
Distributed Recovery with K-Optimistic LoggingYi-Min Wang Om P. Damani Vijay K. Garg�AbstractFault-tolerance techniques based on checkpointingand message logging have been increasingly used inreal-world applications to reduce service downtime.Most industrial applications have chosen pessimisticlogging because it allows fast and localized recovery.The price that they must pay, however, is the higherfailure-free overhead. In this paper, we introduce theconcept of K-optimistic logging where K is the degreeof optimism that can be used to �ne-tune the tradeo�between failure-free overhead and recovery e�ciency.Traditional pessimistic logging and optimistic loggingthen become the two extremes in the entire spectrumspanned by K-optimistic logging. Our approach is toprove that only dependencies on those states that maybe lost upon a failure need to be tracked on-line, and sotransitive dependency tracking can be performed with avariable-size vector. The size of the vector piggybackedon a message then indicates the number of processeswhose failures may revoke the message, and K corre-sponds to the system-imposed upper bound on the vec-tor size.1 IntroductionLog-based rollback-recovery [3] is an e�ective tech-nique for providing low-cost fault tolerance to dis-tributed applications [1,4, 7, 12]. It is based on the fol-lowing piecewise deterministic (PWD) execution model[12]: process execution is divided into a sequence ofstate intervals each of which is started by a nondeter-ministic event such as message receipt1. The executionwithin an interval is completely deterministic. Duringnormal execution, each process periodically saves itsstate on stable storage as a checkpoint. The contentsand processing orders of the received messages are alsosaved on stable storage as message logs. Upon a fail-�Yi-Min Wang is with AT&T Labs, Murray Hill, NJ 07974.Om P. Damani is with Dept. of Computer Sciences, University ofTexas, Austin, TX 78712. Vijay K. Garg is with Dept. of Elec-trical and Computer Engineering, University of Texas, Austin,TX 78712. Damani and Garg's research was supported in partby the NSF Grants ECS-9414780, CCR-9520540, and a GeneralMotors Fellowship.1In this paper, we assume that message-delivering events arethe only source of nondeterminism.

ure, the failed process restores a checkpointed stateand replays logged messages in their original orderto deterministically reconstruct its pre-failure states.Log-based rollback-recovery is especially useful for dis-tributed applications that frequently interact with theoutside world [4]. It can be used either to reduce theamount of lost work due to failures in long-running sci-enti�c applications [4], or to enable fast and localizedrecovery in continuously-running service-providing ap-plications [5].Depending on when received messages are logged,log-based rollback-recovery techniques can be dividedinto two categories: pessimistic logging [1, 5] and op-timistic logging [12]. Pessimistic logging either syn-chronously logs each message upon receiving it, or logsall delivered messages before sending a message. Itguarantees that any process state from which a mes-sage is sent is always recreatable, and therefore no pro-cess failure will ever revoke any message to force itsreceiver to also roll back. This advantage of localizedrecovery comes at the expense of a higher failure-freeoverhead. In contrast, optimistic logging �rst savesmessages in a volatile bu�er and later writes severalmessages to stable storage in a single operation. It in-curs a lower failure-free overhead due to the reducednumber of stable storage operations and the asyn-chronous logging. The main disadvantage is that mes-sages saved in the volatile bu�er may be lost upon afailure, and the corresponding lost states may revokemessages and force other non-failed processes to rollback as well.Although pessimistic logging and optimistic loggingprovide a tradeo� between failure-free overhead andrecovery e�ciency, it has traditionally been only acoarse-grain tradeo�: the application has to either tol-erate the high overhead of pessimistic logging, or ac-cept the potentially ine�cient recovery of optimisticlogging. In practice, it is desirable to have a exiblescheme with tunable parameters so that each appli-cation can �ne-tune the above tradeo� based on theload and failure rate of the system. For example, atelecommunications system needs to choose a parame-ter to control the overhead so that it can be responsiveduring normal operation, and also control the rollback

