
Parallel Algorithms for Predicate Detection

Vijay Garg, Rohan Garg

Department of Electrical and Computer Engineering,
The University of Texas at Austin,

Austin, TX 78712

PDSL, UT Austin Parallel Algorithms for Predicate Detection

Motivation

Distributed and concurrent programs are prone to errors
Debugging and Testing:

Traces need to be analyzed to locate bugs.

Software Quality Assurance:

Can I trust the results of the computation? Does it satisfy all
required properties?

PDSL, UT Austin Parallel Algorithms for Predicate Detection

Outline of the Talk

Predicate Detection Problem

Parallel Algorithm for Detecting Conjunctive Predicates

Parallel Algorithms for Detecting Data Race Predicate

PDSL, UT Austin Parallel Algorithms for Predicate Detection

Modeling a Distributed Computation

A computation is (E ,→) where E is the set of events and →
(happened-before) is the smallest relation that includes:

e occurred before f in the same process implies e → f .

e is a send event and f the corresponding receive implies
e → f .

if there exists g such that e → g and g → f , then e → f .

P

P

P

1

2

3

e
1

e
2

e
3

f
5

e
4

e

f
4

f
3

g
1

5

f
1

f
2

2
g

4
g g

3

[Lamport 78]
PDSL, UT Austin Parallel Algorithms for Predicate Detection

Consistent Global State (CGS) of a Distributed System

P
1

P
2

P
3

G
1

G
2

m

m

m1

2

3

Consistent global state = subset of events executed so far
A subset G of E is a consistent global state (also called a
consistent cut) if
∀e, f ∈ E : (f ∈ G) ∧ (e → f)(e ∈ G)

PDSL, UT Austin Parallel Algorithms for Predicate Detection

Tracking Dependency

Problem: Given (E ,→), assign timestamps v to events in E such
that ∀e, f ∈ E : e → f ≡ v(e) < v(f)

P
1

P

P

P

2

3

4

(0,0,0,1) (0,0,0,2)

(3,1,0,0)

(2,1,3,1)

(2,1,0,0)

(0,0,2,1) (2,1,4,1)

(0,2,0,0) (2,3,3,1)

(0,0,1,0)

(0,1,0,0)

(1,0,0,0)

Timestamps: Vector Clocks [Fidge 89, Mattern 89]:

PDSL, UT Austin Parallel Algorithms for Predicate Detection

Global Predicate Detection Problem

Input:
traces of n processes P1, . . . ,Pn,
(a trace is a sequence of vector clocks with relevant state
information)
B: boolean predicate,

Output:
(yes, G), if there exists a consistent global state G such that
B(G);
no, if there does not exists any global state satisfying B

Detecting B is NP-complete even when B is a 2-CNF expression of
local predicates [Chase and Garg 94, Mittal and Garg 01].

PDSL, UT Austin Parallel Algorithms for Predicate Detection

Outline of the Talk

Predicate Detection Problem

Parallel Algorithm for Detecting Conjunctive Predicates

Parallel Algorithms for Detecting Data Race Predicate

PDSL, UT Austin Parallel Algorithms for Predicate Detection

Conjunctive Predicates

Local predicate:
predicate that can be evaluated by a process locally
Examples:
(P1 is in CS),
(Pi is not in the leader mode)
Conjunctive Predicate:
A conjunction of local predicates
B = l1 ∧ l2 ∧ . . . ∧ ln
where each li is a local predicate
Examples:
B ≡ (P1 is in CS) ∧ (P2 is in CS)
B ≡ (P1 is not leader) ∧ . . . ∧ (Pn is not leader)

PDSL, UT Austin Parallel Algorithms for Predicate Detection

Importance of Conjunctive Predicates

Sufficient for detection of the following global predicates

Any boolean expression in disjunctive normal form
B = B1 ∨ B2 ∨ . . .Bk

where each Bi is a conjunction of local predicates
Each conjunction Bi can be detected in parallel.
Example: x , y and z are in three different processes. Then,
even(x) ∧ ((y < 0) ∨ (z > 6))
≡
(even(x) ∧ (y < 0))∨ (even(x) ∧ (z > 6))

predicate satisfied by only a small number of values
Example: x and y are in different processes.
(x = y) is not a local predicate but x and y are binary.

PDSL, UT Austin Parallel Algorithms for Predicate Detection

Conditions for Conjunctive Predicates

local predicate is false

local predicate is true

Predicate is true on this cut

Possibly (l1 ∧ l2 ∧ . . . ln) is true iff there exist si in Pi such that li is
true in state si , and si and sj are incomparable for distinct i , j .

