
On Slicing a Distributed Computation

Vijay K. Garg�
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, TX 78712-1084, USA

garg@ece.utexas.edu

Neeraj Mittal
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712-1188, USA
neerajm@cs.utexas.edu

Abstract

We introduce the notion of a slice of a distributed compu-
tation. A slice of a distributed computation with respect toa
global predicate is a computation which captures those and
only those consistent cuts of the original computation which
satisfy the global predicate. We show that a slice exists fora
global predicate iff the predicate is a regular predicate. We
then give an efficient algorithm for computing the slice and
we show applications of slicing to testing and debugging of
distributed programs.

1. Introduction

A distributed program is equivalent to the set of all dis-
tributed computations it generates. For many applications
such as testing and debugging of distributed programs a pro-
grammer may be required to analyze a distributed compu-
tation. In this paper, we define the notion of a computa-
tion slice which we argue is a useful notion for these ap-
plications. Informally, given a distributed computation,a
programmer may compute its slice with respect to differ-
ent global predicates. Given a global predicate, the slice
represents all possible manners in which the predicate can
become true in the original computation.

The notion of a computation slice is analogous to the
concept of a program slice [10, 17]. Given a program and
a set of variables, a program slice consists of all statements
in the program that may affect the value of the variables
in the set at some given point. The notion of a slice has
been also extended to distributed programs [5, 9]. Program
slicing has been shown to be useful in program debugging,
testing, program understanding and software maintenance
[11, 17]. A slice can significantly narrow the size of the
program to be analyzed, thereby making the understanding�This work was supported in part by the NSF Grants ECS-9907213,
CCR-9988225, Texas Education Board Grant ARP-320, an Engineering
Foundation Fellowship, and an IBM grant.

of the program behaviour easier. We expect to reap the same
benefit from a computation slice.

A computation slice differs from a dynamic program
slice in that it is defined for a property rather than a set
of variables of a program. Unlike a program slice, which
always exists, a computation slice may not always exist.
In this paper, we give the necessary and sufficient condi-
tion for a computation slice to exist. In particular, we prove
that a slice of a computation with respect to a predicate ex-
ists iff the set of consistent cuts that satisfy the predicate
forms a sublattice of the (original) lattice of consistent cuts.
We call such predicatesregular. The class of regular predi-
cates is closed under conjunction. Some examples of regu-
lar predicates are any local predicate such as “processPi
is in red state” and many channel predicates [6] such as
“there are at mostk messages in transit fromPi to Pj”.
We also present an efficient algorithm to compute the slice
for a regular predicate. Computation slicing can be used for
monitoring predicates in distributed systems which has ap-
plications in testing and debugging, and fault-tolerance of
distributed programs. For example, it can be used to ob-
serve a predicate underpossibly modality, if it is regular,
and underdefinitely modality [3] if its negation is a regu-
lar predicate.

This paper makes the following contributions.� We first prove the set of consistent cuts of a computa-
tion forms a finitedistributive lattice. We then show
that this is a complete characterization of the set of
consistent cuts, that is, given any arbitrary finite dis-
tributive lattice, there exists a distributed computation
for which it represents the set of consistent cuts. The
fact that the set of consistent cuts of a computation
forms a lattice was independently observed by Johnson
and Zwaenepoel [8] and Mattern [13]. To our knowl-
edge, this paper is the first to show that the lattice is
distributive and that it is a complete characterization.� We define a class of global predicates calledregular
predicates. The set of consistent cuts that satisfy a reg-

ular predicate forms a sublattice of the lattice of con-
sistent cuts, that is, if two consistent cuts satisfy a reg-
ular predicate then their set intersection and set union
will also satisfy the predicate. We also show that if two
predicates are regular then so is their conjunction.� We define the notion of a computation slice given a
computationE and a predicateB. The computation
sliceF is a distributed computation such that its con-
sistent cuts are precisely those consistent cuts ofE that
satisfyB. We show that a computation slice is possible
if and only ifB is a regular predicate.� We give an efficient algorithm for computing a com-
putation slice. Our algorithm has the complexityO(N2jEj) whereN is the number of processes andE is the set of events in the system.� We give applications of computation slice to testing
and debugging, and fault-tolerance of distributed pro-
grams.

