
An Efficient Decentralized Algorithm for the
Distributed Trigger Counting Problem

Venkatesan T. Chakaravarthy1, Anamitra R. Choudhury1, Vijay K. Garg2, and
Yogish Sabharwal1

1 IBM Research - India, New Delhi. {vechakra,anamchou,ysabharwal}@in.ibm.com
2 University of Texas at Austin. garg@ece.utexas.edu

Abstract. Consider a distributed system with n processors, in which
each processor receives some triggers from an external source. The dis-
tributed trigger counting problem is to raise an alert and report to a user
when the number of triggers received by the system reaches w, where
w is a user-specified input. The problem has applications in monitoring,
global snapshots, synchronizers and other distributed settings. The main
result of the paper is a decentralized and randomized algorithm with ex-
pected message complexity O(n log n log w). Moreover, every processor in
this algorithm receives no more than O(log n log w) messages with high
probability. All the earlier algorithms for this problem have maximum
message load of Ω(n log w).

1 Introduction

In this paper, we study the distributed trigger counting (DTC) problem. Con-
sider a distributed system with n processors, in which each processor receives
some triggers from an external source. The distributed trigger counting problem
is to raise an alert and report to a user when the number of triggers received by
the system reaches w, where w is a user specified input. We note w may be much
larger than n. The sequence of processors receiving the w triggers is not known
apriori to the system. Moreover, the number of triggers received by each proces-
sor is also not known. We are interested in designing distributed algorithms for
the DTC problem that are communication efficient and are also decentralized.

The DTC problem arises in applications such as distributed monitoring and
global snapshots. Monitoring is an important issue in networked systems such
as sensor networks and data networks. Sensor networks are typically employed
to monitor physical or environmental conditions such as traffic volume, wildlife
behavior, troop movements and atmospheric conditions, among others. For ex-
ample, in traffic management, one may be interested in raising an alarm when
the number of vehicles on a highway exceeds a certain threshold. Similarly, one
may wish to monitor a wildlife region for the sightings of a particular species, and
raise an alert, when the number crosses a threshold. In the case of data networks,
example applications are monitoring the volume of traffic or the number of re-
mote logins. See, for example, [7] for a discussion of applications of distributed



monitoring. In the context of global snapshots (example, checkpointing), a dis-
tributed system must record all the in-transit messages in order to declare the
snapshot to be valid. Garg et al. [4] showed the problem of determining whether
all the in-transit messages have been received can be reduced to the DTC prob-
lem (they call this the distributed message counting problem). In the context
of synchronizers [1], a distributed system is required to generate the next pulse
when all the messages generated in the current pulse have been delivered. Any
message in the current pulse can be viewed as a trigger of the DTC problem.

Our goal is to design a distributed algorithm for the DTC problem that
is communication efficient and decentralized. We use the following two natural
parameters that measure these two important aspects.

– The message complexity, i.e., the number of messages exchanged between
the processors.

– The MaxRcvLoad, i.e., the maximum number of messages received by any
processor in the system.

Garg et al. [4] studied the DTC problem for a general distributed system.
They presented two algorithms: a centralized algorithm and a tree-based al-
gorithm. The centralized algorithm has message complexity O(n log w). How-
ever, the MaxRcvLoad of this algorithm can be as high as Ω(n log w). The
tree-based algorithm has message complexity O(n log n log w). This algorithm
is more decentralized in a heuristic sense, but its MaxRcvLoad can be as high as
O(n log n log w), in the worst case. They also proved a lowerbound on the message
complexity. They showed that any deterministic algorithm for the DTC prob-
lem must have message complexity Ω(n log(w/n)). So, the message complexity
of the centralized algorithm is optimal asymptotically. However, this algorithm
has MaxRcvLoad as high as the message complexity.

In this paper, we consider a general distributed system where any processor
can communicate with any other processor and all the processors are capable of
performing basic computations. We assume an asynchronous model of computa-
tion and messages. We assume that the messages are guaranteed to be delivered
but there is no fixed upper bound on the message arrival time. Also, messages
are not corrupted or spuriously introduced. This setting is common in data net-
works. We also assume that there are no faults in the processors and that the
processors do not fail.

