CONTROL OF STOCHASTIC DISCRETE EVENT SYSTEMS: EXISTENCE

Ratnesh Kumar, Vijay K. Garg !

Dept. of Elec. Eng., Univ. of Kentucky, and Applied Research Lab., Penn. State Univ.

! Dept. of ECE, Univ. of Texas, Austin, TX

Keywords
Stochastic Discrete Event Systems, Probabilistic
Language, Supervisory Control !

Abstract

In earlier papers [3, 2, 1] we introduced the for-
malism of probabilistic languages for modeling the
stochastic qualitative behavior of discrete event sys-
tems (DESs). In this paper we present a frame-
work for their supervisory control, where control is
exercised by dynamically disabling certain control-
lable events. The control objective is to design a
supervisor such that the controlled system never ex-
ecutes any illegal traces (their occurrence probabil-
ity is zero), and legal traces occur with minimum
prespecified occurrence probabilities. We provide a
condition for the existence of a supervisor. We also
present an algorithm to test this existence condi-
tion when the probabilistic languages are regular (so
that they admit probabilistic automata representa-
tion with finitely many states).

1 Introduction

The non-stochastic behavior of a discrete event
system can be viewed as a binary valued map over
the set of all possible sequences of events, called
traces. (A trace is mapped to one if and only if
it belongs to the system behavior.) We call such a
map to be non-probabilistic language. In [3] we intro-
duced a more general map over the set of all traces
that takes values in the closed unit interval (instead
of just in the binary set) to describe the stochastic
qualitative behavior of a DES. The interpretation be-
ing that value associated with a certain trace under
such a map is its occurrence probability. In order for
such a probabilistic map to describe the stochastic
behavior of a DES it must satisfy certain consistency
properties obtained in [3]: (i) the probability of the

© 1998 IEE, WODES98 — Cagliari, Italy
Proc. of the Fourth Workshop on Discrete Event Systems
IThis research is supported in part by the National Sci-

ence Foundation under Grants NSF-ECS-9409712, NSF-ECS-
9709796, ECS-9414780, and CCR-9520540, in part by the Of-
fice of Naval Research under the Grant ONR-N00014-96-1-
5026, a General Motors Fellowship, a Texas Higher Education
Coordinating Board Grant ARP-320, and an IBM grant.

zero length trace is one, and (ii) the probability of
any trace is at least as much as the cumulative prob-
ability of all its extensions. We call such maps to
be probabilistic languages and use them for modeling
the stochastic qualitative behavior of DESs.

Sengupta [8, Chapter 5] studies the problem of
optimal control of stochastic behaviors of DESs. The
controller changes the occurrence probabilities of
events. A cost is assigned with each control action,
and the control objective is to minimize the cumula-
tive cost over an infinite horizon. The optimal con-
trol problem is the classical infinite horizon optimal
control of Markov processes.

In contrast, in this paper we study the problem
of supervisory control of stochastic behavior of DESs
modeled as probabilistic languages. A supervisor re-
stricts the behavior of the plant by dynamically dis-
abling certain set of controllable events based on its
observations of the executed traces. Thus the occur-
rence probability of disabled events becomes zero,
whereas the occurrence probability of the enabled
ones increases proportionately. Hence supervision
restricts the support of the probabilistic language of
the plant, but increases the occurrence probabilities
of the surviving traces within this restricted support.

The control objective is specified as a lower and
an upper bound constraint. The upper bound con-
straint imposes a legality constraint specifying that
a trace be enabled if and only if it is legal. Thus
the upper bound constraint can be represented as
a non-probabilistic language that maps a trace to
the value one if and only if it is legal. The second
constraint imposes a level of desirability on the le-
gal traces by specifying a lower bound on their oc-
currence probabilities. This constraint is given as
a probabilistic map over the set of traces, and the
control objective is to ensure that each legal trace
occurs with probability at least as much as specified
by this lower bound. Intuitively, we are interested
in designing a supervisor so that “bad” traces never
occur, whereas the “good” traces occur with certain
minimum probabilities. This generalizes the super-
visory control problem studied in the non-stochastic
setting where both the upper and lower bounds are
non-probabilistic languages.

We obtain a necessary and sufficient condition for
the existence of the supervisor for the above control
problem. The complexity of verifying the condition
is the same as that of shortest path computation,
i.e., O(n?®), where n is the product of the number
of states in the automata representations of the two
probabilistic languages.