scope so that it can recover reasonably fast upon afailure.To address this issue, we introduce the concept ofK-optimistic logging where K is an integer between0 and N (the total number of processes). Given anymessage m in a K-optimistic logging system, K is themaximum number of processes whose failures can re-voke m. Clearly, pessimistic logging corresponds to0-optimistic logging because messages can never be re-voked by any process failures, while traditional opti-mistic logging corresponds to N -optimistic logging be-cause, in the worst case, any process failure can revokea given message. Between these two extremes, the inte-ger K then serves as a tunable parameter that providesa �ne-grain tradeo� between failure-free overhead andrecovery e�ciency.Our approach to deriving the K-optimistic loggingprotocol is to �rst prove a fundamental property onminimum transitive dependency tracking. To enabledecentralized recovery and e�cient output commit,transitive dependency tracking [10] is commonly usedto record the highest-index state interval of each pro-cess, on which a local process depends. Since we needat least one entry for each process2 , the size of a transi-tive dependency vector is at least N . In general, tran-sitive dependency tracking does not scale well becausea size-N vector needs to be piggybacked on every appli-cation message. We introduce the concept of commitdependency tracking by proving that any dependencieson stable state intervals, i.e., intervals that can be re-constructed from information saved in stable storage,can be omitted. In other words, if process Pj transi-tively depends on the xth state interval of Pi, and Pinoti�es Pj that the interval has become stable, thenPj can remove that entry from its dependency vector.By removing such redundant dependency information,we e�ectively reduce the size of the dependency vector.We then show that the integer K in the K-optimisticlogging protocol is exactly the upper bound on the sizeof the dependency vector.The outline of this paper is as follows. Section 2 de-scribes the system model and gives a numerical exam-ple for an optimistic logging scheme with asynchronousrecovery. Section 3 proves that tracking only depen-dencies on non-stable states is su�cient for the cor-rect operation of any optimistic logging protocol em-ploying transitive dependency tracking. The same ex-ample is then used to demonstrate how the theoremcan be applied to reducing the size of dependency vec-tors. Section 4 motivates and de�nes the concept ofK-optimistic logging, and gives a description of the2A processmay havemultiple incarnations, as discussed later.

protocol. Section 5 describes related work, and Sec-tion 6 summarizes the paper.2 Asynchronous RecoveryWe consider distributed applications consisting ofNprocesses communicating only through messages. Theexecution of each process satis�es the piecewise de-terministic (PWD) model. A rollback-recovery layeris implemented underneath the application layer toperform checkpointing, message logging, dependencytracking, output commit, etc. During failure-free exe-cution, each process takes independent or coordinatedcheckpoints [4], and employs additional optimistic log-ging. When a checkpoint is taken, all messages in thevolatile bu�er are also written to stable storage at thesame time so that stable state intervals are always con-tinuous. Upon a failure, non-stable state intervals arelost and cannot be reconstructed. Messages sent fromthose lost intervals become orphan messages. Any pro-cess states and messages which causally depend on anysuch message also become orphan states and orphanmessages, respectively. Correct recovery then involvesrolling back orphan states and rejecting orphan mes-sages to bring the system back to a globally consistentstate3.In this section, we �rst describe a completely asyn-chronous recovery protocol that piggybacks only de-pendency information. This protocol has the featureof completely decoupling dependency propagation fromfailure information propagation, and is useful for il-lustrating the basic concept of asynchronous recovery.A major disadvantage is that it allows potential or-phan states to send messages, which may create moreorphans and hence more rollbacks. To avoid this dis-advantage, existing protocols couple dependency prop-agation with failure information propagation: the pro-tocol by Strom and Yemini [12] delays the delivery ofcertain messages until receiving necessary failure infor-mation (to be described later); the protocol by Smithet al. [11] piggybacks failure information along with de-pendency information. We focus on Strom and Yem-ini's approach in this paper. In the next section, weprove a theorem on omitting redundant dependencytracking and describe how the result can be used toimprove their protocol. The improved version thenserves as the basis for K-optimistic logging.We use the example in Figure 1 to illustrate themajor components of an asynchronous recovery proto-col. Each rectangular box represents a state intervalstarted by a message-delivering event. A shaded box3We do not address the issue of lost in-transit messages [3]in this paper. They either do not cause inconsistency, or theycan be retrieved from the senders' volatile logs [12].

indicates that the state interval is stable, i.e., can al-ways be recreated from a checkpoint and message logssaved on stable storage. When a process rolls back, itstarts a new incarnation [12] (or version [2]), as illus-trated by P1's execution. Each (t; x)i identi�es the in-terval as the xth state interval of the tth incarnation ofprocess Pi. We use mi to denote application messages(solid lines), and ri for rollback announcements thatpropagate failure information (dotted lines). \Rollingback to state interval u" means rolling back to a check-point and reconstructing the process state up to theend of u, while \rolling back state interval v" meansthe execution within v is undone.
m 0

