
CONTROL OF STOCHASTIC DISCRETE EVENT SYSTEMS: EXISTENCERatnesh Kumar, Vijay K. Garg 1Dept. of Elec. Eng., Univ. of Kentucky, and Applied Research Lab., Penn. State Univ.1 Dept. of ECE, Univ. of Texas, Austin, TXKeywordsStochastic Discrete Event Systems, ProbabilisticLanguage, Supervisory Control 1AbstractIn earlier papers [3, 2, 1] we introduced the for-malism of probabilistic languages for modeling thestochastic qualitative behavior of discrete event sys-tems (DESs). In this paper we present a frame-work for their supervisory control, where control isexercised by dynamically disabling certain control-lable events. The control objective is to design asupervisor such that the controlled system never ex-ecutes any illegal traces (their occurrence probabil-ity is zero), and legal traces occur with minimumprespeci�ed occurrence probabilities. We provide acondition for the existence of a supervisor. We alsopresent an algorithm to test this existence condi-tion when the probabilistic languages are regular (sothat they admit probabilistic automata representa-tion with �nitely many states).1 IntroductionThe non-stochastic behavior of a discrete eventsystem can be viewed as a binary valued map overthe set of all possible sequences of events, calledtraces. (A trace is mapped to one if and only ifit belongs to the system behavior.) We call such amap to be non-probabilistic language. In [3] we intro-duced a more general map over the set of all tracesthat takes values in the closed unit interval (insteadof just in the binary set) to describe the stochasticqualitative behavior of a DES. The interpretation be-ing that value associated with a certain trace undersuch a map is its occurrence probability. In order forsuch a probabilistic map to describe the stochasticbehavior of a DES it must satisfy certain consistencyproperties obtained in [3]: (i) the probability of thec
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zero length trace is one, and (ii) the probability ofany trace is at least as much as the cumulative prob-ability of all its extensions. We call such maps tobe probabilistic languages and use them for modelingthe stochastic qualitative behavior of DESs.Sengupta [8, Chapter 5] studies the problem ofoptimal control of stochastic behaviors of DESs. Thecontroller changes the occurrence probabilities ofevents. A cost is assigned with each control action,and the control objective is to minimize the cumula-tive cost over an in�nite horizon. The optimal con-trol problem is the classical in�nite horizon optimalcontrol of Markov processes.In contrast, in this paper we study the problemof supervisory control of stochastic behavior of DESsmodeled as probabilistic languages. A supervisor re-stricts the behavior of the plant by dynamically dis-abling certain set of controllable events based on itsobservations of the executed traces. Thus the occur-rence probability of disabled events becomes zero,whereas the occurrence probability of the enabledones increases proportionately. Hence supervisionrestricts the support of the probabilistic language ofthe plant, but increases the occurrence probabilitiesof the surviving traces within this restricted support.The control objective is speci�ed as a lower andan upper bound constraint. The upper bound con-straint imposes a legality constraint specifying thata trace be enabled if and only if it is legal. Thusthe upper bound constraint can be represented asa non-probabilistic language that maps a trace tothe value one if and only if it is legal. The secondconstraint imposes a level of desirability on the le-gal traces by specifying a lower bound on their oc-currence probabilities. This constraint is given asa probabilistic map over the set of traces, and thecontrol objective is to ensure that each legal traceoccurs with probability at least as much as speci�edby this lower bound. Intuitively, we are interestedin designing a supervisor so that \bad" traces neveroccur, whereas the \good" traces occur with certainminimum probabilities. This generalizes the super-visory control problem studied in the non-stochasticsetting where both the upper and lower bounds arenon-probabilistic languages.