Our main result is a decentralized randomized algorithm called Layere-
dRand that is efficient in terms of both the message complexity and MaxR-
cvLoad. Its message complexity is O(n log n log w). Moreover, with high proba-
bility, its MaxRcvLoad is O(log n log w). The message complexity of our algo-
rithm is the same as that of the tree based algorithm of Garg et al. [4]. However,
the MaxRcvLoad of our algorithm is significantly better than both their tree
based and centralized algorithms. It is important to minimize MaxRcvLoad for
many applications. For example, in sensor networks where the message process-
ing may consume limited power available at the node, a high MaxRcvLoad may
reduce the lifetime of a node.



Algorithm Message MaxLoad
Complexity

Tree-based[4] O(n log n log w) O(n log n log w)
Centralized[4] O(n log w) O(n log w)
LayeredRand O(n log n log w) O(log n log w)

Fig. 1. Summary of DTC Algorithms

Another important aspect of our algorithm is its simplicity. In particular, our
algorithm is much simpler than both the algorithms of Garg et al. A comparison
of our algorithm with the earlier results is summarized in Fig. 1. Designing
an algorithm with message complexity O(n log w) and MaxRcvLoad O(log w)
remains a challenging open problem.

Our main result is formally stated next. For 1 ≤ i ≤ w, the external source
delivers the ith trigger to some processor xi. We call the sequence x1, x2, . . . , xw

as a trigger pattern.

Theorem 1. Fix any trigger pattern. The message complexity of the Layere-
dRand algorithm is O(n log n log w). Furthermore, there exist constants c and
d ≥ 1 such that

Pr[MaxRcvLoad ≥ c log n log w] ≤ 1
nd

.

The above bounds hold for any trigger pattern, even if fixed by an adversary.
Related work. Most prior work (e.g. [3, 7, 6]) primarily consider the DTC

problem in a centralized setting where one of the processors acts as a master
and coordinates the system, and the other processors act as slaves. The slaves
can communicate only with the master (they cannot communicate among them-
selves). Such a scenario applies where a communication network linking the
slaves does not exist or the slaves have only limited computational power. Prior
work addresses various issues arising in such a setup, such as message complex-
ity. They also consider variations and generalizations of the DTC problem. One
such variation is approximate threshold computation, where system need not
raise an alert on seeing exactly w triggers; it suffices if the alert raised upon
seeing at most (1+ ε)w triggers, where ε is some user specified tolerance param-
eter. Prior work also considers aggregate function more general than counting.
Here, each input trigger i is associated with a value αi. The goal is to raise an
alert when some aggregate of these values crosses the threshold (an example,
aggregate function is sum).

Note that the Echo or Wave algorithms [2, 9, 10] and the framework of re-
peated global computation [5] are not easily applicable for the DTC problem
because the triggers arrive at processors asynchronously at unknown times. Com-
puting the sum of all the trigger counts just once is not enough and repeated
computation results in an excessive number of messages.



2 A Deterministic Algorithm

For the DTC problem, Garg et al. [4] presented an algorithm with the message
complexity of O(n log w). In this section, we describe a simple alternative deter-
ministic algorithm having the same message complexity. The aim of presenting
this algorithm is to highlight the difficulties in designing an algorithm that si-
multaneously achieves good message complexity and MaxRcvLoad bounds.

A naive algorithm for the DTC problem works as follows. One of the proces-
sors acts as a master and every processor sends a message to the master upon
receiving each trigger. The master keeps count on the total number of triggers
received. When the count reaches w, the user is informed and the protocol ends.
The disadvantage with this algorithm is that its message complexity is O(w).

A natural idea is avoid sending a message to the master for every trigger
received. Instead, a processor will send one message for every B triggers received.
Clearly, setting B to a high value will reduce the number of messages. However,
care should taken to ensure that the system does not enter the dead state. For
instance, suppose we set B = w/2. Then, the adversary can send w/4 triggers
to some selected four processors. Notice that none of these processors would
send a message to the master. Thus, even though all the w triggers have been
delivered by the adversary, the system will not detect the termination. We say
that the system is the dead state. Our deterministic algorithm with message
complexity O(n log w) is described next. A predetermined processor would serve
as the master. The algorithm works in multiple rounds. We start by setting two
parameters: ŵ = w and B = ŵ/(2n). Each processor would send a message to the
master for every B triggers received. The master will keep count of the triggers
reported by other processors and the triggers received by itself. When the count
reaches ŵ/2, it declares end-of-round and sends a message to all the processors
to this effect. In return, each processor sends the number of unreported triggers
to the master (namely, the triggers not reported to the master). This way, the
master can compute w′, the total number of triggers received so far in the system.
It recomputes ŵ = ŵ−w′; the new ŵ is the number of triggers yet to be received.
The master recomputes B = ŵ/(2n) and sends this number to every processor.
The next round starts. When ŵ < (2n), we set B = 1.

