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Supervisory Control of Real-time Discrete
Event Systems using Lattice Theory

Darren D. Cofer, Vijay K. Garg

Abstract— The behavior of timed DES can be described by
sequences of event occurrence times. These sequences can
be ordered to form a lattice. Since logical (untimed) DES
behaviors described by regular languages also form a lattice,
questions of controllability for timed DES may be treated in
much the same manner as they are for untimed systems. In
this paper we establish conditions for the controllability of
timed DES performance specifications which are expressed
as inequations on the lattice of sequences. These specifi-
cations may take the form of sets of acceptable event oc-
currence times, maximum or minimum occurrence times, or
limits on the separation times between events. Optimal be-
haviors are found as extremal solutions to these inequations
using fixed point results for lattices.

Keywords: Discrete event systems, supervisory control,
max-algebra, lattices.

I. INTRODUCTION

Discrete event systems (DES) are characterized by a col-
lection of events, such as the completion of a job in a man-
ufacturing process or the arrival of a message in a com-
munication network. The system state changes only at
time instants corresponding to the occurrence of one of the
defined events. At the logical level of abstraction, the be-
havior of a DES is described by the sequences of events
that it performs. The actual or desired behavior of a log-
ical DES 1s specified as a set of event sequences known as
a language. Languages may be ordered by set inclusion to
form a lattice.

However, if time constraints are of explicit concern in
the system dynamics and its performance specification, its
behavior can be characterized by sequences of occurrence
times for each event. These time sequences may be ordered
to form a lattice. Thus, there is an underlying algebraic
similarity between logical and timed models for DES that
we may be able to exploit. In this paper we show how
lattice techniques developed for the studying the control of
logical DES behaviors can also be applied to timed DES.

Some aspects of a DES| such as processing times or ma-
chine failures, will normally be fixed and beyond control.
Others, such as starting a manufacturing process or broad-
casting a message, may be controllable by a human op-
erator or an automated controller. The problem in con-
troller design is to determine when these controllable events
should or should not occur to achieve some performance
goal or to ensure that certain properties always hold for
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the system.

A well-developed theoretical framework has been estab-
lished by Ramadge and Wonham for studying the control
of logical DES behavior [17]. In this framework event se-
quences are normally assumed to be generated by a state
machine or some other automaton. Certain events are des-
ignated as being controllable and may be disabled by a su-
pervisor to restrict the system to some specified behavior,
given as a set of desirable event sequences. For a specifica-
tion to be controllable it must satisfy a particular invari-
ance property which is expressed as a set function inequal-
ity, or inequation, on the lattice of languages. An optimal
supervisor is computed as an extremal solution of the lat-
tice inequation which characterizes the invariance property
[13].

One approach to supervisory control of timed DES is
presented in [3]. In this model the timing features of timed
transition models used in [16] are added to the control
structure of [17]. Controllable events may be forced as
well as disabled by a supervisor. The untimed state ma-
chine which models the system is extended by adding a
clock tick event and augmenting the state space to include
a timer for each activity in the system. The status of the
timers may then influence state transitions. However, the
addition of a global clock greatly increases the number of
transitions in the system. While DES are normally charac-
terized by state updates which are event-driven and occur
at irregular intervals, this model updates the state at every
clock tick as in a discrete—time dynamical system.

Another approach to controlling timed DES is given in
[11]. In that work a timed DES is modelled as a gener-
alized semi-Markov process (GSMP) which consists of a
state space, a set of events, a list of active events in each
state, and a state transition function defining the effect of
each event on the system state. In addition, a (usually
stochastic) time duration is specified for the time from the
activation of events until their occurrence. Input param-
eters control the event durations. The authors establish
structural conditions for GSMPs which cause the system
performance to be a monotone function of the inputs.

Our work here extends the supervisory control ideas of
[17] to timed DES but by using an entirely different sys-
tem model from [3]. Suppose that certain events are con-
trollable by means of delaying their execution, rather than
simply prohibiting them. Desirable behavior is specified by
a range of acceptable execution times for events. By using
a maz-algebra model for timed DES [2], [8], [9] we demon-
strate how this control problem may be viewed from the
Ramadge-Wonham perspective.

The max-algebra approach allows the dynamics of cer-
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tain timed DES to be modelled by a system of linear equa-
tions. This is accomplished using a non-traditional al-
gebraic structure known as a dioid or semiring in which
the conventional ring operations of addition and multipli-
cation in R are typically replaced by maximization and
addition, respectively. Work in this area was initiated by
Cuninghame—Green in [10] from the perspective of opera-
tions research. In the early 1980’s this work was discovered
by Cohen, Dubois, Quadrat, and Viot and utilized in their
study of discrete event manufacturing processes [8]. This
eventually led to the formation of the “Max Plus” work-
ing group of researchers. Their study of DES using related
algebraic structures continues to the present and is well—
documented in [2].

Controllable behavior for timed DES in the max-algebra
framework may be defined by an invariance condition which
1s quantified by a lattice inequation. A set of desired behav-
iors (event schedules) must satisfy this inequation in order
for it be realizable by any supervisor which is restricted to
delaying only the controllable events. This formulation al-
lows us to find optimal supervisors by computing extremal
solutions to the inequation using fixed point results for lat-
tices.

