
How to Recover Efficiently and Asynchronously

�when Optimism Fails

Om P. Damani       Vijay K. Garg

TR TR-PDS-1995-014 August 1995

Parallel & Distributed Systems group
Department of Electrical & Computer Engineering

University of Texas at Austin

Austin, Texas 78712

T
H
E
U
N
IV

ER
SITY

O
F
T
E
X
A
S

A
T
AUSTI

N

D
IS
C
I
P
L
I
N
A

P
R
AE
SIDIUM

C
I
V
I
T
A
T
I
S



How to Recover E�ciently and Asynchronouslywhen Optimism FailsOm P. Damanidamani@cs.utexas.eduDept. of Computer Sciences Vijay K. Garg�garg@ece.utexas.eduDept. of Electrical and Computer EngineeringUniversity of Texas at Austin, Austin, TX, 78712August 14, 1995AbstractWe propose a new algorithm for recovering asynchronously from failures in a distributedcomputation. Our algorithm is based on two novel concepts - a fault-tolerant vector clock tomaintain causality information in spite of failures, and a history mechanism to detect orphanstates and obsolete messages. These two mechanisms together with checkpointing and message-logging are used to restore the system to a consistent state after a failure of one or moreprocesses. Our algorithm is completely asynchronous. It handles multiple failures and networkpartitioning, does not assume any message ordering, causes the minimum amount of rollbackand restores the maximum recoverable state with low overhead. Earlier optimistic protocolslack one or more of the above properties.1 IntroductionFor fault-resilience, a process periodically records its state on a stable storage [15]. This action iscalled checkpointing and the recorded state is called a checkpoint. The checkpoint is used to restorea process after a failure. However, some information may be lost in restoring the system. This lossmay leave the distributed system in an inconsistent state [5]. The goal of a recovery protocol is tobring back the system to a consistent state after one or more processes fail. A consistent state isone where the send of a message must be recorded in the sender's state if the receipt of the messagehas been recorded in the receiver's state.In consistent checkpointing, di�erent processes synchronize their checkpointing actions [4, 13].After a process fails, some or all of the processes rollback to their last checkpoints such that theresulting system state is consistent. For large systems, the cost of this synchronization is prohibitive.Furthermore, these protocols may not restore the maximum recoverable state [12].If along with checkpoints, messages are logged to the stable storage, then the maximum recov-erable state can always be restored [12]. Theoretically, message logging alone is su�cient, but�supported in part by the NSF Grant CCR-9110605, a TRW faculty assistantship award, a General MotorsFellowship, and an IBM grant. 1



2checkpointing speeds up the recovery. Messages can be logged either by the sender or by the re-ceiver. In pessimistic logging, messages are logged either as soon as they are received [3, 20], orbefore the receiver sends a new message [11]. When a process fails, its last checkpoint is restoredand the logged messages that were received after the checkpointed state are replayed in the orderthey were received. Pessimism in logging ensures that no other process needs to be rolled back.Although this recovery mechanism is simple, it reduces the speed of the computation. Therefore,it is not a desirable scheme in an environment where failures are rare and message activity is high.In optimistic logging [12, 19, 25, 26, 27], it is assumed that failures are rare. A process storesthe received messages in volatile memory and logs it to stable storage at infrequent intervals. Sincevolatile memory is lost in a failure, some of the messages can not be replayed after the failure. Thus,some of the process states are lost in the failure. States in other processes that depend on theselost states become orphan. A recovery protocol must rollback these orphan states to non-orphanstates. The following properties are desirable for an optimistic recovery protocol:� Asynchronous recovery: A process should be able to restart immediately after a failure [25,27]. It should not have to wait for messages from other processes.� Minimal amount of rollback: In some algorithms, processes which causally depend on thelost computation might rollback more than once. In the worst case, they may rollback anexponential number of times. This is called the domino e�ect [21, 22]. A process shouldrollback at most once in response to each failure.� No assumptions about the ordering of messages: If assumptions are made about the orderingof messages such as FIFO, then we lose the asynchronous character of the computation [19].A recovery protocol should make as weak assumptions as possible about the ordering ofmessages.� Handle concurrent failures: It is possible that more than one processes fail concurrently ina distributed computation. A recovery protocol should handle this situation correctly ande�ciently [25, 27].� Low overhead: The algorithm should have a low overhead in terms of number of controlmessages or the amount of control information piggybacked on application messages, bothduring a failure-free operation and during recovery.� Tolerate network partitioning: A process should not depend upon information stored in otherprocesses to recover. It should be able to restart despite network partitioning [25, 27].� Recover maximum recoverable state: No computation should be needlessly rolled back.We present an optimistic recovery protocol which has all the above features. Previous protocolslack one or more of these properties. Table 1 shows a comparison of our work with some otherschemes. Our protocol is based on two novel mechanisms - a fault-tolerant vector clock and a historymechanism. The fault-tolerant vector clock is used to maintain causality information in spite offailures. This mechanism is of independent interest as it can also be applied to other distributedalgorithms such as distributed predicate detection [9]. The history mechanism is used to detect



