Distributed Recovery with A-Optimistic Logging

Yi-Min Wang Om P. Damani

Abstract

Fault-tolerance techniques based on checkpointing
and message logging have been increasingly used in
real-world applications to reduce service downtime.
Most industrial applications have chosen pessimistic
logging because it allows fast and localized recovery.
The price that they must pay, however, is the higher
failure-free overhead. In this paper, we introduce the
concept of K-optimistic logging where K is the degree
of optimism that can be used to fine-tune the tradeoff
between failure-free overhead and recovery efficiency.
Traditional pessimistic logging and optimistic logging
then become the two extremes in the entire spectrum
spanned by K -optimistic logging. Qur approach is to
prove that only dependencies on those states that may
be lost upon a failure need to be tracked on-line, and so
transitive dependency tracking can be performed with a
variable-size vector. The size of the vector piggybacked
on a message then indicates the number of processes
whose failures may revoke the message, and K corre-
sponds to the system-itmposed upper bound on the vec-
tor size.

1 Introduction

Log-based rollback-recovery [3] is an effective tech-
nique for providing low-cost fault tolerance to dis-
tributed applications [1,4,7,12]. Tt is based on the fol-
lowing piecewise deterministic (PWD) execution model
[12]: process execution is divided into a sequence of
state wntervals each of which is started by a nondeter-
ministic event such as message receipt’. The execution
within an interval 1s completely deterministic. During
normal execution, each process periodically saves its
state on stable storage as a checkpoint. The contents
and processing orders of the received messages are also
saved on stable storage as message logs. Upon a fail-

*Yi-Min Wang is with AT&T Labs, Murray Hill, NJ 07974.
Om P. Damaniis with Dept. of Computer Sciences, University of
Texas, Austin, TX 78712. Vijay K. Garg is with Dept. of Elec-
trical and Computer Engineering, University of Texas, Austin,
TX 78712. Damani and Garg’s research was supported in part
by the NSF Grants ECS-9414780, CCR-9520540, and a General
Motors Fellowship.

'n this paper, we assume that message-delivering events are
the only source of nondeterminism.

Vijay K. Garg*

ure, the failed process restores a checkpointed state
and replays logged messages in their original order
to deterministically reconstruct its pre-failure states.
Log-based rollback-recovery 1s especially useful for dis-
tributed applications that frequently interact with the
outside world [4]. Tt can be used either to reduce the
amount of lost work due to failures in long-running sci-
entific applications [4], or to enable fast and localized
recovery in continuously-running service-providing ap-
plications [5].

Depending on when received messages are logged,
log-based rollback-recovery techniques can be divided
into two categories: pessimistic logging [1,5] and op-
timistic logging [12]. Pessimistic logging either syn-
chronously logs each message upon receiving it, or logs
all delivered messages before sending a message. It
guarantees that any process state from which a mes-
sage 1s sent is always recreatable, and therefore no pro-
cess failure will ever revoke any message to force its
receiver to also roll back. This advantage of localized
recovery comes at the expense of a higher failure-free
overhead. In contrast, optimistic logging first saves
messages in a volatile buffer and later writes several
messages to stable storage in a single operation. It in-
curs a lower failure-free overhead due to the reduced
number of stable storage operations and the asyn-
chronous logging. The main disadvantage is that mes-
sages saved in the volatile buffer may be lost upon a
failure, and the corresponding lost states may revoke
messages and force other non-failed processes to roll
back as well.

Although pessimistic logging and optimistic logging
provide a tradeoff between failure-free overhead and
recovery efficiency, it has traditionally been only a
coarse-grain tradeoff: the application has to either tol-
erate the high overhead of pessimistic logging, or ac-
cept the potentially inefficient recovery of optimistic
logging. In practice, it is desirable to have a flexible
scheme with tunable parameters so that each appli-
cation can fine-tune the above tradeoff based on the
load and failure rate of the system. For example, a
telecommunications system needs to choose a parame-
ter to control the overhead so that it can be responsive
during normal operation, and also control the rollback

scope so that it can recover reasonably fast upon a
failure.

