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AbstractThe formalism of probabilistic languages has been introduced for modeling the qualitativebehavior of stochastic discrete event systems. A probabilistic language is a unit intervalvalued map over the set of traces of the system satisfying certain consistency constraints.Regular language operators such as choice, concatenation, and Kleene-closure have beende�ned in the setting of probabilistic languages to allow modeling of complex systems interms of simpler ones. The set of probabilistic languages is closed under such operators thusforming an algebra. It also is a complete partial order under a natural ordering in whichthe operators are continuous. Hence recursive equations can be solved in this algebra. Thisis alternatively derived by using contraction mapping theorem on the set of probabilisticlanguages which is shown to be a complete metric space. The notion of regularity, i.e.,�niteness of automata representation of probabilistic languages has been de�ned and shownthat regularity is preserved under choice, concatenation, and Kleene-closure. We show thatthis formalism is also useful in describing system performances such as completion time,reliability, etc. and present properties to aide their computation.Keywords: Discrete Event Systems, Stochastic Systems, Automata, Languages, Regularity,Completion time, Reliability



1 IntroductionDiscrete event systems are systems which involve quantities that are discrete and whichchange when events occur in the system. Most prior work on characterizing qualitativebehavior of such event driven systems has been restricted to non-stochastic systems wherethe emphasis is on possibilities rather than on probabilities. The theory of time drivenstochastic systems on the other hand has been well developed and understood. In this paperwe introduce the formalism of probabilistic languages to describe the behavior of stochasticdiscrete event systems. Such systems are also represented as nondeterministic automatawith probabilities associated with transitions.Consider for example a machine which operates in one of the three possible states|idle, working, and broken. In the idle state, the machine state changes to the workingstate with probability one when the \commence" event occurs. In the working state, themachine state changes to the broken state with probability, say, p when the \breakdown"event occurs, whereas it changes to the idle state with the remainder probability 1� p whenthe \completion" event is executed. Finally, in the broken state, the machine state changesto the idle state with probability one when the \repair" event is executed.Such a stochastic discrete event system can clearly be represented by an automaton withprobabilities associated with transitions such that the probabilities of all transitions fromany state add up to at most one. When the probabilities do not add up to exactly one, thismeans the systems terminates with the remainder probability. Thus by modeling systemsby \substochastic automata" we model the possibility of termination, which also allows usto model concatenation or sequential operation of two or more systems. The substochasticautomata model can be converted to an equivalent stochastic automata model by introducingan auxiliary \termination" event and assigning appropriate probability to each \termination"transition so that the transition probabilities from any state add up to exactly one. Thusthis model is similar to the well known Markov chain models [2]. The di�erence lies in thefact that unlike the Markov chain models the transition event labels are emphasized so thatwe can study the event traces and their occurrence probabilities. The work on stochasticPetri nets [13] also follows the work of Markov chains and is thus di�erent from the workpresented here.Our model also di�ers from Rabin's probabilistic automata model [17] where the proba-bilities on transitions on each event (rather than all events) from any state add up to one.Thus in Rabin's model system changes its state on each event with probability one. How-ever in our model the cumulative probability of state change over all events is at most one.Rabin's model is weaker in the sense that less information about state change on an eventoccurrence is available. The motivation for Rabin's work was to introduce the notion of\cut-languages". A cut-language is the set of accepted event traces whose occurrence proba-bility exceeds a given cut value. Our motivation here is to study the probabilistic languagesassociated with models bearing similarity to Markov chain models. Thus a twofold di�erencelies between Rabin's probabilistic automata and the model presented here. Mortazavian [15]considered the supervisory control problem for systems modeled as Rabin's probabilistic au-1



tomata. Thus our work is also distinct from that of Mortzavian. There have been otherattempts to generalize deterministic automata to the probabilistic setting [16, 4] which alsofollow the lines of Rabin's model.As is de�ned below a probabilistic language associates a probability (a value in the unitinterval) to each �nite length trace of the system with the following two constraints on theprobabilities: (i) the probability of the zero length trace is one, and (ii) the probability ofany trace is at the least the cumulative probability of all its extensions. In [8] a probabilitymeasure on the set of traces is de�ned to be a probability map satisfying the �rst constraintabove and a stronger second constraint that requires that the probability of each trace beequal the cumulative probability of all its extensions. By relaxing this constraint we areable to model the possibility of termination, which also allows us to de�ne concatenation orsequential operation of two or more stochastic discrete event systems.A probabilistic language can be viewed a formal power series [20]|a map over the set oftraces, but with the additional two constraints described above. There are many importantdi�erences in our work from the classical work on formal series. Our de�nition of concatena-tion (product) and therefore of concatenation-closure is quite di�erent from that of classicalde�nition of product. The classical de�nition of product, called Cauchy product, is the sameas the convolution operator used in this paper. Our de�nition of product is more useful inmodeling concatenation or sequential operation of two or more systems.Another early attempt to associate probabilities with traces was done by researchers infuzzy set theory [12]. A fuzzy language is a fuzzy set of event traces, so that each trace has amembership grade in the unit interval [0; 1]. Our de�nition of probabilistic languages allowsonly those membership grades which satisfy certain consistency constraints. A consequenceof these constraints is that the membership grade of a trace can be viewed as the probabilitythat the system executes that trace. This results in a richer theory for stochastic discreteevent system modeled by probabilistic languages.We de�ne regular language operators such as choice, concatenation, and Kleene-closureover the domain of probabilistic languages to allow modeling of complex systems in terms ofsimpler ones. We show that the set of probabilistic languages is closed under such operators,thus forming an algebra. We show that this set is a well structured poset|a complete partialorder|under a natural partial order in which the operators are continuous. Hence recursiveequations can be solved in this algebra. We also establish this result alternatively by de�ninga metric on the set of probabilistic languages in which the set is complete and the operatorsare continuous and contracting. Consequently, the contraction mapping theorem appliesyielding existence of unique �xed points of the operators. We characterize the regularity ofprobabilistic languages, i.e., �niteness of their automaton representation and show that theoperators preserve regularity. Thus, probabilistic languages forms a suitable formalism formodeling and analysis of stochastic discrete event systems.We show that probabilistic language formalism is also useful in describing system perfor-mances such as average completion time and reliability. We present analytical techniques toaide in computation of \bilinear" performance functions by showing that they enjoy severalcompositional properties so that performances of complex systems can be easily obtained2