P 4 (0, 1)4

m 6m 2

m

m m

m
1

3

4

5

(1, 2) (1, 3)

(0, 3)

(0, 2) (0, 3)

(0, 2) (0, 3)

P 0

P

P

P

1

2

3

(0, 5)

(1, 5)

New incarnation1

3

0 0

1 (0, 4) 1

1

2 2

(2, 7) (2, 8)3

44

(2, 5)3 3(2, 6)

P 5

Output

5(3, 8) (3, 9)5

m 7

r

r

r

1

1

1Figure 1: Optimistic logging with asynchronous recov-ery. (Shaded intervals represent stable state intervals;dotted lines represent rollback announcements.)We next describe four major components of the pro-tocol.Dependency tracking:With asynchronous recov-ery, message chains originating from multiple incar-nations of the same process may coexist in the sys-tem (with or without FIFO assumption). Therefore,a process needs to track the highest-index intervalof every incarnation, that its current state dependson. This can be maintained in the following way: amessage sender always piggybacks its dependency in-formation on each outgoing message. Upon deliver-ing a message, the receiver adds the piggybacked de-pendency to its local dependency. If there are twoentries for the same incarnation, only the one withthe larger state interval index is retained. For exam-

ple, when P4 receives m2, it records dependency as-sociated with (0; 2)4 as f(1; 3)0; (0; 4)1; (2; 6)3; (0; 2)4g.When it receives m6, it updates the dependency tof(1; 3)0; (0; 4)1; (1; 5)1; (0; 3)2; (2; 6)3; (0; 3)4g.Rollback announcements: When a process Pjfails, it restores the most recent checkpoint and re-plays the logged messages that were processed afterthat checkpoint. Then Pj increments its incarnationnumber and broadcast a rollback announcement (or re-covery message [12]) containing the ending index num-ber of the failed incarnation. Upon receiving a rollbackannouncement, a process Pi compares its dependencywith that index. If the dependency shows that Pi'sstate depends on a higher-index interval of any failedincarnation of Pj, Pi rolls back to undo the orphanstates, and starts a new incarnation as if it itself hasfailed [12]. For example, suppose process P1 in Fig-ure 1 fails at the point marked \X". It rolls back to(0; 4)1, increments the incarnation number to 1, andbroadcast announcement r1 containing (0; 4)1. WhenP3 receives r1, it detects that the interval (0; 5)1 thatits state depends on has been rolled back. Process P3then needs to roll back to (2; 6)3, and broadcast its ownrollback announcement. In contrast, when P4 receivesr1, it detects that its state does not depend on anyrolled-back intervals of P1. In either case, r1 is saved inan incarnation end table so that the process can rejectmessages from those rolled-back intervals, which mayarrive later. Note that, after receiving r1, P4 may stillneed to remember its dependency on (0; 4)1 because afuture failure of P0 that rolls back (1; 3)0 may force P1to announce a new incarnation that invalidates (0; 4)1.Logging progress noti�cation: Each processasynchronously saves messages in the volatile bu�erto stable storage. Periodically, it broadcast a loggingprogress noti�cation to let other processes know whichof its state intervals has become stable. Such infor-mation is accumulated locally at each process to al-low output commit and garbage collection [12]. Forexample, after P3 makes the state intervals (2; 5)3 and(2; 6)3 stable, it can broadcast a noti�cation to let oth-ers know that.Output commit: Distributed applications oftenneed to interact with the outside world. Examples in-clude setting hardware switches, performing databaseupdates, printing computation results, displaying exe-cution progress, etc. Since the outside world in generaldoes not have the capability of rolling back its state,the applications must guarantee that any output sentto the outside world will never need to be revoked.This is called the output commit problem. In a PWDexecution, an output can be committed when the state

