
Monitoring Distributed Systems based on
Partial Order Executions with Global States

Moran Omer1, Doron Peled1, Ely Porat1, and Vijay K. Garg2

1 Department of Computer Science Bar Ilan University
2 Department of Electrical and Computer Engineering, UT Austin

Abstract. Runtime Verification (RV) allows monitoring the behaviors
of a system while checking them against a formal specification. The ex-
ecutions of distributed systems are often modeled using interleaving se-
mantics, where events of different processes are interleaved into a to-
tal order. However, certain behavioral properties are difficult to express
using interleaving semantics, whereas they can be naturally expressed
in terms of partial order semantics. We study the problem of runtime
verification for distributed systems based on the global states structure
associated with a partial order execution. We present two algorithms for
RV with branching temporal specifications and study the complexity of
this problem. The first algorithm is for a global temporal logic with past
operators we term PCTL (for Past CTL). It involves constructing the
branching structure of global states. We then show a second, more effi-
cient, algorithm, for a subset of this logic that we term PBTL. This algo-
rithm does not require constructing the branching structure. We present
implementations for both algorithms with experimental results.

1 Introduction

Runtime verification (RV) [5, 6, 18] monitors an execution trace consisting of
events emitted by the observed system and verifies it against a given formal
specification. RV for distributed systems poses a non-trivial challenge, since it
depends on combining information related to events that are executed on differ-
ent processes. In system verification (e.g. RV and model checking), concurrent
systems are typically modeled using interleaving semantics, imposing a total or-
der between the executed events; occurrences of independently executed events
from different processes are interleaved in either order in different execution se-
quences. In contrast, a model that assumes a partial order [26, 47] among the
events sometimes offers a more direct and intuitive view of executions that can be
distributed among different processes. There, events executed independently by
different processes, which can also overlap in time with each other, are considered
unordered; dependencies between events in different processes can result from
message passing or the access of variables shared between multiple processes.

The interleaving model is rather simple and enjoys the benefit of using com-
mon mathematical tools for verification, e.g., based on finite automata over in-
finite words [44]. Specification over this model is often given using Linear Tem-
poral Logic (LTL) [23]. Practice shows that for most purposes, the interleaving

model is sufficient for modelling concurrent systems as a basis for temporal spec-
ification; the fact that concurrently executed events are interleaved is often not
restrictive, in particular if the specification is not sensitive to the relative order
of such interleavings [36]. On the other hand, there are cases where properties
of a distributed system are lost when interleaving their executed events and it
is beneficial to use the partial order execution model.

In this paper, we study runtime verification of distributed systems, based on
the partial order semantics. The verification is with respect to a temporal logic
specification that asserts about the branching structure over global states related
to a partial order execution of the monitored system. The global states in the
partial order model correspond to cuts, where a cut is a history closed subset of
events of the partial order. The RV monitoring in our case is centralized, which
is in accordance with the global state based specification.

An example of a property that calls for the use of the partial order model
is related to the detection of global snapshots [8] of a distributed system, i.e. a
consistent collection of local states of the system. Such a snapshot corresponds
as global state to a cut of the partial order execution; while in the interleaving
model such a snapshot may not appear directly as a global state of the modeled
interleaving sequence1. Another example is from distributed databases, where
transactions, i.e., pieces of the execution that involve multiple events, are de-
signed to behave as if executed one after another [7, 11, 19, 32] while in other
linearizations of these events, the transactions may (partially) overlap. This al-
lows achieving some concurrency between the events of the transactions, and, on
the other hand, to simplify the design, based on the sequential-like behavior. A
similar idea can be used for describing properties of concurrent data objects or
systems implemented without a centralized control (e.g., based on blockchains).

Contributions We present a runtime verification algorithm for distributed
systems, based on the global states construction over the partial order execution
model. The specification formalism that we use is a past time version of the
temporal logic we call PCTL, applied to the branching time structure of global
states. This logic contains past operators such as EPφ (φ holds sometimes in the
past) and E(φSψ) (φ holds along some linearization since ψ held). We provide
an algorithm for the complete logic, whose worst case complexity is exponential
in the number of processes, with the base of the exponent being the number of
events, and a corresponding tool called PoET [49]. We provide a related hardness
results.

We then present a second algorithm, for a subset of this logic, which we
call PBTL, confined to the past operators EP (and its dual AH) together with
the Boolean operators. We present a corresponding tool called Kairos [50]. The
complexity of this algorithm is linear in the number of events and quadratic in
the number of processes, but is exponential in the size of the property. We show
experimental results comparing the two tools.

1 If one groups together all the interleaving sequences that are consistent with the par-
tial order execution as in Mazurkiewicz traces [26], there is at least one interleaving
in which this global state appears

2

Related work. Several logics are interpreted over partial order executions,
see, e.g., the survey [33]. The branching time temporal logic POTL [37] includes
both future and past branching operators, in the style of the logic CTL [10]; the
interpretation is over local states and events, combined into a single structure
the possible partial order executions of a system, as in event structures [47].
Other temporal logics that are interpreted over partial order executions that are
defined, as in this paper, over the global states(cuts), rather than directly over the
local states of the partial order between events; For each partial order execution,
a branching structure between the global states is separately constructed. In
that category of logics, the temporal logic ISTL [21, 35] uses the operators of
CTL, applied to each such branching structure. The logic LTrL [42] uses the
syntax of linear temporal operators but applies them to branching structures of
global states that are constructed from partial order executions. Model checking
various subsets of ISTL [35] is studied in [1, 3, 34, 43] and of LTrL in [43].

An RV verification algorithm, where the specification is interpreted directly
over the local states associated with the events of the partial order execution,
(rather than over the related structure of global states), was described in [4].
Thus, the same formula has a completely different interpretation in that work
than in our work. In [9, 40, 41], procedures are presented for deciding whether
a partial order execution satisfies properties that can be written as a restricted
future version of the logic ISTL [1]. These works identify also cases of specifica-
tions with lower complexity. Ogale and Garg [31] have proposed a logic called
Basis Temporal Logic (BTL), which is also a subset of ISTL and a decision pro-
cedure for checking whether a partial order execution satisfies a BTL property
with time complexity exponential in the size of the formula but polynomial in
the size of the computation. Another line of works on verification, related to the
partial order model, are aimed at proving that a property holds for a representa-
tive interleaving of a partial order execution, which does not necessarily follows
the order of intercepted events [13].

2 Preliminaries

The Partial Order Model (Local View) In the partial order execution
model [24, 38, 47], events of disjoint processes may be unordered (independent)
with respect to each other, while the events that involve the same process must
be totally ordered. Interactions between processes, e.g., events mutual to a pair
of processes, which can model synchronous message passing, can induce order
between events of different processes. This results in a partial order (i.e., a tran-
sitive, asymmetric and irreflexive relation) between the events, rather than a
total order (linearization of the events) as in the more commonly used interleav-
ing model. A partial order execution E = ⟨E,≺,P, P r, ι, A, L⟩, has the following
components:

– E is a (finite or infinite) set of events.
– ≺ ⊂ E × E is a partial order (i.e., transitive, irreflexive and asymmetric)

relation over E. In addition, ≺ is well-founded, i.e., E does not have an
infinite decreasing chain of events e1 ≻ e2 ≻ . . ., where ≻ is the symmetric

3

(converse) version of ≺. If both e ̸≺ f and e ̸≻ f , then we say that e and f
are said to be concurrent or independent.