2 Notation and Preliminaries

We use ¥ to denote the universe of events over
which a given DES evolves. The set ¥* is the set
of all finite length event sequences, called traces, in-
cluding the zero length trace, denoted e. A subset
of ¥* is called a language. Given traces s and ¢, we
use s < t to denote that s is a prefix of ¢, in which
case the notation s~!t is used to denote the suffix of
t obtained by removing the prefix s, i.e., t = ss~'t.
Given a language K, we use pr(K), prefix closure of
K, to denote the set of all prefixes of K; K is said
to be prefix closed if K = pr(K).

Qualitative behavior of DESs is described by lan-
guages. A language L C ¥* can be viewed as a unit
interval valued map—a probabilistic map—over X*,
L :¥* — [0,1]. For a probabilistic map L, its sup-
port, denoted supp(L) C ¥*, is the set of traces such
that L(s) > 0. L is said to be a non-probabilistic
map if L(s) € {0,1} for each trace s. Clearly, lan-
guages can also be represented by non-probabilistic
maps. A non-probabilistic map L models the non-
stochastic qualitative behavior of a DES if

Le)=1;Vse€e X", 0 € X: L(so) =1= L(s) = 1.

This is because a system can always execute the ep-
silon trace, and if it can execute a trace, then it can
also execute all its prefixes. We call such maps to be
non-probabilistic languages or np-languages.

The notion of probabilistic languages or p-
languages was introduced in [3] to model the stochas-
tic qualitative behavior of DESs. A definition of p-
languages based on their underlying probability mea-
sure space was presented in [3]. A p-language L can
alternatively be viewed as a probabilistic map satis-
fying the following constraints:

Pl: L(e) =1
P2: VseX*:) v L(so) < L(s)

Here for each trace s, L(s) gives its probability of
occurrence. Condition P1 follows from the fact that a
system can always execute the epsilon trace, whereas
the condition P2 follows from the fact that for any
extension of a trace s to be executable, s must itself
be executable.

It follows from the definition of a p-language L

that A(L) : ¥* — [0, 1] defined as:

Vs € B : A(L)(s) := L(s) — Y _ L(s0)

ocEX

satisfies A(L) > 0. A(L)(s) gives the probability
that the system modeled as p-language L terminates
following the execution of s.

Qualitative behavior of DESs can alternatively
be represented by automata. An automaton G over
the event set ¥ is a quadruple, G := (X, X, Tinit, P),
where X is the set of states of G, T € X is the
initial state of G, and P : X x ¥ x X — [0, 1] is the
state transition function of G. A triple (z,0,%') €
X x ¥ x X is called a transition. G is called
a non-probabilistic automaton or np-automaton if
P(z,0,2") € {0,1} for each transition (z, o', z); it is
said to be a probabilistic automaton or p-automaton
[3] if

Ve e X : Z ZP(az,a,az') <1.

z'eX oeX

For a p-automaton GG, we define

Ve e X AG)(x):=1= Y Y P(z,0,2

z'eX oeX

to be the probability of termination at state r. An
np-automaton (resp., p-automaton) is said to be de-
terministic np-automaton or dnp-automaton (resp.,
deterministic p-autornaton or dp-automaton) if

Vee X,ceX:|{z' € X|P(z,0,2") >0} <1.

The state transition function of G' can be ex-
tended to the set of paths X (XX)*, where a path is
obtained by concatenating transitions such that the
end and start states of consecutive transitions are the
same. Given a path 7 = zgo121 ...0,2, € X(ZX)*,
we use || = n to denote its length; for each k < |7|,
7 .= zgo12 ... opz to denote its initial sub-path
of length k; and ¢r(w) := o1 .. .0, to denote its trace.
The state transition function is extended inductively
to the set of paths as follows:

Vee X:P(z) =1

Vr e X(EX)", o€ X2’ € X:P(r,0,8') = P(r)P(x|,0,2").

If G is a np-automaton, then np-language generated
by G is given by

[La(s) =1l [Fr € X(EX)" :tr(n) = s, P(m) = 1].

If G is a p-automaton, then the p-language generated
by G is given by

La(s) == > P(m).
mitr(mw)=8,m0=Tinit

It is easy to see that Lg is a np-language when G is
a np-automaton, and it was shown in [3] that L¢ is
a p-language when G is a p-automaton. Conversely,

given a np-language (resp., p-language) there exists
a deterministic np-automaton (resp., deterministic
p-automaton) that generates it [3].