intervals that it depends on have all become stable [12].For example, P4 in Figure 1 can commit the outputsent from (0; 2)4 after it makes (0; 2)4 stable and alsoreceives logging progress noti�cations from P0, P1 andP3, indicating that (1; 3)0, (0; 4)1 and (2; 6)3 have allbecome stable. An alternative is to perform output-driven logging by sending additional messages to forcethe logging progress at P0, P1 and P3 [6].3 Commit Dependency TrackingIn this paper, we use i; j; k for process numbers, tand s for incarnation numbers, and x and y for stateinterval indices. In this section, u; v; w; z refer to stateintervals, and Pv:p refers to the process to which vbelongs.Lamport [8] de�ned the happen before relation forstates. Similarly, Johnson and Zwaenepoel [7] de�nedthe happen before relation (or transitive dependencyrelation [10]) for state intervals. Let u � v if u and vare intervals of same process and u immediately pre-cedes v. Let u ; v if a message sent from interval uis delivered to start interval v. Transitive dependency(!) is de�ned as the transitive closure of the union ofrelations � and ;. Given any two intervals u and v,if it is possible to determine whether v transitively de-pends on u (u! v) then the underlying system is saidto be employing transitive dependency tracking. Nowwe can formally de�ne orphan as follows.DEFINITION 1 A state interval v is orphan if, 9u :rolled back(u) ^ (u! v).Messages sent by orphan states are also called orphans.If the current state of a process is orphan then processitself might be called orphan when there is no confu-sion.Traditional asynchronous recovery protocols usuallyrequire every non-failed rolled-back process to behaveas if it itself has failed [11, 12] by starting a new incar-nation and broadcasting a rollback announcement. Itwas recently observed that, under piecewise determin-istic execution model, announcing only failures is suf-�cient for orphan detection [2]. We give a proof of thisobservation in Theorem 1, and carry the observationeven further by proving, in Theorem 2, that any de-pendencies on stable intervals can be omitted withouta�ecting the correctness of a recovery protocol whichtracks dependencies transitively.THEOREM 1 With transitive dependency tracking,announcing only failures (instead of all rollbacks) issu�cient for orphan detection.Proof. Let a state interval v be orphan due to roll-back of another interval u. Now interval u rolled back

either because Pu:p failed or because it became orphandue to the rollback of another interval z. By repeatedlyapplying the previous observation, we �nd an intervalw whose rollback due to Pw:p's failure caused v to be-come orphan. By de�nition of transitive dependencytracking, Pv:p can detect that v transitively depends onw. Therefore, Pv:p will detect that v is orphan whenit receives the failure announcement from Pw:p.We de�ne that v is commit dependent on w if w! vand :stable(w). That is v is commit dependent on w ifv is transitively dependent on w and w is not stable. Asystem is said to employ commit dependency tracking ifit can detect the commit dependency between any twostate intervals. The following theorem suggests a wayto reduce dependency tracking for recovery purposes.It says that if all state intervals of Pj, on which Pi isdependent, are stable then Pi does not need to trackits dependency on Pj.THEOREM 2 Commit dependency tracking andfailure announcements4 are su�cient for orphan de-tection.Proof. Once a state interval becomes stable, it cannever be lost in a failure. It can always be recon-structed by restarting from its previous checkpoint andreplaying the logged messages in the original order.Now following the proof in Theorem 1, the orphan in-terval v transitively depends on interval w which waslost due to Pw:p's failure. That must mean that w hadnot become stable when the failure occurred. By de�-nition of commit dependency tracking, Pv:p can detectthat v transitively depends on w, and so it will detectthat v is orphan when it receives the failure announce-ment from Pw:p.Logging progress noti�cation is an explicit way toinform other processes of new stable state intervals.Such information can also be obtained in a less obvi-ous way from two other sources. First, a rollback an-nouncement containing ending index (t; x0)i can alsoserve as a logging progress noti�cation that interval(t; x0)i has become stable; Second, when process Pitakes a checkpoint at state interval (t; x)i, it can beviewed as Pi receiving a logging progress noti�cationfrom itself that interval (t; x)i has become stable. Sinceeach process execution can be considered as startingwith an initial checkpoint, the �rst state interval is al-ways stable. Corollaries 1, 2 and 3 summarize theseresults.4Failure announcements are rollback announcements sent byfailed processes.