– ι ∈ E is the initial event of E. It is minimal w.r.t. ≺.
– P is a finite set of processes.
– Pr : E 7→ 2P maps each event to a set of processes that are involved in its

execution. Typically, most events involve only a single process, representing
a local event, or a pair of processes, representing synchronous or handshake
communication. For the initial event, Pr(ι) = P. For each p ∈ P, the events
that involve a process p, i.e., {e ∈ E|Pr(e) = p} are totally ordered.

– A =
⊎

p∈P Ap is a finite set of propositions. The set A is partitioned according

to processes2 to sets Ap for each process p ∈ P.
– L(e, p) ∈ 2Ap for p ∈ Pr(e). L maps each event and process that participates

in it to a subset of propositions from Ap. This represents the propositions
that hold (i.e., are set to true) in process p immediately after e is executed.

We can denote the labeling L(e, p) also as a minterm, i.e., a conjunction of lit-
erals, over the propositions Ap; the propositions in L(e, p) appear non-negated,
while the propositions of Ap \ L(e, p) appear negated. In a short form, conjunc-
tions are removed and negated propositions are marked with an overbar, hence
t1 ∧¬t2 is denoted t1t2. The described model can represent synchronous (hand-
shake) communication as in the programming language CSP [17]. The model
and subsequently the RV algorithm can be adapted to deal with asynchronous
message passing.

Figure 1 shows an execution that contains three processes, p1, p2 and p3, with
seven events: {ι, α1, α2, α3, β1, β2, β3}. The event α2 involves both processes p1
and p2, while β2 involves p2 and p3; the rest of the events involve only a single
process each. We set Ap1

= {t1, t2}, Ap2
= {r1, r2} and Ap3

= {q1, q2}.

C ′

C
ι α1 α2 α3

β1 β2 β3

p1

p2

p3

t1t2 t1t2 t1t2 t1t2

r1r2 r1r2 r1r2

q1 q2 q1q2 q1 q2 q1q2

FC FC′

Fig. 1: A partial order execution

The Global View The described partial order execution model gives a local
view of the computation, where a propositional assignment describes the local
state of the processes participating in the event immediately after its occurrence.
Based on the local view, we further define a global view, which contains cuts

2 Thus, each proposition can represent some property (predicate) local to some process.

4

(and frontiers) that correspond to global states [24]. These global states form a
branching structure.

A cut C of a partial order execution E is a nonempty (as it always includes
the initial event ι) history-closed finite subset of its events E. That is, if f ∈ C
and e ≺ f then e ∈ C. Intuitively, a cut represents a potential global state of the
modeled or inspected system, where the events in the cut appeared in its past.

Denote by max (C, p) the maximal event in C of the process p w.r.t. the order
≺ (such a maximum exists, since ι ∈ C). A frontier FC of C3 is the set of maximal
events from C for the different processes in P i.e.,

⋃
p∈P max (C, p). Note that

a single event can play the role of a maximal event for multiple processes if it
involves these processes. In Figure 1, the marked cut C, whose events are enclosed
within an inner dotted box, contains the events {α1, α2, β1}. The corresponding
frontier FC is {α2, β1}, where α2 is maximal for both processes p1 and p2 and β1
is maximal for p3. The global state of the cut C is labeled with the combination
of the propositions assigned to the three processes. This can be represented
by the Boolean minterm t1t2r1r2q1q2. We assign to a cut C, or, equivalently
to the frontier FC , a global interpretation of the propositions A that agrees
with the local maximal interpretations of each process in the cut. Formally,
L(C) =

⊎
p∈P L(max (C, p), p).

Note that events that are not independent of each other can be maximal
w.r.t. different processes, hence can belong according to the above definitions
to the same frontier. This happens, for example, in the cut C′, which appears
within the outer dotted box in Figure 1; its frontier FC′ includes both α2, which
is maximal for p1, and β2, which is maximal for p2 and p3, where α2 ≺ β2. The
interpretation of frontiers depends for each process on the event maximal for
that process. Hence, for FC′ , the interpretation is then t1t̄2r1r2q̄1q2.

We can now define, based on the (local) partial order execution, a correspond-
ing global partial order between the cuts (and, accordingly, between the corre-
sponding frontiers) of E . Let C1 < C2 if C1 ⊂ C2 and, correspondingly, FC1

< FC2
.

We also denote C1 ↠ C2, or, more informatively, C1
e
↠ C2 if C2 = C1 ∪ {e} for

some e ∈ E. We say that C2 is an immediate successor of C1. Accordingly, the
corresponding frontier FC2

of C2 is the immediate successor of the frontier FC1

of C1, and we also denote that FC1
↠ FC2

(or FC1

e
↠ FC2

). Hence, the relation

< is the transitive closure of the relation ↠. In Figure 1, FC
β2

↠ FC′ .

The relation ↠ forms a branching structure, over which our specification can
be interpreted. The maximal paths in the constructed graph are the equivalent
linearizations of the (local) partial order execution (see also Mazurkiewicz trace
semantics [26]). The diagram in Figure 2 represents the global partial order
execution obtained from the local partial order execution in Figure 1. Each circle
represents a global state, and the filled circle corresponds to the forntier FC . This
is a Hasse diagram of the global view, where the depicted edges represent the
“immediate successor” relation ↠.

3 Denoting the corresponding cut C as a subscript in FC is optional, and we may
simply write F .

5

In the branching structure formed from a partial order, if C
e
↠ C1 and C

f
↠

C2, where e ̸= f , then e and f are independent; this is because if e and f
were dependent of one another (they share at least one process) then e and
f must have been ordered with respect to each other in the generating local
partial order; thus cannot both follow up immediately from the same frontier FC .

Furthermore, because e and f are independent, we also have FC
e
↠ FC1

f
↠ FC′

and FC
f
↠ FC2

e
↠ FC′ . We say that e and f commute with each other from FC .

Similarly, if FC1

e
↠ FC and FC2

f
↠ FC , then e and f are also independent.

1

1

2

2 3

3

3

3

1 111

22

33

Fig. 2: A Hasse diagram of the global states view of the partial order execution

Collecting Events from the Monitored Processes During the runtime of
a distributed system by a centralized monitor, events from the different processes
need to be collected and processed by the monitor M . An immediate difficulty
is that these events may be reported out of order. For example, in Figure 1, the
event α2 may be reported to the monitor process by process p1, while the event
β2 may be reported to M by p3; it can happen that the information about β2
will be received by the monitor after the information about α2, although α2 ≺
β2. A reported event cannot be processed by the monitor until all events that
happened before it according to ≺ were also reported; otherwise, the situation
will be similar to trying to analyze a linear execution while there are holes in
the sequence observed so far.

We assume the absence of a global physical clock, which synchronizes between
the events of the monitored system. Instead, we use logical clocks [24]. As done
in [20], we adopt the use of Fidge and Mattern [12, 25] vector clocks, where each
event keeps a vector of values, one per each involved process. Comparing the
order between vector clocks of a pair of events e and f allows to check whether
e ≺ f ; furthermore, they also allow one to observe if, for a reported event f , there
is some e ≺ f that is not yet reported to the monitor process. Reported events
can be kept in a queue before all their predecessors are reported. Then, they can
be processed by the RV algorithm. This also guarantees that when a new event e
is processed, the set of events processed so far forms a cut that is an immediate
successor of the cut that was formed by the set of events processed before,

according to the order
e
↠. Consequently, these cuts (and their corresponding

frontiers) arrive at an order that is a linearization of the monitored partial order.