3orphan states and obsolete messages. In this paper, we present necessary and su�cient conditionsfor a message to be obsolete and a state to be orphan in terms of the history data structure.The organization of the rest of the paper is as follows. Section 2 discusses the related work in theliterature. In Section 3, we discuss our model of computation. In particular, we extend Lamport's`happen before' relation which has been quite useful for ordering events in a failure-free system to asystem where processes fail and rollback. Section 4 presents an algorithm to maintain Fault-TolerantVector Clocks. It also shows how to use them for detecting `happen before' relation between statesthat are neither lost nor orphan. Section 5 gives an algorithm for history maintenance using whichorphan states are detected and rolled back. Section 6 presents and analyzes our protocol. Section7 concludes the paper. Message Asynchronous Maximum Number of Number ofordering recovery rollbacks timestamps concurrentper failure in vector clock failures allowedStrom andYemini [27] FIFO Yes �(2n) O(n) 1Johnson andZwaenepoel [11] None No 1 O(1) nSistla andWelch [26] FIFO No 1 O(n) 1Peterson andKearns [19] FIFO No 1 O(n) 1Smith, Johnsonand Tygar [25] None Yes 1 O(n2f) nDamani andGarg None Yes 1 O(n) nTable 1: Comparison with related work. (n is the number of processes in the system and f isthe maximum number of failures of any single process).2 Related WorkA protocol for recording a consistent global state was �rst given by Chandy and Lamport [5].Although it did not deal with recovery, much of the earlier work on recovery is based on it. Stromand Yemini [27] initiated the area of optimistic recovery using checkpointing. Their scheme, how-ever, su�ers from the domino e�ect. Johnson and Zwaenepoel [12] present a centralized protocol tooptimistically recover the maximum recoverable state. Other distributed protocols for optimisticrecovery can be found in [19, 25, 26]. Peterson and Kearns [19] give a synchronous protocol basedon vector clock. Their protocol can not handle multiple failures. Smith, Johnson and Tygar [25]present the �rst completely asynchronous, optimistic protocol which can handle multiple failures.They maintain information about two levels of partial order: one for the application and the otherfor the recovery. The main drawback of their algorithm is the size of its vector clock, resulting inhigh overhead during failure-free operations. An optimistic protocol for fast output to environmentis presented in [10].