The paper is organized as follows. We present our model
of distributed system in Section 2. Section 3 gives the com-
plete characterization of the execution lattice. In Section 4,
we define the class of regular predicates. Section 5 intro-
duces the notion of a computation slice. An efficient algo-
rithm to compute the slice is presented in Section 6. Finally,
we discuss some applications of our results in Section 7.

2. Model and background

We assume a loosely-coupled message-passing asyn-
chronous system without any shared memory or a global
clock. A distributed program consists ofN processes de-
noted byfP1,P2,: : :,PNg communicating via asynchronous
messages. In this paper, we will be concerned with a single
computation of a distributed program. We do not make any
assumptions about FIFO nature of the channels.

The execution of a process in a computation can be
viewed as a sequence of events with events across processes
ordered by Lamport’s happened-before relation [12]. The
happened-before relation between two eventse andf can
be formally stated as:e ! f iff e occurs beforef in the
same process, ore is a send of a message andf is a re-
ceive of that message, or there exists an eventg such thate
happened-beforeg andg happened-beforef . We define a
distributed computation as the partially ordered set (poset)
consisting of the set of events together with the happened
before relation and denote it by(E;!).

We define a consistent cut of a computation(E;!) as a
subsetG � E such thatf 2 G ^ e! f) e 2 G

E set of events! happened-before relatione; f; g eventst join of two elements in a posetu meet of two elements in a posetG;H consistent cutsC(E) lattice of consistent cuts of(E;!)L a latticeJ(L) set of join-irreducible elements ofLB A global predicate(IB ; F;!B) computation slice of(E;!) with
respect toBjj concurrency relationN number of processes

Figure 1. Notation

A consistent cut captures the notion of a possible global
state. The concept of a consistent cut is identical to that
of a down-set (or an order ideal)used in the lattice theory
literature [4].

Given two consistent cuts,G andH , we say thatG � H
iff G � H . It is well known in the lattice theory that the
set of all down-sets (order ideals) forms a lattice under�
relation. This is equivalent to the result that the set of all
consistent cuts forms a lattice under� [8, 13].

For any poset, we uset andu to denote join and meet
operators.

A global predicate(or simply apredicate) is a boolean-
valued function defined on the set of consistent cuts. We say
thatB(G) (B holds in the consistent cutG) if the function
evaluates to true in the cutG.

Figure 1 summarizes the notation used in this paper.

3. A complete characterization of execution
lattice

We first ask the question what additional properties does
the lattice of consistent cuts satisfy? The answer to this
question comes from a standard result in lattice theory [4].

Lemma 1 Let (X;�) be any poset andC(X) be the set
of all down-sets ofX . Then,(C(X);�) is a distributive
lattice.

From the above result we get

Theorem 2 The set of consistent cuts of any distributed
computation(E;!) forms a distributive lattice under the
relation�.

We denote the set of consistent cuts of any distributed
computation(E;!) by C(E) (! is implicit). The fact
thatC(E) forms a lattice has been observed before [8, 13].
In this paper we observe that the lattice is distributive and

(a) (b)

: a join−irreducible element

a b

d

c
a

b

c

d

Figure 2. An example of a distributive lattice
(a) and its partial order representation (b).

exploit this observation to derive notion of a computation
slice.

We next show that Theorem 2 is a complete characteri-
zation ofC(E) under the relation�. In other words, there
is no additional structure property satisfied by this set. To
prove this, given any finite distributive latticeL, it is suffi-
cient to construct a distributed computation (a posetP) such
that the set of consistent cuts (set of down-sets) is exactlyL.
To this end, first definejoin-irreducibleelements as follows.

