
Addressing False Causality while Detecting Predicatesin Distributed Programs �Ashis Tarafdar Vijay K. GargDept. of Computer Sciences Dept. of Electrical and Computer Engg.University of Texas at Austin University of Texas at AustinAustin, TX 78712 Austin, TX 78712(ashis@cs.utexas.edu) (garg@ece.utexas.edu)AbstractThe partial-order model of distributed computationsbased on the happened before relation has been criti-cized for allowing false causality between events. Ourstrong causality model addresses this problem by allow-ing multiple local threads of control.This paper addresses the predicate detection prob-lem for the class of weak conjunctive predicates in thestrong causality model. We show that, in general, theproblem is NP-complete. However, an e�cient solu-tion is demonstrated for a useful sub-case. Further,this solution can be used to achieve an exponential re-duction in time for solving the general problem.Our predicate detection algorithms can be applied todistributed debugging when processes have independentevents, as in multi-threaded processes.1 IntroductionA fundamental problem in distributed systems isthat of predicate detection [1, 6] { detecting whethera global condition occurs while running a distributedprogram. Its main application is in the testing, debug-ging and monitoring of distributed programs. Pred-icate detection is usually speci�ed in a model of dis-tributed computation based on a happened-before rela-tion [8], which models the independence of concurrentevents on di�erent processes. However, it has beencriticized for allowing false causality between events[3, 11]. This paper addresses this issue by extendingthe model and shows how to solve predicate detectionin the extended model.Consider running a distributed mutual-exclusionprogram. The happened-before model of the result-ing distributed computation is shown in Figure 1(i). Ifmutual-exclusion violation is the predicate that we aretrying to detect, it would not be detected because the�supported in part by the NSF CCR-9414780, CCR-9520540,a General Motors Fellowship, Texas Education Board ARP-320and an IBM grant

CS

CSa b c d

CS

CSc d a b

CS

CSc d

a b

(i) Good Computation (ii) Bad Computation

(iii) New ModelFigure 1: Example: Addressing False Causalitymessage ensures that the two critical sections cannotoccur at the same time. However, in reality, the mes-sage may have been fortuitous and the sections of ex-ecution marked by intervals (a; b) and (c; d) may havebeen independent (for example, independent threads).The scenario in Figure 1(i) may be just one possi-ble scheduling of events. Figure 1(ii) shows anotherscheduling in which mutual-exclusion would be vio-lated.A model that partially orders the events on a localprocess would allow events within a process to be in-dependent. Figure 1(iii) shows such a model for theexample. This representation models both of the pre-vious schedulings. In general, there would be an ex-ponential number of happened-before representationscorresponding to a single representation in the newmodel. We call the new model a strong causality dia-gram.Our contributions are two-fold. First, we de�neand motivate a new model of computation, strongcausality diagrams, that extends the happened-beforemodel to address false causality. Next, we presentresults in solving predicate detection in the strong



causality model. We focus on the important classof weak conjunctive predicates which express a largenumber of important global properties, and which canbe solved e�ciently in the happened-before model [7].We demonstrate that for general strong causality di-agrams, the problem is NP-complete. However, forcertain restricted, but useful, classes of strong causal-ity diagrams, the problem may be solved e�ciently.These restricted classes correspond to having eitherthe receive events or the send events totally ordered,while allowing all other events to be partially ordered.Further, we can decompose a general strong causal-ity diagram into strong causality diagrams of theseclasses, to achieve an exponential reduction in timeas compared to the naive solution. Lastly, we dis-cuss how the strong causality diagram model may beapplied in practical modeling of distributed programswith multi-threaded processes. We also discuss theapplications of our results in predicate detection totesting and debugging such programs.It is de�nitely harder to solve predicate detectionin the strong causality model than in the happened-before model. However, even being able to e�cientlysolve predicate detection for a restricted class is a greatimprovement over the alternative of solving predicatedetection on an exponential number of correspondinghappened-before representations. In the worst casewhere the strong causality diagram does not fall intoeither totally ordered sends or totally ordered receives,we may decompose the problem into strong causal-ity diagrams each of which belongs to one of theseclasses and so e�ciently solve for each such diagram.Even though this solution is exponential, it achievesan exponential reduction as compared to the naiveapproach of considering all possible happened-beforerepresentations.In Section 2, we discuss related work. In Section 3,we formally de�ne the strong causality diagram modeland de�ne the predicate detection problem that wewill be addressing. In Section 4, we present our re-sults in solving predicate detection in strong causalitydiagrams. Section 5 discusses how to apply the strongcausality model and the results in predicate detectionin this model.2 Related WorkUsing partial orders to model concurrency avoidsthe combinatorial explosion involved in the interleav-ing model. This fact has led to a number of studiesof such partial order models [8, 10]. Our work buildson the happened-before model [8] by extending thesame idea to allow concurrency or independence be-tween events within a local process. We are aware of