A np-language (resp., p-language) L is said to
be regular if there exists a np-automaton (resp., p-
automaton) G with finitely many states such that
Ls = L. A regular np-language (resp., regular p-
language) L is called deterministic regular if there
exists a dnp-automaton (resp., dp-automaton) with
finite states such that Lg = L.

Given a pair of automata G' := (X%, ¥, 2t .., P?),
(1 = 1,2), their synchronous composition is another
automaton G := (X, X, Zini, P), where X := X! x
XZ’ Linit *= (mzlnihm%nit)a and

P((z",2?),0,(@",7%)) := P' (", 0,7) P*(2?,0,7°),

where 21, 7! € X', 22,72 € X%,0 € X. It is
easy to see that if G%’s are deterministic, regular, p-
automata, np-automata, respectively, then so is G.
Furthermore, supp(Lg) = supp(Lgr) N supp(Lgz).

Given a set X, a partial order on X, denoted =<,
is a binary relation that is reflexive, antisymmetric,
and transitive. The pair (X, <) is called a partially
order set or a poset. For a pair of elements x,y € X,
their infimum and supremum whenever defined are
unique. A poset (z, <) is said to be a upper (resp.,
lower) semi-lattice if supremum (resp., infimum) for
any pair of elements in X exists; it is said to be a
complete upper (resp., lower) semi-lattice if supre-
mum (resp., infimum) of any subset of X exists; it is
said to be a (complete) lattice if it is both (complete)
upper and lower semi-lattice. A set Y C X is called
a chain if it is totally ordered, in which case Y can
be written as a monotonically increasing sequence of
poset elements Y = {z;};>0 with z; < =; whenever
i < j. A poset (X, =) is called a complete partial
order or a cpo if it has the bottom element and ev-
ery chain has the supremum element. A function
f X — X is called monotone if it preserves ordering
under its transformation; it is said to be continuous
if it distributes with supremum taken over a chain.

The set of unit interval valued probabilistic maps
over ¥* forms a poset under the following natural
ordering relation introduced in [3]:

VK,L:¥* - [0,1]: [K S L] & [Vs € " : K(s) < L(s)].

It is easy to see that the set of all non-probabilistic
maps is a complete lattice under this ordering. Also,
it was shown in [3] that the set of all p-languages
forms a cpo under this ordering. It was also shown
that the set of p-languages forms a complete lower
semi-lattice under this ordering.

For supervisory control of the qualitative behav-
ior of a discrete event plant the set of events is par-
titioned into ¥, U (¥ — X,), the sets of uncontrol-
lable and controllable events. For a discrete event

plant with behavior modeled by a np-language or a
p-language L, a supervisor S with complete observa-
tion of traces is a map S : supp(L) — 2>« that,
following the occurrence of a trace s € supp(L), dis-
ables the controllable events in the set S(s) C ¥ —X,,
from occurring next. The behavior of the controlled
plant is denoted by L°. For a np-language L, the
controlled behavior L° is also a np-language defined
inductively as:

L%(e) :==1;L%(s) = 1,L(s0) = 1,0 ¢ S(s) = L°(s0) :

Given a language K C ¥*, and a plant with np-
language or p-language L, K is said to be controllable
with respect to L if pr(K)¥, Nsupp(L) C pr(K). It
is known that there exists a supervisor S for a plant
with np-language L such that supp(L®) = K if and
only if K is nonempty, prefix closed, and control-
lable [6]. The set of prefix closed and controllable
languages forms a complete lattice. So the infimal
prefix closed and controllable superlanguage of a lan-
guage K, denoted infPC(K) [4], and its supremal
prefix closed and controllable sublanguage, denoted
supPC(K) [6], exist and are effectively computable.

3 Existence of Supervisor

In this section we extend the supervisory control
framework to the stochastic setting. Given a DES
with stochastic behavior modeled as p-language L,
we use (s 1L)(t) to denote the probability of trace ¢
given that trace s has already occurred:

L(stAs)

. 1 - _ _ L(st)
Vs, t € £ : (s7"L)(t) := L(st|s) = () ~ L(s)
where the last equality follows from the fact that
the outcome that trace st and trace s have occurred
is equivalent to the outcome that the trace st has
occurred, since occurrence of st implies occurrence
of the prefix s also. We thus have

L(st) = L(st A s) = L(st|s)L(s) = (s *L)(t)L(s).
We have the following simple lemma about s ! L.