COROLLARY 1 Upon receiving a rollback an-nouncement containing ending index (t; x0)i, a processcan omit the dependency entry (t; x)i if x � x0.COROLLARY 2 Upon taking a checkpoint and sav-ing all the messages in the volatile bu�er to stable stor-age, a process can omit the dependency entry for itsown current incarnation5.COROLLARY 3 Upon starting the execution, aprocess has no dependency entry.As pointed out earlier, completely asynchronous re-covery protocols that decouple dependency propaga-tion from failure information propagation in generalneed to keep track of dependencies on all incarnationsof all processes. Strom and Yemini [12] introduced thefollowing coupling in their protocol to allow trackingdependency on only one incarnation of each processso that the size of dependency vector always remainsN : when process Pj receives a message m carrying adependency entry (t; x)i before it receives the rollbackannouncement for Pi's (t�1)th incarnation, Pj shoulddelay the delivery of m until that rollback announce-ment arrives. For example, in Figure 1, P4 shoulddelay the delivery of m6 until it receives r1. After P4determines that its state has not become orphan, a lex-icographical maximum operation [12] is applied to thetwo pairs (0; 4) and (1; 5) to update the entry to (1; 5).This update in fact implicitly applies Corollary 1: r1noti�es P4 that (0; 4)1 has become stable, and so thedependency on (0; 4)1 can be omitted. The entry canthen be used to hold (1; 5)1.We next describe three modi�cations to Strom andYemini's protocol, based on Theorem 1, Theorem 2and Corollary 1, respectively. The modi�ed protocolthen serves as the basis for K-optimistic logging.Applying Theorem 1: Damani and Garg im-proved Strom and Yemini's protocol by applying Theo-rem 1 [2]. Since only failures are announced, the num-ber of rollback announcements and the size of incarna-tion end tables are reduced. They did not incrementthe incarnation number on occurrence of non-failurerollback. In this paper, we also apply Theorem 1 butwe still require each non-failed rolled-back process toincrement its incarnation number. This is necessaryfor applying Theorem 2 because logging progress noti-�cation is on a per-incarnation basis.Applying Theorem 2: Theorem 2 can be used toomit redundant dependency entries, thereby reducingthe size of dependency vector to below N . For exam-ple, in Figure 1, when P4 receives P3's logging progress5Assume that a separate counter is used to maintain the cur-rent state interval index.

noti�cation indicating that (2; 6)3 has become stable,it can remove (2; 6)3 from its dependency vector. If(2; 6)3 is later rolled back due to P0's failure, P4's or-phan status can still be detected by comparing the en-try (1; 3)0 against the failure announcement from P0.Applying Corollary 1: Strom and Yemini's pro-tocol waits for the rollback announcement for Pi's(t�1)th incarnation before acquiring a dependency onPi's tth incarnation. Corollary 1 can be used to elimi-nate unnecessary delays in message delivery. SupposePj has a dependency on (t � 4; x)i when it receivesmessage m carrying a dependency on (t; x+ 10)i. Ac-cording to Theorem 2, Pj only needs to be informedthat interval (t � 4; x)i has become stable before itcan acquire the dependency on (t; x+10)i to overwrite(t � 4; x)i. Process Pj can obtain that informationwhen it receives either a logging progressive noti�ca-tion or a failure announcement from Pi.A more interesting and useful special case is whenPj does not have any dependency entry for Pi at alland so the delay is eliminated. For example, when P5in Figure 1 receives m7 which carries a dependencyon (1; 5)1, it can deliver m7 without waiting for r1because it has no existing dependency entry for P1 tobe overwritten.4 K-optimistic Logging4.1 MotivationTraditional pessimistic logging and optimistic log-ging provide only a coarse-grain tradeo� betweenfailure-free overhead and recovery e�ciency. For long-running scienti�c applications, the primary perfor-mance measure is typically the total execution time.Since hardware failures are rare events in most sys-tems, minimizing failure-free overhead is more impor-tant than improving recovery e�ciency. Therefore, op-timistic logging is usually a better choice. In con-trast, for continuously-running service-providing ap-plications, the primary performance measure is typi-cally the service quality. Systems running such appli-cations are often designed with extra capacity whichcan absorb reasonable overhead without causing no-ticeable service degradation. On the other hand, im-proving recovery e�ciency to reduce service down timecan greatly improve service quality. As a result, mostcommercial service-providing applications have chosenpessimistic logging [5].The above coarse-grain tradeo�, however, may notprovide optimal performance when the typical scenar-ios are no longer valid. For example, although hard-ware failures are rare, programs can also fail or exitdue to transient software or protocol errors such as

