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the system.A well-developed theoretical framework has been estab-lished by Ramadge and Wonham for studying the controlof logical DES behavior [17]. In this framework event se-quences are normally assumed to be generated by a statemachine or some other automaton. Certain events are des-ignated as being controllable and may be disabled by a su-pervisor to restrict the system to some speci�ed behavior,given as a set of desirable event sequences. For a speci�ca-tion to be controllable it must satisfy a particular invari-ance property which is expressed as a set function inequal-ity, or inequation, on the lattice of languages. An optimalsupervisor is computed as an extremal solution of the lat-tice inequation which characterizes the invariance property[13].One approach to supervisory control of timed DES ispresented in [3]. In this model the timing features of timedtransition models used in [16] are added to the controlstructure of [17]. Controllable events may be forced aswell as disabled by a supervisor. The untimed state ma-chine which models the system is extended by adding aclock tick event and augmenting the state space to includea timer for each activity in the system. The status of thetimers may then in
uence state transitions. However, theaddition of a global clock greatly increases the number oftransitions in the system. While DES are normally charac-terized by state updates which are event-driven and occurat irregular intervals, this model updates the state at everyclock tick as in a discrete{time dynamical system.Another approach to controlling timed DES is given in[11]. In that work a timed DES is modelled as a gener-alized semi{Markov process (GSMP) which consists of astate space, a set of events, a list of active events in eachstate, and a state transition function de�ning the e�ect ofeach event on the system state. In addition, a (usuallystochastic) time duration is speci�ed for the time from theactivation of events until their occurrence. Input param-eters control the event durations. The authors establishstructural conditions for GSMPs which cause the systemperformance to be a monotone function of the inputs.Our work here extends the supervisory control ideas of[17] to timed DES but by using an entirely di�erent sys-tem model from [3]. Suppose that certain events are con-trollable by means of delaying their execution, rather thansimply prohibiting them. Desirable behavior is speci�ed bya range of acceptable execution times for events. By usinga max-algebra model for timed DES [2], [8], [9] we demon-strate how this control problem may be viewed from theRamadge{Wonham perspective.The max-algebra approach allows the dynamics of cer-



2 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. Y, MONTH 1999tain timed DES to be modelled by a system of linear equa-tions. This is accomplished using a non{traditional al-gebraic structure known as a dioid or semiring in whichthe conventional ring operations of addition and multipli-cation in R are typically replaced by maximization andaddition, respectively. Work in this area was initiated byCuninghame{Green in [10] from the perspective of opera-tions research. In the early 1980's this work was discoveredby Cohen, Dubois, Quadrat, and Viot and utilized in theirstudy of discrete event manufacturing processes [8]. Thiseventually led to the formation of the \Max Plus" work-ing group of researchers. Their study of DES using relatedalgebraic structures continues to the present and is well{documented in [2].Controllable behavior for timed DES in the max-algebraframeworkmay be de�ned by an invariance condition whichis quanti�ed by a lattice inequation. A set of desired behav-iors (event schedules) must satisfy this inequation in orderfor it be realizable by any supervisor which is restricted todelaying only the controllable events. This formulation al-lows us to �nd optimal supervisors by computing extremalsolutions to the inequation using �xed point results for lat-tices.Previous work on max-algebra models of timed DES hasfocused on performance analysis rather than control. Thecontrol problems which have been addressed in [2] deal withquestions of stability (maintaining �nite sojourn times inthe system) or resource placement to achieve the earliestoutput times.In [11] the control objective is minimization of a costfunction associated with holding times for states. Theyshow that systems similar to the ones we consider (basedon (max;+) recursions) satisfy a monotonicity conditionon the number or occurrences of each type of event in thesystem. This condition guarantees that optimal controlpolicies for the system will be monotone functions of thenumber of events that have occurred.In contrast with both [2] and [11], the control problemweaddress here has more in common with \forbidden state"problems in logical DES. Given a set of desirable behav-iors we examine the existence and computation of optimalsupervisors for a system. Depending on the performanceobjective, \optimal"maymean either minimally restrictingthe system so as to remain within the desired region or lim-iting the system to an operating region which guaranteesthat at least all desirable behaviors can be achieved.In Section 2 we review the max-algebra model used inthis paper and show the similarity between logical DESmodelled by �nite state machines and timed DES mod-elled by timed event graphs. Using this similarity, Section3 de�nes supervisory control for timed DES. In Section4 we present the lattice theory results for computing ex-tremal solutions to inequations and apply these results tothe control of timed DES.II. Timed Event GraphsDES which are subject to time synchronization con-straints can be modelled by automata known as timed event

a i1 a in

t 1
t n.  .  .  .