We obtain a necessary and su�cient condition forthe existence of the supervisor for the above controlproblem. The complexity of verifying the conditionis the same as that of shortest path computation,i.e., O(n3), where n is the product of the numberof states in the automata representations of the twoprobabilistic languages.2 Notation and PreliminariesWe use � to denote the universe of events overwhich a given DES evolves. The set �� is the setof all �nite length event sequences, called traces, in-cluding the zero length trace, denoted �. A subsetof �� is called a language. Given traces s and t, weuse s � t to denote that s is a pre�x of t, in whichcase the notation s�1t is used to denote the su�x oft obtained by removing the pre�x s, i.e., t = ss�1t.Given a language K, we use pr(K), pre�x closure ofK, to denote the set of all pre�xes of K; K is saidto be pre�x closed if K = pr(K).Qualitative behavior of DESs is described by lan-guages. A language L � �� can be viewed as a unitinterval valued map|a probabilistic map|over ��,L : �� ! [0; 1]. For a probabilistic map L, its sup-port, denoted supp(L) � ��, is the set of traces suchthat L(s) > 0. L is said to be a non-probabilisticmap if L(s) 2 f0; 1g for each trace s. Clearly, lan-guages can also be represented by non-probabilisticmaps. A non-probabilistic map L models the non-stochastic qualitative behavior of a DES ifL(�) = 1;8s 2 ��; � 2 � : L(s�) = 1) L(s) = 1:This is because a system can always execute the ep-silon trace, and if it can execute a trace, then it canalso execute all its pre�xes. We call such maps to benon-probabilistic languages or np-languages.The notion of probabilistic languages or p-languages was introduced in [3] to model the stochas-tic qualitative behavior of DESs. A de�nition of p-languages based on their underlying probability mea-sure space was presented in [3]. A p-language L canalternatively be viewed as a probabilistic map satis-fying the following constraints:P1: L(�) = 1P2: 8s 2 �� :P�2� L(s�) � L(s)Here for each trace s, L(s) gives its probability ofoccurrence. Condition P1 follows from the fact that asystem can always execute the epsilon trace, whereasthe condition P2 follows from the fact that for anyextension of a trace s to be executable, s must itselfbe executable.It follows from the de�nition of a p-language L

that �(L) : �� ! [0; 1] de�ned as:8s 2 �� : �(L)(s) := L(s)�X�2�L(s�)satis�es �(L) � 0. �(L)(s) gives the probabilitythat the system modeled as p-language L terminatesfollowing the execution of s.Qualitative behavior of DESs can alternativelybe represented by automata. An automaton G overthe event set � is a quadruple, G := (X;�; xinit; P ),where X is the set of states of G, xinit 2 X is theinitial state of G, and P : X � ��X ! [0; 1] is thestate transition function of G. A triple (x; �; x0) 2X � � � X is called a transition. G is calleda non-probabilistic automaton or np-automaton ifP (x; �; x0) 2 f0; 1g for each transition (x; �0; x); it issaid to be a probabilistic automaton or p-automaton[3] if 8x 2 X : Xx02XX�2�P (x; �; x0) � 1:For a p-automaton G, we de�ne8x 2 X : �(G)(x) := 1� Xx02XX�2�P (x; �; x0)to be the probability of termination at state x. Annp-automaton (resp., p-automaton) is said to be de-terministic np-automaton or dnp-automaton (resp.,deterministic p-automaton or dp-automaton) if8x 2 X; � 2 � : jfx0 2 X j P (x; �; x0) > 0gj � 1:The state transition function of G can be ex-tended to the set of paths X(�X)�, where a path isobtained by concatenating transitions such that theend and start states of consecutive transitions are thesame. Given a path � = x0�1x1 : : : �nxn 2 X(�X)�,we use j�j = n to denote its length; for each k � j�j,�k := x0�1x1 : : : �kxk to denote its initial sub-pathof length k; and tr(�) := �1 : : : �n to denote its trace.The state transition function is extended inductivelyto the set of paths as follows:8x 2 X : P (x) = 18� 2 X(�X)�; � 2 �; x0 2 X : P (�; �; x0) = P (�)P (xj�j; �; x0):If G is a np-automaton, then np-language generatedby G is given by[LG(s) := 1], [9� 2 X(�X)� : tr(�) = s; P (�) = 1]:If G is a p-automaton, then the p-language generatedby G is given byLG(s) := X�:tr(�)=s;�0=xinit P (�):It is easy to see that LG is a np-language when G isa np-automaton, and it was shown in [3] that LG isa p-language when G is a p-automaton. Conversely,