4Pessimistic protocols can be found in [3, 11, 20]. Causal logging [1, 6] protocols are non-blockingand orphan free. They log message in processes other than the receiver. So synchronization isrequired during recovery. Alvisi and Marzullo [2] present a theoretical framework for di�erentmessage logging protocols. Leong and Agrawal [16] take message semantics into account to reducerollback. Recovery algorithms for Distributed Shared Memory are given in [18, 23, 24]. By usingthe technique presented in the [7], recovery algorithms for message passing architecture can beextended to Distributed Shared Memory.3 Our Model of ComputationA distributed computation is a set of process executions. A process execution is a sequence of statesin which a state transition is caused by an external event: a send or a receive of a message. Internalevents do not cause state transitions; we ignore them for the rest of the paper. Processes are assumedto be piecewise deterministic. This means that when a process receives a message, it performs someinternal computation, sends some messages and then blocks itself to receive a message. All theseactions are completely deterministic, i.e. actions performed after a message receive and beforeblocking for another message receive are completely determined by the contents of the messagereceived and the state of the process at the time of message receive. A non-deterministic actioncan be modeled by treating it as a message receive.The receiver of a message depends on the content of the message and therefore on the senderof the message. This dependency relation is transitive. The receiver becomes dependent only afterthe received message is delivered. From now on, unless otherwise stated, receive of a message willimply its delivery.A process periodically takes its checkpoint. It also asynchronously logs to the stable storageall messages received in the order they are received. At the time of checkpointing, all unloggedmessages are also logged.A failed process restarts by creating a new version of itself. It restores its last checkpoint andreplays the logged messages which were received after the restored state. Since some of the messagesmight not have been logged at the time of the failure, some of the old states, called lost states,can not be recreated. Now, consider the states in other processes which depend on the lost states.These states, called orphan states, must be rolled back. Other processes have not failed, so beforerolling back, they can log all the unlogged messages and save their states. Thus no informationis lost in rollback. Note the distinction between restart and rollback. A failed process restartswhereas an orphan process rolls back. Some information is lost in restart but not in rollback. Aprocess creates a new version of itself on restart but not on rollback. A message sent by a lost or anorphan state is called an obsolete message. A process receiving an obsolete message must discardit. Otherwise the receiver becomes an orphan.In Figure 1, a distributed computation is shown. Process P1 fails at state f10, restores states11, takes some actions needed for recovery and restarts from state r10. States s12 and f10 are lost. Being dependent on s12, state s22 of P2 is an orphan. P2 rolls back, restores state s21, takesactions needed for recovery, and restarts from state r20. Dashed lines show the lost computation.Solid lines show the useful computation at the current point.Henceforth, notation i; j refer to process numbers; k; l; v refer to version number of a process;



5s; u; w; x; y refer to a state; Pi refers to process i; Pi;k refers to version k of Pi; s:p denotes theprocess number to which s belongs, that is, s:p = i) s 2 Pi; t; t0; t00 refer to timestamp; m refersto a message.Lamport [14] de�ned the happen before relation between events in a failure-free computation.To take failures into account, we extend the happen before(! ) relation. We de�ne it for states.For the states s and u, s! u is the transitive closure of the relation de�ned by the following threeconditions:� s:p = u:p and s was executed immediately before u (for example, s11! s12 in Figure 1), or� s:p = u:p and s is the state restored after a failure or a rollback and u is the state after Pu:phas taken the actions needed for recovery (for example, s11! r10 in Figure 1), or� s is the sender of a message m and u is the receiver of m (for example, s00! s11 in Figure1).In �gure 1, s00 ! s22, but s22 6! r20 (not happen before).The protocol for recovery might cause some recovery messages to be sent among processes.>From here onward `application message' will be referred to as `message' and `recovery message'will be referred to as `token'. Tokens do not contribute to happen before; if s sends a token to uthen because of this token, s does not become causally dependent on u.We say that s knows about Pi;l through token or messgaes if,1. 9u : u:p = s:p and u has received a token about Pi;l and u was executed before s, or,2. 9u : u! s and u 2 Pi;l.4 Fault-Tolerant Vector ClockMattern's vector clock [17] is a vector whose number of component equals the number of processes.Each entry is the timestamp of the corresponding process. To maintain causality despite failures,we extend each entry by a version number. The extended vector clock is referred to as the Fault-Tolerant Vector Clock (FTVC). We use the terms `clock' and FTVC interchangeably. Let usconsider the FTVC of a process Pi. The version number in the i'th entry of its FTVC (its ownversion number) is equal to the number of times it has failed and recovered. The version numberin the j'th entry is equal to the highest version number of Pj on which Pi depends. Let entry ecorresponds to a tuple(version v, timestamp ts). Then, e1 < e2 � (v1 < v2)_[(v1 = v2)^(ts1 < ts2)].A process Pi sends its FTVC along with every outgoing message. After sending a message, Piincrements its timestamp. On receiving a message, it checks whether the message is obsolete ornot (we will explain later how to do this). If the message is obsolete it is discarded; otherwise,the process updates its FTVC with the message's FTVC by taking the componentwise maximumof entries and incrementing its own timestamp. To take the maximum, the entry with the higherversion number is chosen. If both entries have the same version number then the entry with thehigher timestamp value is chosen.When a process restarts after a failure, it increments its version number and sets its timestampto zero. Note that this operation does not require access to previous timestamp which may be lost
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(0,2)(0,4)(0,0)(0,1) (0,2)(0,3)(0,3)s11 s12s21 s22 f10r10 r20Figure 1: A Distributed Computationon a failure. It only requires its previous version number. As explained in section 6.2, the versionnumber is not lost in a failure.After a rollback, a process increments the timestamp of its own component and leaves theversion number unchanged. A formal description of the FTVC algorithm is given in Figure 2.An example of FTVC is shown in Figure 1. FTVC of each state is shown in a rectangular boxnear it.4.1 Properties of FTVCFTVC has properties similar to Mattern's vector clock [17]. It can be used to detect causal depen-dencies between useful states, that is, the states which are neither lost nor orphan.We de�ne ordering between two FTVC values c1 and c2 as follows.c1 < c2 � (8i : c1[i] � c2[i])^ (9j : c1[j]< c2[j]):Let s:c denote the FTVC of Ps:p in state s. The following lemma formalizes the meaning of aversion number in an entry of FTVC.Lemma 1 Let s 2 Pi. Then,1. s:c[i]:ver = jfu : u 2 Pi; u is a failure event g j2. (j 6= i); s:c[j]:ver = maxu2Pjfu:c[j]:ver : u! sgProof: On restarting after a failure, a process increments its version number. Furthermore, itincrements its version number only then. Hence the �rst part follows.The relation u ! s implies that there exists a message path between u and s. Now c[j]:vercan only be incremented by Pj . Since u is the maximum state in Pj , along each link of the path



