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Causality Tracking

e Lamport’s happened-before relation [Lamport78]| captures potential
causal relationship in distributed systems.

e Definition: e happened before f (denoted by —)
— e occurs before f in the same process, or
— there is a transfer of information from e to f, or
— there exists an event g such that e —+ g and g — f.

e Causality tracking requires us to timestamp events such that happened
before relationship can be determined between events.
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Causality Tracking: Applications

Determining causal relationship is essential in distributed computing.

e Debugging Distributed System:s.

— Visualization of the computation.

+ POET [Kunz et al.’97]
* XPVM [Kohl-Geist95]
+ Object-Level Trace [IBM]

— Predicate Detection.
x e.g. [Fidge89,Mattern89,Garg-Waldecker94].

e Fault-tolerance.

— Determining orphan processes. e.g.
[Strom-Yemini88,Damani-Garg96].
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Model of Distributed Computations

Distributed Computation: A partial ordered set (poset) (X, —), where X
Is the set of events, and — is Lamport's happened-before relation.

a b d
FZ)L P d e
b C
B ®
c e a

X ={a,b,c,d, e}

Relation —= {(a,b), (a,d), (a,e€), (b,d), (b,€), (c,d),(c,e)}
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Causality Tracking with Vector Clocks

Fidge and Mattern [Fidge89,Mattern89] introduced vector clocks such that

Ve, f e X:e— f <= v(e) <v(f)

a b d
P ®
1 1o (20 (3,1)
(0, (2,2)
F’2 )
C e

Vector order: componentwise comparison
(2,0) is less than (2, 2)
(0,1) is incomparable to (1,0).
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Issues of Vector Clocks

Overhead:
e Message overhead: O(N).
e Space overhead: O(N).

where IV is the number of processes in the computation.

Characteristics:
e Online algorithm.
e requires knowledge about the number of processes.

® asynchronous messages.
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Talk QOutline

Online Algorithm.
— Background: Synchronous Computation.
— Algorithm.

Off-line Algorithm.
— Background: Dimension Theory.

— Algorithm.

Summary and Future Work.
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Synchronous Computation

Synchronous Computation is the computation that uses only synchronous
messages.

A message is called synchronous when the sender has to wait for the
acknowledgement or a reply from the receiver before executing further.

P

1
blocking l\ my
|
7 P2 m
, 3 m5 Mg
message 7 ack P3
) m, m
4
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4

Synchronous communication is widely supported in many programming
languages and standards such as CSP, Ada, RPC, and Java RMI.
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Message Timestamping

Synchronously-Precede Relation (—): my synchronously precedes my if
e There is a process participating in m; and then msy, or

o If m; — ms and ms — mso, then m; — mo.

1
mq

mi — ms, My — Mg, mleg

Message Timestamps:

my — mg < v(my) < v(ms)

Problem Statement: Give an algorithm to compute v efficiently. %
=
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Edge Decomposition

Communication Topology: (G = (V, E))

A partition of the edge set, {F1, Eo, ..., E3}, is called an edge
decomposition of G if £ = F; U E>U, ..., UE, such that

® \V/’l:,j:EiﬂEj :(Z), and
o Vi: (V,E;) is either a star or a triangle.

NS

Triangle
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Edge Decomposition: Examples

Optimal / \

Non-optimal

AN

P
~

Two of the possible decompositions.

5, 2002

The Parallel and Distributed Systems Laboratory, The University of Texas at Austin

Page 11



The 22nd International Conference on Distributed Computing Systems

g N

Properties of Star and Triangle

Lemma: Messages in synchronous computations on star or triangle
topologies are always totally ordered.