Definition 1 (Join-Irreducible Element) An elementx 2L is join-irreducible if

1. x 6= 0, and

2. 8 a; b 2 L : x = a t b) (x = a) _ (x = b).
Here,0 refers to the zero element ofL. Pictorially, in

a finite lattice, an element is join-irreducible iff it has ex-
actly one lower cover, that is, it has exactly one incom-
ing edge. Figure 2(a) shows a distributive lattice with its
join-irreducible elements. LetJ(L) denote the set of join-
irreducible elements inL. Now we can state Birkhoff’s
Theorem for finite distributive lattices.

Theorem 3 [Birkhoff’s Representation Theorem for
Finite Distributive Lattices] LetL be a finite distributive
lattice. Then the mapf : L! C(J(L)) defined byf(a) = fx 2 J(L)jx � ag
is an isomorphism ofL ontoC(J(L)). Dually, letP be a
finite poset. Then the mapg : P ! J(C(P)) defined byg(a) = fx 2 P jx � ag
is an isomorphism ofP ontoJ(C(P)).

The above theorem implies that there is a one-to-one cor-
respondence between a finite poset and a finite distributive
lattice. Given a finite poset, we get the finite distributive

lattice by considering its set of down-sets. Given a finite
distributive lattice, we can recover the poset by focusing on
its join-irreducible elements. Informally, any element ofa
lattice can be written as join of a subset of join-irreducible
elements of the lattice. For example, Figure 2(b) gives the
poset corresponding to the lattice in Figure 2(a).

From the above discussion it is clear that given any finite
distributed computation, the structurefinite distributive lat-
tice completely characterizes its execution graph. We will
see implication of this observation in later sections.

Birkhoff’s theorem is also useful in computational sense
because the set of join-irreducible elements of a lattice is
generally exponentially smaller than the size of the lattice
itself. In fact, for a finite distributive lattice, the number of
join-irreducible elements is exactly equal to the size of the
longest chain in the lattice [4]. In our case, the length of
the longest chain is bounded by the number of eventsjEj.
Hence if some computation onL can instead be done onJ(L), then we get a significant computational advantage.

4. Regular predicates

It is useful in a distributed computation to observe and
control global predicates. There is a wide body of literature
in observing [1, 3, 7] and controlling [15, 16, 14] global
predicates. Since the number of consistent cuts is expo-
nential in the number of processes in general, it is com-
putationally hard to observe or control a general predicate
[2]. However, when predicates satisfy additional properties,
such as stability, observer-independence or linearity, then
efficient algorithms can be devised to observe them. In this
section we define a new class of predicates called regular
predicates. Informally, a global predicate is a regular pred-
icate if the set of consistent cuts satisfying the predicate
forms a sublattice of the lattice of consistent cuts, that is,
the set of consistent cuts that satisfy the predicate is closed
under set intersection and set union. A regular predicate is
also linear and hence easy to detect. In practice, most lin-
ear predicates are also regular predicates; therefore regular
predicates form a useful class of predicates. We first define
a regular predicate formally.

Definition 2 (Regular Predicate) Let C(E) be the set of
consistent cuts of a computation(E;!). A predicateB is
regular iff8G;H : G;H 2 C(E) : B(G) ^ B(H))B(G \H) ^ B(G [H)

Some examples of regular predicate are:� Consider the predicateB as “there is no outstanding
message in the channel”. We show that this predicate
is regular. Observe thatB holds on a consistent cutG

iff for all send events inG, the corresponding receive
events are also inG. It is easy to see that ifB(G)
andB(H), thenB(G [H). To see that it holds forG \ H , let e be any send event inG \ H . Let f be
the receive event corresponding toe. FromB(G), we
get thatf 2 G and fromB(H), we get thatf 2 H .
Thus,f 2 G \ H . HenceB(G \ H). Similarly, the
following predicates are also regular.

– There is no token message in transit.

– There is no token message in transit between pro-
cessesP1; :::; P5.

– Every “request” message has been “acknowl-
edged” in the system.� Consider any local predicate. Informally, a predicate is

local if its truth value depends only on the set of events
executed locally.