t iFig. 1. Timed event graph.graphs. A timed event graph is a Petri net in which a timedelay is associated with each place and with forks and joinspermitted only at its transitions (see �gure 1). Each tran-sition ti 2 T in the graph corresponds to an event in thesystem. Tokens entering a place are made available afterincurring the speci�ed delay. Transitions �re as soon astokens are available in all their predecessor places.In [2] and [9] these systems are modelled using an alge-braic structure called a dioid. Also called an idempotentsemiring, a dioid has two binary operations normally de-noted � and 
 and di�ers most notably from a ring inthat there is no inverse with respect to the sum (�). Todescribe a timed event graph, � is usually de�ned to beeither maximization or minimization and 
 is de�ned asaddition.The dynamic behavior of such systems can also be stud-ied using an algebraic structure called a semimodule (ormoduloid). While a module is a ring acting on a commu-tative group, a semimodule is essentially a dioid acting ona monoid. The principal di�erence between a module anda semimodule is that the existence of inverses with respectto the sum is replaced by the idempotency property. Morespeci�cally, a semimodule over a dioid D is a commutativeidempotent monoid X together with an operation calledscalar multiplication mapping D � X ! X . Scalar multi-plication distributes over the sum operation � in both Dand X , is associative with the product in D, and has asits identity the identity element of D. We let " denote thenull element for � in X . D and X are complete if they areclosed for arbitrary � operations.A partial order is induced in both D and X by the rela-tion x � y , x� y = y: (1)Scalar multiplication is isotone with respect to this orderin X . Properties of semimodules are discussed in [19] and[2].De�nition 1: A function f : X ! X is called lower-semicontinuous (l.s.c.) [2] if for any collection of elementsX � X f(Mx2X x) = Mx2X f(x):Note that the identity function (0(x) = x) and the nullfunction ("(x) = ") are both l.s.c. Also note that any l.s.c.function maps " to itself (simply take the index set X inthe de�nition to be empty).Theorem 1: Let (X ;�) be an idempotent commutativemonoid and let F be the set of l.s.c. functions on X . Let� and 
 be binary operators on F de�ned by(f � g)(x) = f(x) � g(x)
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 g)(x) = f(g(x)):Then (F;�;
) is a dioid. If X is complete, so is F . Fur-thermore, if scalar multiplication is de�ned to be the actionof functions in F on X , then X is a semimodule over F [6].Proof summary: F is a dioid since the required propertiesof � in F are inherited from (X ;�), while the proper-ties of 
 follow from its de�nition as functional composi-tion. The 
 operator distributes over � because of lower{semicontinuity. Similarly, the required properties of scalarmultiplication follow from the de�nitions of � and 
. 2Consider a timed event graph such as Figure 1. Usingthe semimodule structure the behavior of a timed eventgraph with n events is governed by the equationx = Ax� v (2)where x is the sequence of �ring time vectors for events, vis a sequence of earliest allowable �ring time vectors, andA is an n�n matrix of delay functions at places. The leastsolution of (2) is x = A�v whereA� = Mi�0 AiA0 = I � 264 " 0. . .0 " 375 :The set of vector sequences in (R [ f�1g)n forms anidempotent commutative monoid under pointwise maxi-mization which we denote by Sn. Note that this monoidis complete. For systems with constant delay times, thedelay functions are of the form a
m , where a representsunary addition of some constant and 
 is the index back-shift function (
x(k) = x(k�1)). Functions of this form areeasily shown to be l.s.c. This structure can also be used tomodel systems more general than timed event graphs withconstant delays, including some untimed DES and time-varying systems [6].Example 1: To illustrate this approach, consider thetimed event graph of Figure 2 which represents a manu-facturing process. Upon arrival, a part is set up (s) ina machine queue and then worked (w) in order of arrival.Each of the subprocesses s and w takes essentially constanttime. However, the part interarrival times a may vary dueto the work
oor schedule. The machine reset time r isnormally constant except for periodic replacement of thecutting head. Letting xi denote the occurrence times of