We now argue that the system never enters a dead state. Consider the state
of the system in the middle of any round. Each processor has less than ŵ/(2n)
unreported triggers. Thus, the total number of unreported triggers is less than
ŵ/2. The master’s count of reported triggers is less than ŵ/2. Thus, the total
number of triggers delivered so far is less than ŵ. So, some more triggers are
yet to be delivered. It follows that the system is never in a dead state and the
system will correctly terminate upon receiving all the w triggers.

Notice that in each round, ŵ decreases at least by a factor of 2. So, the
algorithm terminates after log w rounds. Consider any single round. A message
is sent to the master for every B triggers received and the rounds gets completed
when the master’s count reaches ŵ/2. Thus, the number of messages sent to
the master is ŵ/(2B) = n. At the end of each round, the O(n) messages are
exchanged between the master and the other processors. Thus, the number of



/.-,()*+
;;

wwwwwwwwwwwwwwwww cc

GGGGGGGGGGGGGGGGG Layer 0 (root)

/.-,()*+
FF

±±
±±
±±
±±
±±
±±
±±

XX

00
00

00
00

00
00

00
ee

KKKKKKKKKKKKKKKKKKKKKKKKii

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS /.-,()*+55

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk 99

ssssssssssssssssssssssss FF

±±
±±
±±
±±
±±
±±
±±

XX

00
00

00
00

00
00

00
Layer 1

/.-,()*+
»»

/.-,()*+ /.-,()*+ /.-,()*+ Layer 2

.

.

.

.

/.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+ Layer 3

Fig. 2. Illustration for LayeredRand

messages per round is O(n). The total number messages exchanged during all
the rounds is O(n log w).

The above algorithm is efficient in terms of message complexity. However, the
master may receive upto O(n log w) messages and so, the MaxRcvLoad of the
algorithm is O(n log w). In the next section, we present an efficient randomized
algorithm which simultaneously achieves provably good message complexity and
MaxRcvLoad bounds.

3 LayeredRand Algorithm

In this section, we present a randomized algorithm called LayeredRand. Its
message complexity is O(n log n log w) and with high probability, its MaxR-
cvLoad is O(log n log w).

For the ease of exposition, we first describe our algorithm under the assump-
tion that the triggers are delivered one at a time; meaning, all the processing
required for handling a trigger is completed before the next trigger arrives. This
assumption allows us to better explain the core ideas of the algorithm. We will
discuss how to handle the concurrency issues in Sect. 5.

For the sake of simplicity, we assume that n = 2L − 1, for some integer
L. The n processors are arranged in L layers numbered 0 through L − 1. For
0 ≤ ` < L, layer ` consists of 2` processors. Layer 0 consists of a single processor,
which we refer to as the root. Layer L− 1 is called the leaf layer. The layering is
illustrated in Fig. 2, for n = 15. Only processors occupying adjacent layers will
communicate with each other.

The algorithm proceeds in multiple rounds. In the beginning of each round,
the system needs to know how many triggers are yet to be received. This can
be computed by keeping track of the total number of triggers received in all the
previous rounds and subtracting this quantity from w. Let the term initial value
of a round mean the number of triggers yet to be received at the beginning of
the round. We use a variable ŵ to store the initial value of any round. In the
first round, we set ŵ = w, since all the w triggers are yet to be received.



We next describe the procedure followed in a single round. Let ŵ denote the
initial value of this round. For each 1 ≤ ` < L, we compute a threshold τ(`) for
the layer `:

τ(`) =
⌈

ŵ

4 · 2` · log(n + 1)

⌉
.

Each processor x maintains a counter C(x), which is used to keep track of
some of the triggers received by x and other processors occupying the layers
below of that of x. The exact semantics C(x) will become clear shortly. The
counter is reset to zero in the beginning of the round.