7
Process Pi :type entry = (int ver, int ts) /* version, timestamp */var clock : array [1..N] of entry /* N : number of processes in system */Initialize :8 j : clock[j].ver = 0 ; clock[j].ts = 0 ;clock[i].ts = 1 ;Send message :send (data, clock) ;clock[i].ts++ ;Receive message (data, mclock) :/* Pi receives vector clock `mclock' in incoming message */8 j: clock[j] = max(clock[j],mclock[j]) ;clock[i].ts++ ;On Restart(state s restored after failure ) :/* clock = s.clock */clock[i].ver++ ;clock[i].ts = 0 ;On Rollback (state s is restored) :/* clock = s.clock */clock[i].ts++ ;Figure 2: Formal description of the fault-tolerant vector clock



8from u to s, FTVC[j]:ver is updated by taking componentwise maximum only. So, 8u : (u! s))s:c[j]:ver � u:c[j]:ver. Or, s:c[j]:ver � maxu2Pjfu:c[j]:verju! sg. Since s:c[j]:ver is updated bytaking a maximum only and it is never incremented otherwise, s:c[j]:ver � maxu2Pjfu:c[j]:verju!sg. Hence the second part follows.The next lemma gives a necessary condition for 6̀!' relation between two useful states.Lemma 2 Let s and u be useful states (neither lost nor orphan) and s 6= u. Then, s 6! u )u:c[s:p] < s:c[s:p]Proof: Let s:p = u:p. Since s and u are useful states it follows that u! s. After send and receiveof a message or a rollback, Ps:p increments the timestamp of its own component. On restart aftera failure, Ps:p increments its version number. Since for each state transition along the path from uto s, local FTVC is incremented, u:c[s:p] < s:c[s:p].Let s:p 6= u:p . As s 6! u, Pu:p could not have seen s:c[s:p], local clock of Ps:p. This argumentcan be formalized using the induction technique on 6̀!', given by Garg and Tomlinson [8]. Henceu:c[s:p] < s:c[s:p].As shown in the next theorem, the above condition is also su�cient for 6̀!' relation. The nexttheorem shows that despite failures, FTVC keeps track of causality for the useful states. This maybe of interest in applications other than recovery, for example, in predicate detection.Theorem 1 Let s and u be useful states in a distributed computation. Then, s! u i� s:c < u:cProof: If s = u, then the theorem is trivially true. Let s ! u. There is a message path froms to u such that none of the intermediate states are either lost or orphan. Due to monotonicityof the FTVC along each link in the path, 8j : s:c[j] � u:c[j]. Since u 6! s, from lemma 2,s:c[u:p] < u:c[u:p]. The converse follows from lemma 2.Note that the FTVC does not detect the causality for either lost or orphan states. In Figure 1,r20.c < s22.c, even though r20 6! s22. To detect causality for lost or orphan states, we use history,as explained in Section 5.5 History MechanismWe �rst give some de�nitions which are similar to those in [19]. A state is called lost, if it cannotbe restored from the stable storage after a process fails. To de�ne a lost state more formally, letrestored(u) denote the state that is restored after a failure. Then,lost(s) � 9u : restored(u) ^ u:p = s:p ^ u:ver = s:ver ^ u! sThat is, a state s is lost if there exists a state u which was restored after a failure and s wasexecuted after u in that version of the process.States in other processes which are dependent on a lost state are called orphan. Formally,orphan(s) � 9u : lost(u) ^ u:p 6= s:p ^ u! sA message sent by a lost or an orphan state is not useful in the computation and it should bediscarded. It is called obsolete. Formally,obsolete(m) � lost(m:sender) _ orphan(m:sender)