given a np-language (resp., p-language) there existsa deterministic np-automaton (resp., deterministicp-automaton) that generates it [3].A np-language (resp., p-language) L is said tobe regular if there exists a np-automaton (resp., p-automaton) G with �nitely many states such thatLG = L. A regular np-language (resp., regular p-language) L is called deterministic regular if thereexists a dnp-automaton (resp., dp-automaton) with�nite states such that LG = L.Given a pair of automata Gi := (X i;�; xiinit; P i),(i = 1; 2), their synchronous composition is anotherautomaton G := (X;�; xinit; P ), where X := X1 �X2, xinit := (x1init; x2init), andP ((x1; x2); �; (x1; x2)) := P 1(x1; �; x1)P 2(x2; �; x2);where x1; x1 2 X1; x2; x2 2 X2; � 2 �. It iseasy to see that if Gi's are deterministic, regular, p-automata, np-automata, respectively, then so is G.Furthermore, supp(LG) = supp(LG1) \ supp(LG2).Given a set X , a partial order on X , denoted �,is a binary relation that is re
exive, antisymmetric,and transitive. The pair (X;�) is called a partiallyorder set or a poset. For a pair of elements x; y 2 X ,their in�mum and supremum whenever de�ned areunique. A poset (x;�) is said to be a upper (resp.,lower) semi-lattice if supremum (resp., in�mum) forany pair of elements in X exists; it is said to be acomplete upper (resp., lower) semi-lattice if supre-mum (resp., in�mum) of any subset of X exists; it issaid to be a (complete) lattice if it is both (complete)upper and lower semi-lattice. A set Y � X is calleda chain if it is totally ordered, in which case Y canbe written as a monotonically increasing sequence ofposet elements Y = fxigi�0 with xi � xj wheneveri � j. A poset (X;�) is called a complete partialorder or a cpo if it has the bottom element and ev-ery chain has the supremum element. A functionf : X ! X is called monotone if it preserves orderingunder its transformation; it is said to be continuousif it distributes with supremum taken over a chain.The set of unit interval valued probabilistic mapsover �� forms a poset under the following naturalordering relation introduced in [3]:8K;L : �� ! [0; 1] : [K � L], [8s 2 �� : K(s) � L(s)]:It is easy to see that the set of all non-probabilisticmaps is a complete lattice under this ordering. Also,it was shown in [3] that the set of all p-languagesforms a cpo under this ordering. It was also shownthat the set of p-languages forms a complete lowersemi-lattice under this ordering.For supervisory control of the qualitative behav-ior of a discrete event plant the set of events is par-titioned into �u [ (� � �u), the sets of uncontrol-lable and controllable events. For a discrete event

plant with behavior modeled by a np-language or ap-language L, a supervisor S with complete observa-tion of traces is a map S : supp(L) ! 2���u that,following the occurrence of a trace s 2 supp(L), dis-ables the controllable events in the set S(s) � ���ufrom occurring next. The behavior of the controlledplant is denoted by LS . For a np-language L, thecontrolled behavior LS is also a np-language de�nedinductively as:LS(�) := 1;LS(s) = 1; L(s�) = 1; � 62 S(s)) LS(s�) := 1:Given a language K � ��, and a plant with np-language or p-languageL,K is said to be controllablewith respect to L if pr(K)�u \ supp(L) � pr(K). Itis known that there exists a supervisor S for a plantwith np-language L such that supp(LS) = K if andonly if K is nonempty, pre�x closed, and control-lable [6]. The set of pre�x closed and controllablelanguages forms a complete lattice. So the in�malpre�x closed and controllable superlanguage of a lan-guage K, denoted infPC(K) [4], and its supremalpre�x closed and controllable sublanguage, denotedsupPC(K) [6], exist and are e�ectively computable.3 Existence of SupervisorIn this section we extend the supervisory controlframework to the stochastic setting. Given a DESwith stochastic behavior modeled as p-language L,we use (s�1L)(t) to denote the probability of trace tgiven that trace s has already occurred:8s; t 2 �� : (s�1L)(t) := L(stjs) = L(st ^ s)L(s) = L(st)L(s) ;where the last equality follows from the fact thatthe outcome that trace st and trace s have occurredis equivalent to the outcome that the trace st hasoccurred, since occurrence of st implies occurrenceof the pre�x s also. We thus haveL(st) = L(st ^ s) = L(stjs)L(s) = (s�1L)(t)L(s):We have the following simple lemma about s�1L.Lemma 1 Let L be a p-language. Then for eachs 2 �� we have:1. 