To address this issue, we introduce the concept of
K-optimistic logging where K is an integer between
0 and N (the total number of processes). Given any
message m in a K-optimistic logging system, K is the
maximum number of processes whose failures can re-
voke m. Clearly, pessimistic logging corresponds to
0-optimistic logging because messages can never be re-
voked by any process failures, while traditional opti-
mistic logging corresponds to N-optimistic logging be-
cause, in the worst case, any process failure can revoke
a given message. Between these two extremes, the inte-
ger K then serves as a tunable parameter that provides
a fine-grain tradeoff between failure-free overhead and
recovery efficiency.

Our approach to deriving the K-optimistic logging
protocol is to first prove a fundamental property on
minimum transitive dependency tracking. To enable
decentralized recovery and efficient output commit,
transitive dependency tracking [10] is commonly used
to record the highest-index state interval of each pro-
cess, on which a local process depends. Since we need
at least one entry for each process?, the size of a transi-
tive dependency vector is at least N. In general, tran-
sitive dependency tracking does not scale well because
asize- N vector needs to be piggybacked on every appli-
cation message. We introduce the concept of commit
dependency tracking by proving that any dependencies
on stable state intervals, i.e., intervals that can be re-
constructed from information saved in stable storage,
can be omitted. In other words, if process P; transi-
tively depends on the z!” state interval of P;, and P;
notifies P; that the interval has become stable, then
P; can remove that entry from its dependency vector.
By removing such redundant dependency information,
we effectively reduce the size of the dependency vector.
We then show that the integer K in the K-optimistic
logging protocol is exactly the upper bound on the size
of the dependency vector.

The outline of this paper is as follows. Section 2 de-
scribes the system model and gives a numerical exam-
ple for an optimistic logging scheme with asynchronous
recovery. Section 3 proves that tracking only depen-
dencies on non-stable states is sufficient for the cor-
rect operation of any optimistic logging protocol em-
ploying transitive dependency tracking. The same ex-
ample is then used to demonstrate how the theorem
can be applied to reducing the size of dependency vec-
tors. Section 4 motivates and defines the concept of
K-optimistic logging, and gives a description of the

2 A process may have multiple incarnations, as discussed later.

protocol. Section 5 describes related work, and Sec-
tion 6 summarizes the paper.

2 Asynchronous Recovery

We consider distributed applications consisting of N
processes communicating only through messages. The
execution of each process satisfies the piecewise de-
terministic (PWD) model. A rollback-recovery layer
is implemented underneath the application layer to
perform checkpointing, message logging, dependency
tracking, output commit, etc. During failure-free exe-
cution, each process takes independent or coordinated
checkpoints [4], and employs additional optimistic log-
ging. When a checkpoint is taken, all messages in the
volatile buffer are also written to stable storage at the
same time so that stable state intervals are always con-
tinuous. Upon a failure, non-stable state intervals are
lost and cannot be reconstructed. Messages sent from
those lost intervals become orphan messages. Any pro-
cess states and messages which causally depend on any
such message also become orphan states and orphan
messages, respectively. Correct recovery then involves
rolling back orphan states and rejecting orphan mes-
sages to bring the system back to a globally consistent
state3.

In this section, we first describe a completely asyn-
chronous recovery protocol that piggybacks only de-
pendency information. This protocol has the feature
of completely decoupling dependency propagation from
failure information propagation, and is useful for il-
lustrating the basic concept of asynchronous recovery.
A major disadvantage is that it allows potential or-
phan states to send messages, which may create more
orphans and hence more rollbacks. To avoid this dis-
advantage, existing protocols couple dependency prop-
agation with failure information propagation: the pro-
tocol by Strom and Yemini [12] delays the delivery of
certain messages until receiving necessary failure infor-
mation (to be described later); the protocol by Smith
et al. [11] piggybacks failure information along with de-
pendency information. We focus on Strom and Yem-
ini’s approach in this paper. In the next section, we
prove a theorem on omitting redundant dependency
tracking and describe how the result can be used to
improve their protocol. The improved version then
serves as the basis for K-optimistic logging.

We use the example in Figure 1 to illustrate the
major components of an asynchronous recovery proto-
col. Each rectangular box represents a state interval
started by a message-delivering event. A shaded box

3We do not address the issue of lost in-transit messages [3]
in this paper. They either do not cause inconsistency, or they
can be retrieved from the senders’ volatile logs [12].

indicates that the state interval is stable, i.e., can al-
ways be recreated from a checkpoint and message logs
saved on stable storage. When a process rolls back, it
starts a new incarnation [12] (or version [2]), as illus-
trated by Py’s execution. Each (¢, z); identifies the in-
terval as the 2! state interval of the ¢'* incarnation of
process P;. We use m; to denote application messages
(solid lines), and r; for rollback announcements that
propagate failure information (dotted lines). “Rolling
back to state interval «” means rolling back to a check-
point and reconstructing the process state up to the
end of u, while “rolling back state interval v” means
the execution within v is undone.

