\M�1M(L(G)) = L(G), and the state spaceof G5 equals X � Q0 � 2X�Q0. Construction of state machines G1 through G5, their statespaces, and their languages are summarized in Table 1. Note that in Table 1 and in FigureSM Construction State space LanguageG1 G2V 0 X �Q0 L(G)G2 M(G1) X �Q0 M(L(G))G3 det(G2) 2X�Q0 M(L(G))G4 M�1(G3) 2X�Q0 M�1(M(L(G))G5 G12G4 X �Q0 � 2X�Q0 L(G)Table 1: Various Machines used for computation of K�
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transitions of G1, (ii) det(G2) to represent that G3 is obtained by \determinizing" G2, and(iii) M�1(G3) to represent that G4 is obtained by \unmasking" the transitions of G3.Example 7 Consider the state machine G1 = G2V 0 of Example 3. Let the mask M : � =fa; bg ! f�g be de�ned as: M(a) = M(b) = �. Then the state machine G2, G3, G4 and G5obtained by using Algorithm 1 are shown in Figure 4.We use r = ((x; q0); f(x1; q01); (x2; q02); : : : ; (xr; q0r)g) 2 X �Q0� 2X�Q0 to denote a typicalstate of G5, where (x; q0) 2 X � Q0 and f(x1; q01); (x2; q02); : : : ; (xr; q0r)g 2 2X�Q0. We callr0 := (x; q0) to be the G1 part of r, and R := f(x1; q01); (x2; q02); : : : ; (xr; q0r)g to be the G4part of r. We prove in the next Lemma that if r1 and r2 are two states of G5 with identicalG4 part, then corresponding to each string, execution of which takes to state r1, there existsanother string, execution of which takes to state r2, such that it looks like the former string.We call such a pair of states to be a matching pair. Formally,De�nition 9 Let r1 = (r01; R1); r2 = (r02; R2) 2 X�Q0�2X�Q0 be such that R1 = R2. Thenthe pair r1 and r2 of states is called a matching pair of states.Example 8 Consider the SM G5 of Example 7. The states 300 = (2; 10); f(2; 10); (2; d)g and500 = (2; d); f(2; 10); (2; d)g constitute a matching pair of states. Similarly, the pair of states400 = (2; 20); f(2; 20); (2; d)g and 600 = (2; d); f(2; 20); (2; d)g is another matching pair of states.Lemma 7 Let r1; r2 2 X �Q0� 2X�Q0 be a matching pair of states. Then given a string s,execution of which takes to r1, there exists a string t, execution of which takes to r2, suchthat M(s) = M(t).Proof: First note that r = (r0; R) is a reachable state of G5 if and only if r0 2 R, i.e. if andonly if the G1 part of r is an element of the G4 part of r. This follows from (i) if s 2 L(G5) isa string, execution of which takes to r, then execution of s takes to the state r0 in G1, and tothe state R in G4, and (ii) execution of s takes to the state R = f(x1; q01); (x2; q02); : : : ; (xr; q0r)gin G4 implies that there exists a state (xj; q0j) 2 R such that execution of s takes to the state(xj; q0j) in G1.Consider then the states r1; r2 2 X � Q0 � 2X�Q0 such that R1 = R2 := R. Thenr1 = (r01; R) and r2 = (r02; R). It follows from the discussion in the preceding paragraph thatr01 2 R and r02 2 R. Let s 2 L(G5) be a string, execution of which takes to state r1 in G5,then execution of s takes to state r01 in G1, and to state R in G4. Since both the statesr01; r02 2 R, there exists at least one string t, execution of which takes to state r02 in G1, andto state R in G4, such that M(t) = M(s). This follows from: (i) states r01 and r02 of G2belong to the same state R of G3 if and only if there exists a string in L(G3) = L(G2) � �?execution of which takes to state R in G3, and execution of it takes to both states r01; r02 inG2 (note that G2 is a nondeterministic machine in general), and (ii) a string, execution ofwhich takes to states r01; r02 in G2, corresponds to two di�erent strings in L(G1) having thesame mask value. 18



The result of Lemma 7 can be used for identifying the strings in K�. Note that a strings 2 K � K� if and only if there exists a string t 2 L(G) � K such that M(t) = M(s). Astate r = (r0; R) in G5 corresponds to strings in L(G)�K if and only if r0 = (x; d) for somex 2 X. Thus strings in K, and those in L(G)�K can be easily identi�ed in G5. Let r1 andr2 be a matching pair of states in G5, with R1 = R2 := R, such that the second coordinate ofr01 does not equal d, whereas the second coordinate of r02 equals d. Then as discussed above,strings leading to r1 belong to K, and those leading to r2 are in L(G)�K. Moreover, stringsleading to r1 are in K�K�. This follows from Lemma 7, which asserts that corresponding toeach string that leads to r1 (i.e. the string is in K), there exists a string leading to r2 (i.e. thisstring is in L(G) �K) such that it looks like the former string. Thus states correspondingto K �K� can also be identi�ed in G5 by �rst identifying all those matching pair of statesfor which exactly one of the states in each pair has its second coordinate of the G1 partequal to d, and then among these matching pair of states, determining those states for whichthe second coordinate of the G1 part does not equal d. Hence it is possible to obtain thegenerator for K� by partitioning the graph of G5 into the set of reachable and unreachablestates. Finally, we pose the problem of computing the supremal normal sublanguage as aninstance of OSCP1 with respect to the machine obtained by adding an equally directed pairof transitions labeled � between each matching pair of states in G5. We call the machinethus obtained to be G05.De�ne