Consider any non-root processor x occupying a level `. Whenever x receives
a trigger, it will increment C(x) by one. If C(x) reaches the threshold τ(`), x
chooses a processor y occupying level ` − 1 uniformly at random and sends a
message to y. We refer to such a message as a coin. Upon receiving the coin,
the processor y updates C(y) by adding τ(`) to C(y). Intuitively, receipt of a
coin by y means that y has evidence that some processors below the layer `− 1
have received τ(`− 1) triggers. After the update, if C(y) ≥ τ(`− 1), y will pick
a processor z occupying level ` − 2 uniformly at random and send a coin to z.
Then, processor y updates C(y) = C(y)− τ(`− 1). Processor z handles the coin
similarly. See Fig. 2. A directed edge from a processor u to a processor v means
that u may send a coin to v. Thus, a processor may send a coin to any processor
in the layer above. This is illustrated for the top three layers in the figure.

We now formally describe the behavior of a non-root processor x occupying
a level `. Whenever x receives a trigger from the external source or a coin from
level ` + 1, it behaves as follows:

– If a trigger is received, increment C(x) by one.
– If a coin is received from level ` + 1, update C(x) = C(x) + τ(` + 1).
– If C(x) ≥ τ(`),

• Among the 2`−1 processors occupying level ` − 1, pick a processor y
uniformly at random and send a coin to y.

• Update C(x) = C(x)− τ(`).

The behavior of the root is similar to that of the other processors, except that
it does not send coins. The root processor r also maintains a counter C(r).
Whenever it receives a trigger from the external source, it increments C(r) by
one. If it receives a coin from level 1, it updates C(r) = C(r) + τ(1).

An important observation is that at any point of time, any trigger received
by the system in the current round is accounted in the counter C(x) of exactly
one processor x. This means that the sum of C(x) over all the processors gives
us the exact count of the triggers received in the system so far in this round.
This observation will be useful in proving the correctness of the algorithm.

The crucial activity of the root is to initiate an end-of-round procedure. When
C(r) reaches dŵ/2e (i.e., when C(r) ≥ dŵ/2e), the root declares end-of-round.
Now, the root needs to get a count of the total number of triggers received
by all the processors in this round. Let this count be w′. The processors are
arranged in a pre-determined binary tree formation such that each processor x



has exactly one parent from the layer above and exactly two children from the
layer below. The end-of-round notification can be broadcast to all the processors
in a recursive top-down manner. Similarly, the sum of C(x) over all the processors
can be reduced at the root in a recursive bottom-up manner. Thus, the root
obtains the value w′, i.e., the total number of triggers received in the system
in this round. The root then updates the initial value for the next round by
computing ŵ = ŵ − w′, and broadcasts this to all the processors, again in a
recursive fashion. All the processors then update their τ(`) values for the new
round. This marks the start of the next round. Notice that in the end-of-round
process, each processor receives at most a constant number of messages.

At the end of any round, if the newly computed ŵ is zero, we know that all
the w triggers have been received. So, the root can raise an alert to the user and
the algorithm is terminated.

It is easy to derive a bound on the number of rounds taken by the algorithm.
Observe that in successive rounds the initial value drops by a factor of two
(meaning, ŵ of round i+1 is at most half the ŵ of round i). Thus, the algorithm
takes at most log w rounds.

4 Analysis of the LayeredRand Algorithm

Here, we prove the correctness of the algorithm and then prove message bounds.

4.1 Correctness of the Algorithm

We now show that the system will correctly raise an alert to the user when all
the w triggers are received. The main part of the proof involves showing that
after starting a new round, the root always enters the end-of-round procedure,
i.e., the system does not get stalled in the middle of the round, when all the
triggers have been delivered.

