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Popular matching

For a vertex v , we say v prefers M to M
0 if v prefers pM(v) to pM0(v).

P(M,M 0) = the set of vertices that prefers M to M
0. (Voting over

matchings)

“more popular than” relation � on M:

M
0
� M if |P(M 0,M)| > |P(M,M 0)|.

Definition

A matching M is popular if there is no matching M
0 such that M 0

� M.
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Housing allocation model

The stable matching problem only makes sense in two-sided
preference systems.

The housing allocation model:
Bipartite graph G

A [H(P) = set of agents(applicants) and set of houses(posts)
E = set of edges
for each agent in A, there is a strictly ordered preference lists over
acceptable houses. Houses do not have preferences over agents.

We will refer houses as posts and agents as applicants.
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NC model

The set of decision problems decidable in polylogarithmic time on a
parallel computer with a polynomial number of processors.

Equivalently, a problem is in NC if there exist constants c and k such
that it can be solved in time O(log c

n) using O(nk) parallel processors.

NC ✓ P
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Characterizing popular matchings

f -post: for each agent a, let
f (a) denote the first-ranked
post on a’s preference list.

s-post: let s(a) be the first
non-f -post on a’s preference
list.

l-post: last-resort post.

a1 : p1 p4 p5 p2 p6 l1

a2 : p4 p5 p7 p2 p8 l2

a3 : p4 p1 p3 p8 l3

a4 : p1 p7 p4 p3 p9 l4

a5 : p5 p1 p7 p2 p6 l5

a6 : p7 p6 l6

a7 : p7 p4 p8 p2 l7

a8 : p7 p4 p1 p5 p9 p3 l8

Figure: A popular matching instance I

Changyong Hu, Vijay K. Garg Department of Electrical and Computer Engineering University of Texas at Austin colinhu9@utexas.edu, garg@ece.utexas.eduNC Algorithms for Popular Matchings in One-Sided Preference Systems 5 / 21



Characterizing popular matchings

Theorem (Abraham, Irving, Kavitha and Mehlhorn)

A matching M is popular if and only if

(i) every f-post is matched in M, and

(ii) for each applicant a, M(a) 2 {f (a), s(a)}.
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High level ideas

For each applicant a, only need to consider a’s f-post and s-post.
Hence we can obtain a reduced graph that is sparse.

Find a matching that is complete for the applicants.

Locally rearrange to make sure every f-post is matched.
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Algorithm: popular matching

Algorithm 1: Popular Matching

1 Input: Graph G = (A [ P ,E ).
2 Output: A popular matching M or determine that no such matching.
3

4 G
0 := reduced graph of G ;

5 if G 0 admits an applicant-complete matching M then
6 for each f -post p unmatched in M in parallel do
7 let a be any applicant in f

�1(p);
8 promote a to p in M;
9 return M;

10 else
11 return “no popular matching”;
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Algorithm: Applicant-Complete Matching

Finding an applicant-complete matching sequentially is easy through
augmenting path.

The degree of each agent is exactly two.

Finding maximal paths can be done in NC.
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Algorithm: Applicant-Complete Matching

Algorithm 2: Applicant-Complete Matching

1 Input: Graph G
0 = (A [ P ,E 0).

2 Output: An applicant-complete matching M or determine that no such
matching exists.

3 M := ;;
4 while some post p has degree 1
5 For all such p, find maximal paths that end at p;
6 for each edge (p0, a0) at an even distance from some p in parallel do
7 M := M [ {(p0, a0)};
8 G

0 := G
0
� {p

0, a0};
9 end while

10 for each post p has degree 0 in parallel do
11 G

0 := G
0
� p

12 // Every post now has degree at least 2;
13 // Every applicant still has degree 2;
14 if |P| < |A| then
15 return “no applicant-complete matching”;
16 else
17 // G

0 decomposes into a family of disjoint even cycles
18 M

0 := any perfect matching of G 0;
19 return M [M

0;
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Complexity

Lemma

The while loop (line 4 in Algorithm 2) runs O(log(n)) number of rounds.

Proof.
In round r , suppose we have t vertices of degree 1.

Such vertices have degree at least 3 in round r � 1 =) � 2t vertices
are deleted.

Totally � (2r � 1)t vertices deleted =) at most dlog(n)e+ 1 rounds.

