On Slicing a Distributed Computation

Vijay K. Garg" Neeraj Mittal
Department of Electrical and Computer Engineering Department of Computer Sciences
The University of Texas at Austin The University of Texas at Austin
Austin, TX 78712-1084, USA Austin, TX 78712-1188, USA
garg@ece.utexas.edu neerajm@cs.utexas.edu
Abstract of the program behaviour easier. We expectto reap the same

benefit from a computation slice.

We introduce the notion of a slice of a distributed compu- A computation slice differs from a dynamic program
tation. A slice of a distributed computation with respecito slice in that it is defined for a property rather than a set
global predicate is a computation which captures those and of variables of a program. Unlike a program slice, which
only those consistent cuts of the original computation twhic always exists, a computation slice may not always exist.
satisfy the global predicate. We show that a slice existafor In this paper, we give the necessary and sufficient condi-
global predicate iff the predicate is a regular predicatee W tion for a computation slice to exist. In particular, we peov
then give an efficient algorithm for computing the slice and that a slice of a computation with respect to a predicate ex-
we show applications of slicing to testing and debugging of ists iff the set of consistent cuts that satisfy the predicat
distributed programs. forms a sublattice of the (original) lattice of consistentc
We call such predicatesgular. The class of regular predi-
cates is closed under conjunction. Some examples of regu-
lar predicates are any local predicate such as “proégss
is in red state” and many channel predicates [6] such as
“there are at mosk messages in transit from?; to P;”".

A distributed program is equivalent to the set of all dis- We also present an efficient algorithm to compute the slice
tributed computations it generates. For many applicationsfor a regular predicate. Computation slicing can be used for
such as testing and debugging of distributed programs a promonitoring predicates in distributed systems which has ap-
grammer may be required to analyze a distributed compu-plications in testing and debugging, and fault-tolerante o
tation. In this paper, we define the notion of a computa- distributed programs. For example, it can be used to ob-
tion slice which we argue is a useful notion for these ap- serve a predicate undepssibly modality, if it is regular,
plications. Informally, given a distributed computatian, and undewlefinitely modality [3] if its negation is a regu-
programmer may compute its slice with respect to differ- |ar predicate.
ent global predicates. Given a global predicate, the slice Thjs paper makes the following contributions.
represents all possible manners in which the predicate can
become true in the original computation.

1. Introduction

¢ We first prove the set of consistent cuts of a computa-

The notion of a computation slice is analogous to the tion forms a finitedistributive lattice. We then show
concept of a program slice [10, 17]. Given a program and that this is a complete characterization of the set of
a set of variables, a program slice consists of all statesnent consistent cuts, that is, given any arbitrary finite dis-
in the program that may affect the value of the variables triputive lattice, there exists a distributed computation
in the set at some given point. The notion of a slice has for which it represents the set of consistent cuts. The
been also extended to distributed programs [5, 9]. Program fact that the set of consistent cuts of a computation
slicing has been shown to be useful in program debugging, forms a lattice was independently observed by Johnson
testing, program understanding and software maintenance and zwaenepoel [8] and Mattern [13]. To our knowl-
[11, 17]. A slice can significantly narrow the size of the edge, this paper is the first to show that the lattice is

program to be analyzed, thereby making the understanding distributive and that it is a complete characterization.

*This work was supported in part by the NSF Grants ECS-9907213 . .
CCR-9988225, Texas Education Board Grant ARP-320, an Esgitg » We define a class of global predicates caltegular

Foundation Fellowship, and an IBM grant. predicates. The set of consistent cuts that satisfy a reg-

ular predicate forms a sublattice of the lattice of con- E set of events
sistent cuts, that is, if two consistent cuts satisfy areg- | — happened-before relation
ular predicate then their set intersection and set union | e, f,g events
will also satisfy the predicate. We also show thatiftwo | U join of two elements in a poset
predicates are regular then so is their conjunction. M meet of two elements in a poset
G, H consistent cuts
e We define the notion of a computation slice given a C(FE) lattice of consistent cuts ¢, —)
computationE and a predicatd3. The computation L a lattice
slice F' is a distributed computation such that its con- J(L) set of join-irreducible elements df
sistent cuts are precisely those consistent cufs thiat B A global predicate
satisfyB. We show that a computation slice is possible (Ig, F,—p) | computation slice ofF, —) with
if and only if B is a regular predicate. respect taB
[l concurrency relation
e We give an efficient algorithm for computing a com- N number of processes

putation slice. Our algorithm has the complexity
O(N?|E|) where N is the number of processes and Figure 1. Notation
E is the set of events in the system.

e We give applications of computation slice to testing A consistent cut captures the notion of a possible global
and debugging, and fault-tolerance of distributed pro- state. The concept of a consistent cut is identical to that
grams. of adown-set (or an order ideal)sed in the lattice theory

literature [4].