9If an obsolete message has been received then the receiver should rollback.Orphan states and resulting obsolete messages are detected using the history mechanism. Thismethod requires that after recovering from a failure, a process noti�es other processes by broad-casting a token. The token contains the version number which failed and the timestamp of thatversion at the point of restoration. We do not make any assumption about the ordering of tokensamong themselves or with respect to the messages. We do assume that tokens are delivered reliably.Every process maintains some information, called history, about other processes in its volatilememory. In history of Pi, there is a record for every known version of all processes. If Pi hasreceived a token about Pj;k, then it keeps that token's timestamp in the corresponding record inhistory. Otherwise, it keeps the highest value of the timestamp that it knows for Pj;k throughmessages. A bit is kept to indicate whether the stored timestamp corresponds to a token or amessage. So a record in history has three �elds: a bit, a version number and a timestamp. Theroutine insert(history[j], hist entry) inserts the record hist entry in that part of the history of Piwhich keeps track of Pj . For a given version of a given process, only one record is maintained. Soon adding a record for Pj;v , any previous record for Pj;v is deleted. Thus, on receiving a messageand its FTVC, for each entry ej(v; t) in the vector clock, Pi checks whether a record (mes; v; t0)exists for Pj;v in history[j] such that t < t0. If no such record exists then record (mes; v; t) is addedto history[j]. By adding this record, any previous record for Pj;v is deleted.A formal description of the history manipulation algorithm is given in Figure 3.Process Pi :type entry = (int ver, int ts) /* version, timestamp */hist entry = record ( mtype : (token,mes), int ver, int ts)var clock : array[1..N] of entry; /* N : number of processes in system */history : array[1..N] of set of hist entry;token : entry;Initialize :8j : insert(history[j], (mes,0,0)) ;insert(history[i], (mes,0,1)) ;Send message :send(data, clock) ;Receive token (v1,t1) from Pj :insert(history[j], (token,v1,t1)) ;Receive message (data, mclock) :8 j :if ((mes,mclock[j].ver,t) 62 history[j]) /* A record for mclock[j].ver does not exist */or (t < mclock[j].ts) then /* or it exists and t is the time-stamp in it */insert(history[j], (mes,v,mclock[j].ts)) ;On Restart (state s is restored after a failure of version v)/* history = s.history */insert(history[i], (token,v,clock[i].ts)) ;Figure 3: A formal description of the history mechanism