PDSL, UT Austin Parallel Algorithms for Predicate Detection

Related Work: Centralized Algorithm

[Garg and Waldecker 94] Send vector clocks to a checker process
for events which satisfy local predicate in any message interval.
Checker process

1 Begin with the initial global state

2 Repeatedly eliminate any vector that happened before any
other vector along the current global state.

Predicate is true for the first time

all vectors in the current global state are pairwise concurrent

Predicate is false

if we eliminate the final vector from any process

Work Complexity: O(mn2)
n: number of processes,
m: number of events per process

PDSL, UT Austin Parallel Algorithms for Predicate Detection

Main Result for Conjunctive Predicate Detection

Parallel Algorithm for Conjunctive Predicate Detection

Theorem 1: The conjunctive predicate detection problem on n
processes with at most m states per process can be solved in
O(log mn) time using O(m3n3 log mn) operations on the
common CRCW PRAM.

PDSL, UT Austin Parallel Algorithms for Predicate Detection

Key Idea: State Rejection

<1,1,4>

P
1

P
2

P
3

<1,0,0>

<1,1,0>

<3,0,1>

<3,4,1><3,3,1>

State (1,4)

State (3,1)

<0,0,1>

<3,2,1>

State (2,2)

<2,0,1>P
1

P
2

P
3

<1,0,0>

<1,1,0>

<3,0,1>

<3,4,1><3,3,1>

State (1,4)

State (3,1)

<0,0,1>

<3,2,1>

State (2,2)

<2,0,1>

<1,1,2>

<4,0,1>

<1,1,3>

Rejection of state < 1, 0, 0 > ⇒ advance to < 2, 0, 1 >

Then, reject < 0, 0, 1 > because < 0, 0, 1 > → < 2, 0, 1 >

PDSL, UT Austin Parallel Algorithms for Predicate Detection

State Rejection Graph

<1,1,4>

P
1

P
2

P
3

<1,0,0>

<1,1,0>

<3,0,1>

<3,4,1><3,3,1>

State (1,4)

State (3,1)

<0,0,1>

<3,2,1>

State (2,2)

<2,0,1>P
1

P
2

P
3

<1,0,0>

<1,1,0>

<3,0,1>

<3,4,1><3,3,1>

State (1,4)

State (3,1)

<0,0,1>

<3,2,1>

State (2,2)

<2,0,1>

<1,1,2>

<4,0,1>

<1,1,3>

Figure: State Rejection Graph of a computation shown in dashed arrows

PDSL, UT Austin Parallel Algorithms for Predicate Detection

Parallel Algorithm

Step 1: Create F array
set of states rejected in the first round

Step 2:Create R matrix
State Rejection Graph // Adjacency Matrix
R : [(1 . . . n, 1 . . .m), (1 . . . n, 1 . . .m)] of 0 . . . 1;

Step 3: Create RT matrix
RT : array [(1 . . . n, 1 . . .m), (1 . . . n, 1 . . .m)] of 0 . . . 1;
RT := TransitiveClosure(R);

Step 4: Create valid array
states reachable from F using RT
replace invalid states by 0

Step 5: Create cut array
first valid state on each process

PDSL, UT Austin Parallel Algorithms for Predicate Detection

Other Efficiently Detectable Predicates

x1 ≥ x2
xi on different processes, non-decreasing

Communication Deadlock
Pi is waiting for a message from Pj and Pj is waiting for a
message from Pi and there is no in-transit message between
them.

All processes in phase 2
All processes have started phase two and there is no in-transit
message from phase one.

Targeted virtual time
All processes have local virtual time greater than 100 and
there is no in-transit message with virtual time less than 100.

PDSL, UT Austin Parallel Algorithms for Predicate Detection

Outline of the Talk

Predicate Detection Problem

Parallel Algorithm for Detecting Conjunctive Predicates

Parallel Algorithms for Detecting Data Race Predicate

PDSL, UT Austin Parallel Algorithms for Predicate Detection

Data Race Predicate Detection

Data Race Predicate Detection Problem: Given a multithreaded
computation (E ,→), is there any instance of a read-write conflict,
or a write-write conflict.
Are there two concurrent events e and f in E such that they are
on the same object and one of them is a write operation?

PDSL, UT Austin Parallel Algorithms for Predicate Detection

Data Race Predicate Detection

Brute Force Parallel Algorithm 1

for all events e and f in parallel do
if (e||f) ∧ ((e.op = write) ∨ (f .op = write)) ∧ (e.object = f .object))

return “data race”
endfor;
return“no data race”

Time: O(1), Work: O(m2n2)
n: number of processes,
m: number of events per process

PDSL, UT Austin Parallel Algorithms for Predicate Detection

Data Race Detection Algorithm 2

Step 1: Compute projections for all objects
for all (i ∈ [n], obj ∈ [q]) in parallel do

objectTrace[i][obj] := projection(trace[i], obj);

Step 2: Do binary search for each event and process

Time: O(log m), Work: O(mn(n + q) log m)
n: number of processes,
m: number of events per process,
q: number of objects