no other study of such an extended happened-beforemodel.Predicate detection is a widely-studied problem[1, 6]. Approaches to solving predicate detection aredivided into three categories: global snapshot based[2], lattice construction based [4], and predicate re-striction based [7] approaches. The �rst approach candetect only stable predicates (which remain true oncethey become true), and the second approach uses theinterleaving model of concurrency and, therefore, suf-fers from the above-mentioned combinatorial explo-sion. We follow the last approach that uses the partialorder model and limits itself to classes of predicateswhich can be detected e�ciently. We focus on the im-portant class of weak conjunctive predicates for whichan optimal solution was provided for the happened-before model of computation [7]. Our work extendsthis solution to the proposed strong causality modelof computation.3 Model and Problem De�nitionThe usual model of a distributed computation isbased on the happened-before relation. The motiva-tion for this model is that a partial ordering of eventsin a distributed computation provides a more feasible,concise and meaningful model than a total orderingof events. We call this model a happened-before dia-gram and represent it by (S1; S2; : : : Sn; <;;). HereS1; S2; : : : Sn are sets of states on each of n processes,< is the locally precedes relation that totally orders thestates on each process in their order of occurrence intime, and ; is the remotely precedes relation that re-lates the state that sends a message to the state thatreceives it. We will use letters s; t; u; : : : to denotestates.In this model, the notion of whether a global statecan \occur" is de�ned as follows. De�ne the causallyprecedes (or happened before) relation,!, as the tran-sitive closure of < and ; (i.e. ! = (< [;)+). IfS = S1 [ S2 [ : : : Sn then (S;!) forms an irreex-ive poset. If two states s and t are incomparable inthis poset (i.e., s 6!t and t6!s) then s and t are calledconcurrent , denoted by skt. A global state is de�nedas a set of n states, one from each Si. We use let-ters G;H to denote global states. For a global stateG, G[i] denotes the state in G from Si. However, allglobal states cannot occur in a computation. Globalstates which can occur are modeled as consistent globalstates { global states in which every pair of states isconcurrent.As has been discussed, the happened-before dia-grams are limited because they totally order the eventslocal to a process, thus, not modeling possibly inde-



pendent local events. Our model, therefore, extendsthe locally precedes relation, <, from a total order toan irreexive partial order, <s, called the strong lo-cally precedes relation. Our model of a distributedcomputation now becomes a strong causality diagram,D = (S1; S2; : : : Sn; <s;;). We use the letters D, Eto represent strong causality diagrams. Note that ahappened-before diagram is a special case of a strongcausality diagram in which <s is a total order <. Allnotions of global states and their consistency are de-�ned in an analogous manner for strong causality di-agrams. We use the notation !s and ks to stand forthe strong causally precedes and strong concurrent re-lations respectively.A linearization of a partial order is a total orderthat contains the partial order. We de�ne a locallinearization of a strong causality diagram to be thehappened-before diagram that may be obtained by lin-earizing the <s relation within each of the sets Si, togive a < relation. We represent the set of all possi-ble local linearizations of a strong causality diagramD by Lin(D). Note that, in general, a single strongcausality diagram would correspond to an exponentialnumber of happened-before diagrams. In fact, thisconciseness is part of the reason for working in theextended model.We will be interested in whether a consistent globalstate satis�es certain global conditions. We modelthese as global predicates , boolean-valued functionsde�ned on the set of all global states. Similarly, lo-cal predicates are boolean-valued functions de�ned onthe set of states in a process. We will use c to rep-resent a global predicate and xi to represent localpredicates de�ned on Si. Our focus will be on animportant class of global predicates called conjunc-tive predicates . These are predicates of the form c =c1^c2^ : : : cn with the usual semantics (i.e., c(G) =c1(G[1]) ^ c2(G[2]) ^ : : : cn(G[n])).We now de�ne our general problem in this modelas:Conjunctive Predicate Detection in GeneralStrong Causality Diagrams (CPG):Given a conjunctive predicate c and a strong causalitydiagram D = (S1; S2; : : : Sn; <s;;), does there exist aconsistent global state G such that c(G) holds.4 Solving Conjunctive Predicate De-tection in Strong Causality Dia-gramsThe problem of weak conjunctive predicate detec-tion was e�ciently (in O(mn2) time, where m is abound on the number of states in a process) and op-timally solved for happened-before diagrams in [7].