Po [(1,2)] (1,3)

Mo

Py |

New incarnation
v/

" - (0.3)

[(Z5s (Zod7s | ((28)

m :
ms 6 Ty
RN

Py [_(0.1) (0.2), |\ (0.3),

Output \m 77,
N\
9

Ps | (3.8)s [(3.9)

Figure 1: Optimistic logging with asynchronous recov-
ery. (Shaded intervals represent stable state intervals;
dotted lines represent rollback announcements.)

We next describe four major components of the pro-
tocol.

Dependency tracking: With asynchronous recov-
ery, message chains originating from multiple incar-
nations of the same process may coexist in the sys-
tem (with or without FIFO assumption). Therefore,
a process needs to track the highest-index interval
of every incarnation, that its current state depends
on. This can be maintained in the following way: a
message sender always piggybacks its dependency in-
formation on each outgoing message. Upon deliver-
ing a message, the receiver adds the piggybacked de-
pendency to its local dependency. If there are two
entries for the same incarnation, only the one with
the larger state interval index is retained. For exam-

ple, when P, receives ms, it records dependency as-
sociated with (0,2)4 as {(1,3)g, (0,4)1, (2,6)s, (0,2)4}.
When 1t receives mg, it updates the dependency to
{(1’ 3)0’ (0’ 4)1’ (1’ 5)1’ (0’ 3)2’ (2’ 6)3’ (0’ 3)4}
Rollback announcements: When a process F;
fails, it restores the most recent checkpoint and re-
plays the logged messages that were processed after
that checkpoint. Then P; increments its incarnation
number and broadcast a rollback announcement (or re-

covery message [12]) containing the ending index num-
ber of the failed incarnation. Upon receiving a rollback
announcement, a process P; compares its dependency
with that index. If the dependency shows that P;’s
state depends on a higher-index interval of any failed
incarnation of P;, F; rolls back to undo the orphan
states, and starts a new incarnation as if it itself has
failed [12]. For example, suppose process P; in Fig-
ure 1 fails at the point marked “X”. It rolls back to
(0,4)1, increments the incarnation number to 1, and
broadcast announcement 7y containing (0,4);. When
P5 receives ry, it detects that the interval (0,5); that
its state depends on has been rolled back. Process Ps
then needs to roll back to (2, 6)3, and broadcast its own
rollback announcement. In contrast, when P, receives
r1, 1t detects that its state does not depend on any
rolled-back intervals of P;. In either case, r| is saved in
an incarnation end table so that the process can reject
messages from those rolled-back intervals, which may
arrive later. Note that, after receiving r1, P4 may still
need to remember its dependency on (0,4); because a
future failure of Py that rolls back (1,3)y may force Py
to announce a new incarnation that invalidates (0,4);.

Logging progress notification: FEach process
asynchronously saves messages in the volatile buffer
to stable storage. Periodically, it broadcast a logging
progress notification to let other processes know which
of its state intervals has become stable. Such infor-
mation is accumulated locally at each process to al-
low output commit and garbage collection [12]. For
example, after P; makes the state intervals (2,5)5 and
(2,6)3 stable, it can broadcast a notification to let oth-
ers know that.

Output commit: Distributed applications often
need to interact with the outside world. Examples in-
clude setting hardware switches, performing database
updates, printing computation results, displaying exe-

cution progress, etc. Since the outside world in general
does not have the capability of rolling back its state,
the applications must guarantee that any output sent
to the outside world will never need to be revoked.
This is called the output commit problem. In a PWD
execution, an output can be committed when the state

intervals that it depends on have all become stable [12].
For example, P, in Figure 1 can commit the output
sent from (0, 2)4 after it makes (0,2)4 stable and also
receives logging progress notifications from Py, P; and
Ps, indicating that (1,3)0, (0,4); and (2,6)s have all
become stable. An alternative is to perform output-
driven logging by sending additional messages to force
the logging progress at Py, P; and Ps [6].