Theorem
There is an NC algorithm to find a popular matching, or determine that no

such matching exists.
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Maximum-cardinality popular matching

Popular matchings may have di↵erent sizes.

Switching graph captures all the possible popular matchings.
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Switching graph

Definition
Given a popular matching M, the switching graph GM of M is a directed
graph with a vertex for each post p, and a directed edge (pi , pj) for each
agent a, where pi = M(a) and pj = OM(a). OM(a) is the unmatched post
in {f (a), s(a)}.

p1 p2

p3 p4

p5

p6

p7 p8

p9

a1

a2

a3

a4

a5

a6

a7

a8

Figure: The switching graph GM for popular matching M
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Switching graph

Lemma (McDermid and Irving, Lemma 1)

Let M be a popular matching for an instance of G = (A [ P ,E ), GM be

the switching graph of M. Then

(i) Each vertex in GM has outdegree at most 1.
(ii) The sink vertices of GM are those vertices corresponding to posts that

are unmatched in M, and are all s-post vertices.

(iii) Each component of GM contains either a single sink vertex or a single

cycle.
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Cycle components and tree components

A component of a switching graph GM is called a cycle component if
it contains a cycle, and a tree component if it contains a sink vertex.

Each cycle in GM is called a switching cycle.

If T is a tree component of GM with sink vertex p, and if q is another
s-post vertex in T , the unique path from q to p is called a switching

path.

Note that each cycle component of GM has a unique switching cycle,
but each tree component may have zero or multiple switching paths.
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Findings cycles in Pseudoforest

Definition
A pseudoforest is an undirected graph in which every connected
component has at most one cycle. A directed pseudoforest is a directed
graph in which each vertex has at most one outgoing edge, i.e., it has
outdegree at most one.
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Transitive closure

Theorem (Hirschberg)

The transitive closure of a directed graph with n vertices can be computed

in O(log2 n) time, using O(n! log n) operations on a CREW PRAM, where

n
!
is the best known sequential bound for multiplying two n ⇥ n matrices

over a ring.

We compute the transitive closure G
⇤
P and for any two vertices i and j s.t.

i 6= j in GP , if G ⇤
P(i , j) = 1 and G

⇤
P(j , i) = 1, then both i and j are in the

unique cycle C . Hence we can identify the cycle C by checking each pair
of vertices in parallel.
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Algorithm: maximum-cardinality popular matching

Definition

Let � be the margin of applying a switching cycle C (resp. switching path
P) to M, i.e.

� =
P

a2C(resp.P) M·C(a) � M(a)

where p is an indicator function of posts

s.t. p :=

(
1 if p is not l-post

0 if p is l-post

p6

p7 l8

p9

a6

a7

a8

Figure: A tree component in switching graph
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Algorithm: maximum-cardinality popular matching

Algorithm 3: Maximum-Cardinality Popular Matching

1 Input: Reduced graph G
0 = (A [ P ,E 0) and a popular matching M.

2 Output: A maximum-cardinality popular matching M
0.

3

4 GM := switching graph of M and G
0.

5 Find all weakly connected components of GM ;
6 for each cycle component in parallel do
7 Find the unique switching cycle;
8 for each switching cycle in parallel do
9 Compute the margin of applying this switching cycle;

10 for each cycle component in parallel do
11 if the margin � of switching cycle is positive
12 Apply this switching cycle to M;
13 return M

0;
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Correctness

Theorem (McDermid and Irving, Corollary 1)

Let the tree components of GM be T1, · · · ,Tk , and the cycle components

of GM be C1, · · · ,Cl . Then the set of popular matchings for G consists of

exactly those matchings obtained by applying at most one switching path

in Tiand by either applying or not applying the switching cycle in Ci .

Any popular matching can be obtained from M by applying at most
one switching cycle or switching path per component of the switching
graph GM .

Theorem
For each tree component T , applying the switching path in T with the

largest positive margin; similarly, for each cycle component C , applying the

switching cycle in C with positive margin, the new matching is the

maximum-cardinality popular matching.
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Complexity

The switching graph GM can be constructed from G
0 and M in

constant time in parallel.

All weakly connected components of GM can also be found in polylog
time.

All switching cycles and switching paths can be found in polylog time.
Each switching cycle and switching path can be applied to matching
M easily in parallel since they are vertex-disjoint in GM .

Theorem
There is an NC algorithm to find a maximum-cardinality popular

matching, or determine that no such matching exists.
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