triggered boundary conditions, temporary resource un-availability, and bypassable deadlocks. If an applica-tion may su�er from these additional failures in a par-ticular execution environment, slow recovery due tooptimistic logging may not be acceptable. Similarly,for a service-providing application, the initial designmay be able to absorb higher run-time overhead in-curred by message logging. However, as more servicefeatures are introduced in later releases, they consumemore and more computation power and the systemmay no longer have the luxury to perform pessimisticlogging.These observations motivate the concept of K-optimistic logging where K is the degree of optimismthat can be tuned to provide a �ne-grain tradeo�. Thebasic idea is to ask each message sender to control themaximum amount of \risk" placed on each outgoingmessage. Speci�cally, a sender can release a messageonly after it can guarantee that failures of at most Kprocesses can possibly revoke the message (see Theo-rem 4).4.2 The ProtocolFigures 2 and 3 give a complete description of aK-optimistic logging protocol with asynchronous re-covery. The protocol is based on Strom and Yemini'sprotocol with the three improvements described in theprevious section. Also, unlike Strom and Yemini's pro-tocol, this protocol does not require FIFO ordering ofmessages. To simplify presentation by using vectornotation and operations, the description always main-tains a size-N dependency vector with entries of theform (t; x). When an entry can be omitted, it is rep-resented as setting the entry to NULL which is lexico-graphically smaller than any non-NULL entry. In animplementation of the protocol, NULL entries can beomitted and any non-NULL entry (t; x) for Pi can beconverted to the (t; x)i form, as used in the previoussections.The protocol describes the actions taken by a pro-cess Pi upon the occurrence of di�erent events. Weexplain in detail only those parts that are unique toour algorithm. A complete explanation of the genericparts for optimistic logging and asynchronous recoverycan be found in previous papers [2, 12]. All routinesmodifying volatile state are described in Figure 2 andthose modifying stable storage are described in Fig-ure 3.In the variable de�nition section, the integer K isthe degree of optimism known to all processes at Ini-tialize. According to Corollary 3, process Pi sets allits dependency vector entries to NULL at Initialize,including the ith entry. At Check deliverability,

the scheme described at the end of Section 3 is em-ployed: if delivering a message to the application wouldcause Pi to depend on two incarnations of any pro-cess, Pi waits for the interval with the smaller incar-nation number to become stable. Such informationmay arrive in the form of a logging progress noti-�cation or a failure announcement. When Pi callsSend message for message m, the message is heldin a Send bu�er if the number of non-NULL entriesin its dependency vector m:tdv is greater than K.The dependency vectors of messages in Send bu�erare updated in Check send bu�er which is invokedby events that can announce new stable state inter-vals, including (1) Receive log for receiving loggingprogress noti�cation; (2) Receive failure ann (ac-cording to Corollary 1); and (3) Checkpoint (Corol-lary 2). When a message's dependency vector con-tains K or less non-NULL entries, it is released byCheck send bu�er. Process Pi also needs to checkand discard orphan messages in Send bu�er and Re-ceive bu�er upon receiving a failure announcement, asshown in Receive failure ann.If a process needs to commit output to exter-nal world during its execution, it maintains an Out-put bu�er like the Send bu�er. This bu�er is also up-dated whenever the Send bu�er is updated. An outputis released when all of its dependency entries becomeNULL. It is interesting to note that an output can beviewed as a 0-optimistic message, and that di�erentvalues of K can in fact be applied to di�erent mes-sages in the same system.4.2.1 Properties of the ProtocolWe next prove two properties that are unique to theK-optimistic logging protocol.THEOREM 3 The protocol implements commit de-pendency tracking.Proof. Given any two state intervals w and v suchthat w ! v and :stable(w), we want to show that thedependency tracking scheme described in the protocolpreserves the w ! v information. Such informationcan be lost only when the dependency on w is set toNULL, which can happen only when a process receivesa noti�cation that w has become stable. Since w is notstable, the w ! v information could not have been lost,and so the protocol implements commit dependencytracking.THEOREM 4 Given any message m released by itssender, K is the maximum number of processes whosefailures can revoke m.Proof. In Check send bu�er, the jth entry of thedependency vector of a messagem is set to NULL when