It can be shown that any local predicate is regular.
Thus the following predicates are regular.

– The leader has sent all “prepare to commit” mes-
sages.

– ProcessPi is in “red” state.� Many monotonic channel predicates [6] such as “there
are at mostk messages in transit fromPi to Pj ” and
“there are at leastk messages in transit fromPi toPj”
are in fact regular.

We now show that the class of regular predicates is
closed under conjunction.

Lemma 4 If B1 andB2 are regular predicates, then so isB1 ^ B2.
Proof: Given two consistent cutsG andH , letK = G[H .
SinceB1 is a regular predicateB1(K) holds. Similarly,B2(K) holds. HenceB1 ^B2 holds forK. A similar proof
can be given whenK = G \H .

The closure under conjunction implies that the following
predicates are also regular.� No process has the token and no channel has the token.� Any conjunction of local predicates.

The closure is not true for disjunction as can be readily
verified by takingB1 andB2 to be local predicates. LetCB(E) be the set of consistent cuts satisfying the predicateB. From the definition of regular predicates, it follows that
theCB(E) is a sublattice ofC(E). From results in [2], it
follows that a regular predicate is always linear. Therefore,
the algorithm in [2] can be used to determine the least con-
sistent cut that satisfiesB.

5. Slicing a distributed computation

In this section, we define the notion of slice of a dis-
tributed computation with respect to a global predicate. In-
formally, a slice consists of a partial order defined on sub-
sets of events which can be interpreted as the events in the
subset must be executed together. In other words, a consis-
tent cut either includes all events corresponding to a subset
or none of them implying that to an external observer they
appearto have been executedatomically—he cannot ob-
serve the intermediate states. This is similar to the concept
of transactions in databases where operations in a transac-
tion appear to have been executed atomically. Further, the
set of down-sets (or consistent cuts) of the slice is identical
to the set of those consistent cuts of the original computa-
tion that satisfy the given predicate. The slice of a com-
putation, therefore, tells us which subsets of events have to
be executed atomically, and what is the order in which they
must be executed. We now define a slice formally.

Definition 3 (Slice) Given any distributed computation(E;!) and a global predicateB, we call a triplet(IB ; F;!B) (whereF � 2E, and!B is a partial order
onF) a slice if

1. F is a partition of some subset ofE, and

2. 8G 2 C(E) : B(G) � (G 2 C(F))
The first requirement on the slice is that its elements are

mutually disjoint subsets of events in the computation. The
second requirement states it captures all the consistent cuts
that satisfy the predicateB. Thus if a consistent cut satisfiesB, it is also a consistent cut ofF and vice versa. Here,IB
denotes the initial consistent cut of the slice which is the
least consistent cut inE that satisfiesB.

As an example of a slice, consider the computation in
Figure 3(a). The lattice corresponding to the computation
is show in Figure 3(b). The label of each element in the lat-
tice is a 3-tuple denoting the index of the maximal event on
each process contained in the corresponding consistent cut.
For example, the label for the consistent cutG is (2; 1; 1).
For the predicate “all channels are empty”, the sublattice
is shown in Figure 3(c) along with its join-irreducible el-
ements. The slice of the computation with respect to the
predicate is shown in Figure 3(d). It can be verified the set
of consistent cuts of the slice are exactly those that satisfy
the given predicate in the original computation. Further, the
length of the longest chain of the sublattice is4 which is
exactly equal to the number of its join-irreducible elements.
In this example,IB = ; which may not be the case in gen-
eral. Finally, in the slice, as expected, eventse1 andf1 and
eventsf2 andg2 must be executed atomically.

We first show that a slice exists iff the predicateB is a
regular predicate.