The paper is organized as follows. We present our model ~ Given two consistent cuté; andH, we say thatz < H
of distributed system in Section 2. Section 3 gives the com-iff G C H. Itis well known in the lattice theory that the
plete characterization of the execution lattice. In Sectip set of all down-sets (order ideals) forms a lattice under
we define the class of regular predicates. Section 5 intro-relation. This is equivalent to the result that the set of all
duces the notion of a computation slice. An efficient algo- consistent cuts forms a lattice unde(8, 13].
rithm to compute the slice is presented in Section 6. Finally ~ For any poset, we use andr to denote join and meet
we discuss some applications of our results in Section 7. operators.

A global predicateg(or simply apredicatg is a boolean-
valued function defined on the set of consistent cuts. We say
that B(G) (B holds in the consistent c@) if the function
evaluates to true in the cGt.

We assume a loosely-coupled message-passing asyn- Figure 1 summarizes the notation used in this paper.
chronous system without any shared memory or a global

clock. A distributed program consists &f processes de-
noted by{ P, ,P»,. . .,Py } communicating via asynchronous
messages. In this paper, we will be concerned with a single

computation of a distributed program. We do not make any]) N)
assumptions about FIFO nature of the channels. We first ask the question what additional properties does

The execution of a process in a computation can pethe lattice of consistent cuts satisfy? The answer to this
viewed as a sequence of events with events across processéiestion comes from a standard result in lattice theory [4].

ordered by Lamport's happened-before relation [12]. The | smima 1 Let (X,<) be any poset and'(X) be the set

happened-before relation between two evenad f can of all down-sets ofX. Then,(C(X),C) is a distributive
be formally stated ase — f iff e occurs beforef in the |attice.

same process, aris a send of a message aifids a re-
ceive of that message, or there exists an eyesich that From the above result we get
happened-beforg and g happened-beforg. We define a

distributed computation as the partially ordered set (fose
consisting of the set of events together with the happene

2. Model and background

3. A complete characterization of execution
lattice

Theorem 2 The set of consistent cuts of any distributed
dcomputation(E, —) forms a distributive lattice under the

before relation and denote it ¥, —). relationC.
We define a consistent cut of a computat{éh —) as a We denote the set of consistent cuts of any distributed
subselG C E such that computation(E, —) by C(E) (— is implicit). The fact

thatC(F) forms a lattice has been observed before [8, 13].
feGhne—=f = e€G In this paper we observe that the lattice is distributive and

lattice by considering its set of down-sets. Given a finite
distributive lattice, we can recover the poset by focusing o

a c o X
its join-irreducible elements. Informally, any elementeaof
lattice can be written as join of a subset of join-irredueibl

b q elements of the lattice. For example, Figure 2(b) gives the

poset corresponding to the lattice in Figure 2(a).

From the above discussion it is clear that given any finite
distributed computation, the structuirite distributive lat-
tice completely characterizes its execution graph. We will
see implication of this observation in later sections.

@ : ajoin-irreducible element

(a) (b) Birkhoff’s theorem is also useful in computational sense
because the set of join-irreducible elements of a lattice is
Figure 2. An example of a distributive lattice generally exponentially smaller than the size of the lattic
(a) and its partial order representation (b). itself. In fact, for a finite distributive lattice, the numbef

join-irreducible elements is exactly equal to the size @f th
o))) . longest chain in the lattice [4]. In our case, the length of
exploit this observation to derive notion of a computation e longest chain is bounded by the number of evéits
slice. Hence if some computation oh can instead be done on

We next show that Theorem 2 is a complete characteri- 7(1) then we get a significant computational advantage.
zation of C(E) under the relatior. In other words, there

is no additional structure property satisfied by this set. To

prove this, given any finite distributive lattide, it is suffi- 4 Regular predicates
cientto construct a distributed computation (a pd3esuch
that the set of consistent cuts (set of down-sets) is exactly It is useful in a distributed computation to observe and