the following cost of control function for G05:8r 2 X �Q0 � 2X�Q0; �0 2 � [ f�g : c(r; �0) := ( 1 if �0 = �p0jej+1 otherwise, (4)where jej denotes the total number of transitions in G05. The cost of control function forthe event � is in�nity. Such a cost of control function ensures that the matching pair ofstates remain in the same partition of states induced by an optimal supervisor. De�ne thefollowing penalty of control function on G05:8r = (r0; R) 2 X �Q0 � 2X�Q0 : p(r) := ( 1 if r0 2 X � fdg�p0 otherwise (5)Thus the penalty of control is positive in�nity whenever a state corresponds to strings inL(G)�K. Such states are undesired and should remain unreachable in the controlled plantunder an optimal supervision. Other states have a negative penalty of control, �p0, implyingthat such states are desired, and as many of them as possible should remain reachable in thecontrolled plant.Example 9 Consider the state machine G5 of Example 7. Then in order to compute thesupremal normal sublanguage of the language K = (ab)� with respect to plant G of Example2 and mask M(a) = M(b) = �, G05 is constructed by adding, in G5, a pair of oppositelydirected transitions labeled � between both the pair of matching states, namely, between 300and 500, and between 400 and 600. The cost of disabling � is assigned to be in�nity. Finally, thepenalty of control function is de�ned to be in�nity for the states 500 and 600, and �p0 for the19



remaining states, 100; 200; 300, and 400. Note that the states 500 and 600 are such that for themthe second part of the G1 part equals d.Theorem 6 IfK� 6= ;, thenK� equals the controlled plant behavior of G05 under the controlof a solution of OSCP1 with respect to G05, with cost of control function as in Equation 4,and penalty of control function as in Equation 5.Proof: Similar to that of Theorem 4. The key to the proof is that each matching pair ofstates belong to the same partition induced by an optimal supervisor.It can be shown that the cost of control function in Equation 4 can be slightly modi�edfor computing the supremal controllable and normal sublanguage of K:8r 2 X �Q0 � 2X�Q0 ; �0 2 � [ f�g : c(r; �0) := ( 1 if �0 2 �u [ f�gp0jej+1 otherwise (6)Also, the penalty of control function in Equation 5 can be replaced by the following penaltyof control function to compute the in�mal controllable and normal superlanguage of K:8r = (r0; R) 2 X �Q0 � 2X�Q0 : p(r) := ( p0 if r0 2 X � fdg�1 otherwise (7)Theorem 7 If the supremal controllable and normal sublanguage of K is nonempty, thenit equals the controlled plant behavior of G05 under the control of a solution of OSCP1 withrespect to G05, with cost of control function as in Equation 6, and penalty of control functionas in Equation 5. Furthermore, if instead penalty of control function as in Equation 7 is used,then the controlled plant behavior equals the in�mal controllable and normal superlanguageof K.Proof: Similar to that of Theorem 4.Finally we show that the computation of the in�mal observable superlanguage of K canbe posed as an instance of OSCP2. Refer to [16] for a detailed discussion of observablelanguages and their properties. It is shown in [16] that the in�mal observable superlanguageof a pre�x closed language exists, and a closed form expression for computing it is obtainedin [25, 9]. Observability of a language K requires that whenever a pair of strings, belongingto K and having the same mask value, are extended by a common event, then either boththe resulting strings belong to K, or both do not belong to K. This condition is neededso that the supervisor can take the same control action after execution of a pair of stringsthat have the same mask value. If K does not satisfy this property, then in�mal observablesuperlanguage of K is computed, which satis�es such a property.The notion of pairs of strings in K with the same mask value is captured by the matchingpair of states having the second coordinate of the G1 part unequal to d. Let r1; r2 2 X �Q0�2X�Q0 be a matching pair of states so that the second coordinate of the G1 part of boththe states is unequal to d. Since r1 and r2 is a matching pair of states, Lemma 7 impliesthat corresponding to each string that leads to the state r1, there exists a string having the20



same mask value as of the former string, such that it leads to the state r2; and vice versa.Since the supervisor must take the same control action after the execution of a pair of stringsthat have the same mask value, an event is enabled at state r1 if and only if it is enabled atr2. This constraint is similar to the constraint C1, and can be captured by de�ning a maskfunction 	 on the state space of G5 as follows:8r1 = (r01; R1); r2 = (r02; R2) 2 X �Q0 � 2X�Q0 : 	(r1) = 	(r2), R1 = R2 (8)Thus two states in state space of G5 have the same mask value if and only if they constitutea matching pair. Hence, according to constraint C1 of OSCP2, it is ensured that the samecontrol action is taken at any matching pair of states. Next the cost of control function isde�ned as: 8r 2 X �Q0 � 2X�Q0 ; � 2 � : c(r; �) := p0jej+ 1 (9)where jej denotes the number of transitions in G5.Theorem 8 The in�mal observable superlanguage ofK equals the controlled plant