1 2 3( ) 1 2 3( )

S
1

1

2

S2

1

3

S3

1

S4

2

S
5

3

3SAT Formula

CPG Strong Causality Diagram

G

3

2

1 2 3

Figure 2: Example TransformationHowever, in strong causality diagrams, the problembecomes expectedly harder. In fact, we have:Theorem 1: CPG is NP-complete.Proof: CPG is in NP because, given a global stateG, c(G) can be checked in polynomial time (assum-ing each ci can be checked in polynomial time) andevery pair of states in G can be checked for strongconcurrency in polynomial time (how this is done willbe clear in Section 5).To show that CPG is NP-hard, we transform3SAT to CPG. Let 3SAT be speci�ed by l variables�1; �2; : : : �l, and k clauses �1; �2; : : : �k. Let �i[j]; (1 �j � 3) be the 3 literals in clause �i. Let � stand forany variable.Our transformation (refer to the example in Fig-ure 2 consists of de�ning k + l processes representedby k + l sets of states S1; S2; : : : Sk+l. Each Si for1 � i � k corresponds to �i, so that Si contains threestates si[j]; (1 � j � 3), where si[j] corresponds to�i[j]. Each Sk+i for 1 � i � l contains two statessk+i[j]; (1 � j � 2), where sk+i[1] corresponds to theliteral �i and sk+1[2] corresponds to the literal �i. Let<s = ;. De�ne; as follows. (si[y]; sj [z]) 2;; (i 6= j)i� �i[y] = � and �j [z] = � for some variable �. Fur-ther, we de�ne c = true since we are only interestedin determining if there is a consistent global state.First, we show that if CPG answers \yes" then3SAT answers \yes". If CPG detects a consistentglobal state G, then for each variable �i, exactly oneof the literals �i and �i corresponds to a state in G.This is because G[k + i] must either correspond to �ior �i, using the de�nition of Sk+i, and no two states



in G may correspond to �j and �j for any j (using thede�nition of ;). So, to every variable �i, we assigntrue if G[k + i] corresponds to literal �i and false ifit corresponds to �i. This truth assignment satis�esthe literal corresponding to G[j]; (1 � j � k) and,therefore, satis�es each of the clauses.Next, we show that if 3SAT answers \yes" thenCPG answers \yes". Given a satisfying truth assign-ment to the variables , we construct a global state G asfollows. Choose the state G[i]; (1 � i � k + l) so thatthe corresponding literal is satis�ed by the truth as-signment. This is possible forG[i]; (1 � i � k) becausethe truth assignment solves 3SAT and, therefore, sat-is�es all clauses. It is possible for G[k + i]; (1 � i � l)because either �i or �i must be satis�ed by the truthassignment. Every pair of states in G must be strongconcurrent because of the de�nition of ; and <s. Gsatis�es conjunctive predicate c because of the de�ni-tion of c. 2The motivation for strong causality diagrams isthat it concisely represents many happened-before di-agrams. The following result con�rms that solvingpredicate detection in a strong causality diagram isequivalent to solving predicate detection for all of thediagram's local linearizations. First, we de�ne the newproblem:Conjunctive Predicate Detection in Local Lin-earizations of General Strong Causality Dia-grams (CPL):Given a conjunctive predicate c and a strong causalitydiagram D = (S1; S2; : : : Sn; <s;;), does there exist aconsistent global state G in any E 2 Lin(D) such thatc(G) holds.Theorem 2: CPG is equivalent to CPL.Proof: Let D = (S1; S2; : : : Sn; <s;;) be a strongcausality diagram and let c be a conjunctive predicatede�ned on it.First, we prove that, if a global state G is a solutionto CPL, then it is also a solution to CPG. So, letE = (S1; S2; : : : Sn; <;;) be a local linearization ofD, and let a global state G be consistent in E, and letc(G) hold. We have to prove that G is also consistentin D. Since G is consistent in E, for any two statesG[i] and G[j], G[i] 6!G[j]. Since !s � !, we haveG[i] 6!sG[j]. So G is consistent in D.Next, we prove that, if a global state G is a so-lution to CPG, then it is also a solution to CPL.So, let a global state G be consistent in D, andlet c(G). We construct a local linearization E =(S1; S2; : : : Sn; <;;) of G as follows. If each Si is to-tally ordered in D, then we are already done since we