3 Commit Dependency Tracking

In this paper, we use ¢, j, k for process numbers, t
and s for incarnation numbers, and # and y for state
interval indices. In this section, u, v, w, z refer to state
intervals, and P, , refers to the process to which v
belongs.

Lamport [8] defined the happen before relation for
states. Similarly, Johnson and Zwaenepoel [7] defined
the happen before relation (or transitive dependency
relation [10]) for state intervals. Let u < v if v and v
are intervals of same process and u immediately pre-
cedes v. Let u ~ v if a message sent from interval u
is delivered to start interval v. Transitive dependency
(—) is defined as the transitive closure of the union of
relations < and ~». Given any two intervals u and v,
if 1t 18 possible to determine whether v transitively de-
pends on u (u — v) then the underlying system is said
to be employing transitive dependency tracking. Now
we can formally define orphan as follows.

DEFINITION 1 A state interval v is orphan if, Ju :
rolled_back(u) A (v — v).

Messages sent by orphan states are also called orphans.
If the current state of a process is orphan then process
itself might be called orphan when there is no confu-
sion.

Traditional asynchronous recovery protocols usually
require every non-failed rolled-back process to behave
as if it itself has failed [11,12] by starting a new incar-
nation and broadcasting a rollback announcement. It
was recently observed that, under piecewise determin-
istic execution model, announcing only failures is suf-
ficient for orphan detection [2]. We give a proof of this
observation in Theorem 1, and carry the observation
even further by proving, in Theorem 2, that any de-
pendencies on stable intervals can be omitted without
affecting the correctness of a recovery protocol which
tracks dependencies transitively.

THEOREM 1 With transitive dependency tracking,
announcing only failures (instead of all rollbacks) is
sufficient for orphan detection.

Proof. Let a state interval v be orphan due to roll-
back of another interval 4. Now interval u rolled back

either because P, , failed or because it became orphan
due to the rollback of another interval z. By repeatedly
applying the previous observation, we find an interval
w whose rollback due to P ,’s failure caused v to be-
come orphan. By definition of transitive dependency
tracking, P, , can detect that v transitively depends on
w. Therefore, P, , will detect that v is orphan when
it receives the failure announcement from P, . [|

We define that v 1s commut dependent on wif w — v
and —stable(w). That is v is commit dependent on w if
v 18 transitively dependent on w and w is not stable. A
system is said to employ commit dependency tracking if
it can detect the commit dependency between any two
state intervals. The following theorem suggests a way
to reduce dependency tracking for recovery purposes.
It says that if all state intervals of P;, on which F; is
dependent, are stable then P; does not need to track
its dependency on F;.

THEOREM 2 Commit dependency tracking and
failure announcements® are sufficient for orphan de-
tection.

Proof. Once a state interval becomes stable, 1t can
never be lost in a failure. It can always be recon-
structed by restarting from its previous checkpoint and
replaying the logged messages in the original order.
Now following the proof in Theorem 1, the orphan in-
terval v transitively depends on interval w which was
lost due to P, ,’s failure. That must mean that w had
not become stable when the failure occurred. By defi-
nition of commit dependency tracking, P, , can detect
that v transitively depends on w, and so it will detect
that v 1s orphan when 1t receives the failure announce-
ment from P, . [|

Logging progress notification 1s an explicit way to
inform other processes of new stable state intervals.
Such information can also be obtained in a less obvi-
ous way from two other sources. First, a rollback an-
nouncement containing ending index (¢, 2'); can also
serve as a logging progress notification that interval
(t,z'); has become stable; Second, when process P;
takes a checkpoint at state interval (¢, z);, it can be
viewed as P; receiving a logging progress notification
from itself that interval (¢, z); has become stable. Since
each process execution can be considered as starting
with an initial checkpoint, the first state interval is al-
ways stable. Corollaries 1, 2 and 3 summarize these
results.

4Failure announcements are rollback announcements sent by
failed processes.

COROLLARY 1 Upon recewving a rollback an-
nouncement containing ending index (t,x');, a process
can omit the dependency entry (t,z); if v < 2’

COROLLARY 2 Upon taking a checkpoint and sav-
ing all the messages in the volatile buffer to stable stor-
age, a process can omit the dependency entry for its
own current incarnation®.