behaviorof G5 under the control of a solution of OSCP2 with respect to G5, with cost of controlfunction as in Equation 9, penalty of control function as in Equation 7, and state maskfunction 	 as in Equation 8. Furthermore, if the cost of control function is modi�ed sothat c(�; �) = 1 whenever � 2 �u, then the controlled plant behavior equals the in�malcontrollable and observable superlanguage of K.Proof: Similar to that of Theorem 4.Example 10 Consider the state machine G5 of Example 7. Then in order to compute thein�mal observable superlanguage of the language K = (ab)� with respect to the plant G ofExample 2 and mask M(a) = M(b) = �, we de�ne the mask 	 on the state space G5 suchthat 	(300) = 	(500) and 	(400) = 	(600). Next the penalty of control function is de�ned tobe negative in�nity for the states 100; 200; 300, and 400. The penalty of control for the states 500and 600 is de�ned to be p0.Remark 3 An advantage of using the above techniques for computing controllable andnormal/observable sublanguages/superlanguages is that they do not require alternate com-putations of controllable and normal/observable sublanguages/superlanguages as is done in[4]. Note that if M is a projection type mask, then the formula in [1] can be used to com-pute the supremal controllable and normal sublanguage without having to perform alternatecomputations of supremal controllable and supremal normal sublanguages. However, if themask is non-projection type, then no such formula is known, and techniques developed abovecan be used.In case M is a non-projection type mask, then the fact that a computation of supremalcontrollable sublanguage followed by a computation of supremal normal sublanguage doesnot necessarily yield the supremal controllable and normal sublanguage can be illustratedas follows. Suppose � = fa; b; c; ug;�u = fug;M(b) = M(c) = M(u) 6= �, K = f�; a; aug,21



and L(G) = f�; a; au; ab; ac; acug. Clearly K is controllable, i.e., K" = K; and K is notnormal, as au 2 K;ab 2 L(G) � K and M(au) = M(ab), i.e., K� 6= K. It is easily seenthat K� = f�; ag. Then K� is not controllable, as a 2 K�; u 2 �u and au 2 L(P ) � K�.Thus (K")� = K� does not equal the supremal controllable and normal sublanguage of K.On the other hand, if we let K̂ = f�; a; au; ab; acg, then K̂ is normal, i.e., K̂� = K̂; andK̂ is not controllable, i.e., K̂" 6= K̂, as ac 2 K̂; u 2 �u and acu 2 L(G) � K̂. It is easilyseen that K̂" = f�; a; au; abg. Then K̂" is not normal, as ab 2 K̂"; ac 2 L(G) � K̂" andM(ab) = M(ac). Thus (K̂�)" = K̂" does not equal the supremal controllable and normalsublanguage of K̂. Also, note that the formula for computing the supremal controllable andnormal sublanguage given in [1, Theorem 4] is only applicable in a setting where, whenevera controllable and an uncontrollable event have \non-epsilon" mask values, then their maskvalues are di�erent; so that the set of \masked uncontrollable" events is unambiguouslyidenti�ed. Since u 2 �u and b; c 2 � � �u are such that M(b) = M(c) = M(u) 6= �, theformula of [1, Theorem 4] is not applicable here.5 ConclusionWe have introduced the problem of optimal supervisory control for DEDS by introducingthe notions of cost and penalty of using a controller. Cost of control is incurred when anevent is disabled by a controller, and penalty of control is incurred whenever undesired statesremain reachable, or desired states remain unreachable in the controlled plant. The controlobjective is to optimize the net cost of control. This is formulated as OSCP1 for the caseof complete state observation, and OSCP2 for the case of incomplete state observation. Weshow that a solution to OSCP1 can be obtained as a min-cut of an associated ow network,and a solution for OSCP2 is obtained by reducing an instance of OSCP2 to an instanceof OSCP1. We show that supervisory control problems under complete as well as partialobservations can be reduced to instances of OSCP1. In particular, we provide techniquesfor the computation of supremal controllable and normal sublanguage, in�mal controllableand normal/observable superlanguage without having to perform alternate computations ofcontrollable and normal/observable languages until a �xed point is reached. Thus abovetheory serves as a uni�ed computational framework for supervisory control problems.We did not comment on the computational complexity of any of the algorithms derivedin this paper. However, since (i) all the algorithms, developed in this paper, are instances ofOSCP1, and (ii) OSCP1 is solved using the max-ow min-cut computation; the computa-tional complexity of any of the algorithms presented in this paper can be obtained from thatof the max-ow min-cut computation, which is O(jvj � jej log(jvj2=jej)), where jvj denotes thenumber of vertices, and jej denotes the number of edges in the underlying ow network. Notethat we are not suggesting that the computation of a supervisor under partial observationcan be performed in a polynomial time; as in case of partial observation, OSCP1 is solvedwith respect to a state machine having its state space as the power set of the state space ofthe plant composed with the generator of the desired behavior.22
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