1e

(a)

1

2

2

21

e

f f

gg

P

P

P

1

2

3

G

(2,2,2)

(0,0,0)

(2,1,1)

(1,1,1)

: consistent cut : consistent cut that satisfies the predicate

: join−irreducible element of the sub−lattice induced by the predicate

(1,0,0)

(1,0,1)
(2,0,0)

(2,0,1)(1,2,0)

(2,2,0) (1,2,1)

(2,2,1)

(1,1,1)

(0,0,0)

(0,0,1)

(1,1,0)

(2,1,0)

(2,1,1)

(2,2,2)

(1,2,2)

(b)

1f1e , }{
2g2f , }{

1{ }g 2e{ } G

(d)

(0,0,1)(1,1,0)

(2,1,0)

(1,2,2)

(c)

predicate: all channels are empty

Figure 3. A computation (a), its lattice (b), a sub-lattice (c) and the corresponding slice (d).

Theorem 5 A computation(E;!) has a non-empty slice
with respect to a predicateB iff B is regular andCB(E) is
non-empty.

Proof: Assume thatB is a regular predicate andCB(E) is
non-empty. Therefore the set of consistent cuts inCB(E)
forms a sublattice of the lattice of consistent cuts inC(E).
Any sublattice of a finite distributive lattice is also a finite
distributive lattice [4]. LetJ(CB(E)) denote the set of join-
irreducible elements ofCB(E). Using Birkhoff’s represen-
tation theorem for finite distributive lattices, we can infer
thatCB(E) is isomorphic toC(J(CB(E))) implying that
a non-empty slice exists. The algorithm in Section 6 can
be used to compute the triplet(IB ; F;!B) that satisfies the
necessary requirements.

Now, assume that(E;!) has a non-empty slice, say(IB ; F;!B) with respect to the predicateB. Clearly,

CB(E) is non-empty. Further, sinceCB(E) is isomorphic
to C(F) andC(F) is a finite distributive lattice,CB(E) is
a lattice. ThusB is regular.

6. Efficient algorithm

In this section we give an efficient algorithm to construct
the slice of a distributed program given a regular predicate.
Note that the size of the lattice and the size of the sublattice
satisfying predicateB may be exponential in the number of
processes; and therefore, a naive algorithm which enumer-
ates all the consistent cuts satisfyingB may be prohibitively
expensive.

The efficient algorithm is specified formally in Figure 4.
It takes as input a distributed computation specified as the
happened-before diagram and a regular predicateB. There

Input: A computation (E;!) and a regular predicateB
Output: A computation slice (IB; F;!B) such that (1)
Every consistent cut of F is also a consistent cut ofE, (2) All consistent cuts of F satisfy B, and (3) All
consistent cuts of E that satisfy B are also consistent
cuts of F .� Step 1. Let V be the least consistent cut in E

that satisfies B. Use the algorithm in [2] to com-
pute V . Since B is a regular predicate it is linear
and hence the algorithm in [2] is applicable. If no
such cut exists, output “slice does not exist”.� Step 2. Let W be the greatest consistent cut inE that satisfies B. Use the dual of the algorithm
in [2] to compute W .� Step 3. For each event e 2 W � V , compute
the least consistent cut in E that satisfies B and
includes e. Call that cut J(e).� Step 4. Let R be an equivalence relation de-
fined on events in W � V as follows: (e; f) 2R � J(e) = J(f). Let the equivalence classes
induced by R be Ci, 1 � i � m. Output(V; F;!B), whereF := fCi j 1 � i � mg!B:= f(Ci; Cj) j J(Ci) (J(Cj)g
where, for an equivalence class C, J(C) is J(e)
for some event e in C.

Figure 4. Algorithm to construct a slice.

are two possible outcomes. There may not be any consistent
cut in E that satisfiesB. The algorithm will detect this
condition and output it in Step 1. Otherwise, the algorithm
outputs a computation slice in Step 4. We now describe
each step in greater detail.