event ti, the process is described by24 x1x2x3 35 = 24 a
 " "s " r
" w " 3524 x1x2x3 35� 24 �0�0�0 35 :The overbar notation indicates a constant sequence, so forthis example no events may occur before time 0. If we areinterested in the part completion times given by x3 this iscomputed using x = A�v. SinceA� = 24 (a
)� " "(r
w)�s(a
)� (r
w)� (r
w)�r
(wr
)�ws(a
)� (wr
)�w (wr
)� 35and v1 = v2 = v3 = �0 we havex3 = (wr
)�(ws(a
)� �w � 0)(�0)= (wr
)�ws(a
)�(�0): (3)Terms like (a
)� are used to denote an expression of theform 0� a
 � (a
)2 � : : :Once the delay functions are speci�ed, the part com-pletion times are computed from (3). In particular, lets(x) = x+ 1, w(x) = x+ 4, anda(x(k)) = � x(k) + 5 k oddx(x) + 7 k evenr(x(k)) = � x(k) + 4 k mod 5 = 0x(k) + 1 otherwiseFor the (a
)� term we �nd(a
)�(�0) = �0� a
�0 � (a
)2(�0)� (a
)3(�0) : : := f0; 0; 0; 0; : : :g �f"; 5; 7; 5; 7; : : :g �f"; "; 12; 12; 12; : : :g �f"; "; "; 17; 19; : : :g � : : := f0; 5; 12; 17; 24; : : :gCompleting the computation, we obtainx3 = f5; 10; 17; 22; 29;37;42;47;58 : : :g: 2Timed event graphs are structurally very similar to �nitestate machines which are often used to model logical DES.Both are directed graphs with labelled edges. While ina timed event graph the nodes correspond to events andthe edges to process delays, the nodes in a �nite statemachine represent the system states and the edges corre-spond to events. This is illustrated by comparing Figures 2and 3. The structures are dual in the sense that a timedevent graph models synchronization and concurrency butnot nondeterministic choice while a �nite state machinemodels nondeterministic choice but not synchronization orconcurrency. (We note that timed event graphs which in-clude deterministic choices are discussed in [2] and [5].)
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1 q2 q3Fig. 3. Finite state machine with same structure as Figure 2Because of the structural similarities between these au-tomata there is an algebraic similarity as well. If we con-sider sets of event sequences with the operation � de�nedas set union, the sequences accepted by a �nite state ma-chine can be described in the semimodule framework usedfor timed event graphs. The functions which are assignedto the edges in this case are right concatenations of eventlabels.The system of Figure 3 is therefore governed by the equa-tion 24 x1x2x3 35 = 24 a " "s " r" w " 3524 x1x2x3 35� 24 1;; 35 :which is of the form x = Ax � v as before. Here " is theconstant function which maps to the empty set and 1 is thezero{length sequence. Its purpose here is to indicate theinitial state of the system (q1). The solution for state q3 isq3 = a�sw(rw)�which is a regular expression over the event set of the sys-tem. Furthermore, except for omission of the 
 functionsand the reversed order (due to the convention of composingfunctions from the left) it is the same as the solution (3)for the timed event graph of Figure 2.It is this algebraic similarity which suggests that con-trol of timed event graphs may be studied using techniquesdeveloped for untimed DES.III. Supervisory Control of Timed DESTo motivate our approach to controlling timed DES, webrie
y recall the framework for controlling logical or un-timed DES behaviors. In a logical DES model with eventset �, the language L � �� of the system is the set ofall event sequences it can generate. Events are classi�edas either controllable, meaning that their occurrence maybe prevented, or uncontrollable. Control is accomplishedby dynamically disabling certain of the controllable eventsto avoid undesirable behaviors (event sequences not in thespeci�ed language). Observe that such a controller or su-pervisor may restrict system behavior, but not introduceany new behaviors.Since uncontrollable events may not be disabled, not allbehaviors are realizable. Language K is said to be control-lable with respect to L and the uncontrollable events �uif pr(K):�u \ L � pr(K) (4)where pr(K) is the pre�x closure of K.

For a supervisor to be able to restrict the system to adesired language, uncontrollable actions must not result insequences which lie outside of that language. Furthermore,we must permit the system to execute those behaviors inpr(K) which lead to the acceptable region, even thoughthey may not lie in that region themselves. Therefore,these potentially acceptable behaviors as well as the re-gion of acceptable behavior should be invariant or closedunder uncontrollable actions. Since uncontrollable eventsin the system act by concatenation this invariance prop-erty yields the de�nition of controllability stated in (4).If the desired behavior does not satisfy the controllabilitycondition, a supervisor may be constructed to achieve thesupremal sublanguage which is controllable.Now return to the max-algebra model of a timed eventgraph governed by (2). Suppose that some events Tc � Tare designated as controllable, meaning that their transi-tions may be delayed from �ring until some arbitrary latertime. This is similar in its mechanics to the controlled Petrinet concept introduced in [12] for untimed DES. The de-layed enabling times ui(k) for the controllable events are tobe provided by a supervisor. Let u represent the sequenceof transition enabling times provided by the supervisor,with ui(k) = " for ti uncontrollable. Then the supervisedsystem is described by x = Ax� v � u.To compute the e�ect of uncontrollable events, let Icdenote the matrix having the identity function on diagonalelements i for which ti 2 Tc and " elsewhere. Then for anydesired sequence y 2 Y the supervisor provides �ring timesu = Icy which results in x = A�(Icy�v). Since the desiredbehavior must be invariant under uncontrollable actions,we have the following de�nition of controllability.De�nition 2: A set of sequences Y � S is controllablewith respect to A, v, and Tc ifA�(IcY � v) � Y: (5)Intuitively, this means that enabling controllable events atany time allowed by the speci�cation set Y must resultin behavior within Y for all events. Notice that, as inthe untimed model, no new behavior is introduced by thesupervisor. System operation can never be accelerated |events can only be delayed.As an example suppose then that we wish to slow the sys-tem down as much as possible without causing any event tooccur later than some sequence of execution times y. Sucha speci�cation could be used to prevent bu�er over
ows,ensure the availability of su�cient processing time to ac-complish a task, or to synchronize events in independentsystems. This type of speci�cation is described byY = fx 2 Sjx � yg (6)where y 2 S is a �xed sequence. For the remainder of thissection we will consider acceptable behaviors of this form.Theorem 2: If Y speci�es sequences no later than y asin (6) then Y is controllable if and only ifA�(Icy � v) � y: (7)