COROLLARY 3 Upon starting the execution, a
process has no dependency entry.

As pointed out earlier, completely asynchronous re-
covery protocols that decouple dependency propaga-
tion from failure information propagation in general
need to keep track of dependencies on all incarnations
of all processes. Strom and Yemini [12] introduced the
following coupling in their protocol to allow tracking
dependency on only one incarnation of each process
so that the size of dependency vector always remains
N: when process P; recetves a message m carrying a
dependency entry (t,x); before it receives the rollback
announcement for P;’s (t—1)"" incarnation, P; should
delay the delivery of m until that rollback announce-
ment arrives. For example, in Figure 1, P, should
delay the delivery of mg until it receives ry. After P,
determines that its state has not become orphan, a lex-
icographical maximum operation [12] is applied to the
two pairs (0,4) and (1, 5) to update the entry to (1,5).
This update in fact implicitly applies Corollary 1: 7y
notifies P, that (0,4); has become stable, and so the
dependency on (0,4); can be omitted. The entry can
then be used to hold (1,5);.

We next describe three modifications to Strom and
Yemini’s protocol, based on Theorem 1, Theorem 2
and Corollary 1, respectively. The modified protocol
then serves as the basis for K-optimistic logging.

Applying Theorem 1: Damani and Garg im-
proved Strom and Yemini’s protocol by applying Theo-
rem 1 [2]. Since only failures are announced, the num-
ber of rollback announcements and the size of incarna-
tion end tables are reduced. They did not increment
the incarnation number on occurrence of non-failure
rollback. In this paper, we also apply Theorem 1 but
we still require each non-failed rolled-back process to
increment 1ts incarnation number. This is necessary
for applying Theorem 2 because logging progress noti-
fication is on a per-incarnation basis.

Applying Theorem 2: Theorem 2 can be used to
omit redundant dependency entries, thereby reducing
the size of dependency vector to below N. For exam-
ple, in Figure 1, when P, receives P3’s logging progress

5 Assume that a separate counter is used to maintain the cur-
rent state interval index.

notification indicating that (2,6)s has become stable,
it can remove (2,6)3 from its dependency vector. If
(2,6)3 is later rolled back due to Py’s failure, Py’s or-
phan status can still be detected by comparing the en-
try (1,3)o against the failure announcement from Py.

Applying Corollary 1: Strom and Yemini’s pro-
tocol waits for the rollback announcement for P;’s
(t —1)*" incarnation before acquiring a dependency on
Py’s t*" incarnation. Corollary 1 can be used to elimi-
nate unnecessary delays in message delivery. Suppose
P; has a dependency on (f — 4,x); when it receives
message m carrying a dependency on (¢, 2 + 10);. Ac-
cording to Theorem 2, P; only needs to be informed
that interval (¢t — 4, z); has become stable before it
can acquire the dependency on (¢, z 4+ 10); to overwrite
(t —4,2);. Process P; can obtain that information
when it receives either a logging progressive notifica-
tion or a faillure announcement from P;.

A more interesting and useful special case is when
P; does not have any dependency entry for F; at all
and so the delay is eliminated. For example, when Ps
in Figure 1 receives my; which carries a dependency
on (1,5)1, it can deliver m7; without waiting for rq
because it has no existing dependency entry for P; to
be overwritten.

4 K-optimistic Logging
4.1 Motivation

Traditional pessimistic logging and optimistic log-
ging provide only a coarse-grain tradeoff between
failure-free overhead and recovery efficiency. For long-
running scientific applications, the primary perfor-
mance measure is typically the total execution time.
Since hardware failures are rare events in most sys-
tems, minimizing failure-free overhead is more impor-
tant than improving recovery efficiency. Therefore, op-
timistic logging is usually a better choice. In con-
trast, for continuously-running service-providing ap-
plications, the primary performance measure is typi-
cally the service quality. Systems running such appli-
cations are often designed with extra capacity which
can absorb reasonable overhead without causing no-
ticeable service degradation. On the other hand, im-
proving recovery efficiency to reduce service down time
can greatly improve service quality. As a result, most
commercial service-providing applications have chosen
pessimistic logging [5].