We denote the set of all processors by P. Consider any round and let ŵ be the
initial value of the round. Let x be any non-root processor and let ` be the layer
in which x is found. Notice that at any point of time, we have C(x) ≤ τ(`)− 1.
Thus, we can derive a bound on the sum of C(x):

∑

x∈P−{r}
C(x) ≤

L−1∑

`=1

2`(τ(`)− 1) ≤ (L− 1)ŵ
4 · log(n + 1)

≤ ŵ

4

Now suppose that all the outstanding ŵ triggers have been delivered to the
system in this round. We already saw that at any point of time,

∑
x∈P C(x)

gives the number of triggers received by the system so far in the current round.
Thus,

∑
x∈P C(x) = ŵ. It follows that the counter at the root C(r) satisfies3

C(r) ≥ 3ŵ/4 ≥ dŵ/2e. But, this means that the root would initiate the end-of-
round procedure. We conclude that the system will not enter a dead state.
3 We note that C(r) is an integer, and hence this holds even when ŵ = 1



The above argument shows that the system always makes progress by moving
into the next round. As we observed earlier, the initial value ŵ drops by a factor
of at least two in each round. So, eventually, ŵ must become zero and the system
will raise an alert to the user.

4.2 Bound on the Message Complexity

Lemma 1. The message complexity of the algorithm is O(n log n log w).

Proof: As argued before, the algorithm takes only O(log w) rounds to terminate.
Consider any round and let ŵ be the initial value of the round. Consider any

layer 1 ≤ ` < L. Every coin sent from layer ` to ` − 1 means that at least τ(`)
triggers have been received by the system in this round. Thus, the number of
coins sent from layer ` to the layer ` − 1 can be at most ŵ/τ(`). Summing up
over all the layers, we can get a bound on the total number of coins (messages)
sent in this round:

Number of coins sent ≤
L−1∑

`=1

ŵ

τ(`)
≤

L−1∑

`=1

4 · 2` log n ≤ 4 · (n− 1) log n

The end-of-round procedure involves only O(n) messages, in any particular
round. Summing up over all log w rounds, we see that the message complex-
ity of the algorithm is O(n log n log w). ¤

4.3 Bound on the MaxRcvLoad

In this section, we show that with high probability, the MaxRcvLoad is bounded
by O(log n log w). We use the following Chernoff bound (see [8]) for this purpose.

Theorem 2 (see [8], Theorem 4.4). Let X be the sum of a finite number of
independent 0−1 random variables. Let the expectation of X be µ = E[X]. Then,
for any r ≥ 6, Pr[X ≥ rµ] ≤ 2−rµ. Moreover, for any µ′ ≥ µ, the inequality is
true, if we replace µ by µ′ on both sides.

Lemma 2. Pr[MaxRcvLoad ≥ c log n log w] ≤ n−47, for some constant c.

Proof: Let us first consider the number coins received by any processor. Proces-
sors in the leaf layer do no receive any coins and so, it suffices to consider the
processors occupying other layers.

Consider any layer 0 ≤ ` ≤ L− 2 and let x be any processor found in layer `.
Let Mx be the random variable denoting the number of coins received by x. As
discussed before, the algorithm takes at most log w rounds. In any given round,
the number of coins received by layer ` is at most ŵ

τ(`+1) ≤ 4 · 2`+1 log n. Thus,
the total number of coins received by layer ` is at most 4 · 2`+1 log n log w. Each
of these coins is sent uniformly and independently at random to one of the 2`

processors occupying layer `. Thus, expected number of coins received by x is

E[Mx] ≤ 4 · 2`+1 log n log w

2`
= 8 log n log w



The random variable Mx is a sum of independent 0-1 random variables. Applying
the Chernoff bound given by Theorem 2 (taking r = 6), we see that

Pr[Mx ≥ 48 log n log w] ≤ 2−48 log n log w < n−48.

Applying the union bound, we see that

Pr[There exists a processor x having Mx ≥ 48 log n log w] < n−47.

During the end-of-round process, a processor receives at most a constant
number of messages in any round. So, the total of these messages received by
any processor is O(log w). ¤

5 Handling Concurrency

In this section, we discuss how to handle the concurrency issues. All triggers and
coin messages received by a processor can be placed into a queue and processed
one at a time. Thus, there is no concurrency issue related to triggers and coins
received within a round. However, concurrency issues need to be handled during
an end-of-round. Towards this goal, we slightly modify the LayeredRand al-
gorithm. The core functioning of the algorithm remains the same as before; we
mainly modify the end-of-round procedure by adding some additional features
(such as counters and queues). The rest of this section explains these features
and the end-of-the round procedure in detail. We also prove correctness of the
algorithm in the presence of concurrency issues.