COFER AND GARG: SUPERVISORY CONTROL OF DES USING LATTICE THEORY 5Proof: If Y is controllable then (5) holds. Thusy 2 Y ) A�(Icy � v) 2 Y) A�(Icy � v) � y:Conversely, suppose A�(Icy � v) � y. Then 8x 2 Yx 2 Y ) x � y) A�(Icx� v) � A�(Icy � v)) A�(Icx� v) � y) A�(Icx� v) 2 Y:Therefore A�(IcY � v) � Y . 2Example 2: For the system in Figure 2 with t2 control-lable, suppose we are given as a speci�cation the set Y ofsequences less than or equal toy = 24 (7
)�(�0)s(7
)�(�0)ws(7
)�(�0) 35 = 8<:24 015 35 ;24 7812 35 ;24 141519 35 ; : : :9=; :This speci�cation seeks to remove variations due to theinterarrival delays a. To determine if Y is controllable, wecompute A�Icy � A�v =24 "(r
w)�s(7
)�(�0)(wr
)�ws(7
)�(�0) 35 � 24 (a
)�(�0)(r
w)�s(a
)�(�0)(wr
)�ws(a
)�(�0) 35= 24 (a
)�(�0)(r
w)�s(7
)�(�0)(wr
)�ws(7
)�(�0) 35 ;making use of the fact that (7
)� � (a
)�. Examining thethird component we �nd that(wr
)�ws(7
)�(�0) = f5; 12; 19; 26; 33; 41; 47; : : :g> y3 = f5; 12; 19; 26; 33; 40; 47; : : :gso Y is not controllable. 2When a speci�cation is found to be uncontrollable, a lessrestrictive controllable speci�cation can always be gener-ated from it.Corollary 1: If y � v then A�y is a controllable sequence.Proof: By the construction of Ic we have IcA�y � A�y and) A�IcA�y � A�y) A�IcA�y � A�v � A�y � A�v) A�(Ic(A�y) � v) � A�y 2Example 3: Consider y from Example 2. The relaxedspeci�cation isA�y = 24 (a
)�(7
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w)�(s(a
)� � s� r
ws)(7
)�(�0)(wr
)�(ws(a
)� � ws)(7
)�(�0) 35= 24 (7
)�(�0)(r
w)�s(7
)�(�0)(wr
)�ws(7
)�(�0) 35

where we have used the fact that (r
w)�(0 � r
w) =(r
w)�. Checking condition (7) we �ndA�Ic(A�y) � A�v =24 "(r
w)�s(7
)�(�0)w(r
w)�s(7
)�(�0) 35 � 24 (a
)�(�0)(r
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)�(�0)(wr
)�ws(a
)�(�0) 35= 24 (7
)�(�0)(r
w)�s(7
)�(�0)w(r
w)�s(7
)�(�0) 35so A�y is controllable. 2It is more likely that a given speci�cation cannot be re-laxed. In this case we must �nd the least restrictive set ofcontrollable behaviors which meets the speci�cation. De-pending on the situation this may mean �nding the largestset which is contained in the speci�ed behavior or the small-est set which contains the speci�ed behavior. Determiningthese extremal optimal behaviors is the subject of the nextsection.IV. Extremal Behaviors of Timed DESThe controllability of a set of behaviors for a timed DESis speci�ed by an inequation (5) on the lattice of time se-quences. In algebraic terms this is the same situation we�nd for specifying the controllability of logical DES behav-iors. We demonstrate next that for timed DES where thedesired behavior is not controllable the extremal control-lable behaviors can be found using �xed point results forlattices.A. Lattice Theory for Logical DESLet X be an idempotent commutative monoid as consid-ered in Section II. The operation � induces a partial orderon X de�ned by (1). For any pair in X the least upperbound with respect to this order or supfx; yg is given byx � y. Since X is complete, we may de�ne supX for anyset X � X (not just pairs) bysupX = Mx2X x:We can also induce a greatest lower bound ^ from � bytaking infX = supfz 2 Xjz � x 8x 2 Xg:Since " � x for all x 2 X , infX is well de�ned for arbitraryX � X .The partially ordered set X is a complete lattice if supXand infX are in X for any X � X . Therefore a completeidempotent commutative monoid X is also a complete lat-tice. We will use the operators t and u to denote sup andinf respectively in a general lattice. Some complete latticeswhich will be of interest are:� (S;�), the lattice of sequences with the order inducedby � (pointwise maximization).� (2S ;�), the power set of sequences with the order ofset containment. In this lattice t and u are [ and \,respectively.