6

The RV can calculate each time a verdict for the current cut/frontier, which will
be reported according to the order of this linearization. This applies to both
our algorithms in Section 3 and Section 4. As the description of the Fidge and
Mattern vector clocks appears in the literature, it is included for convenience in
the appendix A.
The Logic and the interpretation over the global view We use a branch-
ing temporal logic, in the style of CTL [10], to specify properties of the global
view of partial order executions. As in CTL, each temporal operator consists of
a pair of a quantifier operator: over a set of paths, either A (forall paths) or E
(there exists a path), and over a path. The path operators are the past mirror
images of the CTL operators: S (since) instead of U (until) and Y (yesterday)
instead of X (nexttime). We call this logic PCTL (for past CTL). The syntax is
as follows, where q is a proposition:

φ ::= q | (φ ∧ φ) | ¬φ |AY φ |EY φ |A(φSφ) |E(φSφ)

The semantics is as follows:

– S |= q if q ∈ L(S).
– S |= (φ1 ∧ φ2) if S |= φ1 and S |= φ2.
– S |= ¬φ if not S |= φ.
– S |= EY φ if there exists S′ ↠ S such that S′ |= φ.
– S |= E(φSψ) if either S |= ψ or both S |= φ and there exists S′ ↠ S such

that S′ |= E(φSψ).
– S |= A(φSψ) iff either S |= ψ or both S |= φ and for each S′ ↠ S it holds

that S′ |= A(φSψ), where at least one such predecessor S′ exists.

We can also define additional Boolean and temporal operators: true = (q∨¬q)
for some proposition q, false = ¬true, (φ∨ψ) = ¬(¬φ∧¬ψ), EPφ = E(trueSφ),
AY φ = ¬EY ¬φ, APφ = A(trueSφ), EHφ = ¬AP¬φ and AHφ = ¬EP¬φ,
where P reads as previously and H reads as historically.
Advanced comment. We show why some properties expressed over the global
view cannot be expressed with properties over the local properties. The branch-
ing logic Tlc in [4] is defined directly over the local view. It contains both past
and future operators (and in addition to the CTL modalities, an operator || for
concurrently). It was shown that the logic Tlc can be translated into an au-
tomaton [4], hence a regular language. On the other hand, PCTL can express
properties that cannot be expressed as regular languages by comparing sequences
of events along independently (concurrently) executing processes. This can be
done by a zigzagging argument, as will be presented in the lower bound proof in
Section 3.

3 An RV Algorithm for Global Partial Order Executions

Our RV algorithm is based on a centralized monitor, which checks distributed
executions against a branching logic PCTL specification. Events performed by
the monitored processes are reported to the centralized monitor, which updates
a summary of the seen events and calculates a verdict. The monitor obtains

7

information about the process(es) participating in each reported event, and a
minterm that represents the values of the propositions of the involved processes
after the execution of the event. For example, the event α2 in Figure 1 is reported
to the monitor by one of the participating processes p1 or p2 and includes the
minterm t1t2r1r2, which combines the propositional values of both participating
processes.

In the case of the logic PCTL interpreted over the global view of the partial
order execution, we construct a summary that consists of a subgraph of the global
view; the nodes represent the frontiers and the edges correspond to the relation
↠ between them. Each edge is labeled with an event that forms the transition
between the incoming frontier and the outgoing frontier of that edge. With each
newly observed event, the summary graph is updated, adding new nodes and
edges, whereas some old nodes may become redundant, hence can be removed.
We can consider the constructed graph, obtained after each sequence of events,
as a sliding window into the global view graph, which slides with each newly
observed event. Each node in the graph is labeled with a vector of Boolean
values, corresponding to the subformulas that hold in the frontier it represents.
Calculating the vector that labeled a node s in the graph is performed based on
the collection of incoming edges of s and the predecessor states.
Constructing a Sliding Window of Relevant Frontiers. The monitor
process updates from the reported events the sliding window of the graph con-
taining the frontiers related to the partial order execution. It does not construct
intermediately the (local) partial order execution E , nor does it construct the
corresponding cuts. As a building block of the algorithm, for each given frontier

FC we can construct its f successor FC′ , i.e., FC
f
↠ FC′ ; after adding f to the

events of FC , events that are not any more maximal for at least one process, are
removed. Formally:

1. Set FCtemp := (FC ∪ {f}).
2. Remove from FCtemp any event e such that for each p ∈ Pr(e) there exists

some g ∈ FCtemp
, where p ∈ Pr(g) and e ≺ g.

For example, the frontier FC = {α2, β1}, which corresponds to the cut C in
Figure 1, is created after the sequence ια1β1α2 was observed. Then if an event β2
occurs, the successor frontier FC′ , which corresponds to the cut C′ in Figure 1,

such that FC
β2

↠ FC′ (and C
β2

↠ C′), is constructed by first adding β2 to FC
and then removing from it β1; the latter event is not any more maximal as its
single participating processes p3, which participates also in the event β2. Thus,
FC′ = {α2, β2}. The event α2 is not removed from the obtained frontier FC′ ,
since it is still maximal w.r.t. the process p1 even after adding β2.

We now describe how to update the sliding window graph G. At each point,
a node sm represents the maximal frontier FCm of G according to the order
<. This is the frontier that corresponds to the cut containing all the events
processed so far by the algorithm. Initially, the graph consists of a single node
sm, representing the frontier {ι}, consisting of the initial event, and labeled with
propositions according to L(ι). With each new observed event, the graph G is
transformed, where new nodes are added, and some nodes may also be removed.

8

When a new event e appears, we first add to G an edge sm
e
↠ sn, where sn is

a new maximal node representing the frontier FCn such that FCm

e
↠ FCn , i.e. FCn

is the e successor of the previous maximal frontier FCm
. Further, new nodes and

edges are added to G as follows: For edges s
e
↠ s′

f
↠ s′′, with Pr(e)∩Pr(f) = ∅,

f can propagate backwards over the edge s
e
↠ s′. Consequently, edges s

f
↠ r

e
↠

s′′ are added, with r added as a new node. This is due to the commutativity
described in Section 2. The construction of the new frontier for the node r from
the frontier of the node s and the event f is as described earlier this section. In
the same way, the addition of the node r may induce, through commutativity,
further backward propagations.

After finishing a phase of extending the graph G with new nodes due to
observing a new event e, removing redundant nodes (and all of their emanating
edges) from G starts. Accordingly, a node s becomes redundant when it can
no longer affect the RV verdict. This happens when the occurrence of future
events cannot generate further successors for s. A sufficient condition for this is
that for each process p ∈ P, there already has been some event α involving p
(i.e., p ∈ Pr(α) on an edge constructed from s. For each state s on G, we can
accumulate such processes in the set Rs, initialized to the empty set, and remove

s when Rs = P. Furthermore, if there is an edge s
α
↠ s′ and the node s′ has

become redundant and was removed, then s can also be removed.
We now demonstrate the first few steps of the construction windows for the

observation σ = α1α2β1, which is a prefix of the linearization σ = α1α2β1α3β2β3
of the partial order execution in Figure 1. The steps are denoted asA-G. In every
step, the node corresponding to the maximal frontier is shaded. New edges, added
due to backward propagation (in steps E and F) appear dashed. Note that the
backward propagation in Step E propagates into another backward propagation
that appears in Step F. The dotted nodes in Step F become redundant and are
removed, resulting in Step G.

1
B

1 2
C

1 2

1

D

1

2

2

1 1

E

A
1

2

2

1 1

F

1

1

2
1

G

1

Fig. 3: Graphs constructed for the trace σ = α1α2β1α3.