5.1 Processing Triggers and Coins

Each processor x maintains two FIFO queues - a default queue and a priority
queue. All triggers and coin messages received by a processor are placed in the
default queue. The priority queue contains only the messages related to the end-
of-round procedure, which are handled on a priority basis. In the main event
handling loop, a processor repeatedly checks for messages in queues. It first
examines the priority queue and handles the first message in that queue, if any.
If there is no message there, it examines the default queue and handles the first
message in that queue (if any).

Every processor also maintains a counter D(x) that keeps a count of triggers
directly received and processed by x, since the beginning of the algorithm. The
triggers received by x that are in the default queue (not yet processed) are not
accounted in D(x). The counter D(x) is incremented every time the processor
processes a trigger from the default queue. This counter is never reset. It is
maintained in addition to the counter C(x) (which gets reset in the beginning
of each round).

Every processor x maintains another variable, RoundNum, that indicates the
current round number for this processor. Whenever x sends a coin to some other
processor, it includes its RoundNum in the message. The processing of triggers
and coins is done as before (as in Sect. 3).



5.2 End-of-round Procedure

Here, we describe the end-of-round procedure in detail, highlighting the modifi-
cations. The procedure consists of four phases. The processors are arranged in
the form of a binary tree as before.

In the first phase, the root processor broadcasts a RoundReset message down
the tree to all nodes requesting them to send their D(x) counts. In the second
phase, these counts are reduced at the root using Reduce messages; the root
computes the sum of D(x) over all the processors. Note that, unlike the algo-
rithm described in Sect. 3, here the root computes the sum of D(x) counters,
rather than the sum of C(x) counters. We shall see that this is useful in proving
correctness. Using the sum of D(x) counters, the root computes the initial value
ŵ for the next round. In the third phase, the root broadcasts this value ŵ to
all nodes using Inform messages. In the fourth phase, each processor sends an
acknowledgement InformAck back to the root and enters the next round. We
now describe the four phases in detail.
First Phase: In this phase, the root processor initiates the broadcast of a
RoundReset message by sending it down to its children. A processor x on re-
ceiving RoundReset message, does the following:

– At this point, the processor suspends processing of the default queue until
the end-of-round processing is completed. Thus all new triggers are queued
up without being processed. This ensures that the D(x) value is not modified
while end-of-round procedure is in progress.

– If x is not a leaf processor, it forwards the RoundReset message to its children;
if it is a leaf-processor, it initiates the second phase as described below.

Second Phase: In this phase, the D(x) values are sum-reduced at the root
from all the processors. The second phase starts when a leaf processor receives
a RoundReset message, in response to which it initiates a Reduce message con-
taining its D(x) value and passes it to its parent. When a non-leaf processor has
received Reduce messages from all its children, it adds up the values in these
messages to its own D(x) and sends a Reduce message to its parent with this
sum. Thus, the root collects the sum of D(x) over all the processors. This sum
w′ is the total numbers of triggers received in the system so far. Subtracting w′

from w, the root computes the initial value ŵ for the next round. If ŵ = 0, the
root raises an alert and terminates the algorithm. Otherwise, the root initiates
the third phase.
Third Phase: In this phase, the root processor broadcasts the new ŵ value by
sending an Inform message to its children. A processor x on receiving the Inform
message, performs the following:

– It computes the threshold τ(`) value for the new round, where ` is the layer
number of x.

– If x is a non-leaf processor, it forwards the Inform message to its children;
if x is a leaf processor, it initiates the fourth phase as described below.



Fourth Phase: In this phase, the processors send an acknowledgement upto
the root and enter the new round. The fourth phase starts when a leaf processor
x receives an Inform message. After performing the processing for the Inform
message, it performs the following actions:

– It increments RoundNum. This signifies that the processor has entered the
next round. After this point, the processor does not process any coins from
the previous rounds. Whenever the processor receives a coin generated in
the previous rounds, it simply discards the coin.

– C(x) is reset to zero.
– It sends an InformAck to its parent.
– The processor x resumes processing of the default queue. This way, x will

start processing the outstanding triggers (if any).

When a non-leaf node receives InformAck messages from all its children, it per-
forms the same processing as above. When the root processor has received In-
formAck messages from all its children, the system enters the new round.

We note that it is possible to implement the end-of-round procedure using
three phases. However, the fourth phase (of sending acknowledgements) ensures
that at any point of time, the processors can only be in two different (consecutive)
rounds. Moreover, when the root receives the InformAck messages from all its
children, all the processors in the system are in the same round. Thus, end-of-
round processing for different rounds cannot be in progress simultaneously.

