Timestamping Messages in Synchronous Computations

Vijay K. Garg garg@ece.utexas.edu

Chakarat Skawratananond skawrata@ece.utexas.edu

Parallel and Distributed Systems Laboratory
The University of Texas at Austin
Austin, TX 78712

July 5, 2002

Causality Tracking

- Lamport's *happened-before* relation [Lamport78] captures potential causal relationship in distributed systems.
- Definition: e happened before f (denoted by \rightarrow)
 - $-\ e$ occurs before f in the same process, or
 - there is a transfer of information from e to f, or
 - there exists an event g such that $e \to g$ and $g \to f$.
- Causality tracking requires us to timestamp events such that *happened* before relationship can be determined between events.

Causality Tracking: Applications

Determining causal relationship is essential in distributed computing.

- Debugging Distributed Systems.
 - Visualization of the computation.
 - * POET [Kunz et al.'97]
 - * XPVM [Kohl-Geist95]
 - * Object-Level Trace [IBM]
 - Predicate Detection.
 - * e.g. [Fidge89, Mattern89, Garg-Waldecker94].
- Fault-tolerance.
 - Determining *orphan* processes. e.g.
 [Strom-Yemini88, Damani-Garg96].

Model of Distributed Computations

Distributed Computation: A partial ordered set (poset) (X, \rightarrow) , where X is the set of events, and \rightarrow is Lamport's *happened-before* relation.

$$X = \{a, b, c, d, e\}$$

Relation $\to=\{(a,b),(a,d),(a,e),(b,d),(b,e),(c,d),(c,e)\}$

Causality Tracking with Vector Clocks

Fidge and Mattern [Fidge89, Mattern89] introduced vector clocks such that

$$\forall e, f \in X : e \to f \iff v(e) < v(f)$$

Vector order: componentwise comparison

- (2,0) is less than (2,2)
- (0,1) is incomparable to (1,0).

Issues of Vector Clocks

Overhead:

- Message overhead: O(N).
- Space overhead: O(N).

where N is the number of processes in the computation.

Characteristics:

- *Online* algorithm.
- requires knowledge about the number of processes.
- asynchronous messages.

Talk Outline

- Online Algorithm.
 - Background: Synchronous Computation.
 - Algorithm.
- Off-line Algorithm.
 - Background: Dimension Theory.
 - Algorithm.
- Summary and Future Work.

Synchronous Computation

Synchronous Computation is the computation that uses only synchronous messages.

A message is called *synchronous* when the sender has to wait for the acknowledgement or a reply from the receiver before executing further.

Synchronous communication is widely supported in many programming languages and standards such as CSP, Ada, RPC, and Java RMI.

Message Timestamping

Synchronously-Precede Relation (\mapsto): m_1 synchronously precedes m_2 if

- ullet There is a process participating in m_1 and then m_2 , or
- If $m_1 \mapsto m_3$ and $m_3 \mapsto m_2$, then $m_1 \mapsto m_2$.

$$m_1 \mapsto m_3, m_2 \mapsto m_6, m_1 || m_2$$

Message Timestamps:

$$m_1 \mapsto m_2 \iff v(m_1) < v(m_2)$$

Problem Statement: Give an algorithm to compute v efficiently.

Edge Decomposition

Communication Topology: (G = (V, E))

A partition of the edge set, $\{E_1, E_2, \dots, E_d\}$, is called an **edge decomposition** of G if $E = E_1 \cup E_2 \cup \dots \cup E_d$ such that

- $\forall i, j : E_i \cap E_j = \emptyset$, and
- $\forall i : (V, E_i)$ is either a star or a triangle.

Triangle

Edge Decomposition: Examples

Two of the possible decompositions.

Properties of Star and Triangle

Lemma: Messages in synchronous computations on *star* or *triangle* topologies are always totally ordered.

Concurrent messages must belong to different edge groups

Online Algorithm

Each process maintains a vector of size d (size of edge decomposition) initially 0 vector.