To this end, first definpin-irreducibleelements as follows. ~ control global predicates. There is a wide body of literatur
in observing [1, 3, 7] and controlling [15, 16, 14] global

Definition 1 (Join-Irreducible Element) An element: ¢ predicates. Since the number of consistent cuts is expo-
L is join-irreducible if nential in the number of processes in general, it is com-
putationally hard to observe or control a general predicate

1.z #0,and

[2]. However, when predicates satisfy additional proesti
2.VabeL:z=alb = (z=a)V(z="0). su_ch as stabi.lity, observer-indgpendence or linearitgnth _
efficient algorithms can be devised to observe them. In this
Here, 0 refers to the zero element df. Pictorially, in section we define a new class of predicates called regular
a finite lattice, an element is join-irreducible iff it has-ex predicates. Informally, a global predicate is a reguladpre
actly one lower cover, that is, it has exactly one incom- icate if the set of consistent cuts satisfying the predicate
ing edge. Figure 2(a) shows a distributive lattice with its forms a sublattice of the lattice of consistent cuts, that is
join-irreducible elements. Lef(L) denote the set of join- the set of consistent cuts that satisfy the predicate iedlos
irreducible elements irL.. Now we can state Birkhoff's under set intersection and set union. A regular predicate is
Theorem for finite distributive lattices. alsolinear and hence easy to detect. In practice, most lin-
ear predicates are also regular predicates; therefordaregu

Theorem 3 [Birkhoff’'s Representation Theorem for predicates form a useful class of predicates. We first define
Finite Distributive Lattices] Let L be a finite distributive a regular predicate formally.

lattice. Thenthe map : L — C(J(L)) defined by
Definition 2 (Regular Predicate) Let C'(E) be the set of
fla) ={z e J(L)|z < a} consistent cuts of a computati¢f, —). A predicateB is

is an isomorphism of. onto C(J(L)). Dually, let P be a regular if

finite poset. Then the map: P — J(C(P)) defined by YG,H:G,HeC(E): B(G)AB(H) =

g(a) = {z € Plz < a} B(GNH)AB(GUH)
is an isomorphism of onto J (C(P)). Some examples of regular predicate are:

The above theorem implies that there is a one-to-one cor- e Consider the predicat® as “there is no outstanding
respondence between a finite poset and a finite distributive message in the channel”. We show that this predicate
lattice. Given a finite poset, we get the finite distributive is regular. Observe tha holds on a consistent ctt

iff for all send events inG, the corresponding receive 5. Slicing a distributed computation

events are also id/. It is easy to see that iB(G)

and B(H), then B(G U H). To see that it holds for In this section, we define the notion of slice of a dis-
G N H, letebe any send event i N H. Let f be tributed computation with respect to a global predicate. In
the receive event correspondingdoFrom B(G), we formally, a slice consists of a partial order defined on sub-

getthatf € G and fromB(H), we getthatf € H. sets of events which can be interpreted as the events in the
Thus,f € GN H. HenceB(G N H). Similarly, the subset must be executed together. In other words, a consis-
following predicates are also regular. tent cut either includes all events corresponding to a subse

Therei tok int it or none of them implying that to an external observer they
— there _'S no token message_ln ran§| ' appearto have been executetomically—he cannot ob-
— There is no token message in transit between pro- serve the intermediate states. This is similar to the cancep

cessed, ..., Ps. of transactions in databases where operations in a transac-
— Every “request” message has been “acknowl- tion appear to have been executed atomically. Further, the
edged” in the system. set of down-sets (or consistent cuts) of the slice is idahtic

to the set of those consistent cuts of the original computa-

o Consider any local predicate. Informally, a predicate is tion that satisfy the given predicate. The slice of a com-
local if its truth value depends only on the set of events putation, therefore, tells us which subsets of events have t
executed locally. be executed atomically, and what is the order in which they

It can be shown that any local predicate is regular. Must be executed. We now define a slice formally.