in terms of those of their simpler constituent sub-systems. Computation of performancefunctions by recursion over regular operations was �rst investigated in [14]. Our resultsextend this technique to recursion over probabilistic regular operations. The formalism ofprobabilistic languages can also be used for studying supervisory control problems [18, 11]of stochastic discrete event systems. The concluding section discusses some ways in whichcontrol problems can be studied in this formalism. More detailed examples and algorithmsare subject of work under progress.The rest of the paper is organized as follows. Section 2 describes the notation in thispaper. Section 3 de�nes probabilistic languages and introduces a partial order on the classof probabilistic languages making it a complete partial order. Section 4 describes variousoperators de�ned for probabilistic languages and studies their properties. Section 5 de�nesprobabilistic automata and relates them to probabilistic languages that are regular. Section 6de�nes system performances and describes compositional methods to compute them. Section7 concludes the work presented here and discusses some control problems that can be studiedin this formalism. Appendix A gives a metric in which the set of probabilistic languages iscomplete and the operators are continuous and contracting.2 Notation and PreliminariesWe use � to denote the universe of events. �� denotes the set of all �nite length sequencesof events from �, including the zero length trace �. A member of �� is called a trace, anda subset of it is called a language. Given traces s and t, we use s � t to denote that s isa pre�x of t, in which case the notation s�1t is used to denote the su�x of t obtained byremoving the pre�x s, i.e., t = ss�1t. A language is called pre�x closed if it contains allpre�xes of all of its traces. Thus a pre�x closed non-empty language always contains �.A nondeterministic automaton G over the event set � is a triple G := (X;x0; �), whereX is the set of states, x0 2 X is the initial state, and � : X � � ! 2X is the partialnondeterministic transition function which gives the set of possible resulting states when acertain event in a given state occurs. For more details on languages and automata refer to[9].Given a set X, a partial order on X, denoted �, is a binary relation that is re
exive,anti-symmetric, and transitive. The pair (X;�) is called a partially ordered set or a poset.Given a poset (X;�) and a pair of elements x; y 2 X, their in�mumand supremumwheneverde�ned are unique and are denoted by xuy and xty, respectively. The poset (X;�) is calledan inf semi-lattice (respectively, a sup semi-lattice) whenever the in�mum (respectively,supremum) is de�ned for any pair of poset elements. It is called a lattice if it is both inf aswell as sup semi-lattice. x 2 X is called the bottom (respectively, the top) element if x � y(respectively, y � x) for each y 2 X.A chain in a poset is a monotonically increasing sequence of poset elements. I.e., fxigi�0,where xi 2 X for each i, is called a chain if xi � xj whenever i � j. A poset (X;�) is calleda complete partial order (cpo) if it contains the bottom element of X, and the supremumelement of each chain. 3



Given a poset (X;�), a function f : X ! X is called monotone if the partial ordering ispreserved under its transformation, i.e., x � y implies f(x) � f(y). The function is calledcontinuous if it commutes with the supremum operation taken over a chain, i.e., given achain fxig, continuity of f requires that f(tixi) = tif(xi). Note that for continuity of f tobe de�ned, X must be a cpo (so that txi is de�ned for a chain fxig). It is easy to show thatevery continuous function is also monotone.x 2 X is called a �xed point of f : X ! X if f(x) = x. It is known that everycontinuous function de�ned over a cpo (X;�) possesses a in�mum �xed point which is givenby ti�0f i(?), where ? denotes the bottom element of X, f i denotes the i-fold applicationof f , and f0 is the identity function. Thus recursive equations of the type f(x) = x canbe solved whenever f is continuous and is de�ned on a cpo. We use this fact to de�nerecursive equations in the domain of probabilistic languages. For further reading on posetsand functions de�ned on posets refer to [3].Given a set 
, a �-algebra on 
 is a set of subsets of 
 such that it is closed undercomplementation and countable union, and contains 
. The set of �-algebras on 
 is closedunder arbitrary intersection. So given a collection of subsets of 
, there exists the smallest�-algebra containing the given subsets. This is called the �-algebra generated by the givensubsets. A measurable space is a pair (
;F), where 
 is an arbitrary set, called a samplespace, and F is a �-algebra on 
, each member of which is called a measurable set. Givena measurable space (
;F), a probability measure P on it is map P : F ! [0; 1] that maps(i) 
 to one, and (ii) satis�es �-additivity, i.e., probability measure of countable union ofpairwise disjoint sets in F equals the sum of their individual probability measures. Thetriple (
;F ; P ) is called a probability space. For further detail on measurable spaces andprobability measures refer to [21].3 Probabilistic LanguagesA language can be viewed as a binary valued map over the set of traces in �� whichassigns a unit value to a trace if and only if the trace belongs to the language. If thislanguage represents the qualitative behavior of a certain discrete event system, then it mustbe non-empty and pre�x closed, i.e., the zero length trace must be mapped to one, andwhenever a trace is mapped to one any of its pre�x must also be mapped to one.We view the probabilistic language of a stochastic discrete event system in a similarmanner which assigns a probability measure (a value in the unit interval) to each trace in ��with the interpretation that this value determines its probability of its occurrence. Since azero length trace is always possible in a system, its probability measure must be one. Also,for a trace to occur, all its pre�xes must occur �rst. So the cumulative probability of alltraces sharing a common pre�x should not exceed the probability of the pre�x itself. Thiscaptured by properties P1 and P2 below.In order to represent the qualitative behavior of a stochastic discrete event system, we�rst describe the underlying measurable space. For mathematical convenience we explicitlyrepresent the occurrence of termination by augmenting the event set with the \termination4



event", denoted ��. Then the sample space for the behavior of a stochastic discrete eventsystem is given by the set of all �nite length traces possibly followed by the termination event,i.e., 
 = ��(��+�) = ����[��. Since we are interested in the probability of \occurrence ofa trace s 2 
"|which occurs whenever any trace containing s as its pre�x executes, we letthe set of all traces having s as a pre�x be a measurable set. We use < s >:= fst j st 2 
g(and simply s when there is no contextual confusion) to denote this measurable set. Thenthe set of all measurable sets F is the �-algebra generated by f< s >j s 2 
g.De�nition 1 Consider the measurable space (
;F), where 
 = ��(�� + �) and F is the�-algebra generated by f< s >j s 2 
g. Then a probabilistic language (p-language) L is aprobability measure on the measurable space (
;F), i.e., it is a map L : F ! [0; 1] thatmaps 
 to one and satis�es the property of �-additivity.Remark 1 Since (i) the probability measure L on the �-algebra F is uniquely determinedby its value on the set f< s >j s 2 
g � F which generates the �-algebra F , and (ii) theset f< s >j s 2 
g has the obvious one to one correspondence with the set 
, we can viewL to be a unit interval valued map on 
. With this correspondence in mind for each s 2 
,we use L(s) to represent the probability measure L(< s >), and refer to it as the probabilityof occurrence of trace s.Next, due to the property of �-additivity of L, we have8s 2 �� : L(s��) = L(s)�X�2�L(s�); (1)where L(s��) represents the probability of termination following s, L(s) represents theprobability of occurrence of s, and P�2� L(s�) represents the probability of continuousoperation beyond s. Note that in Equation (1) s 2 ��, so s�� 2 ���� and s� 2 �� for each� 2 �. Thus the value of L on ���� is uniquely determined by its vale on ��. Hence itsu�ces to view L as a unit interval valued map on �� (rather than on its superset 
), whichwe do from here on.For future notational convenience we de�ne8s 2 �� : �(L)(s) := L(s��); �(L)(s) := X�2�L(s�)to be the probability of termination and probability of continuous operation, respectively,following the execution of trace s. Then it is clear that for any L, �(L) and �(L) are both unitinterval valued maps on ��. The Equation (1) can be concisely written as: �(L) = L��(L).Remark 2 Consider the measurable space (
;F) as given in De�nition 1, and a p-languageL : F ! [0; 1]. Then it is easy to see that the following two properties hold when L is viewedas a unit interval valued map on ��:P1: L(�) = 1P2: L � �(L) � 0 5