Lemma 1 Let L be a p-language. Then for each
s € X* we have:

1. VteX* : A(s7LL)(t) = A(LL(7>S()st>_

2. s71L is a p-language.

Remark 1 If L is a deterministic p-language,
so that there exists a dp-automaton G :=
(X, X, Zinit, P) such that Lg = L, then for each trace
s there exists a unique path 7y, € X (XX)* such that
tr(m) = s, and L(s) = P(ws). This implies

P(a1x,1,0,@|r,,1) = (57 L)(0); A(G)(w)r,)) = A(sT'L)(e)

As described above, a supervisor S : supp(L) —
2¥~¥« determines the set of controllable events
S(s) € ¥—X, to be disabled following the execution
of trace s. In the next lemma we obtain the value
of (s7'L%)(0), the occurrence probability of event
o in the controlled plant given that trace s has al-
ready occurred. It states that this probability is zero
when o € S(s), and otherwise it equals the corre-
sponding occurrence probability in the uncontrolled
plant scaled by the appropriate normalization factor.
For the notational convenience, given a plant with p-
language L and a supervisor S : supp(L) — 25 %«
we define a probabilistic map ®°(L) : ¥* — [0, 1]:

Vs € N°: ®5(L)(s) := A(sT L) (e)+ Y (s7'L)(6).

GeX—S(s)

®5(L)(s) computes for the controlled plant the proba-
bility of either termination or execution of an enabled
event given that the trace s has already occurred.

Lemma 2 Let L be the p-language of a DES, and
S : supp(L) — 2¥~*« be a supervisor. Then

0 if o € S(s
(sflLS)(U) :{ (s’lL)(a) S ()

m otherwise

Using the result of Lemma 2 we define the p-
language of the controlled plant next (that it is
indeed a p-language is established below in Theo-
rem 1):

Definition 1 Let L be a p-language of a DES, and
S : supp(L) — 2* ¥« be a supervisor. The p-
language of the controlled plant, denoted L°, is de-
fined inductively as:

L3(e) := 1; L% (s0) := L% (s) (s~ L”)(0).

The following corollary states that the effect of
the control is to restrict the support, but to increase
the occurrence probabilities of the surviving traces
within this restricted support.

Corollary 1 Let L be the p-language of a DES, and
S : supp(L) — 2¥~> be a supervisor. Then

1. supp(L®) C supp(L).

2. supp(L®) is nonempty, prefix closed, and con-
trollable.

3. Vs € supp(L®) : L(s) < L(s).

The following theorem shows that L7 is indeed a
p-language.

Theorem 1 Let L be the p-language of a DES, and
S : supp(L) — 2¥~*« be a supervisor. Then

1. Vs € £* : A(L®)(s) = L"(s) [%]

2. L in Definition 1 is a p-language.

For a plant with p-language L we have defined
a supervisor S and the resulting controlled plant p-
language L°. The control objective is to ensure that
the controlled plant p-language lies within a certain
prespecified range, i.e., given a pair of probabilis-
tic maps K = D, the task is to design a supervisor
such that K’ < L° < D. Here D is actually a non-
probabilistic map, i.e., D : ¥* — {0, 1}, and specifies
a legality constraint. D maps the legal traces to one,
and the illegal traces to zero. The control objective
is to ensure L° < D, i.e., illegal traces never occur in
the controlled plant implying their occurrence proba-
bilities is each zero, whereas no constraint is imposed
on the occurrence probabilities of legal traces in the
upper bound specification D. The lower bound K
on the other hand specifies the level of desirability
of legal traces by specifying their minimum accept-
able occurrence probabilities. The control objective
is to ensure K < L%, i.e., legal traces in the con-
trolled plant occur with at least as much probability
as specified by the lower bound constraint K. The
existence of S such that K < L° < D also implies
supp(K) C supp(L®) C supp(D), which is the super-
visory control problem studied in the non-stochastic
setting [7]. Thus the supervisory control problem
formulated here generalizes the one studied in the
non-stochastic setting.

In the following theorem we give a necessary and
sufficient condition for the existence of a supervisor
for the supervisory control problem described above.

Theorem 2 Let L be the p-language of a DES, K
be a probabilistic map representing the lower bound
constraint, and D be a non-probabilistic map rep-
resenting the upper bound constraint. Then there
exists a supervisor S : supp(L) — 2~ such that
K < L% < D if and only if

K <L% <D,

where SV is the supervisor that restricts the support
of the plant to inf PC(supp(K)). In this case S* can
be used as a supervisor.