Thus the following predicates are regular. L)) . i
Definition 3 (Slice) Given any distributed computation

— The leader has sent all “prepare to commit” mes- (£,—) and a global predicateB, we call a triplet
sages. (Ig, F,—p) (WhereFF C 2F, and—p is a partial order

— Process?; is in “red” state. onF) asliceif

¢ Many monotonic channel predicates [6] such as “there 1. F'is a partition of some subset &, and

are at mosk messages in transit frotf; to P;” and 2.YG e C(E): B(G) = (G € C(F))
“there are at least messages in transit frol; to P;”
are in fact regular. The first requirement on the slice is that its elements are

) . mutually disjoint subsets of events in the computation. The
We now show that the class of regular predicates is socond requirement states it captures all the consistésit cu
closed under conjunction. that satisfy the predicat®. Thus if a consistent cut satisfies
B, itis also a consistent cut df and vice versa. Herdg
denotes the initial consistent cut of the slice which is the
least consistent cut iF that satisfiesB.

Proof: Given two consistent cuts andH, let K = GUH. As an example of a slice, consider the computation in
Since B; is a regular predicaté3; (K) holds. Similarly, Figure 3(a). The lattice corresponding to the computation

B, (K) holds. HenceB; A B, holds forK . A similar proof is show in Figure 3(b). The label of each element in the lat-
can be givenwhek = G N H. - tice is a 3-tuple denoting the index of the maximal event on

each process contained in the corresponding consistent cut
The closure under conjunction implies that the following For example, the label for the consistent éuts (2,1, 1).
predicates are also regular. For the predicate “all channels are empty”, the sublattice
is shown in Figure 3(c) along with its join-irreducible el-
* No process has the token and no channel has the tokengents. The slice of the computation with respect to the
e Any conjunction of local predicates. predicate is shown in Figure 3(d). It can be verified the set
of consistent cuts of the slice are exactly those that gatisf
The closure is not true for disjunction as can be readily the given predicate in the original computation. Furthee, t
verified by takingB; and B» to be local predicates. Let length of the longest chain of the sublatticetisvhich is
Cp(E) be the set of consistent cuts satisfying the predicateexactly equal to the number of its join-irreducible elensent
B. From the definition of regular predicates, it follows that In this example/s = § which may not be the case in gen-
the Cg(F) is a sublattice of”(E). From results in [2], it eral. Finally, in the slice, as expected, eventaind f; and
follows that a regular predicate is always linear. Therefor eventsf; andg, must be executed atomically.
the algorithm in [2] can be used to determine the least con- We first show that a slice exists iff the predicdeis a
sistent cut that satisfieB. regular predicate.

Lemma 4 If B; and B, are regular predicates, then so is
B; A Bs.

{a} {&}) G

{e, f;} {f, 6}
(© (d)

predicate: all channels are empty

D : consistent cut D : consistent cut that satisfies the predicate

C) : join—irreducible element of the sub-lattice induced by the predicate

Figure 3. A computation (a), its lattice (b), a sub-lattice (c¢) and the corresponding slice (d).

Theorem 5 A computationE, —) has a non-empty slice Cg(E) is non-empty. Further, sinad€g(E) is isomorphic
with respect to a predicat® iff B is regular andCg(FE) is to C(F) andC(F) is a finite distributive latticeCp(E) is
non-empty. a lattice. ThusB is regular.]

Proof: Assume thaB is a regular predicate ardg (E) is o)

non-empty. Therefore the set of consistent cut€'jf(E) 6. Efficient algorithm

forms a sublattice of the lattice of consistent cut€ifE).

Any sublattice of a finite distributive lattice is also a fanit In this section we give an efficient algorithm to construct

distributive lattice [4]. Let/(C's(FE)) denote the set of join- the slice of a distributed program given a regular predicate

irreducible elements af' 5 (E). Using Birkhoff's represen- Note that the size of the lattice and the size of the subattic

tation theorem for finite distributive lattices, we can infe satisfying predicaté? may be exponential in the number of

that Cp(E) is isomorphic toC (J(Cg(E))) implying that processes; and therefore, a naive algorithm which enumer-

a non-empty slice exists. The algorithm in Section 6 can ates all the consistent cuts satisfyiBgnay be prohibitively

be used to compute the triplelg, F, —) that satisfies the expensive.

necessary requirements. The efficient algorithm is specified formally in Figure 4.
Now, assume thatE, —) has a non-empty slice, say It takes as input a distributed computation specified as the

(Ig, F,—pg) with respect to the predicat®. Clearly, happened-before diagram and a regular prediBat&€here

Input: A computation (E, —) and a regular predicate
B

Output: A computation slice (Ig, F, —) such that (1)
Every consistent cut of F is also a consistent cut of
E, (2) All consistent cuts of F' satisfy B, and (3) All
consistent cuts of E that satisfy B are also consistent
cuts of F.