P1 follows from the fact that L(�) = L(< � >) = L(
) = 1, whereas P2 follows from thefact that for each s 2 ��, L(s)� �(L)(s) = L(s��) � 0.Conversely, given a map L : �� ! [0; 1] satisfying P1 and P2 it can be extended inthe following manner to obtain a probability measure on (
;F): First Equation (1) isused to extend L from �� to 
. Next for any s 2 
, the probability measure of the set< s >2 F is simply given by L(s). Finally, the probability measure for the collection of setsf< s >j s 2 
g to obtain the probability measure of any set in F by applying the propertyof �-additivity.The above observation motivates the following the simpli�ed de�nition of a p-languagedescribing the qualitative behavior of a stochastic discrete event system.De�nition 2 A p-language L is a unit interval valued map on �� satisfying P1 and P2. Weuse L to denote the set of all p-languages.Since the qualitative behavior of a stochastic discrete event system is completely describedby its p-language, the terms \system" and \p-language" are used below synonymously.Remark 3 A consequence of P2 is that L(s) � L(t) whenever s is a pre�x of t. Also notethat for any trace s, L(s) � 1 can also be derived from P1 and P2. However, we prefer tokeep it as part of the de�nition for simplicity.Example 1 Consider a system that deadlocks initially. We use nil p-language I to representits behavior. Then I(�) = 1, and I(s) = 0 for s 6= �. It is easy to verify that P1 and P2 holdfor I; and �(I) = I.Consider a Bernoulli process where each experiment has two outcomes a and b withprobabilities p and (1 � p), respectively. Here the event set � = fa; bg, and the associatedp-language L is given by: 8s 2 �� : L(s) = p#(a;s)(1 � p)#(b;s);where #(a; s) represents the number of occurrences of a in the trace s. It is clear that P1and P2 hold for L; and �(L) = 0.Note that the outcomes corresponding to terminations after distinct traces are mutuallyexclusive. Hence the cumulative probability of termination of a system can be obtained byadding the individual probabilities over all possible traces: Ps�(L)(s). For the system withnil language this cumulative probability equals one which implies that it is a terminatingsystem. On the other hand, for the Bernoulli process this cumulative probability is zeroimplying that this system does not terminate. In the following theorem we establish that thiscumulative probability of termination is bounded above by one (a system is not necessarilyguaranteed to terminate), and it equals one if and only if the probability of traces of arbitrarylength converges to zero. 6



Theorem 1 Consider a p-language L. Then1. Ps�(L)(s) � 12. [Ps�(L)(s) = 1 () limk!1Pjtj=k L(t) = 0Proof: 1. De�ne S(n) := Pjsj�n�(L)(s) to be the probability of termination in at most nsteps of execution, so that Ps�(L)(s) = limn!1 S(n). Then since S(n) is monotonicallyincreasing, it su�ces to show that it is bounded above by one. (This implies that its limitingvalue is also bounded above by one.)We �rst show using induction on n that S(n) = 1�Pjsj=n+1 L(s). Clearly this holds forn = 0, since in that case S(n) = C(�) and 1 �Pjsj=1 L(s) = L(�) �P� L(�) = C(�). Thisestablishes the base step. For the induction step we haveS(n+ 1) = S(n) + Xjsj=n+1�(L)(s)ffrom induction hypothesis and de�nition of �g= [1� Xjsj=n+1L(s)] + Xjsj=n+1[L(s)�X� L(s�)]= 1� Xjsj=n+1X� L(s�)= 1� Xjsj=n+2L(s);This establishes the induction step.Now since S(n) = 1�Pjsj=n+1 L(s), and by de�nition L(s) � 0, it follows that S(n) � 1as desired.2. We have shown above that Pjsj�n�(L)(s) = S(n) = 1�Pjsj=n+1 L(s). So in the limitwhen n approaches ini�nity, this gives us Ps�(L)(s) = 1� limk!1Pjsj=k L(s), from whichthe result follows.We conclude this section by de�ning a natural partial order on the set of p-languagesunder which it is a cpo. Continuity properties of various regular operators de�ned on the setof p-languages is then investigated with respect to this order in the next section. These con-tinuity properties are then used to establish that recursive equations involving the operatorsare well de�ned.De�nition 3 Given a pair of p-languages K;L 2 L, de�ne K � L if and only if8s 2 �� : K(s) � L(s):It is easy to see that the relation � as de�ned above is re
exive, anti-symmetric and tran-sitive, i.e., it is a partial order. The in�mum and supremum of K;L 2 L are de�ned asfollows: K u L(s) = inf(K(s); L(s)); K t L(s) := sup(K(s); L(s)):7



Example 2 Consider p-languages H;K;L de�ned over � = fa; bg:H(�) = 1;H(a) = 0:4;H(ab) = 0:3;H(s) = 0; otherwiseK(�) = 1;K(a) = 0:4;K(b) = 0:5;K(ab) = 0:4;K(s) = 0; otherwiseL(�) = 1; L(a) = 0:6; L(b) = 0:4; L(ab) = 0:3; L(s) = 0; otherwiseThenH � K, and H � L, whileK and L are incomparable. Note that KuL is a p-language.However, K tL is not a p-language, since K tL(a) = 0:6 and K tL(b) = 0:5 which violatesP2.It follows from the above example that the set of p-languages under partial order � isnot a lattice. The following theorem shows that this set is an inf semi-lattice, and also acpo.Theorem 2 Consider the partial order � on L as de�ned above. Then1. (L;�) is an inf semi-lattice.2. (L;�) is a cpo.Proof: 1. Consider K;L 2 L. We need to show that K u L 2 L, i.e., P1 and P2 hold forK u L. Clearly, K u L(�) = inf(K(�); L(�)) = 1, which implies that P1 holds. In order tosee that P2 also holds consider the following:X� K u L(s�) = X� inf(K(s�); L(s�))ffrom property of addition and in�mumg� inf(X� K(s�);X� L(s�))ffrom P2g� inf(K(s); L(s)) = K u L(s):2. The bottom element for L is the nil language I 2 L. So next consider a chain ofp-languages fLigi�0, i.e., Li � Lj whenever i � j. Then for each s 2 ��, fLi(s)g is amonotonically increasing sequence of reals bounded above by 1, and hence converges. Weuse L1 to denote the resulting \trace-wise" limit of the chain of p-languages. We need toshow that L1 itself is a p-language.Clearly, L1(�) = limi!1 Li(�) = 1, which implies that P1 holds. In order to see that P2also holds consider the following:X� L1(s�) = X� limi!1Li(s�)flimit commutes with sum over �nite termsg= limi!1X� Li(s�)ffrom P2g� limi!1Li(s) = L1(s):8