Previous work on max-algebra models of timed DES has
focused on performance analysis rather than control. The
control problems which have been addressed in [2] deal with
questions of stability (maintaining finite sojourn times in
the system) or resource placement to achieve the earliest
output times.

In [11] the control objective is minimization of a cost
function associated with holding times for states. They
show that systems similar to the ones we consider (based
on (max,+) recursions) satisfy a monotonicity condition
on the number or occurrences of each type of event in the
system. This condition guarantees that optimal control
policies for the system will be monotone functions of the
number of events that have occurred.

In contrast with both [2] and [11], the control problem we
address here has more in common with “forbidden state”
problems in logical DES. Given a set of desirable behav-
iors we examine the existence and computation of optimal
supervisors for a system. Depending on the performance
objective, “optimal” may mean either minimally restricting
the system so as to remain within the desired region or lim-
iting the system to an operating region which guarantees
that at least all desirable behaviors can be achieved.

In Section 2 we review the max-algebra model used in
this paper and show the similarity between logical DES
modelled by finite state machines and timed DES mod-
elled by timed event graphs. Using this similarity, Section
3 defines supervisory control for timed DES. In Section
4 we present the lattice theory results for computing ex-
tremal solutions to inequations and apply these results to
the control of timed DES.

II. TIMED EVENT GRAPHS

DES which are subject to time synchronization con-
straints can be modelled by automata known as temed event

Fig. 1.

Timed event graph.

graphs. A timed event graph is a Petri net in which a time
delay is associated with each place and with forks and joins
permitted only at its transitions (see figure 1). Each tran-
sition ¢; € T in the graph corresponds to an event in the
system. Tokens entering a place are made available after
incurring the specified delay. Transitions fire as soon as
tokens are available in all their predecessor places.

In [2] and [9] these systems are modelled using an alge-
braic structure called a dioid. Also called an idempotent
semiring, a dioid has two binary operations normally de-
noted & and ® and differs most notably from a ring in
that there is no inverse with respect to the sum (). To
describe a timed event graph, & is usually defined to be
either maximization or minimization and ® is defined as
addition.

The dynamic behavior of such systems can also be stud-
ied using an algebraic structure called a semimodule (or
moduloid). While a module is a ring acting on a commu-
tative group, a semimodule is essentially a dioid acting on
a monoid. The principal difference between a module and
a semimodule is that the existence of inverses with respect
to the sum is replaced by the idempotency property. More
specifically, a semimodule over a dioid D is a commutative
idempotent monoid A together with an operation called
scalar multiplication mapping D x X' — X', Scalar multi-
plication distributes over the sum operation @ in both D
and A, is associative with the product in D, and has as
its identity the identity element of D. We let ¢ denote the
null element for @ in X'. D and X are complete if they are
closed for arbitrary ¢ operations.

A partial order is induced in both D and A by the rela-
tion

r<yordy=y. (1)
Scalar multiplication is 1sotone with respect to this order
in X. Properties of semimodules are discussed in [19] and
[2].
Definition 1: A function f : X — A is called lower-
semicontinuous (l.s.c.) [2]if for any collection of elements

Xcux
P 2) = P fa).

rzeX rzeX

Note that the identity function (0(#) = #) and the null
function (¢(z) = ¢) are both l.s.c. Also note that any l.s.c.
function maps ¢ to itself (simply take the index set X in
the definition to be empty).

Theorem 1: Let (X, @) be an idempotent commutative
monoid and let 7' be the set of l.s.c. functions on X'. Let
@ and ® be binary operators on F' defined by

(fog(e) = flz)Dg(x)
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Fig. 2. Timed event graph for manufacturing process.

(fog) = [flg)
Then (F,®,®) is a dioid. If X' is complete, so is F'. Fur-
thermore, if scalar multiplication is defined to be the action
of functions in F on X', then X is a semimodule over F' [6].
Proof summary: F 1s a dioid since the required properties
of @ in F are inherited from (X,®), while the proper-
ties of @ follow from its definition as functional composi-
tion. The ® operator distributes over @ because of lower—
semicontinuity. Similarly, the required properties of scalar
multiplication follow from the definitions of & and ®. O
Consider a timed event graph such as Figure 1. Using
the semimodule structure the behavior of a timed event
graph with n events is governed by the equation

r=Axdv (2)
where « is the sequence of firing time vectors for events, v
is a sequence of earliest allowable firing time vectors, and

A is an n X n matrix of delay functions at places. The least
solution of (2) is # = A*v where

A4 = @Ai
i>0
€ 0
A = I=
0 €

The set of vector sequences in (R U {+oo})” forms an
idempotent commutative monoid under pointwise maxi-
mization which we denote by &”. Note that this monoid
1s complete. For systems with constant delay times, the
delay functions are of the form av™, where a represents
unary addition of some constant and ~ is the index back-
shift function (yz(k) = x(k—1)). Functions of this form are
easily shown to be l.s.c. This structure can also be used to
model systems more general than timed event graphs with
constant delays, including some untimed DES and time-
varying systems [6].