6.1. Step 1

This step determines if the predicateB is true on any
consistent cut inE. SinceB is a regular predicate it is also
linear. Therefore, the algorithm presented in [2] is applica-
ble. In fact, the algorithm returns the least consistent cut,
sayV , inE that satisfiesB, if it exists. The algorithm in [2]
is presented on a state based model, but can easily be trans-
formed into an event based model. The complexity of the
algorithm depends upon the complexity of determining an
event to advance a given consistent cutG. In this paper, we
will assume that the complexity of determining the required
event isO(N) and therefore the complexity of this step isO(N jEj). In this step, we have exploited the closure ofB

under set intersection.

6.2. Step 2

This step is dual of Step 1. SinceB is a regular predi-
cate, it is also closed under set union. Thus, if there is any
consistent cut that satisfiesB, then there exists the greatest
consistent cut, sayW , that satisfiesB. To determine this
cut, one could apply the algorithm in [2] backwards on the
computation. Alternatively, one can apply the algorithm [2]
to the computationE with all edges reversed.

Observe that if the least cut exists in Step 1, then we are
guaranteed that the set of cuts satisfyingB is non-empty.
This, in turn, guarantees that the greatest cut satisfyingB
exists.

The computational complexity of this algorithm is the
same as Step 1 -O(N jEj).
6.3. Step 3

In this step, we determine the join-irreducible elements
for the sublattice. For all eventse 2 W � V , we define a
new predicateBe(X) � B(X) ^ (e 2 X)

The following lemma shows thatBe is regular.

Lemma 6 Given any regular predicateB, Be as defined
above is also a regular predicate.

Proof: Define a predicateIe which is true on a cutX iffe is included inX . Given consistent cutsX1 andX2 that
satisfy Ie, it is clear thatX1 [X2 andX1 \ X2 are not
only consistent but also satisfyIe. Therefore,Ie is a regular
predicate. This impliesBe is a conjunction of two regular
predicates and is therefore a regular predicate.

We defineJ(e) as the least consistent cut that satisfiesBe. Sincee 2 W , we know thatW satisfiesBe. Thus the
set of cuts satisfyingBe is non-empty. SinceBe is a regular
predicate, we conclude thatJ(e) is well-defined.

We now show thatJ(e) is a join-irreducible element of
the lattice(CB(E);�).
Lemma 7J(e) is a join-irreducible element of(CB(E);�).
Proof: LetX;Y 2 CB(E) be such thatJ(e) = X t Y =X[Y . Sincee 2 J(e), we get thate 2 X_e 2 Y . Without
loss of generality, assume the former. Sincee 2 X andX
satisfiesB, we get thatX is a consistent cut that includese and satisfiesB. However,J(e) is the least consistent cut
with these properties. ThereforeJ(e) � X . But, we also
haveX � J(e). Therefore,X = J(e).

A naive implementation of this step will haveO(N jEj2)
complexity since the algorithm in [2] will be invoked ex-
actly jEj times. However, the next lemma enables to reduce
the complexity of this step.

Lemma 8 Let e and f be events of(E;!) andB be a
regular predicate. Then,e! f) J(e) � J(f)
Proof: Sincee! f andJ(f) is a consistent cut,e 2 J(f).
Since bothJ(e) andJ(f) satisfyB, andJ(e) is the least
consistent that containse and satisfiesB, J(e) � J(f).

Lemma 8 allows us to computeJ(e) for all eventse 2W � V on some processP in a single scan of the compu-
tation. Thus the complexity of this step can be reduced toO(N2jEj).
6.4. Step 4

In this step we enumerate all the elements of the com-
putation slice. We first define an equivalence relationR on
events inW � V as follows:(e; f) 2 R � J(e) = J(f)

Let Ci, 1 � i � m, denote the equivalence classes in-
duced byR. Intuitively, each equivalence class constitutes
an element of the slice and all events in an equivalence class
must be executed atomically. For a classC, let J(C) beJ(e) for some evente in C. The slice(IB ; F;!B) is given
by IB := VF := fCi j 1 � i � mg!B := f(Ci; Cj)) j J(Ci) (J(Cj)g

It can be proved thatJ(Ci) = V [Ci [([Cj!BCi Cj)
It is clear from the construction and Lemma 7 thatF

contains only the join-irreducible elements ofCB(E). We
now show thatF contains all join-irreducible elements of(CB(E);�). To that end, it suffices to show the following.