The above coarse-grain tradeoff, however, may not
provide optimal performance when the typical scenar-
i0s are no longer valid. For example, although hard-
ware failures are rare, programs can also fail or exit
due to transient software or protocol errors such as

triggered boundary conditions, temporary resource un-
availability, and bypassable deadlocks. If an applica-
tion may suffer from these additional failures in a par-
ticular execution environment, slow recovery due to
optimistic logging may not be acceptable. Similarly,
for a service-providing application, the initial design
may be able to absorb higher run-time overhead in-
curred by message logging. However, as more service
features are introduced in later releases, they consume
more and more computation power and the system
may no longer have the luxury to perform pessimistic
logging.

These observations motivate the concept of K-
optimistic logging where K is the degree of optimism
that can be tuned to provide a fine-grain tradeoff. The
basic idea 1s to ask each message sender to control the
maximum amount of “risk” placed on each outgoing
message. Specifically, a sender can release a message
only after it can guarantee that failures of at most K
processes can possibly revoke the message (see Theo-
rem 4).

4.2 The Protocol

Figures 2 and 3 give a complete description of a
K-optimistic logging protocol with asynchronous re-
covery. The protocol is based on Strom and Yemini’s
protocol with the three improvements described in the
previous section. Also, unlike Strom and Yemini’s pro-
tocol, this protocol does not require FIFO ordering of
messages. To simplify presentation by using vector
notation and operations, the description always main-
tains a size-N dependency vector with entries of the
form (¢,2). When an entry can be omitted, it is rep-
resented as setting the entry to NULL which is lexico-
graphically smaller than any non-NULL entry. In an
implementation of the protocol, NULL entries can be
omitted and any non-NULL entry (¢, z) for P; can be
converted to the (¢,x); form, as used in the previous
sections.

The protocol describes the actions taken by a pro-
cess P; upon the occurrence of different events. We
explain in detail only those parts that are unique to
our algorithm. A complete explanation of the generic
parts for optimistic logging and asynchronous recovery
can be found in previous papers [2,12]. All routines
modifying volatile state are described in Figure 2 and
those modifying stable storage are described in Fig-
ure 3.

In the variable definition section, the integer K is
the degree of optimism known to all processes at Ini-
tialize. According to Corollary 3, process P; sets all
its dependency vector entries to NULL at Initialize,
including the " entry. At Check_deliverability,

the scheme described at the end of Section 3 i1s em-
ployed: if delivering a message to the application would
cause P; to depend on two incarnations of any pro-
cess, P; waits for the interval with the smaller tncar-
nation number to become stable. Such information
may arrive in the form of a logging progress noti-
fication or a failure announcement. When P; calls
Send_message for message m, the message is held
in a Send_buffer if the number of non-NULL entries
in its dependency vector m.tdv is greater than K.
The dependency vectors of messages in Send_buffer
are updated in Check_send_buffer which is invoked
by events that can announce new stable state inter-
vals, including (1) Receive_log for receiving logging
progress notification; (2) Receive failure_ann (ac-
cording to Corollary 1); and (3) Checkpoint (Corol-
lary 2). When a message’s dependency vector con-
tains K or less non-NULL entries, it is released by
Check_send_buffer. Process P; also needs to check
and discard orphan messages in Send_buffer and Re-
ceive_buffer upon receiving a failure announcement, as
shown in Receive failure_ann.

If a process needs to commit output to exter-
nal world during its execution, it maintains an Out-
put_buffer like the Send_buffer. This buffer is also up-
dated whenever the Send_buffer is updated. An output
is released when all of its dependency entries become
NULL. It is interesting to note that an output can be
viewed as a (-optimistic message, and that different
values of K can in fact be applied to different mes-
sages in the same system.

4.2.1 Properties of the Protocol

We next prove two properties that are unique to the
K-optimistic logging protocol.

THEOREM 3 The protocol implements commit de-
pendency tracking.

Proof. Given any two state intervals w and v such
that w — v and —stable(w), we want to show that the
dependency tracking scheme described in the protocol
preserves the w — v information. Such information
can be lost only when the dependency on w is set to
NULL, which can happen only when a process receives
a notification that w has become stable. Since w is not
stable, the w — v information could not have been lost,
and so the protocol implements commit dependency
tracking. |

THEOREM 4 Guwen any message m released by its
sender, K 1is the marimum number of processes whose
failures can revoke m.