Erample 1: To illustrate this approach, consider the
timed event graph of Figure 2 which represents a manu-
facturing process. Upon arrival, a part is set up (s) in
a machine queue and then worked (w) in order of arrival.
Each of the subprocesses s and w takes essentially constant
time. However, the part interarrival times a may vary due
to the workfloor schedule. The machine reset time r is
normally constant except for periodic replacement of the
cutting head. Letting z; denote the occurrence times of

event t;, the process is described by

1 ay € ¢ T 0
2 | =] s & ry 2 | D | 0
3 € w € 3 0

The overbar notation indicates a constant sequence, so for
this example no events may occur before time 0. If we are
interested in the part completion times given by 3 this is
computed using x = A*v. Since

(ay)” € €
A* = (ryw)*s(ay)* (ryw)”  (ryw)'ry
(wry)ws(ay)”  (wry)w  (wry)”

and v; = vs = v3 = 0 we have
(wry)* (ws(ay)” @ w® 0)(0)
= (wry) ws(ay)™(0).

Terms like (ay)*
form

(3)

are used to denote an expression of the

0®ay®(ay)’ @ ...

Once the delay functions are specified, the part com-
pletion times are computed from (3). In particular, let
s(g)=x+1, wlx) =2 +4, and

x(k)+5b k odd
a(z(k)) = { xEx; +7 k even

z(k)+4 kmodb=0
r(e(k)) = { xEk; + 1 otherwise

For the (ay)* term we find

(@) (0) = 08 a90 @ (a7)*(0) © (a)*(D). .
= {0,0,0,0,..}®
{£,5,7,5,7,..} &
{e,6,12,12,12,.. } &
{e,6,6,17,19,. ..} P ...
= {0,5,12,17,24,.. }

Completing the computation, we obtain
3 = {b,10,17,22,29, 37,42 47,58 .. }.

O
Timed event graphs are structurally very similar to finite
state machines which are often used to model logical DES.
Both are directed graphs with labelled edges. While in
a timed event graph the nodes correspond to events and
the edges to process delays, the nodes in a finite state
machine represent the system states and the edges corre-
spond to events. This is illustrated by comparing Figures 2
and 3. The structures are dual in the sense that a timed
event graph models synchronization and concurrency but
not nondeterministic choice while a finite state machine
models nondeterministic choice but not synchronization or
concurrency. (We note that timed event graphs which in-
clude deterministic choices are discussed in [2] and [5].)
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a; a a3

Fig. 3. Finite state machine with same structure as Figure 2

Because of the structural similarities between these au-
tomata there is an algebraic similarity as well. If we con-
sider sets of event sequences with the operation @ defined
as set union, the sequences accepted by a finite state ma-
chine can be described in the semimodule framework used
for timed event graphs. The functions which are assigned
to the edges in this case are right concatenations of event
labels.

The system of Figure 3 is therefore governed by the equa-
tion

1 € € 1 1
o | = | s ¢ Ty | B |0
xrs3 w xr3 V)

which 1s of the form & = Az @& v as before. Here ¢ is the
constant function which maps to the empty set and 1 is the
zero—length sequence. Its purpose here is to indicate the
initial state of the system (¢q;1). The solution for state ¢z is

qs = a” sw(rw)”

which is a regular expression over the event set of the sys-
tem. Furthermore, except for omission of the v functions
and the reversed order (due to the convention of composing
functions from the left) it is the same as the solution (3)
for the timed event graph of Figure 2.

It is this algebraic similarity which suggests that con-
trol of timed event graphs may be studied using techniques
developed for untimed DES.

IT1I. SuPERVISORY CoNTROL OF TIMED DES

To motivate our approach to controlling timed DES, we
briefly recall the framework for controlling logical or un-
timed DES behaviors. In a logical DES model with event
set X, the language L C X* of the system is the set of
all event sequences it can generate. Events are classified
as either controllable, meaning that their occurrence may
be prevented, or uncontrollable. Control is accomplished
by dynamically disabling certain of the controllable events
to avoid undesirable behaviors (event sequences not in the
specified language). Observe that such a controller or su-
pervisor may restrict system behavior, but not introduce
any new behaviors.

Since uncontrollable events may not be disabled, not all
behaviors are realizable. Language K is said to be control-
lable with respect to L and the uncontrollable events X,

if
pr(K).Zy N L C pr(K) (4)

where pr(K) is the prefiz closure of K.

For a supervisor to be able to restrict the system to a
desired language, uncontrollable actions must not result in
sequences which lie outside of that language. Furthermore,
we must permit the system to execute those behaviors in
pr(K) which lead to the acceptable region, even though
they may not lie in that region themselves. Therefore,
these potentially acceptable behaviors as well as the re-
gion of acceptable behavior should be invariant or closed
under uncontrollable actions. Since uncontrollable events
in the system act by concatenation this invariance prop-
erty yields the definition of controllability stated in (4).
If the desired behavior does not satisfy the controllability
condition, a supervisor may be constructed to achieve the
supremal sublanguage which is controllable.