6 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. Y, MONTH 1999� (2�� ;�), the set of all languages over the event set �with the order of set containment.We next recall some useful properties of functions overlattices. A function f : X ! X is idempotent if8x 2 X : f(x) = f(f(x)):It is monotone if8x; y 2 X : x � y ) f(x) � f(y):For X a complete lattice, a function is disjunctive if8X � X : f(supX) = supx2Xff(x)g:Note that for the lattice (S;�) this is equivalent to thel.s.c. property. A function is conjunctive if8X � X : f(inf X) = infx2Xff(x)g:Disjunctive and conjunctive functions can both be shownto be monotone as well.Example 4: As an example of a disjunctive function con-sider any function f : S ! S on the lattice of sequences.The function may be extended to the power set lattice(2S ;�) by taking f̂ (X) = [x2Xff(x)g:Clearly any function f̂ : 2S ! 2S de�ned in this way isdisjunctive. 2De�nition 3: Consider a complete lattice (X ;�) and afunction f : X ! X . The disjunctive closure of f , denotedft, is de�ned by ft(x) = Gi�0f i(x):It is easy to see that the disjunctive closure of a functionis idempotent and disjunctive. For the lattice (S;�) theleast upper bound operation is � so ft(x) = f�(x). Forthe lattice (2S ;�) the least upper bound operation is [ soft(x) = [i�0f i(x).De�nition 4: Consider a complete lattice (X ;�) and afunction f : X ! X . If f is disjunctive then its dual,denoted f?, is de�ned byf?(y) = supfx 2 Xjf(x) � yg:If f is conjunctive then its co-dual, denoted f>, is de�nedby f>(y) = inffx 2 Xjy � f(x)g:The conditions of disjunctivity and conjunctivity are nec-essary in the de�nition to guarantee the existence of thedual and co-dual [13].Remark: On the lattice of sequences (S;�) the dual isequivalent to the residual de�ned in [2]. The residual of afunction f : X ! Y is a function f ] : Y ! X which mappoints y 2 Y to the greatest subsolution of the equation

f(x) = y.Example 5: Consider the index backshift function 
 :S ! S de�ned by
(x(k)) = � x(k � 1) : k � 1" : k = 0 :Let 
�1 be de�ned by 
�1(x(k)) = x(k+1). Since 8y 2 S :
(
�1(y)) = y and, furthermore, 
(x) = y , x = 
�1(y)we must have
?(y) = supfx 2 Sj
(x) � yg = 
�1:Now consider a time-varying delay as in Example 1 wherea(x(k)) = x(k) + ak. In this case a?x(k) = x(k) � ak. 2It can be shown that the dual of a function has the fol-lowing properties.1. If f1 and f2 are disjunctive functions then (f1f2)? =f?2 f?1 [13].2. If f is idempotent then f? is also idempotent (followsfrom 1.).3. If f and g are disjunctive then (f tg)? = f?ug? [2].As discussed the previous section the behavior of a DESis often speci�ed by a system of inequations over the un-derlying lattice of the formffi(x) � gi(x)gi�n: (8)It is shown in [13] and [14] that extremal solutions of (8) canbe reduced to extremal �xed{point computation of certaininduced functions. The relevant results are summarized inthe following two theorems.Theorem 3: Given the system of inequations (8) over acomplete lattice (X ;�), letY = fy 2 Xj8i � n : fi(y) � gi(y)gbe the set of all solutions of the system of inequations.Consider the sets of all �xed points of functions h1 and h2de�ned byh1(y) = infff?i (gi(y))g; Y1 = fy 2 Xjh1(y) = ygh2(y) = supfg>i (fi(y))g; Y2 = fy 2 Xjh2(y) = yg:1. If fi is disjunctive and gi is monotone 8i � n, thensupY 2 Y , sup Y1 2 Y1, and supY = supY1.2. If fi is monotone and gi is conjunctive 8i � n, theninf Y 2 Y , inf Y2 2 Y2, and inf Y = inf Y2.Proof summary: Under the stated conditions, the inducedfunctions h1 and h2 are monotone. On a complete lattice,monotonicity guarantees the existence of supremal and in-�mal �xed points [18]. When f and g satisfy these condi-tions, extremal solutions of (8) exist and correspond to theextremal �xed-points of h1 and h2. 2The next theorem uses these functions to compute ex-tremal solutions to (8).Theorem 4: Consider the system of inequations (8) overa complete lattice (X ;�) and the set Y of all solutions ofthe system.