- Sender and Receiver exchange vector clocks.
- Take component-wise maximum.
- Both increment the *component corresponding to the edge group* of the edge connecting the sender and receiver.

Online Algorithm: Example

Determining Optimal Edge Decomposition

A vertex cover of an undirected graph G = (V, E) is a subset $V' \subseteq V$ such that if (u, v) is an edge of G, then either $u \in V'$ or $v \in V'$ (or both)

If only *stars* are allowed in Edge Decomposition, then the problem becomes Vertex Cover Problem.

Vertex Cover Problem is *NP-Hard* [Garey-Johnson79].

Approximation Algorithm Idea

Repeatedly apply the following three steps:

Star Removal 1:

If x is connected only to y then remove star rooted at y.

Triangle Removal:

Remove any triangle (x, y, z) with degree(x) = degree(y) = 2

Star Removal 2:

Let (x, y) be the edge of with largest number of edges adjacent to it Remove stars rooted at x and rooted at y.

Approximation Algorithm: Example

Optimal Edge Decomposition

output

(e)

Approximation Algorithm

Theorem:

The proposed approximation algorithm produces an edge decomposition which is at most twice the size of the optimal edge decomposition.

Theorem:

If the topology is an acyclic graph, the algorithm produces an optimal edge decomposition.

Time Complexity: O(|E||V|).

Background: Dimension Theory

Extension: A poset (X,Q) is called an *extension* of poset (X,P) iff

$$\forall x, y \in X : (x, y) \in P \Rightarrow (x, y) \in Q$$

 \bullet (X,Q) is called *linear extension* if Q is a total order.

Chain Realizer: A family $\mathcal{R} = \{L_1, L_2, \dots, L_t\}$ of linear extensions of P is called a *chain realizer* of a poset (X, P) if $P = \cap \mathcal{R}$.

• $x < y \in L_i \cap L_j$ if x < y in both L_i and L_j .

Dimension: the cardinality of the smallest possible chain realizer of (X, P).

Timestamping from Chain Realizer

Poset

Chain Realizer

Each element of the poset can be encoded using a vector of size 2.

$$a = (0,3); b = (1,5); c = (2,1)$$

$$d = (3,4); e = (4,0); f = (5,2)$$

Chain Order

$$v_x < v_y \iff \forall i : v_x[i] < v_y[i]$$

Off-line Algorithm

width(X, P): the size of the longest antichain of (X, P).

Let M be the poset formed by messages in a synchronous computation with N processes. width(M) is at most $\lfloor \frac{N}{2} \rfloor$.

Theorem:

Given a synchronous computation consisting N processes, vector clocks of size at most $\lfloor \frac{N}{2} \rfloor$ can be used to timestamp messages.

Off-line Algorithm (Cont.)

Algorithm:

- construct chain realizer of the poset using Dilworth's algorithm [Dilworth50].
- compute timestamp for each message from the chain realizer.

Note:

 $Dimension(M) \leq width(M) \leq N/2$

Note: Calculating dimension of poset is NP-hard [Yannakakis82].

Summary of Online Algorithm

	Fidge and Mattern	Our Algorithm
communication	Any	Synchronous
Require knowledge of topology?	No	Yes
Require knowledge of # of processes?	Yes	Not for some topologies
Message/Space Overhead	Number of processes	Size of edge decomp.

For client-server systems, our algorithm requires as many coordinates as the number of servers *independent* of the number of clients.

Future Work

- Complexity of Edge decomposition problem.
- ullet Efficient algorithm that constructs chain realizer of size less than width.

Timestamping Internal Events

Assign to each event e with a tuple (prec(e), succ(e)).

- prec(e) is the timestamp of the message immediately prior to e.
- succ(e) is the timestamp of the message immediately after e.

Theorem: $e \to f \iff succ(e) \le prev(f)$

$$e = [(1,0,0),(1,1,1)]$$

$$f = [(0,0,2),(1,1,3)]$$

$$g = [(1,1,3),(...)]$$