Calculating the Values of Subformulas on the Nodes. The following
procedure calculates the truth value for each subformula for each new frontier
(state) constructed by the sliding window graph-updating algorithm. This can
be compared to the update single summary vector used in the case of past time
LTL [18]. The update is based on the main operator of each subformula of the
specification φ. For each such subformula η and each node representing a frontier

9

F , we need to keep a bit val(F , η) that is true if η holds in F . Calculating the
truth value for a subformula η may depend on the values calculated for smaller
subformulas within η, hence must be performed later. Further, the calculations
also use the values of truth values previously calculated for the predecessors
frontiers in the graph.

val(F , q) = true for a proposition q, iff q ∈ L(F).
val(F ,¬η) = true iff val(F , η) = false.
val(F , (η1 ∧ η2)) = true iff val(F , η1) = true and val(F , η2) = true.
val(F , EY η) = true iff there exists a predecessor frontier F ′ of F such that

val(F ′, η) = true.
val(F , E(η1Sη2)) = true iff either val(F , η2) = true or both val(F , η1) = true

and there exists a predecessor frontier F ′ of F in the graph such that
val(F ′, E(η1Sη2)) = true.

val(F , A(η1Sη2)) = true iff either val(F , η2) = true or both val(F , η1) = true
and for each predecessor frontier F ′ of F , (where there must be at least one
such predecessor) in the graph it holds that val(F ′, A(η1Sη2)) = true.

Complexity. The overall number of constructed global states is O((|E|/k)k),
where |E| is the overall number of events and k = |P| (i.e., the number of
processes); the worst case scenario occurs when all the events involving any
given process are independent of all the events of any other process. Calculating
the vector of Boolean values for subformulas, related to a frontier, is done in
time |φ| × k. This gives a complexity of O(|φ| × k× (|E|/k)k), which is linear in
the size of the property but exponential in the number of processes.

Runtime verification can be performed online or offline. For online verifica-
tion, an important complexity measure is the incremental time complexity, which
measures the computation performed after each new event that is monitored.
This is a critical measure if a verdict needs to be given as soon as possible,
based on the prefix seen so far. Unfortunately, the incremental complexity of
the RV algorithm presented here is still exponential in the number of process.
In particular, after each newly observed event, the number of nodes (frontiers)
added to G can be O((|E|/k)k−1), where the local state of the new event can be
combined with all the local states of the other (independent) events.

It should be noted that such a centralized setting makes the speed of the
monitor process a bottleneck for the RV process, as it needs to process the
events from all the participating processes. The global nature of the specification
formalism does not easily lend itself to an efficient distributed RV algorithm that
may be implemented on the monitored processes themselves. (this can be the
subject of further research). This, and the complexity results described, may in
fact limit the online application of runtime verification in some cases.

Hardness of RV problem We present a hardness result for the RV problem
of making a verdict for the logic PCTL over a partial order execution. The over-
all complexity of the described RV algorithm is O((|E|/k)k), when ignoring the
linear factors involving updating the bit vectors for the subformulas. We employ
a reduction from a fine-grained complexity problem that does not belong to the
standard complexity hierarchy, such as P, NP, or PSPACE, which typically con-
siders only a single parameter. Fine-grained complexity [45] is a rapidly growing

10

area of research that seeks to establish tight computational bounds for specific
problems by exploring their precise relationships. This field examines a variety of
foundational problems that are considered computationally hard. This approach
allows us to capture the complexity in terms of both the number of processes
and the total number of events. We show that, under some known complexity
assumption, when the length of the formula is linear in the number of processes,
this is also the lower bound up to a poly-logarithmic factor in the base, i.e. in
the number of events. Specifically, we establish a lower bound that shows the
complexity is not only exponential in n, but that the base of the exponent grows

with Ω(|E|
k log2 |E|

k

), rather than remaining a fixed constant such as 2 or 3.

We will describe a fine-grained reduction from the k-OV framework [46],
which connects the complexity of our target problem to this hypothesis. The
Boolean vectors a1, a2, . . . , ak are said to be orthogonal if no bit position contains

a 1 in all vectors simultaneously. Formally, this condition holds if
∨d

i=1

∧k
j=1 aj [i] =

0, where aj [i] denotes the i-th bit of vector aj , ∧ represents bitwise conjunction
(logical and), and ∨ represents disjunction (logical or) over the bit positions.
In the k-OV problem, given k sets E1, E2, . . . , Ek, each contains n d-bit vec-
tors, where d = O(log2 n), determine whether there exists a selection of vectors
a1 ∈ E1, a2 ∈ E2, . . . , ak ∈ Ek such that the chosen vectors are orthogonal.
A widely believed conjecture in complexity theory [46] states that the k-OV
problem requires time at least Ω

(
n(1−ϵ)k

)
for some constant ϵ > 0.

We describe an encoding of the sets of vector as processes and a temporal
logic formula that implements the orthogonality constraint using local propo-
sitions. Each set Ei of vectors is encoded as a sequence of |Ei| = O(n log2 n)

events, an 1/k of the total number of events |E| =
∑k

i=1 |Ei| = O(kn log2 n),
where the vectors are encoded one after the other, separated by a delimiter as

follows. Therefore in our case n = Ω(|E|
k log2 E

k

) and we get a lower bound of

Ω

ÇÅ
|E|

k log2 |E|
k

ã(1−ϵ)k
å
. As stated above, the base of the exponent is within a

polylogarithmic factor of the upper bound O((|E|/k)k).

– Vector encoding: Each bit vector is encoded as a sequence of events within
its corresponding process. For example, to represent a bit vector 101 in pro-
cess pi, we generate three consecutive events where proposition vi holds true,
false, and true, respectively. This proposition vi reflects the current bit value
represented at each sequence position. All bit vectors are assumed to have
uniform length d across all processes, though this is a global convention not
explicitly enforced by our formula.

– Vector separation:We introduce a delimiter proposition δi for each process
pi to mark boundaries between consecutive vector encodings. When δi = 1,
the current event represents a transition between vectors, and the value of
vi during such delimiter events is irrelevant.

– Synchronization mechanism: A binary counter proposition li is associ-
ated with each process4. This counter alternates between 0 and 1 across

4 Adding bit patterns to compare events in different processes appears in [43].

11

successive non-delimiter events within the same process. When δi = 1 (dur-
ing delimiter events), the value of li is not significant.

The formulas is encoded as follows. The structural constraints described above
are enforced when constructing each single process pi from a given set of vectors
Ei. We express the orthogonality condition using a since (S) formula of the form
ψ ∧ EY E(φS ψ) where:
1. ψ identifies global states where all processes are at delimiter events, expressed

as a conjunction of all δi propositions. The following conditions are enforced
as conjuncts within φ.

2. The counter bits li must follow a specific zigzaging pattern: either all pro-
cesses have the same value, or processes 1 through i (for some 1 ≤ i ≤ k)
have one value (0 or 1), while processes i+1 through k have the complement
value. This is efficiently encoded in size O(k) by a disjunction of two cases:
(a) A conjunction of (¬li ∨ li+1) formulas (equivalent to li → li+1) for all

adjacent indices 1 ≤ i < k. This captures situations where a block of 0
values is followed by a block of 1 values.

(b) A conjunction of (li ∨¬li+1) formulas for all adjacent indices, capturing
the opposite arrangement where a block of 1 values is followed by a block
of 0 values.

3. When all the bits of the form li have identical values (either all 0 or all 1),
at least one process must satisfy vi = 0. This enforces the core orthogonality
condition by ensuring the bitwise conjunction across all processes equals
zero. To complete the specification, this condition is applied within φ to all
global states where the li bits are equal, effectively encoding a disjunction
over all relevant bit positions.