Proof. In Check_send_buffer, the j** entry of the
dependency vector of a message m is set to NULL when

type entry : (inc int, ssi int)

var tdv : array[l..N] of entry; /* dep. vector */ Restart /*after failure */
/* log: logging progress notification */ Restore last checkpoint ;
log : array[l..N] of set of entry; Replay the logged messages that follow ;
/* iet: incarnation end table */ fa = current ; current.inct+ ;
iet : array[l..N] of set of entry; current.sii++ ; tdv[i] = current ;
fa: entry; /* failure announcement */ Insert(iet[i],fa) ; Insert(log[i], fa) ;
current: entry; /* current index */ Synchronously log fa ; Broadcast fa ;
K: int; /* degree of optimism */ Receive failure_ann (j,¢,z') /* from P; */:
Synchronously log the received announcement;
Process P : Insert(iet[5],(t, #’)) ; Insert(log[j],(¢, ")) ;
Initialize : Check_orphan(Send_buffer);
Y j : tdv[j] = NULL; Check_orphan(Receive_buffer);
Y g @ iet[f] = logly] = {}; /* empty set */ Check_send_buffer ;
current = (0,1); Check_deliverability (Receive_buffer);
Initialize K if tdv[j].inc <t A tdv[j].sii > 2’ then
Receive_message (m) : Rollback(j,t, z') ;
Check_orphan({m}) ; Rollback(j,¢,2') :
if not discarded then Log all the unlogged messages to the stable storage ;
Check_deliverability ({m}) ; Restore the latest checkpoint with tdv such that
Receive_buffer = Receive_buffer U {m} ; —(tdv[j]inc < ¢ A tdv[jlsii > 2') (I)
Deliver message (m) : Discard the checkpoints that follow ;
/* m is delivered only if m.deliver is true. */ Replay the messages logged after restored checkpoint
Y j: tdv[j] = max(tdv[j],m.tdv[j]) ; till condition (I) is not satisfied ;
current.sii++ ; tdv[i] = current ; Among remaining logged messages, discard orphans
Check_deliverability (buffer) : and add non-orphans to Receive_buffer ;
VYm € buffer : if Vj : tdv[j].inc # m.tdv[j].inc : /* These messages will be delivered again */
min(tdv[j],m.tdv[j]) = (¢,) current.inc++ ; current.sii++ ; tdv[i] = current ;
At ') €log[jl Az <2 Checkpoint :

Log all the unlogged messages ;
Take checkpoint ;

then m.deliver = true ;

else m.deliver = false ;

Check_orphan (buffer) : Insert(log[i],current) ;

Ym € buffer : Vj : tdv[i] = NULL ;
if 3t (t,2') €iet[j] At > m.tdv[j].inc Check_send_buffer ;
A 2" < m.tdv[j].sii then discard m ; Receive log(mlog) :

Send _message(data) : Vgt (t,2') € mlog[y] : Insert(log[j], (¢, «)) ;
put (data,tdv) in Send_buffer ; Vit tdvj] = (¢, 2) A (t,2') € logljl A &2 < &'
Check _send _buffer ; then tdv[j] = NULL ;

Check_send_buffer : Check_deliverability (Receive_buffer);

Vm € Send_buffer: V j: Check_send_buffer ;
if motdv[j] = (¢, 2) A (t,2) € log[j] A 2 < &/ Insert(se, (¢,2')) :
then m.tdv[j] = NULL ; if (t,2”) € se then /* entry for inc. ¢ exists in se */
VYm € Send_buffer: se = (se - {(¢t,2")}) U {(¢t,max(z’, z"))}
if Number of non-NULL entries in m.tdv else se = se U {(t,2')} ;

1s at most K

then send m ;

Figure 3: K-optimistic logging protocol: Part 2.
Figure 2: K-optimistic logging protocol: Part 1.

the corresponding interval in P; becomes stable. As
per proof of Theorem 2, a failure of P; cannot cause
m to become an orphan. Since m is released when the
number of non-NULL entries become at most K, the
result follows. |

5 Related Work

Rollback-recovery techniques can be classified into
two primary categories: checkpoint-based rollback-
recovery uses only checkpoints, and log-based rollback-
recovery employs additional message logging. In the
area of checkpoint-based rollback-recovery, the concept
of lazy checkpoint coordination [13] has been proposed
to provide a fine-grain tradeoff in-between the two
extremes of uncoordinated checkpointing and coordi-
nated checkpointing. An integer parameter Z, called
the laziness, was introduced to control the degree of
optimism by controlling the frequency of coordination.
The concept of K-optimistic logging can be considered
as the counterpart of lazy checkpoint coordination for
the area of log-based rollback-recovery.