In the following remark we compare the existence
condition of Theorem 2 with the corresponding con-
dition in the non-stochastic setting.

Remark 2 Given a plant with p-language L, a
probabilistic map lower bound specification K, and

a non-probabilistic map upper bound specification D
such that K < D, in the non-stochastic setting we
are interested in designing a supervisor .S such that
supp(K) C supp(L®) C supp(D). It can be shown
using known results that such a supervisor exists if
and only if

supp(K) C supp(LS") = infPC(supp(K)) C supp(D).

Clearly this condition is implied by the condition of
Theorem 2. Thus the condition for the existence of
a supervisor in the non-stochastic setting is weaker
than that in the stochastic setting, as expected.

To see that the condition in the non-stochastic
setting is strictly weaker consider the following ex-
ample with ¥ = {a,b,c} and ¥, = {:

L) = LL@) = LB) = L) = LL(s) =
0, otherwise

K(a) =3,K(b) = 1,K(s) =0, otherwise

D(c) =0,D(s) =1, otherwise

Then supp(K) = {a,b} C supp(D) = {¢,a,b} C
supp(L) = {e,a,b,c}. This implies that ¢ must be
disabled initially, and a,b must be enabled initially.
So there is only one choice for the supervisor S with
S(e) = {c}. This gives:

L) =1,L%(a) = L°(b) = %, &L5(s) = 0, otherwise.

So clearly, supp(K) C supp(L®) = {e,a,b} =
supp(D). However, since K(a) = 2 > £ = L%(a),
K 4 LS < D.

4 Verification of Existence Condition

It follows from Theorem 2 that the existence of
a supervisor S for a plant with p-language L and
specifications K < D satisfying K < L° < D can
be checked by testing whether K < LS* < D, where
St is the supervisor that restricts the support of the
plant to infPC(supp(K)). We next provide an al-
gorithm for testing this condition. For this we as-
sume that all maps L, K, and D are deterministic
regular. We first construct a dnp-automaton G such
that Lg = LS".

Algorithm 1 Given deterministic reg-
ular p-languages L, K, let finite state dp-automata
Gt = (XL 3,2k, PL), GE = (XE 5,25, PK)
be such that Lgr = L,Lgx = K. We construct a
dnp-automaton G := (X, ¥, i, P) with finite state

such that Lg = L5" as follows:

1. Obtain dnp-automata GT,GK from G%,GX
respectively by replacing each transition proba-
bility with non-zero value by that of value one,
and deleting transitions with zero probability
value.

2. Obtain dnp-automaton G' such that the
support of its generated language equals
infPC(supp(K)). This is done in two steps:
first by adding a dump state in GE with self-
loops on uncontrollable events and also adding
a transition from each state of GX to the
dump state on each uncontrollable event that
is undefined in that state; and next taking the
synchronous composition of the resulting dnp-
automaton with GL.

3. Next obtain the dp-automaton G such that
Le = LS*. This is done by attaching appro-
priate probability values to each transition of
G as follows. Leﬂ’“, ¥ respectively, denote
typical states of GE, and GE augmented with
the dump state. Then (z%,2%) denotes a typ-
ical state of G'. For each state (zl,z%) of
G, let X(zX, 2¥) C ¥ denote the set of events
that are defined at state (z%,z%) in G*. Fi-
nally, since all automata are deterministic we
suppress the destination state in any transition
by representing it by a “x”. For each transi-
tion ((z¥,2%), 0, %) of G! define its probability
P((z*,2%),0,%) to be

PL(zt, o, %)
RGO @) + Lgemgor i) PP 6,5)°

where PZ (-, -,) gives the transition probability
of GT.

The following theorem proves the correctness of
Algorithm 1.

Theorem 3 Let L, K,GY,GK,G",G be as in Algo-
rithm 1. Then Ly = L5, where S* is a supervi-
sor that restricts the support of the plant with p-
language L to infPC(supp(K)).