8t 2 �� : �(s�1L)(t) = �(L)(st)L(s) .2. s�1L is a p-language.Remark 1 If L is a deterministic p-language,so that there exists a dp-automaton G :=(X;�; xinit; P ) such that LG = L, then for each traces there exists a unique path �s 2 X(�X)� such thattr(�) = s, and L(s) = P (�s). This impliesP (xj�sj; �; xj�s� j) = (s�1L)(�);�(G)(xj�sj) = �(s�1L)(�):



As described above, a supervisor S : supp(L) !2���u determines the set of controllable eventsS(s) � ���u to be disabled following the executionof trace s. In the next lemma we obtain the valueof (s�1LS)(�), the occurrence probability of event� in the controlled plant given that trace s has al-ready occurred. It states that this probability is zerowhen � 2 S(s), and otherwise it equals the corre-sponding occurrence probability in the uncontrolledplant scaled by the appropriate normalization factor.For the notational convenience, given a plant with p-language L and a supervisor S : supp(L) ! 2���u ,we de�ne a probabilistic map �S(L) : �� ! [0; 1]:8s 2 �� : �S(L)(s) := �(s�1L)(�)+ X�̂2��S(s)(s�1L)(�̂):�S(L)(s) computes for the controlled plant the proba-bility of either termination or execution of an enabledevent given that the trace s has already occurred.Lemma 2 Let L be the p-language of a DES, andS : supp(L)! 2���u be a supervisor. Then(s�1LS)(�) = ( 0 if � 2 S(s)(s�1L)(�)�S(L)(s) otherwiseUsing the result of Lemma 2 we de�ne the p-language of the controlled plant next (that it isindeed a p-language is established below in Theo-rem 1):De�nition 1 Let L be a p-language of a DES, andS : supp(L) ! 2���u be a supervisor. The p-language of the controlled plant, denoted LS, is de-�ned inductively as:LS(�) := 1;LS(s�) := LS(s)(s�1LS)(�):The following corollary states that the e�ect ofthe control is to restrict the support, but to increasethe occurrence probabilities of the surviving traceswithin this restricted support.Corollary 1 Let L be the p-language of a DES, andS : supp(L)! 2���u be a supervisor. Then1. supp(LS) � supp(L).2. supp(LS) is nonempty, pre�x closed, and con-trollable.3. 8s 2 supp(LS) : L(s) � LS(s).The following theorem shows that LS is indeed ap-language.

Theorem 1 Let L be the p-language of a DES, andS : supp(L)! 2���u be a supervisor. Then1. 8s 2 �� : �(LS)(s) = LS(s) h�(s�1L)(�)�S(L)(s) i2. LS in De�nition 1 is a p-language.For a plant with p-language L we have de�neda supervisor S and the resulting controlled plant p-language LS. The control objective is to ensure thatthe controlled plant p-language lies within a certainprespeci�ed range, i.e., given a pair of probabilis-tic maps K � D, the task is to design a supervisorsuch that K � LS � D. Here D is actually a non-probabilistic map, i.e., D : �� ! f0; 1g, and speci�esa legality constraint. D maps the legal traces to one,and the illegal traces to zero. The control objectiveis to ensure LS � D, i.e., illegal traces never occur inthe controlled plant implying their occurrence proba-bilities is each zero, whereas no constraint is imposedon the occurrence probabilities of legal traces in theupper bound speci�cation D. The lower bound Kon the other hand speci�es the level of desirabilityof legal traces by specifying their minimum accept-able occurrence probabilities. The control objectiveis to ensure K � LS , i.e., legal traces in the con-trolled plant occur with at least as much probabilityas speci�ed by the lower bound constraint K. Theexistence of S such that K � LS � D also impliessupp(K) � supp(LS) � supp(D), which is the super-visory control problem studied in the non-stochasticsetting [7]. Thus the supervisory control problemformulated here generalizes the one studied in thenon-stochastic setting.In the following theorem we give a necessary andsu�cient condition for the existence of a supervisorfor the supervisory control problem described above.Theorem 2 Let L be the p-language of a DES, Kbe a probabilistic map representing the lower boundconstraint, and D be a non-probabilistic map rep-resenting the upper bound constraint. Then thereexists a supervisor S : supp(L) ! 2���u such thatK � LS � D if and only ifK � LS# � D;where S# is the supervisor that restricts the supportof the plant to infPC(supp(K)). In this case S# canbe used as a supervisor.In the following remark we compare the existencecondition of Theorem 2 with the corresponding con-dition in the non-stochastic setting.Remark 2 Given a plant with p-language L, aprobabilistic map lower bound speci�cation K, and