To address the scalability issue of dependency track-
ing for large systems, Sistla and Welch [10] divided
the entire system into clusters and treated interclus-
ter messages as output messages. Lowry et al. [9]
introduced the concept of recovery unit gateways to
compress the vector at the cost of introducing false
dependencies. Direct dependency tracking techniques
[6,7,10] piggyback only the sender’s current state in-
terval index, and so are in general more scalable. The
tradeoff is that, at the time of output commit and re-
covery, the system needs to assemble direct dependen-
cies to obtain transitive dependencies [10].

6 Summary

In this paper, we proved a fundamental result in dis-
tributed systems recovery: with transitive dependency
tracking, dependencies on stable state intervals are re-
dundant and can be omitted. The result naturally lead
to a dependency tracking scheme with a variable-size
vector carrying only minimum amount of information.
By imposing a system-wide upper bound K on the vec-
tor size, two things were achieved: first, the vector size
does not grow with the number of processes and so the
dependency tracking scheme has better scalability; sec-
ond, given any message, the number of processes whose
failures can revoke the message is bounded by K, and
so K basically indicates the maximum amount of risk
that can be placed on each message or equivalently the
degree of optimism in the system. Based on the result,
we introduced the concept of K-optimistic logging to
allow systems to explicitly fine-tune the tradeoff be-
tween failure-free overhead and recovery efficiency.

References
[1] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and
W. Oberle. Fault tolerance under UNIX. ACM Trans.
Comput. Syst., 7(1):1-24, February 1989.

[2] O. P. Damani and V. K. Garg.
efficiently and asynchronously when optimism fails.
In Proc. IEFE Int. Conf. Distributed Comput. Syst.,
pages 108-115, 1996.

[3] E. N. Elnozahy, D. B. Johnson, and Y. M. Wang.
A survey of rollback-recovery protocols in message-
passing systems.
Tech. Rep. No. CMU-CS-96-181, Dept. of Computer
Science, Carnegie Mellon University (also available at
ftp://ftp.cs.cmu.edu/user/mootaz /papers/S.ps),
1996.

[4] E. N. Elnozahy and W. Zwaenepoel. On the use
and implementation of message logging. In Proc.

IEFE Fault-Tolerant Computing Symp., pages 298—
307, 1994.

How to recover

[5] Y. Huang and Y. M. Wang. Why optimistic message
logging has not been used in telecommunications sys-
tems. In Proc. IFEFE Fault-Tolerant Computing Symp.,
pages 459-463, June 1995.

[6] D. B. Johnson. Efficient transparent optimistic roll-
back recovery for distributed application programs. In
Proc. IEEFE Symp. Reliable Distributed Syst., pages
86-95, October 1993.

[7] D. B. Johnson and W. Zwaenepoel. Recovery in dis-
tributed systems using optimistic message logging and
checkpointing. J. Algorithms, 11:462-491, 1990.

[8] L. Lamport. Time, clocks and the ordering of events in
a distributed system. Commun. ACM, 21(7):558-565,
July 1978.

[9] A. Lowry, J. R. Russell, and A. P. Goldberg. Op-
timistic failure recovery for very large networks. In
Proc. IEEFE Symp. Reliable Distributed Syst., pages
66-75, 1991.

[10] A. P. Sistla and J. L. Welch. Efficient distributed re-
covery using message logging. In Proc. 8th ACM Sym-
posium on Principles of Distributed Computing, pages
223-238, August 1989.

[11] S. W. Smith, D. B. Johnson, and J. D. Tygar. Com-
pletely asynchronous optimistic recovery with minimal
rollbacks. In Proc. IEFE Fault-Tolerant Computing
Symp., pages 361-370, 1995.

[12] R. E. Strom and S. Yemini. Optimistic recovery
in distributed systems. ACM Trans. Comput. Syst.,
3(3):204-226, August 1985.

[13] Y. M. Wang and W. K. Fuchs. Lazy checkpoint coor-
dination for bounding rollback propagation. In Proc.
IEFE Symp. Reliable Distributed Syst., pages 78-85,
October 1993.