COFER AND GARG: SUPERVISORY CONTROL OF DES USING LATTICE THEORY 71. Let fi be disjunctive and gi be monotone. Considerthe following iterative computation:� y0 := supX� yk+1 := h1(yk)If ym+1 = ym for some m 2 N then ym = sup Y .2. Let fi be monotone and gi be conjunctive. Considerthe following iterative computation:� y0 := inf X� yk+1 := h2(yk)If ym+1 = ym for some m 2 N then ym = inf Y .Proof summary: For part 1, the stopping condition ym+1 =ym is su�cient to show that ym 2 Y . If z 2 Y is anothersolution of the system of inequations, then an inductiveargument is used to show that z � yk 8k � 0. Therefore,ym = sup Y . Part 2 follows analogously. 2In the controllability condition for logical DES (4) onthe lattice (2�� ;�) the pre�x closure function is disjunctiveand monotone and the concatenation function is disjunc-tive. With some additional modi�cations Theorems 3 and4 demonstrate the existence and computation of the supre-mal controllable sublanguage of any speci�ed language.Formulas for other extremal behaviors, such as those re-ported in [4], can be derived in a similar manner. Detailsof this approach may be found in [13]. Next we show thatthese results can be applied analogously to timed DES us-ing the controllability condition presented in section 3.B. Timed DES Behavior Speci�ed as a SetSuppose we are given a set Y � S of acceptable se-quences. We wish to �nd the least subset or the greatestsuperset of Y such that enabling the controllable events attimes given by a sequence in the extremal set results in anactual behavior which lies in the extremal set. That is, weseek extremal sets of sequences which are invariant underuncontrollable actions.In this case, the underlying lattice is (2S ;�) and thede�nition of controllability is given by inequation (5). It isof the form f(X) � g(X) (9)where f(�) = A�(Ic(�)�v) and g(�) is the identity function.The identity function is monotone and since f is actuallya function on S extended to 2S we know by Example 4that it is disjunctive. Furthermore, f is also monotone andthe identity function is conjunctive. Therefore Theorem 3guarantees the existence of both extremal solutions and wemake use of Theorem 4 to �nd these solutions.Note that Theorem 4 yields the supremal and in�malsolutions to (8) over the entire lattice, which in this case areS and ; respectively. What we really want is the supremalsolution of (5) which is contained in a �xed set Y , whichis the desired behavior. To �nd the supremal controllablesubset of Y we must �nd the supremal solution to the pairof inequations A�(IcX � v) � X (10)X � Y:

The identity function and f(�) = A�(Ic(�)� v) are disjunc-tive and the constant function Y is monotone. Therefore,we meet the conditions of the �rst part of Theorem 3, withh1(X) = Y u f?(X):Similarly, to �nd the in�mal solution containing Y let thesecond inequation in (10) be Y � x. Since the constantfunction Y is monotone and the identity function is con-junctive we can use the second part of Theorem 3 withh2(X) = Y t f(X)where we use the fact that the co-dual of the identity isitself.Summarizing, we have the following result.Theorem 5: Given G = (T;A) with controllable eventsTc and a set of acceptable behaviors Y 2 S, the supre-mal controllable subset of Y and the in�mal controllablesuperset of Y both exist.Both of these solutions are computable by the iterativemethod of Theorem 4. For the special case where the func-tion f is disjunctive and also idempotent the iterative com-putation reduces to a single step.Theorem 6: Consider a complete lattice (X ;�), a dis-junctive and idempotent function f on X , and a �xedx̂ 2 X .1. The supremal solution less than x̂ of f(x) � x is x̂ uf?(x̂).2. The in�mal solution greater than x̂ of f(x) � x isx̂ t f(x̂).Proof: For the �rst part, since f is disjunctive and theidentity is monotone it follows from Theorem 3 than thesupremal solution less than x̂ exists. The iterative compu-tation yields y1 = x̂ u f?(x̂)y2 = x̂ u f?(x̂ u f?(x̂))= x̂ u f?(x̂) u f?(f?(x̂))= x̂ u f?(x̂)= y1:The second part follows analogously. 2We have already seen that the function on the left-handside of the controllability condition (5) is disjunctive. Itis also idempotent, allowing us to compute solutions usingTheorem 6.Lemma 1: The function f : S ! S de�ned by A�(Ic(�)�v) is idempotent.Proof: We �rst show that the function A�Ic is idempotent.A� � I ) A�IcA� � A�Ic) A�IcA�Ic � A�IcIc � I ) A�IcA� � A�A� = A�) A�IcA�Ic � A�IcUsing this fact we havef2(x) = A�(Ic(A�(Icx� v)) � v)



8 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. Y, MONTH 1999= A�IcA�Icx�A�IcA�v �A�v= A�Icx� (A�IcA� � A�)v= A�Icx�A�(Ic � I)A�v= A�Icx�A�v= f(x): 2If f is disjunctive but not idempotent, it can be replacedby its disjunctive closure ft. We need the following lemmawhich is simply an application of [2, Theorem 4.70] to thepresent situation.Lemma 2: For a complete lattice (X ;�) and a disjunc-tive function f : X ! Xf(x) � x, ft(x) � x:Since the disjunctive closure is idempotent and preservesdisjunctivity the next corollary is immediate.Corollary 2: Consider a complete lattice (X ;�), a dis-junctive function f on X , and a �xed x̂ 2 X .1. The supremal solution less than x̂ of f(x) � x is x̂ u(ft)?(x̂).2. The in�mal solution greater than x̂ of f(x) � x isx̂ t ft(x̂).Example 6: Consider the manufacturing process of Ex-ample 2 with the speci�cation setY = 8<:24 (7
)�(�0)s(7
)�(�0)ws(7
)�(�0) 35 ;24 (8
)�(�0)s(8
)�(�0)ws(8
)�(�0) 359=; = fy1; y2g:Since f(�) = A�(Ic(�) � v) is idempotent we can use The-orem 6 to �nd the supremal controllable subset of Y . InExample 2 we saw that f(y1) 62 Y , but f(y2) = y2. There-fore, Y \ f?(Y ) = Y \ supfX � Xjf(X) � Y g= fx 2 Y jf(x) 2 fy1; y2gg= y2:Similarly, the in�mal controllable superset of Y is given byY [ f(Y ) = fy1; y2g [ ff(y1); f(y2)g= fy1; y2; f(y1)g 2C. Behavior Speci�ed as an Extremal SequenceFor general Y � S computation of ft or the iterativeset computations of Theorem 4 may become unwieldy. Ifthe desired behavior can be expressed in terms of upperand/or lower bounds in S such thatY = fx 2 Sjy1 � x � y2gthen an alternative approach based on the lattice (S;�)may be appropriate.For a set of the form Y = fx 2 Sjx � yg we wish to�nd the greatest sequence z less than a �xed y such that