Now return to the max-algebra model of a timed event
graph governed by (2). Suppose that some events T, C T'
are designated as controllable, meaning that their transi-
tions may be delayed from firing until some arbitrary later
time. This is similar in its mechanics to the controlled Petri
net concept introduced in [12] for untimed DES. The de-
layed enabling times w; (k) for the controllable events are to
be provided by a supervisor. Let u represent the sequence
of transition enabling times provided by the supervisor,
with w;(k) = e for ¢; uncontrollable. Then the supervised
system is described by # = Ax B v P u.

To compute the effect of uncontrollable events, let I,
denote the matrix having the identity function on diagonal
elements ¢ for which t; € T, and ¢ elsewhere. Then for any
desired sequence y € Y the supervisor provides firing times
u = Iy which results in = A*(I.y®v). Since the desired
behavior must be invariant under uncontrollable actions,
we have the following definition of controllability.

Definition 2: A set of sequences Y C § is controllable
with respect to A, v, and T, if

ALY ®@v) CY. (5)
Intuitively, this means that enabling controllable events at
any time allowed by the specification set Y must result
in behavior within Y for all events. Notice that, as in
the untimed model, no new behavior is introduced by the
supervisor. System operation can never be accelerated —
events can only be delayed.

As an example suppose then that we wish to slow the sys-
tem down as much as possible without causing any event to
occur later than some sequence of execution times y. Such
a specification could be used to prevent buffer overflows,
ensure the availability of sufficient processing time to ac-
complish a task, or to synchronize events in independent
systems. This type of specification is described by

YV ={x€S|z <y} (6)
where y € § is a fixed sequence. For the remainder of this
section we will consider acceptable behaviors of this form.

Theorem 2: If Y specifies sequences no later than y as
in (6) then Y is controllable if and only if

A (Lyow) <y. (7)
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Proof: TfY is controllable then (5) holds. Thus

yeEY = A(L.ydv)EY
= A"(L.ydv)<y

Conversely, suppose A*(I.y @ v) <y. Then Ve € YV

r€Y = z<y
= A'(Lxdv) <A (L.ydv)
= A(Lrov) <y
= A'(L.xdv) €Y.

Therefore A*(I.Y & v) C Y. a

Ezample 2: For the system in Figure 2 with ¢ control-
lable, suppose we are given as a specification the set Y of
sequences less than or equal to

(79)*(0) 0 7 14
y = s(Ty)* (1) = 10,1 8 |, 16 {,...
ws(77)*(0) 5 12 19

This specification seeks to remove variations due to the
interarrival delays a. To determine if Y is controllable, we
compute

ATy A"v =

€ [ (a7)*(0)
(ryw)*s(7y)"(0) G (ryw)*s(ay)
(wry) ws(77)"(0) L (wry) ws(ay
(a7)*(0)
= (ryw)*s(77)" (0)
) ws(77)"(0) |

(
making use of the fact that (7y)* > (ay)*
third component we find that

{

"(0)
)"(0) |

. Examining the

(wry) ws(7y)*(0) = {5,12,19,26,33,41,47,.. .}
>ys = {5,12,19,26,33,40,47,.. .}
so Y is not controllable. O

When a specification is found to be uncontrollable, a less
restrictive controllable specification can always be gener-
ated from it.

Corollary 1: If y > v then A%y is a controllable sequence.
Proof: By the construction of I. we have I.A*y < A*y and

= A'LAYy < A%y
= A LAY A'v < A"y A"
= A"(I.(A"'y)dv) < A%y

O
FEzample 3: Consider y from Example 2. The relaxed
specification is
ay)"(77)"(0) _
"B s ryws)(77)"(0)

Ay = *
s(ay)* @ ws)(7)*(0)

where we have used the fact that (ryw)*(0 & ryw) =
(ryw)*. Checking condition (7) we find
AL (A*y)® A"v =

€ [ (ay)*
® (ryw)”s(

(0

)
(ryw)*s(77)"(0) 7)*(0)
w(ryw)”s(7y)"(0) L (wry) ws(ay)"(0) |
[ (7)(0)
= (ryw)”s(77)"(0)
w(ryw)”s(7y)"(0) ]
so A*y is controllable. O

It is more likely that a given specification cannot be re-
laxed. In this case we must find the least restrictive set of
controllable behaviors which meets the specification. De-
pending on the situation this may mean finding the largest
set which 1s contained in the specified behavior or the small-
est set which contains the specified behavior. Determining
these extremal optimal behaviors is the subject of the next
section.

IV. EXTREMAL BEHAVIORS OF TIMED DES

The controllability of a set of behaviors for a timed DES
is specified by an inequation (5) on the lattice of time se-
quences. In algebraic terms this is the same situation we
find for specifying the controllability of logical DES behav-
iors. We demonstrate next that for timed DES where the
desired behavior is not controllable the extremal control-
lable behaviors can be found using fixed point results for
lattices.

A. Lattice Theory for Logical DES

Let X be an idempotent commutative monoid as consid-
ered in Section II. The operation @ induces a partial order
on X defined by (1). For any pair in X" the least upper
bound with respect to this order or sup{z,y} is given by
z @ y. Since A i1s complete, we may define sup X for any
set X C X (not just pairs) by

sup X = @x

We can also induce a greatest lower bound A from ¢ by
taking
inf X =sup{z e X|z<aVeeX}

Since ¢ < z for all z € A, inf X 1s well defined for arbitrary
XCcux.