4 Operators for Probabilistic LanguagesIn this section we de�ne some operations on p-languages and study their properties.These operators are useful in describing a complex system as a composition of many simplesystems.4.1 ChoiceThis operator captures non-deterministic choice between two systems. The compositesystem behaves as one of the two systems with certain given probabilities.De�nition 4 Given a pair of p-languages L1; L2 2 L, and e 2 [0; 1], the choice operation,denoted L1 +e L2, is de�ned as: L1 +e L2 := eL1 + �eL2;where �e := 1� e.In other words, the combined system either behaves as L1 with probability e or as L2 withprobability 1 � e. As a part of the next theorem we prove that L1 +e L2 is a p-language.Note that the choice operator can be easily generalized for multiple p-languages, in whichcase it will be a convex combination of its argument p-languages.In the following theorem we study a few properties of the choice operator.Theorem 3 Consider L1; L2 2 L and e 2 [0; 1].1. L1 +e L2 is a p-language.2. �(L1 +e L2) = e�(L1) + �e(�(L2).3. Choice is a continuous operator in both of its arguments.Proof: 1. That L1 +e L2 is a p-language is clear since it is the convex combination of twop-languages.2. This follows from the following series of equalities:�(L1 +e L2) = L1 +e L2 � �(L1 +e L2)= (eL1 + �eL2)� �(eL1 + �eL2)ffrom linearity of �g= (eL1 + �eL2)� [e�(L1) + �e�(L2)]= [eL1 � e�(L1)] + [�eL2 � �e�(L2)]= e�(L1) + �e�(L2):9



3. By symmetry of the de�nition of the choice operator in its arguments, it su�ces toshow that for any chain fLig of p-languages and e 2 [0; 1]:K +e (tiLi) = ti(K +e Li):Note that tiLi is well de�ned from Theorem 2. Then the desired equality follows from theobservation that for any s 2 ��:eK(s) + �e( limi!1Li)(s) = limi!1[eK(s) + �eLi(s)];where we have used the fact that the limit operation commutes with summation over a �nitenumber of terms.Since choice is continuous in both its arguments, it is possible to de�ne a \choice function"mapping L to itself and obtain its in�mum �xed point. Given L 2 L and e 2 [0; 1], we de�nethe function +eL : L ! L as follows:8H 2 L : +L(H) := L +e H:Next we study the �xed point equation involving the choice function.Theorem 4 Given L 2 L and e 2 [0; 1], the in�mum �xed point of the equation +eL(H) =H, i.e., H = L+eH, where H 2 L is the variable of the equation, is given by L when e 6= 0,and I when e = 0.Proof: Since (L;�) is a cpo, and the choice function +eL is continuous in this cpo, itsin�mum �xed point exists. Note that when e = 0, then for any H 2 L, +eL(H) = eL+�eH =H, i.e., each p-language is a �xed point. So the in�mum �xed point equals I. For the casewhen e 6= 0, we proceed as follows.Note L+e L = eL+ �eL = L, implying that L is a �xed point. We need to show that it isthe in�mum �xed point. From a well know result on �xed points [3, 10], we know that thein�mum �xed point can be computed as ti�0(+eL)i(I), where the nil p-language I is thebottom element of L. De�ne Hn := ti�n(+eL)i(I). Then it is easy to show using inductionon n that Hn = n�1Xi=0 �eieL+ �enI:Since e 6= 0; �e 6= 1, which implies �en approaches zero as n approaches in�nity. Hence thelimiting value of Hn is given byXi�0 �eieL = 11 � �eeL = 1eeL = L;as desired. 10



4.2 ConcatenationThis operator captures the sequential operation of two systems. The composite systembehaves as one system, and upon termination continues to behave as the other system witha certain given probability.Example 3 Suppose the p-languages L1 and L2 describe the processes of tossing a coinuntil a head and a tail, respectively, appear. Suppose the probability of getting a head inthe �rst (resp., second) process is p1 (resp., p2). Then the event set for both the systems isgiven by � = ftossg, andL1(tossn) = (1 � p1)n; �(L1)(tossn) = (1 � p1)np1L2(tossn) = pn2 ; �(L2)(tossn) = pn2 (1� p2):Next suppose the �rst coin is tossed until a head appears, and then with probability e thesecond coin is selected and tossed until the tail appears. Then the behavior of the compositeprocess is described by the concatenation of the two processes, which we denote by L1:eL2.It is clear that a sequence of n tosses will take place in the composite process if either (i) the�rst coin is tossed n times, always getting a tail, or (ii) the �rst coin is tossed m < n times,always getting a tail, at which point the �rst process terminates (a head occurs next), andthen with probability e the second coin is selected and tossed n�m times, always getting ahead. This motivates the following de�nition of concatenation.De�nition 5 Given a pair of p-languages L1; L2 2 L, and e 2 [0; 1], the concatenationoperation, denoted L1:eL2, is de�ned as:8s 2 �� : L1:eL2(s) := L1(s) + eXt<s�(L1)(t)L2(t�1s)= L1(s)� e�(L1)(s) + eXt �(L1)(t)L2(t�1s):In other words, the composite system executes a trace s by �rst behaving as the system withp-language L1, and either executes the entire trace s that way, or terminates after executinga pre�x t of s and then with probability e executes the remainder of the trace t�1s as thesystem with p-language L2.We show below that L1:eL2 is indeed a p-language, i.e., it satis�es P1 and P2. We�rst prove a few properties of the \convolution" operation that appears in form of theterm Pt�(L1)(t)L2(t�1s) in the de�nition of concatenation. The following de�nition ofconvolution is introduced to simplify future notation.De�nition 6 Given a pair of real valued f; g : �� ! R, their convolution, denoted f � g, isde�ned as: f � g(s) :=Xt f(t)g(t�1s):11



Then the concatenation operation can be simply de�ned as:L1:eL2 = L1 � e�(L1) + e�(L1) � L2:The convolution operator de�ned above is termed as product (or Cauchy product) in the the-ory of formal power series [20]. We use convolution to avoid any confusion with concatenationproduct.The following lemma describes certain properties of the convolution operator.Lemma 1 Let f; g; h : �� ! R be real valued functions, and e; e0 2 R.1. [1] I is the identity for convolution, i.e., f � I = I � f = f .2. [1] Convolution is associative, i.e., f � (g � h) = (f � g) � h.3. Convolution is continuous in both arguments, i.e., f�(tigi) = ti(f�gi), and (tifi)�g =ti(fi � g).4. [1] Convolution is a linear operator, i.e., f � (eg + e0h) = ef � g + e0f � h.5. If g(�) = 1, then �(f � g) = f � �(g) + �(f).Proof: The proofs for parts 1, 2, and 4 can be found in [1]. So we only prove parts 3 and 5.3. The following holds for each s 2 ��:f � (tigi(s)) = Xt f(t)( limi!1 gi(t�1s))flimit commutes with sum over �nite terms (all pre�xes of s)g= limi!1Xt f(t)gi(t�1s)= ti(f � gi(s));The continuity in the other argument can be similarly proved.5. The following holds for any s 2 ��:�(f � g)(s) = X� f � g(s�)= X� Xt�s� f(t)g(t�1s�)= X� 24Xt�s f(t)g(t�1s�) + f(s�)g(�)35fsince g((s�)�1s�) = g(�) = 1g= Xt�s f(t)X� g(t�1s�) +X� f(s�)= Xt�s f(t)�(g)(t�1s) + �(f)(s)= f � �(g)(s) + �(f)(s):12