e Step 1. Let V be the least consistent cut in E
that satisfies B. Use the algorithm in [2] to com-
pute V. Since B is a regular predicate it is linear
and hence the algorithmin [2] is applicable. If no
such cut exists, output “slice does not exist”.

e Step 2. Let W be the greatest consistent cut in
E that satisfies B. Use the dual of the algorithm
in [2] to compute W.

e Step 3. For each evente € W — V, compute
the least consistent cut in E that satisfies B and
includes e. Call that cut J(e).

e Step 4. Let R be an equivalence relation de-
fined on events in W — V as follows: (e, f) €
R = J(e) = J(f). Let the equivalence classes
induced by R be C;, 1 < i < m. Output
(V,F,—g), where

F::{Ci|1§i§m}
—m:={(C;,C;) | J(C:) € J(C;)}

where, for an equivalence class C, J(C) is J(e)
for some evente in C.

Figure 4. Algorithm to construct a slice.

are two possible outcomes. There may not be any consisten

under set intersection.
6.2. Step 2

This step is dual of Step 1. Sind® is a regular predi-
cate, it is also closed under set union. Thus, if there is any
consistent cut that satisfids, then there exists the greatest
consistent cut, sal¥/, that satisfiesB. To determine this
cut, one could apply the algorithm in [2] backwards on the
computation. Alternatively, one can apply the algorithih [2
to the computatioZ with all edges reversed.

Observe that if the least cut exists in Step 1, then we are
guaranteed that the set of cuts satisfyiBigs non-empty.
This, in turn, guarantees that the greatest cut satisfying
exists.

The computational complexity of this algorithm is the
same as Step 1G(N|E)).

6.3. Step 3

In this step, we determine the join-irreducible elements
for the sublattice. For all eventse W — V, we define a
new predicate

B.(X)=B(X)A(e€ X)
The following lemma shows tha, is regular.

Lemma 6 Given any regular predicatd3, B. as defined
above is also a regular predicate.

Proof: Define a predicaté. which is true on a cufX iff

e is included inX. Given consistent cutX; and X, that
satisfy I, it is clear thatX; U X, and X; N X, are not
only consistent but also satisty. Therefore/, is a regular
predicate. This implie€3, is a conjunction of two regular
Predicates and is therefore a regular predicate.]

We defineJ(e) as the least consistent cut that satisfies

cut in E that satisfiesB. The algorithm will detect this _ er
condition and output it in Step 1. Otherwise, the algorithm Be. Sincee € W, we know that¥’ satisfiesB.. Thus the

outputs a computation slice in Step 4. We now describe Set of cuts satisfyin@. is non-empty. Sinc&. is a regular
each step in greater detail. predicate, we conclude thdf{e) is well-defined.

We now show that/(e) is a join-irreducible element of
the lattice(Cg(E), Q).

Lemma 7.J(e) is ajoin-irreducible element diCp (E), C).

Proof: LetX,Y € Cg(E) besuchthaff(e) = XUY =
XUY. Sincee € J(e), we getthae € X Ve € Y. Without
loss of generality, assume the former. Simce X and X
satisfiesB, we get thatX is a consistent cut that includes
g_and satisfied3. However,J(e) is the least consistent cut
with these properties. Therefotge) C X. But, we also

6.1.Step 1

This step determines if the predicakeis true on any
consistent cut iry. SinceB is a regular predicate it is also
linear. Therefore, the algorithm presented in [2] is applic
ble. In fact, the algorithm returns the least consistent cut
sayV, in E that satisfied3, if it exists. The algorithm in [2]
is presented on a state based model, but can easily be tran
formed into an event based model. The complexity of the
algorithm depends upon the complexity of de?ermixing an haveX C J(e). Therefore X' = J(e). "
event to advance a given consistent@Gutin this paper, we A naive implementation of this step will hai N|E|?)
will assume that the complexity of determining the required complexity since the algorithm in [2] will be invoked ex-
event isO(NN) and therefore the complexity of this step is actly|E| times. However, the next lemma enables to reduce
O(N |E]). In this step, we have exploited the closurebf the complexity of this step.