4 An Efficient Algorithm for a Subset of the Logic

There have been several works that suggested an efficient runtime verification
algorithm for temporal properties over a partial order execution [9, 40, 41]. These
works deal with properties that can be expressed using a restricted future ver-
sions of the logic; so, instead of the EP operator in PCTL, one has its future
mirror EF (“sometimes in the future for some path”) and instead of the AH op-
erator, one has AG (“for every state in all paths in the future”). In [31] this logic
is called BTL, and a decision procedure for runtime verification of such proper-
ties is obtained using a procedure called slicing. A model checking algorithm for
this logic is described in [1], based on translating conditions on linearizations of
the partial order into an automaton. The logic PBTL is obtained by restricting
the PCTL syntax to the operators EP and AH (= ¬EP¬) and the standard
Boolean operators (∧, ∨, ¬). We will present an algorithm for PBTL.

The first step of applying the algorithm is to transform the specification
formula into a Boolean combination over subformulas that are in disjunctionless
normal form, to be called here DLNF. The Boolean combination is in disjunctive
normal form (DNF) formula. Each DLNF formula is of the following form:

– Atomic propositions.
– EP (φ1 ∧ . . . ∧ φn), if φ1 . . . φn are in DLNF.

12

– If φ is in normal form, then so is ¬φ.
Translation of a formula into a DNF Boolean combination of DLNF subformulas
for BTL is proposed in [1]. This is done by repeatedly distributing disjunctions
with the EP modality, based on the equivalence EP (φ ∨ ψ) = (EPφ ∨ EPψ).
This can result in an exponential explosion in the size of the specification, see
the proof in Appendix C.

Our algorithm for RV of PBTL properties employs a procedure for detecting
a minimal frontier M that satisfies a conjunction of literals η =

∧
1≤i≤n γi, with

each γi consists of variables local to a single process pi; further, P ≤ M for
some given frontier P . This procedure, described in the next paragraph, follows
a procedure presented in [28], on top of which we added the condition P ≤M .

We use a vector M to store events, such that M [i] is an event of pi. Since
events may involve multiple processes, it is possible that different elements ofM
may point to the same event. We initiate M to the events in P . When a new
event α is observed and added to the partial order execution, we check for each
pi ∈ Pr(α) whether M [i] satisfies γi. If this holds for each pi ∈ Pr(α), there is
no need to changeM . Otherwise, we setM [i] to α. This may cause the following
chain updates of the vector M in order to form again a frontier. Each time an
elementM [i] is updated, (starting with the event α) we may need to progress the
event in M [j], for some j ̸= i: this happens if the already observed partial order
includes an immediate successor β toM [j] (then pj ∈ Pr(β)) such that β ⪯M [i].
Then we set M [j] to β. The order ⪯ can be checked by comparing the global
clock vectors added to the events by the Fidge and Mattern algorithm. At some
point, this chain of updates must stabilize (there are only finitely many events)
and the events in M form again a frontier of the observed partial partial order
execution. Now, if for each i,M [i] satisfies γi, we have finalized the calculation of
M . Otherwise we need to wait for the next observed event, as described below,
to continue the search for a frontier satisfying η.

Step Types M Initialization / fixing Success Condition

(1) P only Fix M ≜ P after (a) holds. (a)

(2) P+M Init M = P after (a) holds. (a) and (b)

(3) P+M+ N Init M = P after (a) holds. (a) and (b) and (c)

(4) P+ N Fix M ≜ P . (a) and (c)

(5) M+ N Init M as initial event ι. (b) and (c)

(6) N only Fix M as the initial event ι. (d)

(7) M only Init M as initial event ι. (b)

(a) All EPφi (1 ≤ i < k) already hold.
(b) The minterm ηk is satisfied for detected frontier M .
(c) For each EPψl (k ≤ l ≤ n) that already holds, not Nl ≤ M for detected

frontier M .
(d) ι is not yet satisfying EPψl for each k < l ≤ n.

Table 1: Monitoring Algorithm Steps and Conditions

13

The following algorithm is applied to each subformula of the form EPφ in
the DLNF form, including separately for subformulas embedded within another
such subformula. The algorithm for different such subformulas is not applied
consecutively, but is first initiated for all such subformulas and then updates
are performed each time a new event is added to the partial order. The updates
for EPφ must follow the updates for all the subformulas in φ. For each such
subformula EPφ, where, according to the DLNF form, φ = η1 ∧ . . . ∧ ηn. We
rearrange the conjuncts ηi in the formula as follows:

P For 1 ≤ j < k, ηj = EPφj . These are the positive conjuncts. We denote the
minimal frontier satisfying ηj by Pj .

M Let ηk be a conjunction of literals, i.e., a minterm, collected together (i.e.,
we do not consider each literal in the conjunction separately).

N For k < l ≤ n, ηl = ¬EPφl. These are the negative conjuncts. We denote
the minimal frontier satisfying EPφl by Nl.

Not all the above three types of components have to exist in EPφ. For each
such EPφ subformula, we keep a vectorM that is used to calculate the minimal
frontier that satisfies EPφ. We also keep an indication whether EPφ was found
to already hold. Otherwise, the truth value of EPφ is false. Note that EPφ is
stable, i.e., when it holds, it will continue to hold when new events are added to
the partial order. The evaluation of EPφ depends on the components P, M and
N that are included in φ. At least one such component must exist, hence there
are seven cases, detailed in Table 1, where the included types of components are
listed in the second column.

The third column for each row in the table specifies the initialization of the
corresponding vectorM . We distinguish in the table between the case whereM is
fixed upon initialization, or may be achieved later than the time it is initialized,
after the occurrences of further events. Let Pj refers to the minimal frontier
satisfying the subformula EPφj , for 1 ≤ j < l, that appears positively (i.e., of
the form P within EPφ). For the initializations, we need calculate the minimal
frontier P such that Pj ≤ P . In lattice theory, P is the least upper bound with
respect to ≤ among the set of frontiers Pi, denoted P =

⊔
1≤j<k Pj . The frontier

P can be calculated as follows: for each process pi, P [i] is the maximal event
involving process pi among the the different frontiers Pj . (This follows from the
fact that taking the set of cuts Cj for which Pj is a frontier, we have that P
is the frontier of C =

⋃
1≤j<k Cj). Initialization (including fixing) of M to the

frontier P =
⊔

1≤j<k Pj takes place when all the components of the form Pj

required for calculating P were detected.
The fourth columns specifies conditions under which the subformula EPφ

(stably) holds, based on conditions (a), (b), (c) and (d), which are defined at
the bottom of the table.

After a vector of the form M for a subformula of type EPφ was initialized
(but not fixed), if it does not already satisfy the subformula ηk of φ, then M
may be updated upon adding a new event to the partial order. This is done
according to the procedure described at the beginning of this section for detecting
a frontier satisfying ηk; each γi in that procedure corresponds to the part of the
minterm ηk that consists of variables of the process pi. Updating M , can affect

14

conditions (a)–(d). One can optimize the algorithm by removing events that
cannot contribute further to the verdict: an event α can be removed if for each
frontier M calculated according to Table 1 for some subformula of the form
EFφ, either M is already detected, or it contains an event β such that α ≺ β.