type entry : (inc int, ssi int)var tdv : array[1..N] of entry; /* dep. vector *//* log: logging progress noti�cation */log : array[1..N] of set of entry;/* iet: incarnation end table */iet : array[1..N] of set of entry;fa : entry; /* failure announcement */current: entry; /* current index */K: int; /* degree of optimism */Process Pi :Initialize :8 j : tdv[j] = NULL;8 j : iet[j] = log[j] = fg ; /* empty set */current = (0,1);Initialize K;Receive message (m) :Check orphan(fmg) ;if not discarded thenCheck deliverability(fmg) ;Receive bu�er = Receive bu�er [fmg ;Deliver message (m) :/* m is delivered only if m.deliver is true. */8 j: tdv[j] = max(tdv[j],m.tdv[j]) ;current.sii++ ; tdv[i] = current ;Check deliverability(bu�er) :8m 2 bu�er : if 8j : tdv[j].inc 6= m.tdv[j].inc :min(tdv[j],m.tdv[j]) = (t; x)^ (t; x0) 2 log[j] ^ x � x0then m.deliver = true ;else m.deliver = false ;Check orphan(bu�er) :8m 2 bu�er : 8 j :if 9t : (t; x0) 2 iet[j] ^ t � m.tdv[j].inc^ x0 < m.tdv[j].sii then discard m ;Send message(data) :put (data,tdv) in Send bu�er ;Check send bu�er ;Check send bu�er :8m 2 Send bu�er: 8 j:if m.tdv[j] = (t; x) ^ (t; x0) 2 log[j] ^ x � x0then m.tdv[j] = NULL ;8m 2 Send bu�er:if Number of non-NULL entries in m.tdvis at most Kthen send m ;Figure 2: K-optimistic logging protocol: Part 1.

Restart /*after failure */ :Restore last checkpoint ;Replay the logged messages that follow ;fa = current ; current.inc++ ;current.sii++ ; tdv[i] = current ;Insert(iet[i],fa) ; Insert(log[i], fa) ;Synchronously log fa ; Broadcast fa ;Receive failure ann (j; t; x0) /* from Pj */:Synchronously log the received announcement;Insert(iet[j],(t; x0)) ; Insert(log[j],(t; x0)) ;Check orphan(Send bu�er);Check orphan(Receive bu�er);Check send bu�er ;Check deliverability(Receive bu�er);if tdv[j].inc � t ^ tdv[j].sii > x0 thenRollback(j; t; x0) ;Rollback(j; t; x0) :Log all the unlogged messages to the stable storage ;Restore the latest checkpoint with tdv such that:(tdv[j].inc � t ^ tdv[j].sii > x0) ..(I)Discard the checkpoints that follow ;Replay the messages logged after restored checkpointtill condition (I) is not satis�ed ;Among remaining logged messages, discard orphansand add non-orphans to Receive bu�er ;/* These messages will be delivered again */current.inc++ ; current.sii++ ; tdv[i] = current ;Checkpoint :Log all the unlogged messages ;Take checkpoint ;Insert(log[i],current) ;tdv[i] = NULL ;Check send bu�er ;Receive log(mlog) :8 j; t : (t; x0) 2 mlog[j] : Insert(log[j],(t; x0)) ;8 j: if tdv[j] = (t; x) ^ (t; x0) 2 log[j] ^ x � x0then tdv[j] = NULL ;Check deliverability(Receive bu�er);Check send bu�er ;Insert(se, (t; x0)) :if (t; x00) 2 se then /* entry for inc. t exists in se */se = (se - f(t; x00)g) [f(t,max(x0; x00))gelse se = se [f(t; x0)g ;Figure 3: K-optimistic logging protocol: Part 2.