can choose E = D. So assume that two states x andy of the same process are incomparable in D. FromD, we will construct another strong causality diagramD0 = (S1; S2; : : : ; Sn; <s0;;) such that:(1) <s � <s0,(2) G is consistent in D0, and(3) x and y are comparable in D0.By repeating this procedure, we will eventually reacha linearization of D. We make x and y comparable in<s0 as follows.Case 1: x!sG[k] for some k.We add (x; y) to <s. We show that G is consistentin D0. If not, there exist i and j such that G[i]!sxand y!sG[j]. However, this implies that G[i]!sG[k]which is false.Case 2: x6!sG[k] for all k.We add (y; x) to <s. We show that G is consistent inD0. If not, there exist i and j such that G[i]!sy andx!sG[j]. However, this violates the condition thatx6!sG[k] for all k. 2This result tells us that if we exhaustively detect apredicate in each of Lin(D) then we have also done sofor D. Since this would be very ine�cient, we identifytwo classes of strong dependency diagrams for whichwe may apply a special predicate detection algorithmto a specially chosen representative from Lin(D) inorder to e�ciently detect a predicate.Consider a strong causality diagram D =(S1; S2; : : : Sn; <s;;). If s ; t, then we call s a sendstate and we call t a receive state. Let Snd be the setof send states in S (S will stand for S1 [ S2 [ : : : Snthroughout this paper.) and let Rcv be the set of re-ceive states in S. We use Sndi and Rcvi to denotethe set of send and receive states, respectively, in Si.We say that D is receive-ordered if, for each i, the re-ceive states in Rcvi are totally ordered by !s (i.e.,8i : 8s; t 2 Rcvi : (s!st) _ (t!ss)). We say that Dis send-ordered if, for each i, the send states in Sndiare totally ordered by !s.Let CPR and CPS be the CPG problem specializedto receive-ordered and send-ordered strong causalitydiagrams, respectively.Let D = (S1; S2; : : : Sn; <s;;) be a receive-orderedstrong causality diagram. Let c be a conjunctive pred-icate de�ned on D. We now pick a special represen-tative E from Lin(D) so that it satis�es the followingproperty:P1 : 8i : 8s 2 Si : 8t 2 Rcvi : (s ks t) ) (s � t)This ensures that we linearize the partial order <s oneach process such that a receive state is ordered afterall the states that are concurrent with it. The prop-



erty is well-de�ned because no two receive states areconcurrent.Input:Si set of states in process i�i transitive reduction of <s restricted to SiRcviset of receive states in process i (Rcv \ Si)Output:Qi queue of states in Si, initially ;, and�nally contains all states in < total orderPredicates:select(Z) any element from non-empty set ZVariables:M = ; set of states in SiR = ; set of states in Sis; t states in Sik[Si] array of integers for each state in SiL1 for each state s in Si doL2 k[s] := no. of incoming edges in �i for sL3 if (k[s] = 0) thenL4 if (s 2 Rcvi) then R := R [ fsgL5 else M := M [ fsgL6 while (Si 6= ;) doL7 if (M 6= ;) then t := select(M)L8 else t := select(R)L9 enqueue(Qi; t)L10 Si := Si � ftgL11 for each state s such that t �i s doL12 k[s] := k[s] � 1L13 if (k[s] = 0) thenL14 if (s 2 Rcvi) then R := R [ fsgL15 else M := M [ fsgFigure 3: Algorithm RECEIVE-SORTIn order to ensure this property, we apply a spe-cial linearization algorithm, RECEIVE-SORT shownin Figure 3, for each process. The algorithm is a mod-i�cation of a standard topological sort algorithm thatgives a higher priority to non-receive states so that allstates concurrent to a receive state precede it in thetotal ordering. The algorithm takes as input the par-tial order of <s restricted to a process and speci�edas its transitive reduction (or Hasse Diagram). It iseasy to show that this correctly produces a lineariza-tion of the partial order for each process. It is alsoeasy to show that the linearizations produced by thealgorithm are those that ensure Property P1:Theorem 3: If D = (S1; S2; : : : Sn; <s;;) is areceive-ordered strong causality diagram, and if E =(S1; S2; : : : Sn; <;;) is the local linearization of D