We now explain in some detail case (3) in the table, which is the most in-
volved. The subformula EPφ requires that (a) for each of its immediate subfor-
mulas of the form EPφi of φ (i.e., of type P), we have already found a minimal
frontier Pi satisfying it. Further it requires in (b) that we have found a frontier
M that satisfies ηk (type M) satisfying Pi ≤ M . Condition (b) is enforced by
initializingM to P , calculated as explained above. Finally, it requires in (c) that
if for some EPψl subformula of φ (i.e., of type N) we have already found a
satisfying frontier Nl, then this frontier must not satisfy Nl ≤M . Condition (c)
only refers to frontiers Nl that were detected when M that satisfies ηk was also
already detected; a frontier Nl that will be detected after M is detected will not
satisfy Nl ≤M .

To complete the verdict of the specification, we apply the Boolean operators
as appearing in the DNF combination to the external level subformulas of the
form EPφ (i.e., those that are not proper subformulas of EPφ subformulas).

The overall complexity of the algorithm is O(|E| × k2 × 2|φ|). where |E| is
the number of events, k is the number of processes and |φ| is the size of the
specification. The problem of detecting a frontier satisfying a Boolean formula
φ was shown in [31] to be in NP-Complete using a reduction from SAT. The
reduction constructs a set of processes, one per each variable of φ. Each process
consists of two events, independent of the events of all other processes. The truth
value assigned to the propositional variable associated with a process is set to
true for one of these events and to false for the other. This reduction can be
trivially adapted to PBTL by setting the verified property to EPφ.

5 Implementations and Experiments

We developed two runtime verification tools implementing the monitoring al-
gorithm presented in this paper. PoET [49] implements the complete PCTL al-
gorithm described in Section 3, supporting the full branching temporal logic
with past operators including complex nesting and arbitrary formula structures.
Kairos [50] (from the ancient Greek concept of opportune time) implements
the PBTL algorithm from Section 4, supporting the restricted subset of PCTL
limited to EP operators and Boolean connectives. This tool achieves complex-
ity that is linear in the size of the partial order execution and quadratic in the
number of processes, but exponential in the size of the formula due to DLNF
transformation.

We conducted comparative performance evaluation to assess the efficiency
and scalability of both monitoring approaches across diverse temporal logic
patterns, using an Apple MacBook Pro (M1, 16 GB RAM, macOS Sequoia).
We evaluated four representative PBTL properties (Figure 4), covering different
cases, with results shown in Table 1. For each property evaluation, we gener-
ated four distinct trace files (1K–500K events per trace) with 3–6 concurrent

15

processes. The generated traces used in our experiments are available as part
of the PoET and Kairos GitHub repositories [49, 50]. Further experiments, with
properties that can be expressed in PCTL but not in PBTL, appear in Ap-
pendix D.

1. EP (status ok ∧ load lt 100 ∧ ¬critical alarm)
2. EP (EP (a) ∧ EP (b) ∧ EP (c) ∧ ¬EP (d))
3. EP ((aX ∧ EP (pX)) ∨ (aY ∧ EP (pY)))
4. EP ((EP (s1) ∧ ¬EP (j1)) ∨ (EP (j2) ∧ ms ∧ ¬EP (s2)))

Fig. 4: Properties in the PBTL formalism.

Property Tool Parameters Trace 1K Trace 10K Trace 100K Trace 500K

1
Kairos

Time 0.12s 0.29s 2.64s 13.23s
Memory 18MB 27MB 126MB 557MB

Poet
Time 0.59s 5.55s 1032.77s ∗

Memory 40MB 85MB 652MB

2
Kairos

Time 0.12s 0.37s 3.55s 19.39s
Memory 19MB 33MB 177MB 803MB

Poet
Time 5.90s ∗ ∗ ∗

Memory 190MB

3
Kairos

Time 0.09s 0.33s 3.22s 13.93s
Memory 19MB 29MB 143MB 650MB

Poet
Time 20.03s 1941.84s ∗ ∗

Memory 237MB 1.52GB

4
Kairos

Time 0.10s 0.47s 4.62s 25.45s
Memory 19MB 33MB 190MB 882MB

Poet
Time ∗ ∗ ∗ ∗

Memory

Table 2: Experimental Results: Performance Comparison (∗ means > 1 hour)

6 Conclusions

We studied RV for partial order executions. Specifically, we used the specification
formalism past time branching temporal logic (PCTL), interpreted on the partial
order structure between frontiers/cuts obtained from a partial order execution.

We presented a runtime verification algorithm with complexity exponential
in the number of processes (base: number of events) and linear in specification
size. We developed a prototype tool PoET implementing this algorithm. We also
presented an algorithm for PBTL, a subset restricted to temporal operator EP
and Boolean operators (including AH = ¬EP¬). This algorithm has linear
complexity in events, quadratic in processes, and exponential in specification
size. We implemented this in the Kairos tool.

Experimental comparison shows Kairos significantly outperforms PoET in
both time and memory. While PoET becomes infeasible for larger traces, Kairos

maintains reasonable performance up to 500K events, which conforms well with
the complexity results of the two algorithms. On the other hand, the PoET allows
more expressive specifications, including the ES and EY operators.

16

References

1. R. Alur, K. McMillan, D. Peled, Deciding Global Partial-Order Properties. Inter-
national Colloquium on Automata, Languages and Programming, ICALP 1998,
Lecture Notes in Computer Science 1443, Springer-Verlag, 41–52.

2. R. Alur, D. A. Peled, W. Penczek, Model-Checking of Causality Properties. LICS
1995, San Diego, CA, 90-100.

3. R. Alur, D. Peled, Undecidability of Partial Order Logics. Information Processing
Letters 69(3): 137-143 (1999)

4. G. Audrito, F. Damiani, V. Stolz, G. Torta, M. Viroli, Distributed runtime verifi-
cation by past-CTL and the field calculus. Journal of Systems and Software 187:
111251 (2022).

5. E. Bartocci, Y. Falcone, A. Francalanza, M. Leucker, G. Reger, An introduction to
runtime verification, lectures on runtime verification - introductory and advanced
topics, Lecture Notes in Computer Science 10457, Springer-Verlag, 1-23, 2018.

6. A. Bauer, M. Leucker, C. Schallhart, The good, the bad, and the ugly, but how
ugly is ugly?, RV 2007, Lecture Notes in Computer Science 4839, Springer-Verlag,
2007, 126-138.

7. S. Chakraborty, Th. A. Henzinger, A. Sezgin, V. Vafeiadis, Aspect-oriented lin-
earizability proofs. Logical Methods in Computer Science 11(1) (2015).

8. K. M. Chandy, L. Lamport, Distributed Snapshots: Determining the Global State
of Distributed Systems, ACM Transactions on Computer Systems 3 (1985), 63–75.

9. C. M. Chase, V. K. Garg, Detection of Global Predicates: Techniques and Their
Limitations, Distributed Computing, 11(1998), 191–201.

10. E. M. Clarke, E. A. Emerson, Design and Synthesis of Synchronization Skeletons
Using Branching-Time Temporal Logic. Logic of Programs, Lecture Notes in Com-
puter Science 131, Springer-Verlag, 1981, 52-71.

11. J. Dominguez, A. Nanevski, Visibility and Separability for a Declarative Lineariz-
ability Proof of the Timestamped Stack. CONCUR 2023, 1-16.

12. C. Fidge, Timestamps in message-passing systems that preserve the partial order-
ing, in K. Raymond (ed.), Proc. of the 11th Australian Computer Science Confer-
ence (ACSC’88), Volume 10, 56–66.

13. R. Ganguly, Y. Xue, A. Jonckheere, P. Ljung, B. Schornstein, B. Bonakdarpour,
M. Herlihy, Distributed runtime verification of metric temporal properties. Journal
of Parallel Distributed Computing 185, 104801 (2024).