the corresponding interval in Pj becomes stable. Asper proof of Theorem 2, a failure of Pj cannot causem to become an orphan. Since m is released when thenumber of non-NULL entries become at most K, theresult follows. 5 Related WorkRollback-recovery techniques can be classi�ed intotwo primary categories: checkpoint-based rollback-recovery uses only checkpoints, and log-based rollback-recovery employs additional message logging. In thearea of checkpoint-based rollback-recovery, the conceptof lazy checkpoint coordination [13] has been proposedto provide a �ne-grain tradeo� in-between the twoextremes of uncoordinated checkpointing and coordi-nated checkpointing. An integer parameter Z, calledthe laziness, was introduced to control the degree ofoptimism by controlling the frequency of coordination.The concept of K-optimistic logging can be consideredas the counterpart of lazy checkpoint coordination forthe area of log-based rollback-recovery.To address the scalability issue of dependency track-ing for large systems, Sistla and Welch [10] dividedthe entire system into clusters and treated interclus-ter messages as output messages. Lowry et al. [9]introduced the concept of recovery unit gateways tocompress the vector at the cost of introducing falsedependencies. Direct dependency tracking techniques[6, 7, 10] piggyback only the sender's current state in-terval index, and so are in general more scalable. Thetradeo� is that, at the time of output commit and re-covery, the system needs to assemble direct dependen-cies to obtain transitive dependencies [10].6 SummaryIn this paper, we proved a fundamental result in dis-tributed systems recovery: with transitive dependencytracking, dependencies on stable state intervals are re-dundant and can be omitted. The result naturally leadto a dependency tracking scheme with a variable-sizevector carrying only minimum amount of information.By imposing a system-wide upper boundK on the vec-tor size, two things were achieved: �rst, the vector sizedoes not grow with the number of processes and so thedependency tracking scheme has better scalability; sec-ond, given any message, the number of processes whosefailures can revoke the message is bounded by K, andso K basically indicates the maximum amount of riskthat can be placed on each message or equivalently thedegree of optimism in the system. Based on the result,we introduced the concept of K-optimistic logging toallow systems to explicitly �ne-tune the tradeo� be-tween failure-free overhead and recovery e�ciency.

References[1] A. Borg, W. Blau, W. Graetsch, F. Herrmann, andW. Oberle. Fault tolerance under UNIX. ACM Trans.Comput. Syst., 7(1):1{24, February 1989.[2] O. P. Damani and V. K. Garg. How to recovere�ciently and asynchronously when optimism fails.In Proc. IEEE Int. Conf. Distributed Comput. Syst.,pages 108{115, 1996.[3] E. N. Elnozahy, D. B. Johnson, and Y. M. Wang.A survey of rollback-recovery protocols in message-passing systems.Tech. Rep. No. CMU-CS-96-181, Dept. of ComputerScience, Carnegie Mellon University (also available atftp://ftp.cs.cmu.edu/user/mootaz/papers/S.ps),1996.[4] E. N. Elnozahy and W. Zwaenepoel. On the useand implementation of message logging. In Proc.IEEE Fault-Tolerant Computing Symp., pages 298{307, 1994.[5] Y. Huang and Y. M. Wang. Why optimistic messagelogging has not been used in telecommunications sys-tems. In Proc. IEEE Fault-Tolerant Computing Symp.,pages 459{463, June 1995.[6] D. B. Johnson. E�cient transparent optimistic roll-back recovery for distributed application programs. InProc. IEEE Symp. Reliable Distributed Syst., pages86{95, October 1993.[7] D. B. Johnson and W. Zwaenepoel. Recovery in dis-tributed systems using optimistic message logging andcheckpointing. J. Algorithms, 11:462{491, 1990.[8] L. Lamport. Time, clocks and the ordering of events ina distributed system. Commun. ACM, 21(7):558{565,July 1978.[9] A. Lowry, J. R. Russell, and A. P. Goldberg. Op-timistic failure recovery for very large networks. InProc. IEEE Symp. Reliable Distributed Syst., pages66{75, 1991.[10] A. P. Sistla and J. L. Welch. E�cient distributed re-covery using message logging. In Proc. 8th ACM Sym-posium on Principles of Distributed Computing, pages223{238, August 1989.[11] S. W. Smith, D. B. Johnson, and J. D. Tygar. Com-pletely asynchronous optimistic recovery with minimalrollbacks. In Proc. IEEE Fault-Tolerant ComputingSymp., pages 361{370, 1995.[12] R. E. Strom and S. Yemini. Optimistic recoveryin distributed systems. ACM Trans. Comput. Syst.,3(3):204{226, August 1985.[13] Y. M. Wang and W. K. Fuchs. Lazy checkpoint coor-dination for bounding rollback propagation. In Proc.IEEE Symp. Reliable Distributed Syst., pages 78{85,October 1993.