106 The ProtocolOur protocol for asynchronous recovery is shown in Figure 4. We describe the actions taken by aprocess, say Pi, upon the occurrence of di�erent events.6.1 Message ReceiveOn receiving a message, Pi �rst checks whether the message is obsolete. This is done as follows.Let ej refer to the jth entry in the message's FTVC. Recall that each entry is of the form (v; t)where v is the version number and t is the timestamp. If there exists an entry ej , such that ej is(v; t) and (token; v; t0) belongs to history[j] of Pi and t > t0 then the message is obsolete. This isproved later.If the message is obsolete, then it is discarded. Otherwise, Pi checks whether the message isdeliverable. The message is not deliverable if its FTVC contains a version number k for any processPj , such that Pi has not received all the tokens of the form Pj;l for all l less than k. In this case,the delivery of the message is postponed. Since we assume failures to be rare, this should not a�ectthe speed of the computation.If the message is delivered then the vector clock and the history are updated. Pi updates itsFTVC with the message's FTVC as explained in Section 4. The message and its FTVC is loggedin a volatile storage. Asynchronously, volatile log is ushed to the stable storage. The history isupdated as explained in Section 5.6.2 On Restart after a FailureAfter a failure, Pi restores its last checkpoint from the stable storage (including the history). Thenit replays all the logged messages received after the restored state, in the receipt order. To informother processes about its failure, it broadcasts a token containing its current version number andtimestamp. After that it increments its own version number and resets its own timestamp to zero.Finally, it updates its history, takes a new checkpoint and starts computing in a normal fashion.The new checkpoint is needed to avoid the loss of the current version number in another failure.Note that the recovery is una�ected by a failure during this checkpointing.6.3 On Receiving a TokenWe require all tokens to be logged synchronously. This prevents the process >from losing theinformation about the token if it fails after acting on it. Since we expect the number of failures tobe small, this would incur only a small overhead.The token enables a process to discover if it has become an orphan. To check whether it hasbecome an orphan it proceeds as follows. Assume that it received the token (v; t) from Pj . It checkswhether a record (mes; v; t0) exists in its history for Pj;v , such that t < t0. If such a record exists,then Pi is an orphan and it needs to rollback. We prove this claim later.If the process Pi discovers that it has become an orphan then it rolls back.Regardless of the rollback, Pi enters the record (token; v; t) in history[j]. Finally, messages thatwere held for this token are delivered.



11Process Pi :Receive message (data, mclock) :/* Check whether message is obsolete */8 j :if ((token,mclock[j].ver,t) 2 history[j]) and ( t < mclock[j].ts ) then discard message ;if 9j; l s.t. l < mclock[j].ver ^ Pi has not received token about Pj;l thenpostpone the delivery of the message till that token arrives ;if delivered thenupdate history ; update FTVC ;Restart (after failure) :restore last checkpoint ;replay all the logged messages that follow the restored state ;broadcast token (clock[i]) ;update history ; update FTVC ;take checkpoint ;continue as normal ;Receive token (v,t) from Pj :synchronously log the token to the stable storage ;if ((mes,v,t') 2 history[j]) thenif (t < t') then Rollback ;/* Regardless of rollback, following actions are taken */update history ;deliver messages that were held for this token ;Rollback ( due to token (v,t) from Pj ) :log all the unlogged messages to the stable storage ;restore the maximum checkpoint such thateither no record (mes,v,t') 2 history[j] or (t' < t) ..(I)discard the checkpoints that follow ;replay the messages logged after this checkpoint till condition (I) remains satis�ed ;discard the logged messages that follow ;update FTVC ;continue as normal ;Figure 4: Our Protocol for Asynchronous Recovery