The partially ordered set X is a complete lattice if sup X
and inf X are in X for any X C X'. Therefore a complete
idempotent commutative monoid A" 1s also a complete lat-
tice. We will use the operators LI and 1M to denote sup and
inf respectively in a general lattice. Some complete lattices
which will be of interest are:

o (8, <), the lattice of sequences with the order induced

by @ (pointwise maximization).

¢ (25,C), the power set of sequences with the order of

set containment. In this lattice Ll and M are U and N,
respectively.
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. (22*, C), the set of all languages over the event set X
with the order of set containment.
We next recall some useful properties of functions over
lattices. A function f: X — A is idempotent if

Ve e X : f(z) = f(f(x)).

It 1s monotone if

Ve,ye X 12 <y= f(o)

< fly).

For X a complete lattice, a function is disjunctive if
VX C X : f(sup X) = sup {f(2)}.
rzeX

Note that for the lattice (S, <) this is equivalent to the
l.s.c. property. A function is conjunctive if

VX CX: f(inf X) = xlg)f({f(x)}

Digjunctive and conjunctive functions can both be shown
to be monotone as well.

Erample 4: As an example of a disjunctive function con-
sider any function f : & — & on the lattice of sequences.
The function may be extended to the power set lattice

(2%, C) by taking

= U tr@)

rzeX

Clearly any function f : 25 — 25 defined in this way is
disjunctive. a

Definition 3: Consider a complete lattice (X, <) and a
function f: X — X'. The disjunctive closure of f, denoted
fY, is defined by

=] Fi@)
i>0

It is easy to see that the digjunctive closure of a function
is idempotent and disjunctive. For the lattice (S, <) the
least upper bound operation is @ so fY(z) = f*(x). For
the lattice (25, C) the least upper bound operation is U so
fRH &) = Uizof' (2).

Definition 4: Consider a complete lattice (X, <) and a
function f : X — A. If f is disjunctive then its dual,
denoted f', is defined by

fH(y) = sup{x € X|f(x) < y}.

If f is conjunctive then its co-dual, denoted fT, is defined
by
fT(y) = inf{z € X|y < f(x)}.

The conditions of disjunctivity and conjunctivity are nec-
essary in the definition to guarantee the existence of the
dual and co-dual [13].

Remark: On the lattice of sequences (8,<) the dual is
equivalent to the residual defined in [2]. The residual of a
function f: X — Y is a function f!:Y — X which map
points y € Y to the greatest subsolution of the equation

f(z) =y

Frample 5: Consider the index backshift function ~ :
S — § defined by

zk—1) k>1
Let =1 be defined by v~ (2(k)) = (k+1). Since Vy € S :

v(v~H(y)) = y and, furthermore, y(z) = y & = = v~ (y)
we must have

() = supfe € Shy(e) <y =17

Now consider a time-varying delay as in Example 1 where
a(z(k)) = z(k) + ag. In this case atz(k) = 2(k) —ap. O
It can be shown that the dual of a function has the fol-
lowing properties.
L. If f; and fo are disjunctive functions then (f; f2)t =
f 18]
2. If f is idempotent then f1 is also idempotent (follows
from 1.).
3. If f and g are disjunctive then (fUg)t = fL gt [2].
As discussed the previous section the behavior of a DES
is often specified by a system of inequations over the un-
derlying lattice of the form

{fi(x) < gi(®)}i<n- (8)

Tt is shown in [13] and [14] that extremal solutions of (8) can
be reduced to extremal fixed—point computation of certain
induced functions. The relevant results are summarized in
the following two theorems.

Theorem 3: Given the system of inequations (8) over a
complete lattice (X, <), let

Y={yeXVi<n: fi(y) <agy}

be the set of all solutions of the system of inequations.
Consider the sets of all fixed points of functions h; and hs
defined by

hi(y) = inf{fi(9:(y))}, Y1 = {y € X|h1(y) = v}

ha(y) = sup{g (fi(y))}, Y2 = {y € X|ha(y) = v}

1. If f; 1s digjunctive and g; 18 monotone Vi < n, then
supY € Y,supY; €Yy, and supY = sup Y.
2. If f; 1s monotone and g; is conjunctive Vi < n, then
mfY €Y, infYs € Yy, and infY = inf Y5.
Proof summary: Under the stated conditions, the induced
functions h; and hs are monotone. On a complete lattice,
monotonicity guarantees the existence of supremal and in-
fimal fixed points [18]. When f and g satisfy these condi-
tions, extremal solutions of (8) exist and correspond to the
extremal fixed-points of hy and hs. O
The next theorem uses these functions to compute ex-
tremal solutions to (8).
Theorem 4: Consider the system of inequations (8) over
a complete lattice (X, <) and the set ¥ of all solutions of
the system.
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1. Let f; be disjunctive and ¢; be monotone. Consider
the following iterative computation:

e Yo :=supX

o Yrg1 = ha(yr)

If Ymt1 = Ym for some m € N then y,, —sup Y.