14. V. K. Garg, Elements of distributed computing. Wiley 2002.
15. V. K. Garg, Ch. Skawratananond, N. Mittal, Timestamping messages and events

in a distributed system using synchronous communication. Distributed Comput.
19(5-6): 387-402 (2007).

16. B. Genest, D. Kuske, A. Muscholl, D. Peled, Snapshot Verification, TACAS 2005,
Lecture Notes in Computer Science 3440, Springer-Verlag, 510-525.

17. C. A. R. Hoare, Communicating Sequential Processes. Prentice-Hall 1985.
18. K. Havelund, G. Rosu, Synthesizing monitors for safety properties, Tools and Algo-

rithms for the Construction and Analysis of Systems (TACAS’02), Lecture Notes
in Computer Science 2280, Springer-Verlag, 2002, 342-356.

19. M. Herlihy, J. M. Wing, Linearizability: A Correctness Condition for Concurrent
Objects. ACM Transactions on Programming Languages and Systems 12(3), 463-
492 (1990).

20. C. Jard, Th. Jeron, G.-V. Jourdan, J.-X. Rampon, A General Approach to Trace-
Checking in Distributed Computing Systems, 14th International Conference on
Distributed Computing Systems, Pozman, Poland, 1994, pp. 396-403.

17

21. S. Katz, D. Peled, Interleaving Set Temporal Logic. Theoretical Computer Science
75(3): 263-287 (1990).

22. O. Kupferman, M. Y. Vardi. Model Checking of Safety Properties. Formal Methods
System Design, 19(3), 291-314, 2001.

23. Z. Manna, A. Pnueli, The temporal logic of reactive and concurrent systems -
specification. Springer 1992, ISBN 978-3-540-97664-6.

24. L. Lamport, Time, clocks, and the ordering of events in a distributed system.
Concurrency: the Works of Leslie Lamport 2019, 179-196.

25. F. Mattern, Virtual Time and Global States of Distributed systems, Proceedings
of Workshop on Parallel and Distributed Algorithms, Chateau de Bonas, France,
Elsevier, 215-226.

26. A. Mazurkiewicz, Trace Semantics, Proceedings of Advances in Petri Nets 1986,
Bad Honnef, Lecture Notes in Computer Science 255, Springer-Verlag, 1987, 279–
324.

27. N. Mittal and V. K. Garg, Computation Slicing: Techniques and Theory, in Dis-
tributed Computing, 15th International Conference, DISC 2001, Lisbon, Portugal,
October 3-5, 2001, Proceedings, J. L. Welch, Ed., Lecture Notes in Computer Sci-
ence, vol. 2180, Springer, 2001, pp. 78–92.

28. N. Mittal, V. K. Garg. Techniques and applications of computation slicing. Dis-
tributed Computing 17(3), 251-277 (2005).

29. P. Niebert, D. Peled, Efficient model checking for LTL with partial order snapshots.
Theor. Comput. Sci. 410(42): 4180-4189 (2009).

30. D. Peled, Specification and Verification of Message Sequence Charts, Formal Tech-
niques for Distributed System Development (FORTE/PSTV) 2000, pp.139-154.
1993: 409-423.

31. V. A. Ogale and V. K. Garg, “Detecting Temporal Logic Predicates on Distributed
Computations,” in Distributed Computing, 21st International Symposium, DISC
2007, Lemesos, Cyprus, September 24-26, 2007, Proceedings, A. Pelc, Ed., Lecture
Notes in Computer Science, vol. 4731, Springer, 2007, pp. 420–434.

32. C. H. Papadimitriou, The Theory of Database Concurrency Control. Computer
Science Press 1986.

33. W. Penczek, R. Kuiper, Traces and Logic. The Book of Traces 1995, 307-390.
34. W. Penczek, On Undecidability of Propositional Temporal Logics on Trace Sys-

tems. Information Processing Letters 43(3), 147-153 (1992).
35. D. Peled, A. Pnueli, Proving Partial Order Properties, Theoretical Computer Sci-

ence, 126:143–182, 1994.
36. D. Peled, Th. Wilke, P. Wolper, An Algorithmic Approach for Checking Closure

Properties of Temporal Logic Specifications and Omega-Regular Languages, The-
oretical Computer Science 195(2), 183-203 (1998).

37. S. S. Pinter, P. Wolper, A Temporal Logic for Reasoning about Partially Ordered
Computations (Extended Abstract), PODC 1984, 28-37.

38. W. Reisig, Partial Order Semantics versus Interleaving Semantics for CSP-like
Languages and its Impact on Fairness, ICALP 1984, Lecture Notes in Computer
Science 172, Springer-Verlag, 403-413.

39. A. P. Sistla, E. M. Clarke, The Complexity of Propositional Linear Temporal Log-
ics, Journal of the ACM 32(3), 733-749 (1985)

40. A. Sen, V. K. Garg, Detecting Temporal Logic Predicates in Distributed Programs
Using Computation Slicing, OPODIS 2003, 171-183

41. S. Stoller, Y.A. Liu, Efficient Symbolic Detection of Global Properties in Dis-
tributed Systems, CAV 1998, Lecture Notes in Computer Science 1427, Springer-
Verlag, 357–368.

18

42. P. S. Thiagarajan, I. Walukiewicz, An Expressively Complete Linear Time Tempo-
ral Logic for Mazurkiewicz Traces. Information and Computation, 179(2), 230-249
(2002).

43. I. Walukiewicz, Difficult Configurations – On the Complexity of LTrL, International
Colloquium on Automata, Languages and Programming, ICALP 1998, Lecture
Notes in Computer Science 1443, Springer-Verlag, 140–151.

44. M.Y. Vardi, P. Wolper. Reasoning About Infinite Computations, Information and
Computation, 115(1994), 1–37.

45. V. V. Willams, On Some Fine-Grained Questions in Algorithms and Complexity,
ICM 2018, 3447-3487.

46. R. Williams, A new algorithm for optimal 2-constraint satisfaction and its impli-
cations. Theoretical Computer Science 348(2-3), 357-365, 2005.

47. G. Winskel, Event Structures. Advances in Petri Nets 1986, 325-392.
48. P. Wolper, M. Y. Vardi, A. P. Sistla, Reasoning about Infinite Computation Paths

(Extended Abstract), FOCS 1983, 185-194.
49. PoET tool source code https://github.com/moraneus/PoET.
50. Kairos tool source code https://github.com/moraneus/kairos.

19

Appendix

A The Fidge-Mattern Vector Clocks Construction

The new algorithms presented in this paper use the Fidge and Mattern vec-
tor clock algorithm [12, 25]. This algorithm was originally presented in terms of
asynchronous message passing, and we describe a simple translation into syn-
chronized message passing. For simplicity and without loss of generality, we will
restrict such synchronization to involve pairs of processes (which is by far the
prevailing case).

Each vector clock V C of process pi consists of k values, V C[1] . . . V C[k], for
the k processes. In the current vector clock V C of process i, V C[j] represents
the number of events of process pj that are known by process Pi to have already
happened. Due to the distributed nature of the system, this knowledge does not
include the actual number of events executed up to the current time, but only the
information gathered through interactions between processes. However, the value
of V C[i], i.e., the number of events of pi itself known to pi is always accurate.
For implementing vector clocks, we need to be able to include (piggyback) the
vector clocks of the participating processes with each inter-process interaction,
sharing this information between the involved processes.