Lemma 9 Every cutX in CB(E) can be written as a join
of elements ofF .

Proof: SinceX satisfiesB, it satisfiesV � X �W . This
implies thatX can be written asV [Y whereY �W �V .
Let Z = [e2Y J(e)
It is clear that Z is a join of elements inF . We will show
thatX = Z. SinceJ(e) containse and at leastV , it is clear

thatX � Z. We show thatZ � X . To prove that, it is
sufficient to show that8 e 2 Y : J(e) � X
This follows from the fact thate 2 X , X satisfiesB, andJ(e) is the least cut that satisfies these properties.

The equivalence classes can be computed by determining
the strongly connected components of the directed graph
with vertices as events inW � V and an edge from evente
to eventf iff either

1. e andf occur on the same process andf is the succes-
sor ofe or

2. f is the earliest event on its process such thatJ(e) �J(f).
It is easy to see that the directed graph described above

hasO(jEj) vertices,O(N jEj) edges and can be constructed
in O(N2jEj) time. Thus the complexity of this step isO(N2jEj). We are now ready for the main result of this
paper.

Theorem 10 Given any computation(E;!) and a regular
predicateB, the algorithm outputs the computation slice, if
it exists, inO(N2jEj) time.

Proof: The fact that triplet(IB ; F;!B) output by the al-
gorithm constitutes the slice of(E;!) with respect toB
follows from the definition ofF , Lemma 7 and Lemma 9.
The complexity of each step isO(N2jEj) giving us an over-
all complexity ofO(N2jEj).
7. Applications of computation slicing

7.1. Predicate detection

Consider any global predicateB that is expressed as a
conjunction of a regular predicateB1 and another global
predicateB2. Given that the predicateB2 does not have
any structure that can be exploited for efficient detection,
the predicate detection algorithm is forced to traverse the
execution lattice. However, with the results of this paper we
can proceed as follows. Instead of searching the original
lattice, we can search the reduced lattice - the one in which
all cuts satisfyB1.
7.2. Predicate control

The predicate control problem states that given a dis-
tributed computation and a global predicate, is it possible
to add synchronization arrows to the computation such that
the predicate always stays true. The predicate control prob-
lem provides a useful abstraction for analyzing executions

of distributed programs which can greatly facilitate the de-
tection and localization of bugs [15, 14]. It can also be used
to provide software fault-tolerance against synchronization
faults.

It can be proved that a predicate can be controlled in
a computation iff there exists path in the lattice from the
initial to the final consistent cut such that every consistent
cut in the path satisfies the predicate. A regular predicateB can therefore be controlled in a computation(E;!) iff
the length of the longest chain inCB(E) is jEj, that is,jJ(CB(E))j = jF j = jEj, where(IB ; F;!B) is the slice
of (E;!) with respect toB.

The dual of the predicate control problem is the problem
of observing a predicate underdefinitely modality [3]. A
predicate is definitely true in a computation iff it eventually
becomes true in all runs of the computation. As a corol-
lary, this problem can now be solved efficiently when the
negation of the predicate is regular.

8. Conclusion

Analyzing executions of distributed programs is an im-
portant problem in asynchronous distributed systems. This
problem arises in various contexts such as design, testing
and debugging, and fault-tolerance of distributed systems.
In this paper, we introduce the notion of a slice of a dis-
tributed computation. A slice of a distributed computation
with respect to a global predicate is a computation which
captures those and only those consistent cuts of the origi-
nal computation which satisfy the global predicate. A slice
can significantly reduce the size of the computation to be
analyzed, thereby making the understanding of program be-
haviour easier.