2. Let f; be monotone and g; be conjunctive. Consider
the following iterative computation:
e yo = infX
o Y1 = ha(yr)

If Ymt1 = Ym for some m € N then y,, = inf Y.
Proof summary: For part 1, the stopping condition ym,41 =
Ym 18 sufficient to show that y,, € Y. If 2 € Y is another
solution of the system of inequations, then an inductive
argument is used to show that z < yp Vk > 0. Therefore,
Ym = sup Y. Part 2 follows analogously. a

In the controllability condition for logical DES (4) on
the lattice (22*, C) the prefix closure function is digjunctive
and monotone and the concatenation function is disjunc-
tive. With some additional modifications Theorems 3 and
4 demonstrate the existence and computation of the supre-
mal controllable sublanguage of any specified language.
Formulas for other extremal behaviors, such as those re-
ported in [4], can be derived in a similar manner. Details
of this approach may be found in [13]. Next we show that
these results can be applied analogously to timed DES us-
ing the controllability condition presented in section 3.

B. Timed DES Behavior Specified as a Set

Suppose we are given a set Y C & of acceptable se-
quences. We wish to find the least subset or the greatest
superset of Y such that enabling the controllable events at
times given by a sequence in the extremal set results in an
actual behavior which lies in the extremal set. That is, we
seek extremal sets of sequences which are invariant under
uncontrollable actions.

In this case, the underlying lattice is (25,C) and the
definition of controllability is given by inequation (5). Tt is
of the form

f(X) < 9(X) (9)

where f(-) = A*(I.(-)®v) and g(-) is the identity function.
The identity function is monotone and since f is actually
a function on S extended to 2° we know by Example 4
that it is disjunctive. Furthermore, f is also monotone and
the identity function is conjunctive. Therefore Theorem 3
guarantees the existence of both extremal solutions and we
make use of Theorem 4 to find these solutions.

Note that Theorem 4 yields the supremal and infimal
solutions to (8) over the entire lattice, which in this case are
S and 0 respectively. What we really want is the supremal
solution of (5) which is contained in a fixed set ¥, which
is the desired behavior. To find the supremal controllable
subset of Y we must find the supremal solution to the pair
of inequations

AM(LX & v)
X

X (10)
Y.

The identity function and f(-) = A*(I.(-) ® v) are disjunc-
tive and the constant function Y is monotone. Therefore,
we meet the conditions of the first part of Theorem 3, with

hi(X) = Y (X,

Similarly, to find the infimal solution containing Y let the
second inequation in (10) be ¥ < x. Since the constant
function Y is monotone and the identity function is con-
junctive we can use the second part of Theorem 3 with

ha(X) = ¥ U f(X)

where we use the fact that the co-dual of the identity is
itself.

Summarizing, we have the following result.

Theorem 5: Given G = (T, A) with controllable events
T, and a set of acceptable behaviors Y € &, the supre-
mal controllable subset of ¥ and the infimal controllable
superset of Y both exist.

Both of these solutions are computable by the iterative
method of Theorem 4. For the special case where the func-
tion f is digjunctive and also idempotent the 1terative com-
putation reduces to a single step.

Theorem 6: Consider a complete lattice (X, <), a dis-
junctive and idempotent function f on X, and a fixed
zed.

1. The supremal solution less than & of f(x) < zis @ N

74 (@),
2. The infimal solution greater than # of f(x) < z is
U f(z).
Proof: For the first part, since f is disjunctive and the
identity is monotone it follows from Theorem 3 than the
supremal solution less than # exists. The iterative compu-
tation yields

y o= &N fh(z)
o= ENENTE)
= &N fH@)n fH(fH(2)
= anfi(z)
= .
The second part follows analogously. a

We have already seen that the function on the left-hand
side of the controllability condition (5) is disjunctive. Tt
is also idempotent, allowing us to compute solutions using
Theorem 6.

Lemma 1: The function f : & — § defined by A*(I.(-)®
v) is idempotent.

Proof: We first show that the function A* I, is idempotent.

A*>1 = A'[A* > A"],
= ALA*I. > A"l
I.<I = A'[LA* < A"A" = A"
= A LA*I. < A"I.
Using this fact we have

Fle) = A(L(A"(Lr &) &)
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= AT ALz A" I.A"vD A*v
ALz @ (A"LA" @ A% v

A Lo A"(I. 1) A*v
Al x ® A*v

= fl=@)

O
If f is disjunctive but not idempotent, it can be replaced
by its disjunctive closure f2. We need the following lemma
which is simply an application of [2, Theorem 4.70] to the
present situation.
Lemma 2: For a complete lattice (X, <) and a disjunc-
tive function f : X — X

fle)<z e ff(z) <=
Since the disjunctive closure i1s idempotent and preserves
disjunctivity the next corollary is immediate.
Corollary 2: Consider a complete lattice (X, <), a dis-
junctive function f on A, and a fixed z € X.
1. The supremal solution less than & of f(x) < zis 2 N
(4)(2).
2. The infimal solution greater than # of f(x) < z is
z U fH(2).
FEzample 6: Consider the manufacturing process of Ex-
ample 2 with the specification set

(7)"(0) (87)"(0)
s(Ty)(0) |, | s(8%)(0)
ws(77)"(0) ws(87)"(0)
Since f(-) = A*(I.(:) ® v) is idempotent we can use The-
orem 6 to find the supremal controllable subset of Y. In
Example 2 we saw that f(y;) € Y, but f(y2) = y2. There-
fore,

Y = ={yi,y2}.