enabling the controllable events at times less than or equalto z results in actual behavior less than or equal to z. Wehave already seen from Theorem 2 that in this case thecontrollability condition is of the formf(x) = A�(Icx� v) � x:The function f is almost l.s.c (which is equivalent todisjunctivity on the lattice (S;�)) but not quite sincef(") 6= ". However, if we require y � A�v thensupfx 2 SjA�(Ic(x) � v) � yg = supfx 2 SjA�Ic(x) � ygso we can let f(x) = A�Icx. Now we can apply Corollary2 directly to �nd the supremal controllable sequence lessthan the given y.Example 7: For the system of Example 2 we �nd thesupremal controllable speci�cation sequence x � y. UsingTheorem 6, this is given byy ^ f?(y) = y ^ supfx 2 SjA�Ic(x) � yg:Since only t2 is controllable the �rst and third componentsof x can be made arbitrarily large and so are set equal to+1. Using the de�nition of A� we are left with the taskof �nding ((r
w)�)?(y2). Using the properties of the dualand Example 5 �rst observe that(0� r
w)?(y2) = 0?y2 ^ (r
w)?y2= y2 ^ w?
?r?y2= y2 ^ f3; 10; 17; 24; 28; 38; : : :g= f1; 8; 15; 22; 28; 36; : : :g� x2:Also note that0� r
w � (r
w)� ) ((r
w)�)?(y2) � (0� r
w)?(y2):Since (0 � r
w)x2 = (r
w)�x2 we must have((r
w)�)?(y2) = x2. Finally, the supremal controllablespeci�cation sequence less than y is given byy ^ 24 �1x2�1 35 = 24 y1x2y3 35 : 2Remark: This formulation of the control problem is similarto the latest start date problem considered in Section 5.6of [2]. There, the supremal solution to an inequation of theform A�Bx � y is sought. In our notation this is given byx = (A�B)?(y), which agrees with [2]. Note that the lat-est start date problem is not concerned with specifying thebehavior of the uncontrollable events nor with invarianceunder uncontrollable actions, accounting for the di�erencein formulation.On the other hand, for a set of the form Y = fx 2 Sjx �yg an argument along the same lines as Theorem 2 yieldsA�(Icx� v) � x (11)
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2t 1

t 3

1
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t 2

3Fig. 4. Timed event graph with no in�mal controllable speci�cation.as the condition for controllability. This is an inequation ofthe form f(x) � g(x) with f being the identity function andg(�) = A�(Ic(�) � v). While f is monotone, g in this caseis by no means necessarily conjunctive. Thus we cannotshow the existence of the in�mal controllable speci�cationgreater than the given sequence y using Theorem 3. Infact the following example shows that this sequence maynot exist at all.Example 8: Consider the system of Figure 4 governed byx = 24 1
 " "" 2
 "3 3 " 35x� 24 �0�0�0 35 :For t1 and t2 controllable andx̂ = 8<:24 ""3 35 ;24 ""6 35 ;24 ""9 35 ; : : :9=;observe that bothx1 = 8<:24 0"3 35 ;24 3"6 35 ;24 6"9 35 ; : : :9=;and x2 = 8<:24 "03 35 ;24 "36 35 ;24 "69 35 ; : : :9=;are controllable sequences (in the sense of (11)) greaterthan x̂. However, x1 ^x2 is uncontrollable since A�Ic(x1 ^x2) < x̂. Therefore there is no in�mal controllable speci�-cation sequence greater that x̂. 2Remark: If there is only one controllable event in the sys-tem, this is normally su�cient to guarantee that the func-tion A�(Ic(�) � v) is conjunctive. This is because the de-lay functions are often also upper{semicontinuous, meaningthat they distribute over ^ as well as �. When this is thecase, the in�mal controllable speci�cation sequence existsand can be found in accordance with Theorem 6.For those cases in which it is possible to �nd both thesupremal controllable z2 less than y2 and the in�mal con-trollable z1 greater than y1, then the supremal control-lable subset of Y = fx 2 Sjy1 � x � y2g is given byZ = fx 2 Sjz1 � x � z2g. This is true because any se-quence in Z must yield a behavior in the intersection of thetwo extremal controllable sets.If the existence of the in�mal controllable speci�cationcannot be guaranteed one practical method is to �nd the