We give the necessary and sufficient condition for a com-
putation slice to exist. In particular, we prove that a sliceof
a computation with respect to a predicate exists iff the set
of consistent cuts that satisfy the predicate forms a sublat-
tice of the lattice of consistent cuts. This leads us to de-
fine the class of regular predicates. An efficient algorithm
with O(N2jEj) complexity to compute a slice is presented,
whereN is the number of processes andE is the set of
events in the system. Slicing can be used to monitor a pred-
icate underpossibly modality, if it is regular, and underdefinitely modality if its negation is a regular predicate.

References

[1] K. M. Chandy and L. Lamport. Distributed Snapshots:
Determining Global States of Distributed Systems.ACM
Transactions on Computer Systems, 3(1):63–75, Feb. 1985.

[2] C. Chase and V. K. Garg. Detection of Global Predicates:
Techniques and their Limitations.Distributed Computing,
11(4):191–201, 1998.

[3] R. Cooper and K. Marzullo. Consistent Detection of Global
Predicates. InProceedings of the ACM/ONR Workshop on
Parallel and Distributed Debugging, pages 163–173, Santa
Cruz, California, 1991.

[4] B. A. Davey and H. A. Priestley.Introduction to Lattices
and Order. Cambridge University Press, Cambridge, UK,
1990.

[5] E. Duesterwald, R. Gupta, and M. L. Soffa. Distributed Slic-
ing and Partial Re-execution for Distributed Programs. In
Proceedings of the 5th Workshop on Language andCompil-
ers for Parallel Computing, pages 329–337, 1992.

[6] V. K. Garg, C. Chase, R. Kilgore, and J. R. Mitchell. Ef-
ficient Detection of Channel Predicates in Distributed Sys-
tems. Journal of Parallel and Distributed Computing,
45(2):134–147, Sept. 1997.

[7] V. K. Garg and B. Waldecker. Detection of Weak Unstable
Predicates in Distributed Programs.IEEE Transactions on
Parallel and Distributed Systems, 5(3):299–307, Mar. 1994.

[8] D. B. Johnson and W. Zwaenepoel. Recovery in Distributed
Systems Using Optimistic Message Logging and Check-
pointing. In Proceedings of the 6th ACM Symposium on
Principles of Distributed Computing (PODC), pages 171–
181, Aug. 1988.

[9] B. Korel and R. Ferguson. Dynamic Slicing of Distributed
Progrmas. Applied Mathematics and Computer Science
Journal, 2(2):199–215, 1992.

[10] B. Korel and J. Laski. Dynamic Program Slicing.Informa-
tion Processing Letters, 29(3):155–163, 1988.

[11] B. Korel and J. Rilling. Application of Dynamic Slicingin
Program Debugging. In M. Kamkar, editor,Proceedings of
the 3rd International International Workshop on Automated
Debugging (AADEBUG), pages 43–57, May 1997.

[12] L. Lamport. Time, Clocks, and the Ordering of Events in a
Distributed System.Communications of the ACM (CACM),
21(7):558–565, July 1978.

[13] F. Mattern. Virtual Time and Global States of Distributed
Systems. InParallel and Distributed Algorithms: Proceed-
ings of the Workshop on Distributed Algorithms (WDAG),
pages 215–226. Elsevier Science Publishers B. V. (North-
Holland), 1989.

[14] N. Mittal and V. K. Garg. Debugging Distributed Pro-
grams Using Controlled Re-execution. InProceedings of
the 19th ACM Symposium on Principles of Distributed Com-
puting (PODC), pages 239–248, July 2000.

[15] A. Tarafdar and V. K. Garg. Predicate Control for Ac-
tive Debugging of Distributed Programs. InProceedings of
the 9th IEEE Symposium on Parallel and Distributed Pro-
cessing (SPDP), Orlando, 1998.

[16] A. Tarafdar and V. K. Garg. Software Fault Tolerance of
Concurrent Programs Using Controlled Re-execution. In
Proceedings of the 13th Symposium on Distributed Comput-
ing (DISC), pages 210–224, Sept. 1999.

[17] M. Weiser. Programmers Use Slices When Debugging.
Communications of the ACM (CACM), 25(7):446–452,
1982.