Lemma 8 Let e and f be events of £, —) and B be a that X C Z. We show thatZ C X. To prove that, it is
regular predicate. Then, sufficient to show that

e—=f = Je) <J(f) VeeY:Je)CX

Proof: Sincee — f andJ(f) is a consistent cut, € J(f). This follows from the fact tha¢ € X, X satisfiesB, and
Since bothJ(e) and.J(f) satisfy B, and.J(e) is the least J(e) is the least cut that satisfies these properties. m

consistent that containsand satisfieds, J(e) € J(f). = The equivalence classes can be computed by determining

the strongly connected components of the directed graph
with vertices as events I — V and an edge from eveat
to eventf iff either

Lemma 8 allows us to comput&e) for all eventse €
W — V on some procesB in a single scan of the compu-
tation. Thus the complexity of this step can be reduced to

O(N?|E|). 1. e andf occur on the same process afis the succes-
sor ofe or
6.4.Step 4 _ . .
2. f is the earliest event on its process such th@) C
In this step we enumerate all the elements of the com- J(f)-
putation slice. We first define an equivalence relaifoon Itis easy to see that the directed graph described above
events in — V' as follows: hasO(|E|) verticesO(N|E|) edges and can be constructed
_ in O(N?|E|) time. Thus the complexity of this step is
(e,f) € R = J(e) = J(f) O(N?|E|). We are now ready for the main result of this
paper.

Let C;, 1 < i < m, denote the equivalence classes in-
duced byR. Intuitively, each equivalence class constitutes Theorem 10 Given any computatiof¥, —) and a regular
an element of the slice and all events in an equivalence clasgredicateB, the algorithm outputs the computation slice, if

must be executed atomically. For a classlet J(C) be it exists, iNO(N?|E|) time.
J(e) for some event in C. The slice(Ig, F, — g) is given
by Proof: The fact that triple{ Iz, F, —5) output by the al-
gorithm constitutes the slice ¢/, —) with respect toB
Ig:=V follows from the definition ofF', Lemma 7 and Lemma 9.
The complexity of each step3(N?|E|) giving us an over-
F:={C;i|1<i<m} all complexity of O(N?|E|). [

—p:={(C;,Cy)) | J(Ci) € J(C))}

It can be proved that

7. Applications of computation slicing

7.1. Predicate detection
JC)y=vuciu(|J)
C;—5Ci Consider any global predicat® that is expressed as a
conjunction of a regular predicat8; and another global
It is clear from the construction and Lemma 7 that predicateBz_ Given that the predicat82 does not have
contains only the join-irreducible elements@f (E). We any structure that can be exploited for efficient detection,
now show thatt” contains all join-irreducible elements of the predicate detection algorithm is forced to traverse the
(Cp(E), C). To thatend, it suffices to show the following. execution lattice. However, with the results of this paper w
. . o can proceed as follows. Instead of searching the original
Lemma 9 Every cutX in Cz(E) can be written as a join |attice, we can search the reduced lattice - the one in which
of elements of". all cuts satisfyB; .

Proof: SinceX satisfiesB, it satisfies C X C W. This
implies thatX can be written a¥ UY whereY C W — V.
Let

7.2. Predicate control

The predicate control problem states that given a dis-

z= U J(e) tributed computation and a global predicate, is it possible
eeY to add synchronization arrows to the computation such that

It is clear that Z is a join of elements iR. We will show the predicate always stays true. The predicate control-prob
thatX = Z. SinceJ(e) contains and at leasV, it is clear lem provides a useful abstraction for analyzing executions

of distributed programs which can greatly facilitate the de [3]
tection and localization of bugs [15, 14]. It can also be used
to provide software fault-tolerance against synchromzat
faults.

It can be proved that a predicate can be controlled in [4]
a computation iff there exists path in the lattice from the
initial to the final consistent cut such that every consisten |5,
cut in the path satisfies the predicate. A regular predicate
B can therefore be controlled in a computatidn, —) iff
the length of the longest chain ifig(E) is |E|, that is,

R. Cooper and K. Marzullo. Consistent Detection of Globa
Predicates. IProceedings of the ACM/ONR Workshop on
Parallel and Distributed Debuggingrages 163—-173, Santa
Cruz, California, 1991.

B. A. Davey and H. A. Priestley.Introduction to Lattices
and Order Cambridge University Press, Cambridge, UK,
1990.

E. Duesterwald, R. Gupta, and M. L. Soffa. DistributeitSI
ing and Partial Re-execution for Distributed Programs. In
Proceedings of the 5th Workshop on Language @nthpil-
ers for Parallel Computingpages 329-337, 1992.

|J(Cs(E))| = |F| = |E|, where(Ip, F,—g) is the slice [6] V. K. Garg, C. Chase, R. Kilgore, and J. R. Mitchell. Ef-

of (E, —) with respect taB.