YY)

Y Asup{X € X|f(X) C V)
e eY[f(x) € {y1,y2}}
= Y2

Similarly, the infimal controllable superset of Y is given by

{y1, 2} UL (1), f(y2)}
{yl, Ya, f(y1)}

Y UF(Y)

C. Behavior Specified as an FErtremal Sequence

For general Y C 8§ computation of fY or the iterative
set computations of Theorem 4 may become unwieldy. If
the desired behavior can be expressed in terms of upper
and/or lower bounds in & such that

Y={zeSlpn <z<y}

then an alternative approach based on the lattice (S, <)
may be appropriate.

For a set of the form ¥V = {z € S|z < y} we wish to
find the greatest sequence z less than a fixed y such that

enabling the controllable events at times less than or equal
to z results in actual behavior less than or equal to z. We
have already seen from Theorem 2 that in this case the
controllability condition is of the form

fle) = A"(L.x®v) < .

The function f is almost l.s.c (which is equivalent to
disjunctivity on the lattice (S, <)) but not quite since
f(e) # e. However, if we require y > A*v then

sup{z € S|A™(I.(x) ®v) <y} = sup{z € S|A".(z) < y}

so we can let f(x) = A*I.z. Now we can apply Corollary
2 directly to find the supremal controllable sequence less
than the given y.

Ezample 7: For the system of Example 2 we find the
supremal controllable specification sequence z < y. Using
Theorem 6, this is given by

y A fl(y) =yAsupl{z € S|A .(z) < y}.

Since only 5 is controllable the first and third components
of x can be made arbitrarily large and so are set equal to
4o00. Using the definition of A* we are left with the task
of finding ((ryw)*)* (y2). Using the properties of the dual
and Example 5 first observe that

0@ ryw)(y2) = 0Fye A (ryw)tys

= pAwytrty
s A 13,10,17,24, 28,38, ..}
— {1,8,15,22,28,36,.. }

9.

Also note that

0 ryw < (ryw)” = ((ryw) ) (1) < (0@ ryw)* ().

Since (0 @& ryw)xs = (ryw)*zz we must have
((ryw)*)t(y2) = z2. Finally, the supremal controllable
specification sequence less than y is given by

o0 n
y A o = o
o0 Y3

O
Remark: This formulation of the control problem is similar
to the latest start date problem considered in Section 5.6
of [2]. There, the supremal solution to an inequation of the
form A* Bz < y is sought. In our notation this is given by
z = (A*B)*(y), which agrees with [2]. Note that the lat-
est start date problem is not concerned with specifying the
behavior of the uncontrollable events nor with invariance
under uncontrollable actions, accounting for the difference
in formulation.

On the other hand, for a set of the form Y = {z € S|z >
y} an argument along the same lines as Theorem 2 yields

A (Lzdv) > (11)
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Fig. 4. Timed event graph with no infimal controllable specification.

as the condition for controllability. This is an inequation of
the form f(x) < g(x) with f being the identity function and
() = A*(I.(-) @ v). While f is monotone, ¢ in this case
is by no means necessarily conjunctive. Thus we cannot
show the existence of the infimal controllable specification
greater than the given sequence y using Theorem 3. In
fact the following example shows that this sequence may
not exist at all.

Ezample 8: Consider the system of Figure 4 governed by

Iy ¢ ¢ 0
=] ¢ 2y ¢ |z® |0
3 3 0

€ € €
T = e, e|,] ¢
3 6 9

observe that both

0 3 6
= el,lel,le], ..
3] 6] 9]
and o
£ £ £
Ty = 01,3 1,161, ..
3] 6] 9]
are controllable sequences (in the sense of (11)) greater

than #. However, 21 A 22 is uncontrollable since A*I.(z; A
22) < &. Therefore there is no infimal controllable specifi-
cation sequence greater that z. ad
Remark: If there is only one controllable event in the sys-
tem, this 1s normally sufficient to guarantee that the func-
tion A*(I.(+) @ v) is conjunctive. This is because the de-
lay functions are often also upper—semicontinuous, meaning
that they distribute over A as well as &. When this is the
case, the infimal controllable specification sequence exists
and can be found in accordance with Theorem 6.

For those cases in which it is possible to find both the
supremal controllable z5 less than y» and the infimal con-
trollable z; greater than gy, then the supremal control-
lable subset of Y = {z € S|yn < o < yo} is given by
7 = {x € S8|z1 < # < z3}. This is true because any se-
quence in Z must yield a behavior in the intersection of the
two extremal controllable sets.

If the existence of the infimal controllable specification
cannot be guaranteed one practical method is to find the

supremal controllable specification less than ys and check
if the resulting behavior i1s greater than y;. This subopti-
mal approach yields one controllable behavior (if any ex-
ist) which meets the specification. This method is demon-
strated in [7].