Next we present an algorithm for testing whether
a p-language K is upper bounded by another p-
language L, assuming that both K, L are determin-
istic regular. This algorithm combined with Algo-
rithm 1 can be used to test the condition of Theo-
rem 2. We first present an algorithm to construct a
deterministic automaton G such that for each trace

s € supp(K), Lg(s) = IL(((SS))

Algorithm 2 Given deterministic reg-
ular p-languages L, K, let finite state dp-automata
Gl = (Xt % 2k, PD), GE = (XE %, 2K, PK)
be such that Lge = L,Lgx = K. We construct a
deterministic automaton G = (X, X, z;pni, P) with
finite state such that for each trace s € supp(K),

Lg(s) = IL(((SS)) as follows:

1. Define X := XL x XK

(el LK
2. Define init 1= (T30, Tinit)

3. For each 21,7l € XL 2K 7K ¢ XK o€ ©
define P((zX,25), 0, (L, 7%)) to be
{ PlatoT) PE(aX 0, 75) #£0

PK (2K 02K)

o0 otherwise

Then we have the following straightforward the-
orem. The first part states the correctness of Algo-
rithm 2, whereas the second part reduces the prob-
lem of checking K < L to that of a shortest path
computation.

Theorem 4 Let L, K, G, G¥ ,G be as in Algo-
rithm 2. Then

1. For each trace s € supp(K), Lg(s) =

2

2. K 2 L if and only if minyeypp(r) La(s

The second part of Theorem 4 reduces the prob-
lem of verification of K < L to that of computation
of the “least probable path” in G. An algorithm for
the shortest path computation can be modified to
compute this as follows.

Algorithm 3 Relabel the states of G' by numbers
1,...,n, where n is the total number of states in
G. The notation d*[i, j] is used to denote the “least
probable path” from state i to state j, visiting inter-
mediate states with label at most k.

. k:=0;Vi,j <n:d,j] = mingex P(i,0,7).
cki=k+ 1V, 5 <n:d¥i,j] =

{mln{d’c Yi, 3], d* i, k)dE [k, 4]} if d¥ Lk, K] >

otherwise

3. IfVi,j <n:d*1[i,j] = d*[i, j], then stop; else
go to step 2.

Remark 3 Using a proof similar to the proof of the
correctness of shortest path computation [5], it is
easily shown that the above iterative computation
terminates in at most n iterations performing O(n?)
computations in each iteration, and upon termina-
tion d"[i, j] equals the “least probable” path from the
state i to state j. So if the initial state is relabeled as
say 4, then K < L if and only if min;<, d™[i,j] > 1.
The computational complexity of this test is thus
O(n?), where n is the product of the number of states
of G¥ and G¥.

5 Conclusion

In this paper we have formalized the supervisory
control of stochastic qualitative behavior of DESs. It
generalizes the supervisory control formalism of the
non-stochastic setting in a natural way. The control
objective in the stochastic setting is to design a su-
pervisor so that the controlled plant only generates
legal traces (specified as a non-probabilistic map),
and that the traces it generates occur with certain
minimum probabilities (specified as a probabilistic
map). We have shown that the computational com-
plexity of the test for the existence of a supervisor
(in the case when the languages involved are deter-
ministic regular) is O(n?).

References

[1] V. K. Garg. An algebraic approach to modeling
probabilistic discrete event systems. In Proceed-
ings of 1992 IEEE Conference on Decision and
Control, pages 2348-2353, Tucson, AZ, Decem-
ber 1992.

[2] V. K. Garg. Probabilistic languages for model-
ing of deds. In Proceedings of Conference on In-
formation Sciences and Systems, pages 198203,
Princeton, NJ, March 1992.

[3] V. K. Garg, R. Kumar, and S. I. Marcus. Proba-
bilistic language formalism for stochastic discrete
event systems. IEEE Transactions on Automatic
Control, 1997. Accepted.

[4] S. Lafortune and E. Chen. On the infimal closed
and controllable superlanguage of a given lan-
guage. IEEE Transactions on Automatic Con-
trol, 35(4):398-404, 1990.

[5] E. Lawler. Combinatorial Optimization - Net-
works and Matroids. Holt Rinehart and Winston,
1976.

[6] P. J. Ramadge and W. M. Wonham. Super-
visory control of a class of discrete event pro-
cesses. SIAM Journal of Control and Optimiza-
tion, 25(1):206-230, 1987.

[7] P.J. Ramadge and W. M. Wonham. The control
of discrete event systems. Proceedings of IEEE:
Special Issue on Discrete Event Systems, 77:81—
98, 1989.

[8] R. Sengupta. Optimal control of discrete event
systems. PhD thesis, Department of Electrical
Engineering and Computer Science, University of
Michigan at Ann Arbor, 1995.