The dual of the predicate control problem is the problem
of observing a predicate undéefinitely modality [3]. A
predicate is definitely true in a computation iff it eventyal
becomes true in all runs of the computation. As a corol-
lary, this problem can now be solved efficiently when the [g)
negation of the predicate is regular.

(7]

8. Conclusion

9]

Analyzing executions of distributed programs is an im-
portant problem in asynchronous distributed systems. This
problem arises in various contexts such as design, testing[0
and debugging, and fault-tolerance of distributed systems [11]
In this paper, we introduce the notion of a slice of a dis-
tributed computation. A slice of a distributed computation
with respect to a global predicate is a computation which
captures those and only those consistent cuts of the origi-[12]
nal computation which satisfy the global predicate. A slice
can significantly reduce the size of the computation to be
analyzed, thereby making the understanding of program be- [13]
haviour easier.

We give the necessary and sufficient condition for a com-
putation slice to exist. In particular, we prove that a sti€e
a computation with respect to a predicate exists iff the set [14
of consistent cuts that satisfy the predicate forms a sublat
tice of the lattice of consistent cuts. This leads us to de-
fine the class of regular predicates. An efficient algorithm
with O(N?|E|) complexity to compute a slice is presented, [15]
where N is the number of processes aidis the set of
events in the system. Slicing can be used to monitor a pred-
icate undemossibly modality, if it is regular, and under

definitely modality if its negation is a regular predicate. [16]

References
[17]

[1] K. M. Chandy and L. Lamport. Distributed Snapshots:
Determining Global States of Distributed SystemACM
Transactions on Computer SysterB€l):63-75, Feb. 1985.

[2] C. Chase and V. K. Garg. Detection of Global Predicates:
Techniques and their LimitationsDistributed Computing
11(4):191-201, 1998.

ficient Detection of Channel Predicates in Distributed Sys-
tems. Journal of Parallel and Distributed Computing
45(2):134-147, Sept. 1997.

V. K. Garg and B. Waldecker. Detection of Weak Unstable
Predicates in Distributed ProgramHE=EE Transactions on
Parallel and Distributed System5(3):299-307, Mar. 1994.
D. B. Johnson and W. Zwaenepoel. Recovery in Distributed
Systems Using Optimistic Message Logging and Check-
pointing. In Proceedings of the 6th ACM Symposium on
Principles of Distributed Computing (PODCpages 171—
181, Aug. 1988.

B. Korel and R. Ferguson. Dynamic Slicing of Distributed
Progrmas. Applied Mathematics and Computer Science
Journal 2(2):199-215, 1992.

B. Korel and J. Laski. Dynamic Program Slicingiforma-
tion Processing Letter®9(3):155-163, 1988.

B. Korel and J. Rilling. Application of Dynamic Slicinig
Program Debugging. In M. Kamkar, editéroceedings of
the 3rd International International Workshop on Automated
Debugging (AADEBUG)pages 43-57, May 1997.

L. Lamport. Time, Clocks, and the Ordering of Events in a
Distributed SystemCommunications of the ACM (CACM)
21(7):558-565, July 1978.

F. Mattern. Virtual Time and Global States of Distribdt
Systems. IrParallel and Distributed Algorithms: Proceed-
ings of the Workshop on Distributed Algorithms (WDAG)
pages 215-226. Elsevier Science Publishers B. V. (North-
Holland), 1989.

N. Mittal and V. K. Garg. Debugging Distributed Pro-
grams Using Controlled Re-execution. Rroceedings of
the 19th ACM Symposium on Principles of Distributed Com-
puting (PODC) pages 239-248, July 2000.

A. Tarafdar and V. K. Garg. Predicate Control for Ac-
tive Debugging of Distributed Programs. Rroceedings of
the 9th IEEE Symposium on Parallel and Distributed Pro-
cessing (SPDRYrlando, 1998.

A. Tarafdar and V. K. Garg. Software Fault Tolerance of
Concurrent Programs Using Controlled Re-execution. In
Proceedings of the 13th Symposium on Distributed Comput-
ing (DISC) pages 210-224, Sept. 1999.

M. Weiser. Programmers Use Slices When Debugging.
Communications of the ACM (CACMP5(7):446-452,
1982.