Concurrent messages must belong to different edge groups

s

o
o

Py
w T O
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Online Algorithm

Each process maintains a vector of size d (size of edge decomposition)
initially O vector.

e Sender and Receiver exchange vector clocks.

e Take component-wise maximum.

e Both increment the component corresponding to the edge group of the
edge connecting the sender and receiver.
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Online Algorithm: Example
O T e A
P £ E2 Es
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Determining Optimal Edge Decomposition

A vertex cover of an undirected graph G = (V, F) is a subset V' C V such
that if (u,v) is an edge of G, then either u € V' or v € V' (or both)

If only stars are allowed in Edge Decomposition, then the problem becomes
Vertex Cover Problem.

Vertex Cover Problem is NP-Hard [Garey-Johnson79].
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Approximation Algorithm Idea

Repeatedly apply the following three steps:

Star Removal 1:
If x is connected only to y then remove star rooted at y.

Triangle Removal:
Remove any triangle (z,y, z) with degree(x) = degree(y) = 2

Star Removal 2:
Let (z,y) be the edge of with largest number of edges adjacent to it Remove

stars rooted at = and rooted at y.
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Approximation Algorithm: Example

d e h i
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Optimal Edge Decomposition
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Approximation Algorithm

Theorem:
The proposed approximation algorithm produces an edge decomposition
which is at most twice the size of the optimal edge decomposition.

Theorem:
If the topology is an acyclic graph, the algorithm produces an optimal edge
decomposition.

Time Complexity: O(|E||V]).

- )

5, 2002 The Parallel and Distributed Systems Laboratory, The University of Texas at Austin Page 18




The 22nd International Conference on Distributed Computing Systems

- N

Background: Dimension Theory

Extension: A poset (X, Q) is called an extension of poset (X, P) iff
Vz,y € X: (z,y) € P= (z,y) €Q

e (X,Q) is called linear extension if () is a total order.

Chain Realizer: A family R = {Lq, Lo, ..., Ls} of linear extensions of P is
called a chain realizer of a poset (X, P) if P = NR.

e r<ye€L;NL;ifx<yinboth L; and L;.

Dimension: the cardinality of the smallest possible chain realizer of (X, P).
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b d f f @ e b 5
I/M ce o d 4
d e ® a 3
a C e
o o f 2
Poset b e ® C 1
a e ® € 0
Chain Realizer

Each element of the poset can be encoded using a vector of size 2.
a=(0,3);b=(1,5);c=(2,1)
d=(3,4);e=(4,0); f = (5,2)

Chain Order:
Vy < Uy = Vi:vgt] < vyli]
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Off-line Algorithm

width(X, P): the size of the longest antichain of (X, P).

Let M be the poset formed by messages in a synchronous computation with
N processes. width(M) is at most | ].

Theorem:
Given a synchronous computation consisting N processes, vector clocks of
size at most |2 | can be used to timestamp messages.
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Off-line Algorithm (Cont.)

Algorithm:

e construct chain realizer of the poset using Dilworth’s algorithm
[Dilworth50].

e compute timestamp for each message from the chain realizer.

Note:
Dimension(M) < width(M) < N/2

Note: Calculating dimension of poset is N P-hard [Yannakakis82].
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Summary of Online Algorithm N

Fidge and Mattern

Our Algorithm

# of processes?

communication Any Synchronous
Require knowledge of No Yes
topology?

Require knowledge of Yes Not for some topologies

Message /Space Overhead

Number of processes

Size of edge decomp.

For client-server systems, our algorithm requires as many coordinates as the
number of servers independent of the number of clients.

=
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Future Work

e Complexity of Edge decomposition problem.

e Efficient algorithm that constructs chain realizer of size less than width.
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Timestamping Internal Events

Assign to each event e with a tuple (prec(e), succ(e)).

e prec(e) is the timestamp of the message immediately prior to e.

o succ(e) is the timestamp of the message immediately after e.

Theorem: ¢ — f <= succ(e) < prev(f)

P, i e=[(1,0,0),(1,1,1)]
(1.00)

P, e ; f=[(0,0,2),(1,1,3)]

(L11) g |22

& — T g=1[(1,1,3),(...)]
00.1); f a3 |

Pa re |

(0,0,2)
Ps -
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