produced by applying Algorithm RECEIVE-SORT foreach process, then E satis�es Property P1.Proof: The following four invariants are maintainedby the algorithm:(INV 1) 8s 2 Si : k[s] = number of states immedi-ately smaller than s in Si (jft 2 Si : t �i sgj)(Here Si is the variable used in the algorithm and notthe static Si representing all states in the ith process.)(INV 2) M is the set of minimal elements in Si thatare not in Rcvi(INV 3) R is the set of minimal elements in Si thatare in Rcvi(INV 4) Si contains no element transitively smallerthan (w.r.t �i+) a minimal elementIt is easy to prove INV 1 from the algorithm and thenprove INV 2 and INV 3 using it. INV 4 follows fromINV 1 by induction on the length of the transitivechain.Let s 2 Si and t 2 Rcvi be two states such thats ks t. Since D is receive-ordered, either s =2 Rcvi ors = t. If s = t, we are done. So we consider the case ofs =2 Rcvi. Focus on the iteration in which t is enqueuedin Qi. Since t 2 Rcvi, t must have been chosen in lineL8 (using INV2, INV3). So M = ; in this iteration.Further, R = ftg (using INV3, INV4 and that D isreceive-ordered). We conclude that t is the mimimumelement of Si in this iteration. Therefore, s =2 Si inthis iteration. Therefore, it must have been enqueuedbefore this iteration. So s<t. 2From Property P1, we derive the following usefulproperty:P2 : 8i; j : (i 6= j) : 8s 2 Si; t; u 2 Sj :(s !s t) ^ (t � u) ) (s !s u)Lemma 1: If D = (S1; S2; : : : Sn; <s;;) is areceive-ordered strong causality diagram and E 2Lin(D) such that E = (S1; S2; : : : Sn; <;;), then:E satis�es Property P1 ) E satis�es Property P2Proof: Let i 6= j and s 2 Si and t; u 2 Sj and lets !s t and (t � u). Since s !s t and s and t are ondi�erent processes, there must be some receive statev on Sj , such that s !s v and v �s t. Since < is alinearization of <s, we have v � u. If v = u, we aredone. So assume v < u. Using the contra-positive ofproperty P1, we have u 6 ks v. We cannot have u <s vbecause v � u and < is a linearization of <s. So wemust have v <s u. Since s !s v, we have s !s u bytransitivity. 2We now apply algorithm PRED-DETECT in Fig-ure 4 to the special representative chosen from Lin(D)using algorithm RECEIVE-SORT.



Input:Q1;Q2; : : :Qn process state queues in < order!s strong causally precedes relationx1; x2; : : : xn local predicates for each processOutput:detected booleanConstants:all = f1; 2; : : : ; ngVariables:low; newlow subsets of allk; l integers in allL1 low := allL2 while (low 6= ;) doL3 newlow := ;L4 for k in low doL5 if ( :xk(head(Qk)) ) thenL6 newlow := newlow [ fkgL7 elseL8 for l in all doL9 if (head(Qk) !s head(Ql)) thenL10 newlow := newlow [ fkgL11 if (head(Ql) !s head(Qk)) thenL12 newlow := newlow [ flgL13 low := newlowL14 for k in low doL15 deletehead(Qk)L16 detected := (8k : :empty(Qk))Figure 4: Algorithm PRED-DETECTOur �nal result shows that applying PRED-DETECT to the representative in Lin(D) is su�cientfor detecting the predicate in D. The main idea ofthe algorithm is similar to that used in [7] to op-timally solve the problem for happened-before dia-grams. We start with the lowest global state and moveupwards. If, in a global state G, we �nd a state G[i]that strong causally precedes another state G[j] thenusing Property P2, we are guaranteed that G[i] alsostrong causally precedes every state higher than G[j]in the total order <. So G[i] can be safely discarded.If no such pair of states can be found, then the globalstate is consistent. The algorithm discards at least onestate in each iteration and so must terminate.Theorem 4: If D = (S1; S2; : : : Sn; <s;;) is areceive-ordered strong causality diagram, c is a con-junctive predicate, and E = (S1; S2; : : : Sn; <;;) isa local linearization of D satisfying property P1, thenapplying algorithm PRED-DETECT to E and c solvesCPR for D and c.Proof: Lemma 1 implies that E satis�es P2. We �rst