In the following theorem we study a few properties of the concatenation operator.Theorem 5 Consider L1; L2 2 L and e 2 [0; 1].1. L1:eL2 is a p-language.2. �(L1:eL2) = �e�(L1) + e�(L1) ��(L2).3. Concatenation is continuous in its second argument; it is not even monotone in its �rstargument.Proof: 1. P1 follows from the following:L1:eL2(�) = L1(�)� e�(L1)(�) + e�(L1) � L2(�) = L1(�)� e�(L1)(�) + e�(L1)(�)L2(�) = 1:In order to prove P2 it su�ces to show that �(L1:eL2) � 0. This follows from the secondpart below.2. We have the following series of equalities:�(L1:eL2) = L1:eL2 � �(L1:eL2)= [L1 � e�(L1) + e�(L1) � L2]� �[L1 � e�(L1) + e�(L1) � L2]fusing linearity of � and rearrangingg= [L1 � �(L1)] + e[�(L1) � L2 ��(L1) + �(�(L1))� �(�(L1) � L2)]ffrom Lemma 1 �(�(L1) � L2) = �(L1) � �(L2) + �(�(L1))g= �(L1) + e[�(L1) � L2 ��(L1) + �(�(L1))��(L1) � �(L2)� �(�(L1))]= �(L1) + e[�(L1) � L2 ��(L1)��(L1) � �(L2)]ffrom linearity of convolutiong= [�(L1)� e�(L1)] + e�(L1) � [L2 ��(L2)]= �e�(L1) + e�(L1) ��(L2):3. Consider K 2 L and a chain of p-languages fLig. Then we have the following seriesof equalities: K:e t Li = K � e�(K) + e�(K) � tiLiffrom continuity of convolution, Lemma 1, part 3g= K � e�(K) + e ti �(K) � Liflimit commutes with sum over �nite termsg= tiK � e�(K) + e�(K) � Li= tiK:eLi;In order to see that concatenation is not even monotone in its �rst argument, considerp-languages K;L over the event set � = fa; bg with13



K(�) = 1;K(a) = 0:2;K(s) = 0; otherwiseL(�) = 1; L(b) = 1:0; L(s) = 0; otherwise.Then I � K, but I:1L and K:1L are incomparable since I:1L = L and K:1L is given by:K:1L(�) = 1;K:1L(a) = :2;K:1L(b) = :8;K:1L(ab) = :2;K:1L(s) = 0; otherwise.This completes the proof.Remark 4 In order to understand why concatenation is not continuous in its �rst argumentconsider a chain of p-languages fLig, a p-language K 2 L, and e 2 [0; 1]. ThentiLi:eK = tiLi � e�(tiLi) + e�(tiLi) �K:Thus for the concatenation to be continuous in its �rst argument, we need �(tiLi) =ti�(Li), i.e., we need the limiting completion probability function to be the limit of theindividual completion probability functions. However, although the given p-language form achain, their completion probability functions may not, and so their limit may not even exist.This causes the loss of continuity of concatenation in its �rst argument.Since concatenation is continuous in its second argument, it is possible to de�ne a \con-catenation function" mapping L to itself and obtain its in�mum �xed point. Given L 2 Land e 2 [0; 1], we de�ne the function :eL : L ! L as follows:8H 2 L : :eL(H) := L:eH:Next we study the �xed point equation involving the concatenation function.Theorem 6 Given L 2 L and e 2 [0; 1], the in�mum �xed point of the equation :eL(H) =H, i.e., H = L:eH, is given by Pi�0 ei�(L)(i) � L�Pi�1 ei�(L)(i), where �(L)(i) representsthe i-fold convolution of �(L) with itself, and �(L)(0) := I.Proof: Since (L;�) is a cpo, and the concatenation function :eL is continuous on this cpo,its in�mum �xed point exists. From a well know �xed point result [3, 10], the in�mum�xed point is given by ti�0(:eL)i(I), where I is the nil p-language which is also the bottomelement of L.De�ne Hn := ti�n(:eL)i(I). We show using induction on n thatHn = n�1Xi=0 ei�(L)(i) � L � n�1Xi=1 ei�(L)(i); (2)from which the result follows by taking the limit as n approaches in�nity. For the base stepconsider n = 1. Then by de�nitionH1 = L:eI = L� e�(L) + e�(L) � I = L� e�(L) + e�(L) = L;14



where the last equality follows from the fact that I is the identity of convolution (Lemma 1).Also, when n = 1, (2) reduces to:H1 = e0�(L)(0) � L = I � L = L;which establishes the base step. In order to see the induction step we have:Hn+1 = L:eHn= L� e�(L) + e�(L) �Hnffrom induction hypothesisg= L� e�(L) + e�(L) � [n�1Xi=0 ei�(L)(i) � L � n�1Xi=1 ei�(L)(i)]= L� e�(L) + nXi=1 ei�(L)(i) � L� nXi=2 ei�(L)(i)= [L+ nXi=1 ei�(L)(i) � L]� [e�(L) + nXi=2 ei�(L)(i)]= nXi=0 ei�(L)(i) � L � nXi=1 ei�(L)(i):This establishes the induction step and completes the proof.Remark 5 Since the choice and concatenation functions as de�ned above are both continu-ous, any function formed using them is also continuous and thus possesses the in�mum �xedpoint. As an example consider the function f : L ! L de�ned as f(H) = L +1 (K:1H) foreach H 2 L, where K;L 2 L are �xed p-languages. Then its in�mum �xed point can becomputed using the technique illustrated above.4.3 Concatenation ClosureThe in�mum �xed point of the concatenation function allows us to de�ne the concate-nation closure operator. This describes a system which upon termination continues with acertain probability e to behave as itself any �nite number of times. This operation resemblesthe Kleene closure operation from the theory of formal languages and captures the notion ofrepeated sequential behavior.De�nition 7 Given a p-language L 2 L and e 2 [0; 1], the concatenation closure operation,denoted L�e, is de�ned as:L�e :=Xi�0 ei�(L)(i) � L�Xi�1 ei�(L)(i) = L+Xi�1 ei�(L)(i) � [L� I];i.e., it is the in�mum �xed point of the concatenation function :eL15