126.4 On RollbackOn a rollback due to token (v; t) from Pj , Pi �rst logs all the unlogged messages to the stablestorage. Then it restores the maximum checkpoint s such that the history of s satis�es one of thefollowing conditions :1. There is no record for Pj;v in the history of s, or,2. There is a record (mes; v; t00) for Pj;v in the history and t00 < t.These conditions imply that s is non-orphan. Then, logged messages that were received after sare replayed as long as one of the above conditions remain satis�ed. It discards the checkpoints andlogged messages that follow this state. Now, the FTVC is updated by incrementing its timestamp.Note that it does not increments its version number. Pi, then restarts computing as normal.6.5 RemarkThe following issues are relevant to all the optimistic protocols including ours. We just mentionthem and do not discuss them any further.1. On a failure, a process loses information about the messages that it received but did notlog before the failure. These messages are lost forever, unless Pi also broadcasts its clock with thetoken and other processes resend all the messages that they sent to Pi (only those messages need tobe retransmitted whose send states were concurrent with token's state). This means that processeshave to keep send-history. Observe that no retransmission of messages is required during rollbackof a process which has not failed, but has become orphan due to a failure of some other process.Before rolling back, it can log all the messages and so no message is lost.2. Some form of garbage collection is also required for reclaiming space. Space required forcheckpoints and message logs can be bounded by using the scheme presented in [28]. Beforecommitting an output to the environment, a process must make sure that it will never rollback thecurrent state or lose it in a failure.6.6 An ExampleIn Figure 5, ci is the checkpoint of process Pi. The value of the FTVC and the history is alsoshown for some of the states. The FTVC is shown in a box. The row i of the FTVC and the historycorresponds to Pi. Some of the state transitions are not shown to avoid cluttering of the �gure.The process P1 fails in state f10. It restores the checkpoint c1 and replays the logged messages.Then it sends the token (0,3) (shown by dotted arrow) to other processes. It restarts in state r10.P0 receives the message m2 in state s03. m2's FTVC contains an entry for version 1 of P1. AsP0's history does not contain the token about version 0 of P1, it postpones the delivery of m2.It receives the token in state s05. It detects that it is an orphan and rolls back. It restores thecheckpoint c0, replays the logged messages untill the message that made it an orphan. It restartsin state r00. Since message m2 was held for this token, it is delivered now. On receiving messagem0, P2 detects that it is obsolete and discards it.Note that if state s03 of P0 had delivered the message m2, then message m0's FTVC wouldhave contained entry (1,1) for P1. Then P2 would not have been able to detect that m0 is obsolete.
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c0 c1 c2(0,0)(0,2)(0,0) (0,4)(0,2)(0,0) (0,5)(0,4) ((m,0,5)(m,0,4)(0,7) (m,0,7))(0,5)(0,2)(0,0) ((m,0,6)(t,0,3),(m,1,1)(m,0,0))s00 s01 s02 s03 s04 s05s06r00s10 s11 s12 s13 f10r10 r11s20 s21 s22m1 m0m2(0,3) (0,3)((m,0,0)(t,0,3)Figure 5: An example of recoverySo P2 would have delivered m0, resulting in an orphan state. Since P2 had already received thetoken for version 0 of P1, P2 would never have rolled back the orphan state.6.7 Proof of CorrectnessThe following lemma gives a necessary and su�cient condition for orphan detection. This conditionis used in the Receive token part of the algorithm.Lemma 3 orphan(s) � 9w : restored(w) ^ (w:clock = (v; t) ^ 9(mes; v; t0) 2 s:history[w:p] suchthat t < t0.Proof: (()Since (mes; v; t0) 2 s:history[w:p], a message must have been received with (v; t0) as the clockentry for the process Pw:p. >From properties of the FTVC, this implies that there exists a state uin Pw:p with that vector clock which causally precedes s. That is,9u : u:p = w:p ^ u:ver = w:ver ^ u:clock[u:p] = (v; t)^ u! sSince w:clock[w:p] = (v; t)^ (t < t0), this implies that9u : restored(w) ^ u:p = w:p ^ u:ver = w:ver ^ w ! u ^ u! s>From the de�nition of lost(u), this is equivalent to 9u : lost(u) ^ u ! s. Thus, orphan(s) istrue.())>From de�nition, orphan(s) � 9y : lost(y) ^ y ! s. Among all such y's, let u be a maximumstate for a given version of a given process. Thus, there exists u such that lost(u) ^ u! s, and8x : (x:p = u:p^ x:ver = u:ver ^ x 6= u ^ lost(x) ^ x! s)) x! u : : :(1)