supremal controllable speci�cation less than y2 and checkif the resulting behavior is greater than y1. This subopti-mal approach yields one controllable behavior (if any ex-ist) which meets the speci�cation. This method is demon-strated in [7].D. Behavior Speci�ed as a Single SequenceControllability constraints on the lattice (S;�) exam-ined thus far allow us only to specify bounds on the oc-currence times of events. Thus enabling the controllableevents at times within the speci�ed range guarantees thatall events will occur at times within that range. Supposeinstead we wish to �nd a single extremal controllable se-quence as opposed to a range or set of sequences invariantunder uncontrollable events. That is, we seek a sequencesuch that enabling the controllable events at the designatedtimes causes all events to actually occur at their designatedtimes, rather that merely occurring within the speci�ed set.Using the results of section 3 the controllability of a sin-gle sequence is speci�ed by requiring that A�(Icx�v) = x.If there is an upper limit x̂ on acceptable behavior, the op-timal behavior is the supremal controllable sequence lessthan x̂. This sequence is the supremal solution to the setof inequationsA�(Icx� v) � xx � A�(Icx� v)x � x̂:As before, if we require that x̂ � A�v then the �rstinequation may be replaced byA�Icx � x:Now all the left-hand side functions are disjunctive (l.s.c.)and all the right-hand side functions are monotone. Thus,we can apply Theorem 4 withh1(y) = x̂ ^A�(Icy � v) ^ (A�Ic)?(y)to �nd the desired behavior. Since the functionA�(Ic(�)�v)is not necessarily conjunctive, we will not consider in�malbehavior here.Example 9: Consider an upper limit such that x̂ = A�x̂.Then y1 = h1(supS) = x̂y2 = h1(x̂) = x̂ ^A�(Icx̂� v) ^ (A�Ic)?(x̂):Our restrictions on x̂ imply thatx̂ � A�Icx̂and therefore (A�Ic)?(x̂) � x̂:We also have A�(Icx̂� v) � x̂and so y2 = A�(Icx̂ � v). Furthermore, because of theidempotency of the function A�(Ic(�)� v) it follows thaty3 = h1(A�(Icx̂� v)) = A�(Icx̂� v)



10 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. Y, MONTH 1999which shows that this is the optimal behavior. 2There are many cases in which it is also important to con-sider the separation times between events. In [15] boundson event separation times are determined for acyclic graphswhile in [1] this is extended to cyclic timed event graphs(there called process graphs). Our interest is to determinewhether a speci�ed limit on event separation times can beachieved given the control available in the system.The ability to guarantee minimal separation times be-tween certain events could be useful for ensuring su�cienttime to perform an in-process inspection in a manufactur-ing system or to provide su�cient time between arrivalsand departures of connecting trains or airplanes. The abil-ity to guarantee maximal separation times between certainevents could be useful to avoid timeouts between commu-nicating processors.Let D be a matrix of delay functions which speci�es sep-aration times between events. A solution of the inequationDx � x (12)guarantees separation times of at leastD. If the delay func-tions in D are l.s.c. then D is disjunctive and inequation(12) meets the conditions of the �rst part of Theorem 3.Thus for the supremal controllable sequence less than somex̂ which satis�es the minimal separation time requirementof (12) we haveh1(y) = x̂ ^D?(y) ^A�(Icy � v) ^ (A�Ic)?(y):Therefore this supremal behavior exists and is computedby iterating h1.A solution of the inequationx � Dx (13)guarantees separation times of no more than D. Since D isalso monotone, inequation (13) also meets the conditions ofthe �rst part of Theorem 3. In this case, the supremal con-trollable sequence less than x̂ which satis�es the maximalseparation time requirement of (13) givesh1(y) = x̂ ^Dy ^A�(Icy � v) ^ (A�Ic)?(y):Therefore this supremal behavior also exists and is com-puted by iterating h1.Example 10: For the manufacturing process of Figure 2suppose now that t1 is controllable instead of t2. Thismeans that part arrivals from the rest of the factory maybe inhibited. We �nd the supremal controllable sequencex � x̂ where x̂ = 24 8(8
)�(�0)8(8
)�(�0)8(8
)�(�0) 35and such that the separation between x3(k � 1) and x1(k)does not exceed 3 for all k. This requirement ensures thatthe process does not sit idle for longer than 3 time units.This is speci�ed by the inequationx � Dx = 24 " " 3
" 0 "" " 0 35x� w

where w is a constant sequence with w1(0) = +1 and equalto 0 elsewhere. This modi�cation is necessary to indicatethat there is no separation constraint on x1(0), the �rst�ring of t1.Now applying the iteration scheme of Theorem 4 we �ndy0 = supSy1 = x̂y2 = 24 3(8
)�(�0)8(8
)�(�0)8(8
)�(�0) 35y3 = 24 3(8
)�(�0)4(8
)�(�0)8(8
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