a non-probabilistic map upper bound speci�cation Dsuch that K � D, in the non-stochastic setting weare interested in designing a supervisor S such thatsupp(K) � supp(LS) � supp(D). It can be shownusing known results that such a supervisor exists ifand only ifsupp(K) � supp(LS#) = infPC(supp(K)) � supp(D):Clearly this condition is implied by the condition ofTheorem 2. Thus the condition for the existence ofa supervisor in the non-stochastic setting is weakerthan that in the stochastic setting, as expected.To see that the condition in the non-stochasticsetting is strictly weaker consider the following ex-ample with � = fa; b; cg and �u = ;:L(�) = 1; L(a) = L(b) = L(c) = 13 ; L(s) =0; otherwiseK(a) = 34 ;K(b) = 14 ;K(s) = 0; otherwiseD(c) = 0; D(s) = 1; otherwiseThen supp(K) = fa; bg � supp(D) = f�; a; bg �supp(L) = f�; a; b; cg. This implies that c must bedisabled initially, and a; b must be enabled initially.So there is only one choice for the supervisor S withS(�) = fcg. This gives:LS(�) = 1; LS(a) = LS(b) = 12 ;&LS(s) = 0; otherwise:So clearly, supp(K) � supp(LS) = f�; a; bg =supp(D). However, since K(a) = 34 > 12 = LS(a),K 6� LS � D.4 Veri�cation of Existence ConditionIt follows from Theorem 2 that the existence ofa supervisor S for a plant with p-language L andspeci�cations K � D satisfying K � LS � D canbe checked by testing whether K � LS# � D, whereS# is the supervisor that restricts the support of theplant to infPC(supp(K)). We next provide an al-gorithm for testing this condition. For this we as-sume that all maps L;K, and D are deterministicregular. We �rst construct a dnp-automaton G suchthat LG = LS# .Algorithm 1 Given deterministic reg-ular p-languages L;K, let �nite state dp-automataGL := (XL;�; xLinit; PL), GK := (XK ;�; xKinit; PK)be such that LGL = L;LGK = K. We construct adnp-automatonG := (X;�; xinit; P ) with �nite statesuch that LG = LS# as follows:1. Obtain dnp-automata GL; GK from GL; GKrespectively by replacing each transition proba-bility with non-zero value by that of value one,and deleting transitions with zero probabilityvalue.

2. Obtain dnp-automaton G1 such that thesupport of its generated language equalsinfPC(supp(K)). This is done in two steps:�rst by adding a dump state in GK with self-loops on uncontrollable events and also addinga transition from each state of GK to thedump state on each uncontrollable event thatis unde�ned in that state; and next taking thesynchronous composition of the resulting dnp-automaton with GL.3. Next obtain the dp-automaton G such thatLG = LS# . This is done by attaching appro-priate probability values to each transition ofG1 as follows. Let xL; xK , respectively, denotetypical states of GL, and GK augmented withthe dump state. Then (xL; xK) denotes a typ-ical state of G1. For each state (xL; xK) ofG1, let �(xL; xK) � � denote the set of eventsthat are de�ned at state (xL; xK) in G1. Fi-nally, since all automata are deterministic wesuppress the destination state in any transitionby representing it by a \�". For each transi-tion ((xL; xK); �; �) of G1 de�ne its probabilityP ((xL; xK); �; �) to bePL(xL; �; �)�(GL)(xL) +P�̂2�(xL;xK) PL(xL; �̂; �) ;where PL(�; �; �) gives the transition probabilityof GL.The following theorem proves the correctness ofAlgorithm 1.Theorem 3 Let L;K;GL; GK ; G1; G be as in Algo-rithm 1. Then LG = LS# , where S# is a supervi-sor that restricts the support of the plant with p-language L to infPC(supp(K)).Next we present an algorithm for testing whethera p-language K is upper bounded by another p-language L, assuming that both K;L are determin-istic regular. This algorithm combined with Algo-rithm 1 can be used to test the condition of Theo-rem 2. We �rst present an algorithm to construct adeterministic automaton G such that for each traces 2 supp(K), LG(s) = L(s)K(s) .Algorithm 2 Given deterministic reg-ular p-languages L;K, let �nite state dp-automataGL := (XL;�; xLinit; PL), GK := (XK ;�; xKinit; PK)be such that LGL = L;LGK = K. We construct adeterministic automaton G = (X;�; xinit; P ) with�nite state such that for each trace s 2 supp(K),LG(s) = L(s)K(s) as follows:1. De�ne X := XL �XK