The update of the vector clocks is performed as follows: For a local event
e, belonging to process pi, we perform V C[i] := V C[i] + 1. For an interaction
e between processes pi and pj , the processes obtain the vector clocks V Ci and
V Cj of the processes pi and pj respectively, piggybacked as part of the interac-
tion. Then, a new vector clock V C is calculated as follows. First, let V C[m] :=
max (V Ci[m], V Cj [m]) for each m ∈ [1..k], i.e., V C maximizes the value pair-
wise between the components of V Ci and V Cj . Further, set V C[i] := V C[i] + 1
and V C[j] := V C[j] + 1, corresponding to the fact that both processes have
performed an additional (joint) event. Then V C becomes the new vector clock
of both pi and pj .

Now, each event e reported to the monitor also includes the most recent
vector clock associated with the participating process(s), denoted V C(e). The
order e ≺ f , can be recovered from the vector clocks as follows:

e ≺ f ↔ ∀i ∈ [1..k]V C(e)[i] ≤ V C(f)[i] ∧ ∃i ∈ [1..k]V C(e)[i] < V C(f)[i]

The RV monitor can use the vector clock order to process events in an order
that is a linearization of the partial order ≺ by processing an event f only after
it already processed all the events e satisfying e ≺ f . This is enforced as follows.
The monitor process keeps a counter Ei that counts the number of events of
process pi that it has already processed. Processing a new event f , the monitor
increments Ei for each pi ∈ Pr(f). Now, all the events that appear before a
reported event f were already reported if the following two conditions hold:

– for each pi ∈ Pr(f), Ei = V C(f)[i]− 1, and
– for each pi ̸∈ Pr(f), Ei = V C(f)[i].

20

Otherwise, there is at least one event e in the execution that was not reported
yet such that e ≺ f . In this case, f is kept in a queue of unprocessed events,
and waits to be processed by the RV algorithm when the above conditions will
be satisfies.

B Ilustration of the computation RV for PBTL

Figure 5 illustrates the evaluation of a compound formula ψ = EP (EP (φ1) ∧
EP (φ2) ∧ minterm ∧ ¬EP (ψ1) ∧ ¬EP (ψ2) ∧ ¬EP (ψ3)). The diagram shows a
partial-order execution where the frontiers P1 and P2 mark the minimal points
where the positive subformulas hold. The minterm is satisfied at the frontier
labeled M , initialized based on P1 ∪ P2. The dashed lines corresponding to the
frontiers N1, N2, and N3 represent the points where each negative EP (ψj) be-
comes true. For ψ to hold, requires also that all Nj do not occur strictly before
M , which is the case here.

time

P1

P2

M

N1

N2

N3

Minterm (M)

positive EP (P)

Negative EP (N)

Fig. 5: Evaluation of EP (EP (φ1)∧EP (φ2)∧minterm∧¬EP (ψ1)∧¬EP (ψ2)∧
¬EP (ψ3))

C Proof of Size Complexity of the translation to DNF of
DLNFs

The proof is by induction on the depth of EP subformulas. Take a subformula
EPφ where φ has immediate (i.e., not subfomrulas of subofmrulas) subformulas
φ1, . . . , φn. For the moment, replace each φi by an atom (a new proposition)
φ̂i. We can rewrite EPφ in the form EP (ψ1 ∨ . . . ψm), where m ≤ 2n and each
ψj is a minterm over the new atoms of the form φ̂i, with size no more than m
each. For the base of the induction, we have an EP formula without nested EP
subformulas. Then, φ̂i = φi, and we can now distribute the disjuncts over the
EP .

21

By induction, we can translate each φi into a DNF of subformulas in DLNF;
for each φi of length ki = |φi|, we obtain a formula φ′

i with up to 2ki disjuncts,
each of up to ki conjuncts, each one of them in DLNF normal form. Now we
replace each postive occurrence in the subformulas ψj by φ̂i with φ

′
i. Replacing

each negative occurrence ¬φ̂i in ψj , we obtain a negation of a DNF formula
for which can be converted into a CNF formula by using De Morgan dulatity
between conjunctions and disjunctions. Now, this can be translated back into
DNF, with no more than 2ki dusjuncts, each of at most ki conjuncts

5.
After this rewriting, each ψj becomes a conjunction of up to n subfomrulas,

each of which is a disjunction of up to 2ki disjunctions with up to ki conjuncts.
This can be by distibuting conjunctions and disjunctions into a formula of size
2k1 × . . .×2kn . Recall that we have m ≤ 2n disjuncts ψj . This gives us 2

n×2k1 ×
. . . 2kn = 2n+k1+...+kn disjuncts. But the size of EPφ, when fully parenthesized
is not more than n+ k1 + . . .+ kn. Finally, we can now commute the disjuncts
with the EP operator that includes them. The subformulas in this translation
is in DLNF is their size stays smaller than EPφ by the rewritings. The top level
of the translation is in DNF, with subformulas in DLNF.

D Detailed Experimental Analysis

This appendix presents additional PCTL experiments that demonstrate the full
expressiveness of the PoET tool beyond the PBTL-compatible properties shown
in the main paper.

5. EH((sp1 → AY (A(¬sp2 S ep2))) ∨ (sp2 → AY (A(¬sp1Sep1))))
6. E((EH((((a ↔ a

′
) ∧ (b ↔ b

′
)) ∧ ((t1 ↔ t

′
1) ∧ (t2 ↔ t

′
2))) ∨

((t2 ↔ ¬t′2) ∧ ((t1 ↔ ¬t2) ↔ ¬t′1)))) S init)
7. EH(COM → (AH(cp3 → (EP ((cp1 ∨ cp2) ∧ EY (COM))))))
8. EH(sp1 → AH(sp1 → EP (ep1 ∧ EY srp1))) ∨

EH(sp2 → AH(sp2 → EP (ep2 ∧ EY srp2)))

Fig. 6: PCTL Properties demonstrating full temporal logic expressiveness

PCTL Properties: Full Expressiveness Evaluation

The following four properties in Figure 6 require operators beyond the PBTL
subset (e.g., AY , A(ϕSψ)) and showcase scenarios where complete PCTL ex-
pressiveness is useful. In particular, Property 5 specifies transaction atomicity
in a two-process system, ensuring mutual exclusion using AY and A(ϕSψ) op-
erators. Property 6 asserts the correspondence between two independent event
sequences using modulo four binary counters. Property 7 enforces synchro-
nization ordering where process p3 can only enter its critical section after p1 or
p2.

5 This is done as in building a truth table for a formula with the variables of the form
φ̂i, checking which minterm satisfies all the disjuncts of the CNF.

22

PCTL Experimental Results. Table 3 presents results for properties 5-8
across trace sizes from 50 to 1000 events. Due to the exponential complexity
of the algorithm, traces were limited to 1K events maximum.

Property Metric Trace 50 Trace 100 Trace 500 Trace 1000

5
Time 0.44 0.41s 18.91s 204.02s

Memory 34MB 37MB 126MB 328MB

6
Time 0.38s 0.57s 23.64s 230.27s

Memory 34MB 38MB 134MB 430MB

7
Time 0.35s 0.51s 21.78s 233.33s

Memory 34MB 39MB 138MB 474MB

8
Time 0.34s 0.23s 0.48s 0.80s

Memory 34MB 35MB 38MB 49MB

Table 3: PoET Experimental Results forPCTL Properties

These results demonstrate that while PCTL enables expressing complex tem-
poral relationships impossible in PBTL, the exponential complexity limits prac-
tical deployment to smaller systems, contrasting with PBTL’s better scalability
for online monitoring scenarios.

23