14Let u:clock[u:p] = (v; t). On any path from u to s, u:pth entry (v; t) of FTVC could not havebeen overwritten. From (1), it could not be overwritten by an entry from version v. For a higherversion v0, overwriting process would have waited for token about version v and then that processwould have rolled back. This implies that (mes; v; t) 2 s:history[u:p]. Further, lost(u) implies,9w : restored(w) ^ w! u ^ w:version = u:versionTherefore, 9w : restored(w) ^ w:clock = (v; t0) ^ (t0 < t)The next lemma gives a su�cient condition to detect an obsolete message. It also states thecircumstances in which this condition is necessary.Lemma 4 For any message m received in state s, if there exists an entry (token; v; t) in historyof s for process Pj and m:clock[j] = (v; t0) such that (t < t0), then m is obsolete. That is,[(token; v; t) 2 s:history[j] ^m.clock[j] = (v,t')^t < t0]) obsolete(m).This condition is also necessary when there are no undelivered tokens.Proof: Since (token; v; t) 2 s:history[j], 9w : w:p = j ^ restored(w) ^ w:clock[j] = (v; t): >FromFTVC algorithm and m:clock[j] = (v; t0), we get that 9u 2 Pj : u:clock[j] = (v; t0). Since (t < t0)and a token (v; t) exists for Pj , it follows that u is a lost state.Let x be the state from which the message m is sent, that is x = m:sender. From u:clock[j] =(v; t0), u! x _ u = x. This implies that lost(x) _ orphan(x). That is, obsolete(m)For converse, the de�nition of obsolete(m) imply lost(m:sender) _ orphan(m:sender). Thisimplies that 9u : restored(u) ^ u ! m:sender. Let u:clock[u:p] = (v; t). (u ! m:sender) )f(m:sender):clock[u:p] = (v; t0) ^ (t0 > t)g. This is because on the path from u to m:sender; (v; t0)could not have been overwritten by an entry from higher version v0 of Pu:p. Before overwriting,a process would have waited for token about Pu:p;v and then it would have rolled back. Since alltokens have been delivered, so trivially, 9s : (token; v; t) 2 s:history[w:p].The above test is optimal in the sense that except for the conditions stated, a process Ps:p willnot be able to detect an obsolete message. It will accept it and as per the next lemma will becomean orphan.Lemma 5 If a message m is obsolete and s accepts m then s is an orphan state.Proof:The message m is obsolete implies that lost(m:sender) _ orphan(m:sender). That is, eitherlost(m:sender) or there exists u such that lost(u)^u! m:sender. From, m:sender ! s, it followsthat orphan(s)The next theorem shows that our protocol is correct.Theorem 2 This protocol correctly implements recovery, that is, either a process discards an ob-solete message or the receiver of an obsolete message eventually rolls back to a non-orphan state.Proof: Let a failure of the version v of Pi cause a message m to become obsolete. If the receiverPj has received a token about Pi;v before receiving m, then by lemma 4, it will recognize that m isobsolete and will discard m. Otherwise, it will accept m and by lemma 5, will become an orphan.But Pj will eventually receive tha token about Pi;v . Then by lemma 3, it will recognize that it isorphan and will rollback to a non-orphan state.



156.8 Properties of the protocolTheorem 3 This protocol has following properties: asynchronous recovery, minimal rollback, han-dling concurrent failures, toleration of network partitioning, recovering maximum recoverable state.Proof:Asynchronous Recovery: After a failure, a process restores itself and starts computing. Itbroadcasts a token about its failure but it does not require any response.Minimal Rollback: In response to the failure of a given version of a given process, other processesrollback at most once. This rollback occurs on receiving the corresponding token.Handling Concurrent Failures: In response to multiple failures, a process rolls back in the orderin which it receives information about di�erent failures. Concurrent failures have the same e�ectas that of multiple non-concurrent failures.Tolerance of Network Partitioning: Because of asynchrony, a process recovers immediately froma failure. Since we assume reliable token delivery, other processes will also eventually know aboutthis failure and will rollback, if required.Recovering Maximum Recoverable State: Only orphan states are rolled back.6.9 Overhead AnalysisExcept application messages, the protocol causes no extra messages to be sent during failure-freerun. The following overheads are involved in this protocol:1. FTVC: The protocol tags a FTVC to every application message. The FTVC might be neededfor purposes other than recovery, for example predicate detection [9]. Let the maximumnumber of failures of any process be f . The protocol adds log f bits to each timestamp invector clock. Since we expect the number of failures to be small, log f should be small.2. Token broadcast: A token is broadcast only when a process fails. The size of a token is equalto just one entry of vector clock. So broadcasting overhead is low.3. History: Let the number of processes in the system be n. There are at most f versions of aprocess and there is one entry for each version of a process in the history. So the size of thehistory is O(nf). The history is maintained in relatively inexpensive main memory and f isexpected to be small.7 ConclusionSmith et. al. [25] presented the �rst completely asynchronous, optimistic recovery protocol. Themain limitation of their work is the number of timestamps in their vector clock. We improvedon their work by moving the needed information from the vector clock to volatile memory. Still,the size of FTVC may become a bottleneck in systems with thousands of processes. So a futureresearch direction is to move even more information from FTVC to volatile memory and sendonly one timestamp with each message, while maintaining the asynchronous nature of optimisticrecovery.
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