2. De�ne xinit := (xLinit; xKinit)3. For each xL; xL 2 XL; xK ; xK 2 XK ; � 2 �de�ne P ((xL; xK); �; (xL; xK)) to be( PL(xL;�;xL)PK(xK ;�;xK) if PK(xK ; �; xK) 6= 01 otherwiseThen we have the following straightforward the-orem. The �rst part states the correctness of Algo-rithm 2, whereas the second part reduces the prob-lem of checking K � L to that of a shortest pathcomputation.Theorem 4 Let L;K;GL; GK ; G be as in Algo-rithm 2. Then1. For each trace s 2 supp(K), LG(s) = L(s)K(s) .2. K � L if and only if mins2supp(K) LG(s) � 1.The second part of Theorem 4 reduces the prob-lem of veri�cation of K � L to that of computationof the \least probable path" in G. An algorithm forthe shortest path computation can be modi�ed tocompute this as follows.Algorithm 3 Relabel the states of G by numbers1; : : : ; n, where n is the total number of states inG. The notation dk[i; j] is used to denote the \leastprobable path" from state i to state j, visiting inter-mediate states with label at most k.1. k := 0;8i; j � n : d0[i; j] := min�2� P (i; �; j).2. k := k + 1;8i; j � n : dk[i; j] :=�minfdk�1[i; j]; dk�1[i; k]dk�1[k; j]g if dk�1[k; k] � 10 otherwise3. If 8i; j � n : dk�1[i; j] = dk[i; j], then stop; elsego to step 2.Remark 3 Using a proof similar to the proof of thecorrectness of shortest path computation [5], it iseasily shown that the above iterative computationterminates in at most n iterations performing O(n2)computations in each iteration, and upon termina-tion dn[i; j] equals the \least probable" path from thestate i to state j. So if the initial state is relabeled assay i, then K � L if and only if minj�n dn[i; j] � 1.The computational complexity of this test is thusO(n3), where n is the product of the number of statesof GL and GK .

5 ConclusionIn this paper we have formalized the supervisorycontrol of stochastic qualitative behavior of DESs. Itgeneralizes the supervisory control formalism of thenon-stochastic setting in a natural way. The controlobjective in the stochastic setting is to design a su-pervisor so that the controlled plant only generateslegal traces (speci�ed as a non-probabilistic map),and that the traces it generates occur with certainminimum probabilities (speci�ed as a probabilisticmap). We have shown that the computational com-plexity of the test for the existence of a supervisor(in the case when the languages involved are deter-ministic regular) is O(n3).References[1] V. K. Garg. An algebraic approach to modelingprobabilistic discrete event systems. In Proceed-ings of 1992 IEEE Conference on Decision andControl, pages 2348{2353, Tucson, AZ, Decem-ber 1992.[2] V. K. Garg. Probabilistic languages for model-ing of deds. In Proceedings of Conference on In-formation Sciences and Systems, pages 198{203,Princeton, NJ, March 1992.[3] V. K. Garg, R. Kumar, and S. I. Marcus. Proba-bilistic language formalism for stochastic discreteevent systems. IEEE Transactions on AutomaticControl, 1997. Accepted.[4] S. Lafortune and E. Chen. On the in�mal closedand controllable superlanguage of a given lan-guage. IEEE Transactions on Automatic Con-trol, 35(4):398{404, 1990.[5] E. Lawler. Combinatorial Optimization - Net-works and Matroids. Holt Rinehart and Winston,1976.[6] P. J. Ramadge and W. M. Wonham. Super-visory control of a class of discrete event pro-cesses. SIAM Journal of Control and Optimiza-tion, 25(1):206{230, 1987.[7] P. J. Ramadge and W. M. Wonham. The controlof discrete event systems. Proceedings of IEEE:Special Issue on Discrete Event Systems, 77:81{98, 1989.[8] R. Sengupta. Optimal control of discrete eventsystems. PhD thesis, Department of ElectricalEngineering and Computer Science, University ofMichigan at Ann Arbor, 1995.