Since L�e as de�ned above is the in�mum �xed point of the concatenation function(Theorem 6), it follows that it is a p-language, i.e., satis�es P1 and P2. The (n+ 1)th termof the summation in the de�nition of concatenation closure is en�(L)(n) � [L � I], whichrepresents that the system repeatedly behaves as itself n di�erent times|terminating eachtime (represented by the n-fold convolution term en�(L)(n))|and then continues as itselffor the n + 1th time without terminating and executing a \non-epsilon trace" (representedby the �nal convolution term L� I).In the following theorem we obtain a property of the concatenation closure operator.Theorem 7 Consider a p-language L 2 L and e 2 [0; 1]. Then �(L�e) = �ee Pi�1 ei�(L)(i).Proof: For notational simplicity de�ne (e�(L))(+) := Pi�1 ei�(L)(i). Then L�e = L +(e�(L))(+) � (L � I). So�(L�e)= L + (e�(L))(+) � (L� I)� �(L+ (e�(L))(+) � (L� I))ffrom linearity of �g= L + (e�(L))(+) � (L� I)� �(L)� �((e�(L))(+) � L) + �((e�(L))(+))ffrom Lemma 1, parts 1 and 5g= L + [(e�(L))(+) � L � (e�(L))(+)]� �(L)� [(e�(L))(+) � �(L) + �((e�(L))(+))]+�((e�(L))(+))= [L� �(L)] + [(e�(L))(+) � (L ��(L))]� (e�(L))(+)= �(L) + (e�(L))(+) ��(L)� (e�(L))(+)= 1e [e�(L) + eXi�1 ei�(L)(i) ��(L)]� (e�(L))(+)= 1e [e�(L) +Xi�2 ei�(L)(i)]� (e�(L))(+)= 1e [Xi�1 ei�(L)(i)]� (e�(L))(+)= [1e � 1](e�(L))(+)= �ee(e�(L))(+);as desired.Example 4 Consider a process of tossing a coin which is repeated till a head occurs. Sup-pose that the probability of getting a tail is e. Then in this example, the \toss once" processis repeated each time a tail occurs, i.e., with probability e. So the \repeated toss" processcan be represented as the concatenation-closure of the \toss once" process. For the \tossonce" process � = ftossg, and 16



L(�) = L(toss) = 1; L(s) = 0; otherwise.The \repeated toss" process can be described by the p-language L�e.Since �(L)(s) = 1 if and only if s = toss, and zero otherwise, it follows easily frominduction that C(n)(s) = 1 if and only if s = tossn. Suppose we are interested in �nding theprobability of n tosses. Then this is given by:L�e(tossn) = 24Xi�0 ei�(L)(i) � L35 (tossn)� 24Xi�1 ei�(L)(i)35 (tossn)= [en�1�(L)(n�1)(tossn�1)L(toss) + en�(L)(n)(tossn)L(�)]� [en�(L)(n)(tossn)]= en�1 + en � en= en�1;which is precisely the probability of getting n� 1 consecutive tails.Similarly, if we are interested in determining the probability of termination after n tosses,then this is given by: �(L�e)(tossn) = �eeXi�1 ei�(L)(i)(tossn)= �eeen�(L)n(tossn)= �eeen= en�1�e;which is precisely the probability of getting n� 1 consecutive tails followed by a head.5 Automata for Probabilistic LanguagesIn this section we de�ne \probabilistic automata"|nondeterministic automata withprobabilities associated with its transitions, which can be used to represent p-languages ina concise manner. It is easier represent a stochastic discrete event system as a probabilisticautomaton.De�nition 8 A probabilistic automaton (p-automaton) G over the event set � is a tripleG := (X;x0; P ), where X is the set of states, x0 2 X is the initial state, and P : X���X ![0; 1] is the transition probability function satisfyingC1: 8x 2 X : Py2X P�2� P (x; �; y) � 1.G is said to be deterministic if for each x 2 X and � 2 �, there exists at most one y 2 Xsuch that P (x; �; y) > 0. 17



Such a p-automata starts from its initial state x0, and when at state x it moves to statey on event � with probability P (x; �; y). For each x 2 X, we de�ne �(G)(x) := 1 �P�2�Py2X P (x; �; y) to be the probability of termination at state x.Next we de�ne the p-language \generated by" such a p-automaton G. The transitionprobability function can be extended to paths in G, where a path in G is de�ned to be amember of X(�X)�. In other words, a path is obtained by concatenating transitions wherethe end and start states of the consecutive transitions are the same. Given a path � =x0�1x1 : : : �nxn, we use j�j = n to denote its length; for each k � j�j, �k := x0�1x1 : : : �kxkto be the initial sub-path of length k; and tr(�) := �1 : : : �n to be the event trace associatedwith path �. The probability measure for paths is inductively de�ned as:8x 2 X : P (x) = 1;8� 2 X(�X)�; � 2 �; y 2 X : P (��y) := P (�)P (xj�j; �; y)In other words, the probability measure of a path is the product of probability measures ofthe individual transitions constituting the path.With these preliminaries we next de�ne the p-language generated by a p-automaton.De�nition 9 Given a p-automaton G := (X;x0; P ), the p-language generated by G, denotedLG, is de�ned as: LG(s) := X�:tr(�)=s;�0=x0 P (�):The following proposition states that L is indeed a p-language.Theorem 8 Let G := (X;x0; P ) be a p-automaton over �. Then LG is a p-language.Proof: From de�nition, we have LG(�) = P (x0) = 1, which demonstrates P1. In order tosee P2, consider a trace s 2 �� of length, say, n. ThenX� LG(s�) = X� X�:tr(�)=s�;�0=x0 P (�)= X� X��:tr(��)=s;��0=x0 Xy2X P (��)P (xn(��); �; y)= X��:tr(��)=s;��0=x0 P (��) Xy2XX� P (xn(��); �; y)ffrom C1g� X��:tr(��)=s;��0=x0 P (��)= LG(S): 18



Remark 6 It follows that every p-automaton de�nes a p-language. Conversely, every p-language can be represented by a p-automaton: Given a p-language L, de�ne a p-automatonG := (��; �; P ), where8s; t 2 ��; � 2 � : P (s; �; t) := ( L(t)L(s) if t = s�0 otherwiseSince L(s) � L(t) whenever s � t (Remark 3), in the de�nition of transition probabilityP (s; �; t) � 1. Then it is easy to verify that LG = L and that C1 holds for G. Also notethat G is a deterministic p-automaton.A special class of p-languages which is of interest is the class that can be represented bya p-automaton with �nitely many states, which we call the class of regular p-languages.De�nition 10 A p-language L 2 L is said to be regular if there exists a p-automaton Gwith �nitely many states such that LG = L.The next theorem shows that the operators choice, concatenation, and concatenation-closure preserve regularity.Theorem 9 Consider regular p-languages L1; L2 and e 2 [0; 1]. Then L1+e L2, L1:eL2, andL�e1 are also regular p-languages.Proof: For i = 1; 2, let Gi := (Xi; x0;i; Pi) be �nite p-automata with LGi = Li.In order to show the regularity of L1 +e L2, de�ne a �nite p-automaton G := (X;x0; P ),where the state set is X := X1 [X2 [ fx0g, x0 is a new state which is the initial state of G,and the state transition probabilities are given by:8x; y 2 X;� 2 � : P (x; �; y) := 8>>>>>><>>>>>>: P1(x; �; y) if x; y 2 X1P2(x; �; y) if x; y 2 X2eP1(x0;1; �; y) if x = x0; y 2 X1�eP2(x0;2; �; y) if x = x0; y 2 X20 otherwiseThen it is easy to see that G is a p-automaton, and LG = L1 +e L2.Next to show the regularity of L1:eL2, de�ne a �nite p-automaton G := (X;x0;1; P ),where the state set X := X1 [X2, and the state transition probabilities are given by:8x; y 2 X;� 2 � : P (x; �; y) := 8>>><>>>: P1(x; �; y) if x; y 2 X1P2(x; �; y) if x; y 2 X2e[�(G1)(x)]P2(x0;2; �; y) if x 2 X1; y 2 X20otherwiseThen it is easy to see that G is a p-automaton, and LG = L1:eL2.Finally to show the regularity of L�e1 de�ne a �nite p-automaton G := (X1; x0;1; P ), wherethe state transition probabilities are given by:8x; y 2 X1; � 2 � : P (x; �; y) := P1(x; �; y) + e[�(G1)(x)]P1(x0;1; �; y):Then it is easy to see that G is a p-automaton, and LG = L�e1 .19