D. Behavior Specified as a Single Sequence

Controllability constraints on the lattice (S, <) exam-
ined thus far allow us only to specify bounds on the oc-
currence times of events. Thus enabling the controllable
events at times within the specified range guarantees that
all events will occur at times within that range. Suppose
instead we wish to find a single extremal controllable se-
quence as opposed to a range or set of sequences invariant
under uncontrollable events. That is, we seek a sequence
such that enabling the controllable events at the designated
times causes all events to actually occur at their designated
times, rather that merely occurring within the specified set.

Using the results of section 3 the controllability of a sin-
gle sequence is specified by requiring that A*(I.x ®v) = .
If there is an upper limit £ on acceptable behavior, the op-
timal behavior is the supremal controllable sequence less
than #. This sequence 1s the supremal solution to the set
of inequations

A'(laxdv) < =
r < ALz ®v)
x < z.

As before, if we require that £ > A*v then the first

inequation may be replaced by
ATz < zx.

Now all the left-hand side functions are digjunctive (l.s.c.)
and all the right-hand side functions are monotone. Thus,
we can apply Theorem 4 with

hi(y) = & A A*(Ly ® v) A (A" L) (y)

to find the desired behavior. Since the function A*(I.(-)®v)
1s not necessarily conjunctive, we will not consider infimal
behavior here.

Ezample 9: Consider an upper limit such that £ = A*z.
Then

hi(supS) =z
hi(#) = & A A* (1@ @ v) A (A1) (7).

v =
Y2 =
Our restrictions on & imply that
r> A"l.z
and therefore
(A*L)*(2) > &
We also have
ATz dv) <&

and so yo = A*(I.# ® v). Furthermore, because of the
idempotency of the function A*(I.(-) ® v) it follows that

ys = hy(A*(Li & v)) = A*(L.i & v)
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which shows that this is the optimal behavior. a
There are many cases in which it is also important to con-
sider the separation times between events. In [15] bounds
on event separation times are determined for acyclic graphs
while in [1] this is extended to cyclic timed event graphs
(there called process graphs). Our interest is to determine
whether a specified limit on event separation times can be
achieved given the control available in the system.

The ability to guarantee minimal separation times be-
tween certain events could be useful for ensuring sufficient
time to perform an in-process inspection in a manufactur-
ing system or to provide sufficient time between arrivals
and departures of connecting trains or airplanes. The abil-
ity to guarantee maximal separation times between certain
events could be useful to avoid timeouts between commu-
nicating processors.

Let D be a matrix of delay functions which specifies sep-
aration times between events. A solution of the inequation

Dr<cz (12)

guarantees separation times of at least D. If the delay func-
tions in D are l.s.c. then D 1s disjunctive and inequation
(12) meets the conditions of the first part of Theorem 3.
Thus for the supremal controllable sequence less than some

Z which satisfies the minimal separation time requirement
of (12) we have

hi(y) = & A D (y) A A (Ly @ v) A (A L) ().

Therefore this supremal behavior exists and is computed
by iterating hq.
A solution of the inequation

x < Dz

(13)

guarantees separation times of no more than D. Since D is
also monotone, inequation (13) also meets the conditions of
the first part of Theorem 3. In this case, the supremal con-
trollable sequence less than # which satisfies the maximal
separation time requirement of (13) gives

hi(y) = & A Dy A A*(Ly @ v) A (A" L) " (y).

Therefore this supremal behavior also exists and is com-
puted by iterating hy.

Frample 10: For the manufacturing process of Figure 2
suppose now that #; 1s controllable instead of 5. This
means that part arrivals from the rest of the factory may
be inhibited. We find the supremal controllable sequence

x < & where -

8(87)"(0)
8(87)"(0)
8(87)"(0)
and such that the separation between zz(k — 1) and x1(k)
does not exceed 3 for all k. This requirement ensures that
the process does not sit idle for longer than 3 time units.

This is specified by the inequation

=

€ € 3y
r<Dx=|¢ 0 ¢ |z8qw
e ¢ 0

where w is a constant sequence with w1 (0) = 400 and equal
to 0 elsewhere. This modification is necessary to indicate
that there is no separation constraint on #,(0), the first
firing of ¢;.

Now applying the iteration scheme of Theorem 4 we find

Yo = supS
Yy = =&
[ 3(87)°(0) ]
yo = | 8(87)7(0)
| 8(87)7(0) |
[ 3(87)°(0) ]
ys = | 487)7(0)
| 8(87)7(0) |
Ya = Ys.

Therefore this is the supremal controllable behavior satis-
fying the required conditions. a

V. CONCLUSION

For timed DES the objective of supervisory control is
to impose delays on controllable events to modify system
behavior to meet some specified performance goal. Using
a max-algebra representation it is possible to compute the
uncontrolled behavior of a timed event graph, define a spec-
ification for the desired behavior, and determine whether
the specification can be realized by any supervisor given the
set of controllable events. The behavioral constraints take
the form of inequations over a complete lattice. These con-
straints may specify minimal or maximal separation times
between events as well as bounds on their absolute oc-
currence times. We have shown that extremal solutions
to these inequations can be found using lattice theoretic
methods developed for studying logical (untimed) DES be-
haviors.
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