PDSL, UT Austin Parallel Algorithms for Predicate Detection

Taking Projection

input inTrace: trace of a single process on multiple objects
obj: specific object

output outTrace: projection of the trace on the object obj

loc : array [1..m] of integer;
for all (k ∈ [m]) in parallel do

if (inTrace[k].object = obj) then loc[k] := 1
else loc[k] := 0;

loc := parallelPrefixSum(loc);

for all (k ∈ [m]) in parallel do
if (inTrace[k].object = obj) then

outTrace[loc[k]] := inTrace[k]
Time:O(log m); Work : O(m)

PDSL, UT Austin Parallel Algorithms for Predicate Detection

Data Race Detection Algorithm 2

Step 1: Compute projections for all objects
objectTrace[j][obj] available for each j , obj
Step 2: Do binary search for each event and process
for all (i ∈ [n], j ∈ [n], k ∈ [m]) in parallel do

if (v [i][k].op = write)
obj := v [i][k].object;
binary search v [i][k] in objectTrace[j][obj]
if (found incomparable vector)
return “data race exists” for v [i][k].object;

endfor;
return “no data race”

Time: O(log m), Work: O(mn(n + q) log m)

PDSL, UT Austin Parallel Algorithms for Predicate Detection

Data Race Detection Algorithm 3

Reducing work to O(mnq log mn log n)

Step 1: Merge traces for writes for every object
L := set of n traces each with m vectors;
for obj ∈ 1 . . . q in parallel do

Lobj := L projected on obj and write operations;
mergedTraceobj := Algo Mutex-Detect applied to Lobj ;
if (incomparable vectors found) return “write-write data race”;

Step 2: Do binary search for all read operations
if (incomparable vectors found)

return “read-write data race”;

return “no data race”

Time: O(log mn log n), Work: O(mnq log mn log n)

PDSL, UT Austin Parallel Algorithms for Predicate Detection

Algorithm Mutex-Detect

L := set of n traces each with m vectors;
numTraces := n; // assume n is a power of 2
for r := 1 . . . log n do // in sequence

// parallel merge trace 2j with trace 2j + 1
for all u in trace 2j and 2j + 1 in parallel do

rank1:= binary search u in trace[2j]; // rank of u in trace[2j]
rank2 := binary search u in trace[2j + 1]; // rank in trace[2j + 1]
if (binary search finds incomparable vector)

return “incomparable vectors”
else write u at rank1 + rank2 in the merged trace;

numTraces := numTraces/2;

Time: O(log mn log n), Work: O(mn log mn log n)

PDSL, UT Austin Parallel Algorithms for Predicate Detection

Data Race Detection Algorithm 3: Step 1

Step 1: Merge traces for writes for every object
L := set of n traces each with m vectors;
for obj ∈ 1 . . . q in parallel do

Lobj := L projected on obj and write operations;
mergedTraceobj := Algo Mutex-Detect applied to Lobj ;
if (incomparable vectors found) return “write-write data race”;

Step 2: Do binary search for all read operations
if (incomparable vectors found)

return “read-write data race”;

return “no data race”

Time: O(log mn log n), Work: O(mnq log mn log n)

PDSL, UT Austin Parallel Algorithms for Predicate Detection

Data Race Detection Algorithm 3: Step 2

Step 1: Merge traces for writes for every object
if (incomparable vectors found) return “write-write data race”;

Step 2: Do binary search for all read operations
for all (i ∈ [n], k ∈ [m]) in parallel do

if (v [i][k].op = read) ∧ (v [i][k].object = obj);
binary search v [i][k] in mergedTraceobj
if (incomparable vectors found)

return “read-write data race”;

return “no data race”

Time: O(log mn log n), Work: O(mnq log mn log n)

PDSL, UT Austin Parallel Algorithms for Predicate Detection

Main Result for Data Race Predicate Detection

Theorem 2:

1 There exists a parallel algorithm that detects the data race
predicate in O(1) time and O(m2n2) work using O(m2n2)
processors on the CREW PRAM.

2 There exists a parallel algorithm that detects the data race
predicate in O(log m) time and O(mn(n + q) log m) work
using O(mn2) processors on the CREW PRAM.

3 There exists a parallel algorithm that detects the data race
predicate in O(log mn log n) time and O(mnq log mn log n)
work using O(mnq) processors on the CREW PRAM.

n: number of processes,
m: number of events per process,
q: number of objects

PDSL, UT Austin Parallel Algorithms for Predicate Detection

Future Work

Reducing work complexity of Conjunctive Predicate Detection
Parallel Time complexity: O(log mn)
Parallel Work Complexity:O(m3n3 log mn)
Sequential Algorithm Complexity:O(mn2)

Reducing work complexity of Date Race Predicate Detection:
Parallel Time complexity: O(log mn log n)
Parallel Work Complexity:O(mnq log mn log n)
Sequential Algorithm Complexity:O(mn log mn)

Parallel Algorithm for Linear Predicates
Finding the man-optimal stable matching is equivalent to
detecting linear predicates (a generalization of conjunctive
predicates). Are detecting linear predicates in NC ?

PDSL, UT Austin Parallel Algorithms for Predicate Detection