6 Performance FunctionsIn order to study the performance of a stochastic discrete event system, we use realvalued functions de�ned over the set of event traces to associate a cost with each trace ofthe system, and we compute the average value of the cost with respect to the completionprobability function. Recall that the completion probability function associates a proba-bility of termination with each trace of the system. Since the outcomes corresponding toterminations following distinct traces are all mutually exclusive, the cumulative probabilityof termination is obtained by simply adding the completion probabilities of the individualtraces. This cumulative probability equals one if and only if the system is terminating (Theo-rem 1), in which case the completion probability function de�nes a probability mass function[5] on the set of traces. So we assume in this section that the systems under investigationare terminating, and use it to give the de�nition of the average performance of a system.De�nition 11 Given a terminating system with p-language L 2 L, i.e., Ps�(L)(s) = 1,and a performance function F : �� ! R representing cost associated with each trace,the average value of F with respect to the completion probability mass function, denotedE[F;�(L)] 2 R, is given by E[F;�(L)] := Ps�(L)(s)F (s).In the following subsections we consider two special types of performance functions andstudy how their values for complex systems can be e�ciently obtained from those of com-ponent subsystems.6.1 Additive Performance FunctionLet F : �� ! R be an \additive performance function" satisfying the property:F1: F (st) = F (s) + F (t)An example of an additive performance function is the completion time (or the �rst momentof completion time if it is a random variable [14]) which gives the time consumed in executionof a trace.The following lemma lists a few properties of the average of an additive performancefunction.Lemma 2 Consider an additive performance function F : �� ! R, and terminating p-languages L1; L2; L 2 L having completion probability functions C1; C2; C, respectively.Then1. E[F;�(L1) ��(L2)] = E[F;�(L1)] + E[F;�(L2)]2. E[F;�(L)(n)] = nE[F;�(L)] 20



Proof: We only prove the �rst part since the second follows from the �rst. We have thefollowing series of equality:E[F;�(L1) ��(L2)] = Xs �(L1) ��(L2)(s)F (s)fs = t:t�1s when t � sg= Xs [Xt �(L1)(t)�(L2)(t�1s)]F (t:t�1s)fchanging order of summation and using additivity of Fg= Xt Xs �(L1)(t)�(L2)(t�1s)[F (t) + F (t�1s)]fapplying change of variables u := t�1sg= Xt Xu �(L1)(t)�(L2)(u)[F (t) + F (u)]= Xt Xu �(L1)(t)�(L2)(u)F (t) +Xt Xu �(L1)(t)�(L2)(u)F (u)= Xu �(L2)(u)[Xt �(L1)(t)F (t)] +Xt �(L1)(t)[Xu �(L2)(u)F (u)]fXu �(L2)(u) =Xt �(L1)(t) = 1g= E[F;�(L1)] + E[F;�(L2)]:The result of the above lemma is used in the next theorem to obtain average performanceof a complex system in terms of those of the constituent subsystems.Theorem 10 Consider an additive performance function F : �� ! R, and terminatingp-languages L1; L2; L 2 L.1. E[F;�(L1 +e L2)] = eE[F;�(L1)] + �eE[F;�(L2)]2. E[F;�(L1:eL2)] = E[F;�(L1)] + eE[F;�(L2)]3. E[F;�(L�e)] = 1�eE[F;�(L)], whenever e < 1Proof: 1. By Theorem 3, �(L1 +e L2) = e�(L1) + �e�(L2). SoE[F;�(L1 +e L2)] = Xs [e�(L1)(s)F (s) + �e�(L2)(s)F (s)]= eXs �(L1)(s)F (s) + �eXs �(L2)(s)F (s)= eE[F;�(L1)] + �eE[F;�(L2)]:2. By Theorem 5, �(L1:eL2) = �e�(L1) + e�(L1) ��(L2). So from the �rst part above,E[F;�(L1:eL2)] = �eE[F;�(L1)]+eE[F;�(L1)��(L2)]. Since F is additive, from Lemma 2,21



E[F;�(L1) ��(L2)] = E[F;�(L1)] + E[F;�(L2)], from which the result follows.3. By Theorem 7, �(L�e) = �ee Pi�1 ei�(L)(i). So from the �rst part of Lemma 2,E[F;�(L�e)] = �eeXi�1 eiE[F;�(L)(i)]ffrom Lemma 2, part 2g= �eeXi�1 eiiE[F;�(L)]= �eeE[F;�(L)]Xi�1 eiifXi�1 eii = e�e2 whenever e < 1g= 1�eE[F;�(L)]:One can use the results derived above to study the average completion time of timeddiscrete event systems, where transition probabilities as well as transition occurrence timesare known.6.2 Multiplicative Performance FunctionLet F : �� ! R be a multiplicative performance function satisfying the property:F2: F (st) = F (s)F (t)An example of a multiplicative performance function is the reliability function (or the �rstmoment of the reliability function if it is a random variable) which gives the probability thata system does not fail, i.e., operates reliably, after executing a trace.The following lemma lists a few properties of the average of a multiplicative performancefunction.Lemma 3 Consider a multiplicative performance function F : �� ! R, and terminatingp-languages L1; L2; L 2 L.1. E[F;�(L1) ��(L2)] = E[F;�(L1)]E[F;�(L2)]2. E[F;�(L)(n)] = (E[F;�(L)])nProof: Since the second part follows from the �rst part, we only prove the �rst part. Wehave the following series of equality:E[F;�(L1) ��(L2)] = Xs �(L1) ��(L1)(s)F (s)22



fs = t:t�1s when t � sg= Xs [Xt �(L1)(t)�(L2)(t�1s)]F (t:t�1s)fchanging order of summation and using multiplicativity of Fg= Xt Xs �(L1)(t)�(L2)(t�1s)[F (t)F (t�1s)]fapplying change of variables u := t�1sg= Xt Xu �(L1)(t)�(L2)(u)[F (t)F (u)]= [Xt �(L1)(t)F (t)][Xu �(L2)(u)F (u)]= E[F;�(L1)]E[F;�(L2)]:The result of the above lemma is used in the next theorem to obtain average performanceof a complex system in terms of those of the constituent subsystems.Theorem 11 Consider a multiplicative performance function F : �� ! R, and terminatingp-languages L1; L2; L 2 L. Then1. E[F;�(L1 +e L2)] = eE[F;�(L1)] + �eE[F;�(L2)]2. E[F;�(L1:eL2)] = �eE[F;�(L1)] + eE[F;�(L1)]E[F;�(L2)]3. E[F;�(L�e)] = �eE[F;�(L)]1�eE[F;�(L)], whenever eE[F;�(L)] < 1.Proof: 1. The proof of this part is the same as that for the �rst part of Theorem 10.2. By Theorem 5, �(L1:eL2) = �e�(L1) + e�(L1) ��(L2). So from the �rst part above,E[F;�(L1:eL2)] = �eE[F;�(L1)] + eE[F;�(L1) � �(L2)]. Since F is multiplicative, fromLemma 3, E[F;�(L1) ��(L2)] = E[F;�(L1)]E[F;�(L2)], from which the result follows.3. By Theorem 7, �(L�e) = �ee Pi�1 ei�(L)(i). So from the �rst part of Lemma 3,E[F;�(L�e)] = �eeXi�1 eiE[F;�(L)(i)]ffrom Lemma 3, part 2g= �eeXi�1 ei(E[F;�(L)])ifXi�1 ei(E[F;�(L)])i = eE[F;�(L)]1� eE[F;�(L)] whenever eE[F;�(L)] < 1g= �ee " eE[F;�(L)]1� eE[F;�(L)]#= �eE[F;�(L)]1 � eE[F;�(L)]: 23