5.3 Correctness of Algorithm

We now show that the system correctly raises an alert to the user when all
the w triggers are delivered. The main part of the proof involves showing that
after starting a new round, the root always enters the end-of-round procedure.
Furthermore, we also show that system does not incorrectly raise an alert to the
user before w triggers are delivered.

We say that a trigger is unprocessed, if the trigger has been delivered to a
processor and is waiting in its default queue. A processor is said to be in round
k, if its RoundNum equals k. A trigger is said to be processed in round k, if the
processor that received this trigger is in round k when it processed the trigger.

Consider the point in time t when the system has entered a new round k.
Let ŵ be the initial value of the round. Recall that in the second phase, the
root computes w′ =

∑
x∈P D(x) and sets ŵ = w − w′, where P is the set of

all processors. Notice that in the first phase, all processors suspend processing
triggers from the default queue. The trigger processing is resumed only in the
fourth phase after the RoundNum is incremented. Therefore, no more triggers
are processed in the round k−1. It follows that w′ is the total number of triggers
that have been processed in the (previous) rounds k′ ≤ k−1. Thus, any triggers
processed in round k will be accounted in the counter C(x) of some processor x.
This observation leads to the following argument.

We now show that the root initiates the end-of-round procedure upon re-
ceiving at most ŵ triggers. Suppose all the ŵ triggers have been delivered and



processed in this round. Furthermore, assume that all the coins generated and
sent in the above process have also been received and processed. Clearly, such a
state will happen at some point in time, since we assume a reliable communica-
tion network. At this point of time, we have

∑
x∈P C(x) = ŵ.

At any point of time after t, we have
∑

x∈P−{r} C(x) ≤ ŵ/4, where P is the
set of all processors and r is the root processor. The claim is proved using the
same arguments as in Sect. 4.1 and the fact that the processors discard the coins
generated in previous rounds.

From the above relations, we get that C(r) ≥ 3ŵ/4 ≥ dŵ/2e. The root
initiates the end-of-round procedure whenever C(r) crosses dŵ/2e. Thus, the
root will eventually start the end-of-round procedure. Hence the system never
gets stalled in the middle of the round. Clearly, the system raises an alert on
receiving w triggers.

We now argue that the system does not raise an alert before receiving w
triggers. This follows from the fact that ŵ for a new round is calculated on the
basis of D(x) counters. The analysis of message complexity and MaxRcvLoad
are unaffected.

6 Conclusions

We have presented a randomized algorithm to the DTC problem which reduces
the MaxRcvLoad of any node from O(n log w) to O(log n log w) with high prob-
ability. The ultimate goal of this line of work would be to design a deterministic
algorithm with MaxRcvLoad O(log w).

References

1. B. Awerbuch. Complexity of network synchronization. J. ACM, 32(4):804–823,
1985.

2. E. Chang. Echo algorithms: Depth parallel operations on general graphs. IEEE
Trans. Software Eng., 8(4):391–401, 1982.

3. G. Cormode, S. Muthukrishnan, and K. Yi. Algorithms for distributed functional
monitoring. In SODA, 2008.

4. R. Garg, V. K. Garg, and Y. Sabharwal. Scalable algorithms for global snapshots
in distributed systems. In 20th Int. Conf. on Supercomputing (ICS), 2006.

5. V. Garg and J. Ghosh. Repeated computation of global functions in a distributed
environment. IEEE Trans. Parallel Distrib. Syst., 5(8):823–834, 1994.

6. L. Huang, M. Garofalakis, A. Joseph, and N. Taft. Communication-efficient track-
ing of distributed cumulative triggers. In ICDCS, 2007.

7. R. Keralapura, G. Cormode, and J. Ramamirtham. Communication-efficient dis-
tributed monitoring of thresholded counts. In SIGMOD Conference, 2006.

8. M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algo-
rithms and Probabilistic Analysis. Cambridge Univ. Press, 2005.

9. A. Segall. Distributed network protocols. IEEE Transactions on Information
Theory, 29(1):23–34, 1983.

10. G. Tel. Distributed infimum approximation. In FCT, pages 440–447, 1987.