Remark 7 The results of Theorems 10 and 11 can be combined to obtain compositionalresults for more general performance functions that are \bilinear". Suppose for exampleF (st) = F (s) + F (t) + 2F (s)F (t), which is satis�ed by the second moment of a randomcompletion time [14]. Then using the techniques of Theorems 10 and 11 it can be shownthat1. E[F;�(L1) ��(L2)] = E[F;�(L1)] + E[F;�(L2)] + 2E[F;�(L1)]E[F;�(L2)]2. E[F;�(L1 +e L2)] = eE[F;�(L1)] + �eE[F;�(L2)]3. E[F;�(L1:eL2)] = E[F;�(L1)] + eE[F;�(L2)]f1 + 2E(F;�(L1)]g7 Conclusion and DiscussionIn this paper we have introduced a formalism for the speci�cation and analysis of qual-itative behavior of stochastic discrete event systems which are typically modeled as nonde-terministic automata with probabilities associated with transitions. We have shown thatsystems de�ned in our formalism form a complete partial order under a suitable orderingrelation. The regular operators choice, concatenation, and concatenation closure have beende�ned in this formalism which allow representation of complex systems as combination ofsimpler ones. These operators are continuous in the complete partial order of systems. Con-sequently it is easy to de�ne systems using recursions involving these operators. It is alsoshown that the space of these systems is a complete metric space in which the operatorsare continuous and contracting. So the uniqueness of the �xed points of recursive equationsfollows from the contraction mapping theorem. Various average performance measures ofstochastic discrete event systems can be de�ned in this formalism, and we provide analyticaltechniques to aide their computations.Our formalism is also suitable for studying supervisory control problems of stochasticdiscrete event systems. We discuss a few ways in which control problems can be formulatedin this setting. A detailed examination of these problems is subject of work in progress.Following the framework of supervisory control proposed by Ramadge and Wonham [18],the event set is partitioned into the set of controllable and uncontrollable events. Thesupervisor is not allowed to disable the uncontrollable events, but can disable any of thecontrollable events. One possibility is that the probability of the disabled events is added tothe termination event probability. In other words, the supervisor terminates the system ifany of the disabled event is chosen. Another possibility is that the probabilities of the enabledevents (including that of the termination event) is renormalized using the probabilities ofthe disabled events. In other words, the probability of an enabled event is the conditionalprobability of its occurrence subject to the condition that certain events are disabled.One possible control objective may be speci�ed as a pair of p-languages K1 � K2. The\upper" p-language K2 may be deterministic specifying a legality speci�cation (anything inits complement is considered illegal), whereas the \lower" p-language K1 imposes restrictionon the occurrence probability of the legal traces, which must occur with certain minimum24



probabilities. The goal is to selectively disable controllable events so that the p-languageof the supervised system lies within the range of the prescribed p-languages. It is easy tosee that this framework generalizes that of Ramadge-Wonham and reduces to the Ramadge-Wonham framework when all p-languages are deterministic languages.A Metric for Probabilistic LanguagesIn this appendix we show that a suitable metric can be de�ned on the space of p-languagesunder which it is complete, and the choice and concatenation functions are both continuousand contracting.De�nition 12 A metric d : L �L ! R+ on the set of p-languages is de�ned as follows:8K;L 2 L : d(K;L) := sups jK(s)� L(s)j:It is well known that d as de�ned above is a metric, i.e., it is non-negative, symmetric,satis�es triangle inequality, and its value for a p-language pair is zero if and only if the twolanguages are the same. The following result states that L is complete under this metric.Theorem 12 (L; d) is a complete metric space.To show the completeness of (L; d), we show that every Cauchy sequence converges.Consider a Cauchy sequence of p-languages fLigi�0. Since L is a subspace of real valuedfunctions, which is a complete metric space, the limit of the Cauchy sequence, say L1, existsin the space of real valued functions. We need to show that L1 2 L.P1 follows from the fact that:L1(�) = limi!1Li(�) = limi!1 1 = 1:Next to see P2 we have: X� L1(s�) = X� limi!1Li(s�)= limi!1X� Li(s�)fapplying P2 to Lig� limi!1Li(s)= L1(s):In the the following theorem we show that the choice and concatenation functions areboth contracting. 25



Theorem 13 Consider a p-language L 2 L and e 2 [0; 1]. Then the functions +eL; :eL :L ! L are both contracting (and hence continuous) whenever e 6= 0 and e 6= 1, respectively.Proof: Consider K1;K2 2 L. Then we haved(+eL(K1);+eL(K2)) = sups j(eK1(s) + �eL(s))� (eK2(s) + �eL(s))j= e sups jK1(s)�K2(s)j= edjK1;K2j;which shows that +eL is a contraction whenever e 6= 0 (so that �e 6= 1). Similarly,d(:eL(K1); :eL(K2))= sups j(L(s)� e�(L)(s) + e�(L) �K1(s))� (L(s)� e�(L)(s) + e�(L) �K2(s))jffrom linearity of convolutiong= e sups j�(L) � (K1(s)�K2(s))j= e sups �����Xt �(L)(t)[K1(t�1s)�K2(t�1s)]�����fsince K1(t�1s)�K2(t�1s) � supt jK1(t�1s)�K2(t�1s)jg� e sups �supt jK1(t�1s)�K2(t�1s)j�Xt �(L)(t)fsince Xt �(L)(t) � 1; Theorem 1, part 1g� e sups supt jK1(t�1s)�K2(t�1s)jfapplying change of variables u := t�1sg= e supu jK1(u)�K2(u)j= ed(K1;K2);which shows that :eL is contraction whenever e 6= 1.Remark 8 Since choice and concatenation functions are both contractions de�ned over thecomplete metric space (L; d), it follows from the contraction mapping theorem [19] that theypossess unique �xed points. (The uniqueness of �xed points is not guaranteed by latticetheoretic approach of Theorems 4 and 6.) The same holds for any function f composed ofthe choice and the concatenation function. The unique �xed point of f can be obtained bytaking the limit of the sequence of p-languages fLig de�ned recursively by Li+1 = f(Li),and L0 2 L is arbitrary. 26
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