prove that if PRED-DETECT returns detected = truethen there is indeed a strong consistent global state inD such that c holds in it. It is easy to verify the fol-lowing loop invariant:(INV 1) 8k; l =2 low : :empty(Qk) ^ :empty(Ql))xk(head(Qk)) ^ xl(head(Ql))^ head(Qk)kshead(Ql)So, if detected = true, then no queue is empty andthe global state consisting of the heads of the queuesmust be strong consistent and c must hold.We now prove that if there is a strong consis-tent global state G such that c holds, then the al-gorithm must return detected = true. The proof isby contradiction. Assume that the algorithm returnsdetected = false. Since some queue must be emptyin the end, at least one state in G must be deletedin line L15. Let G[j] be the state in G to be deleted�rst in line L15. Consider the iteration of loop L2 inwhich this happens. Since c(G) holds, G[j] could nothave been added to newlow in line L6. So it musthave been added in line L10 or L12. In either case,G[j]!shead(Qi), for some queue Qi. Since G[j] is the�rst state in G to be deleted, head(Qi)�G[i]. So byProperty P2, G[j]!sG[i] which contradicts the strongconsistency of G. 2Having established that CPR can be solvede�ciently, we now address CPS. For a send-ordered strong causality diagram, we can simplymake use of symmetry to transform the strongcausality diagram and convert the problem toCPR. Given a send-ordered strong causality dia-gram D = (S1; S2; : : : Sn; <s;;), we de�ne its in-version, inv(D) as the strong causality diagram(S1; S2; : : : Sn;;0; <s0) where ;0 = f(s; t)j (t; s) 2;g and <s0 = f(s; t)j (t; s) 2 <sg. We now have:Theorem 5: CPS for a send-ordered strong causal-ity diagram D = (S1; S2; : : : Sn; <s;;) and conjunc-tive predicate c is equivalent to CPR for inv(D) =(S1; S2; : : : Sn;;0; <s0) and conjunctive predicate c.Proof: First, the set of receive states Rcv0(S) forinv(D) is the same as the set of send states Snd(S) forD (from the de�nition of ;0). So inv(D) is receive-ordered.If G is consistent inD then for any i; j, G[i] 6!s G[j]and G[j] 6!s G[i]. So G[j] 6!s0 G[i] and G[i] 6!s0 G[j](from the de�nition of;0 and <s0). So G is consistentin inv(D).Using a similar argument, if G is a consistent globalstate in inv(D) then G is also consistent in D. 2If m is a bound on jSij and e is the size of the



transitive reduction of <s, then we can deduce thatthe time complexity of applying RECEIVE-SORT toeach process is O(mn+ e) and the time complexity ofPRED-DETECT is O(mn2). So the time complexityto solve CPR or CPS is O(mn2 + e).Having e�ciently solved CPR and CPS, we nowtake another look at the general problem CPG. Weknow from Theorem 1 that CPG is NP-Complete. So,it a polynomial solution to CPG is unlikely. Twonaive exponential solutions are possible. Let m bea bound on jSij.The �rst solution enlists every globalstate and checks if it is consistent, a process whichtakes O(mnn2) time. The second applies a predicatedetection algorithm (such as in [7]) to every local lin-earization of the strong causality diagram, which takesO(mmnmn2) time.However, these solutions do not perform any betterfor strong causality diagrams which are \close" to be-ing send-ordered or receive-ordered. For example, ina strong causality diagram which has two possible lin-earizations of receive states in one process, we wouldexpect not to have to pay the full price of the abovenaive solutions. We now provide a solution that de-grades gracefully for diagrams that are close to beingsend-ordered or receive-ordered.Let ki be a bound on the number of linearizations ofthe <s relation restricted to the set of receive statesin Si. If we linearize for each process, we can con-struct a receive-ordered strong causality diagram byadding the ordering of receive states imposed by thelinearizations. For all such possible combinations oflinearizations, there would be k = k1�k2� : : : kn pos-sible receive-ordered strong causality diagrams. Weknow from Theorem 2 that applying predicate detec-tion to each such receive-ordered strong causality di-agrams would be equivalent to applying predicate de-tection to the original strong causality diagram. Sowe can solve CPG by applying our algorithm for CPRto k receive-ordered strong causality diagrams, tak-ing O(k(mn2 + e)). Notice that this degrades to thesecond naive approach in the worst case but achievesgood results if k is small, or the original strong causal-ity diagram is close to being receive-ordered. A similarapproach could be used if the diagram were close tobeing send-ordered. Further, by decomposing it intoreceive-ordered diagrams instead of happened-beforediagrams, we save an exponential number of applica-tions of a predicate detection algorithm as comparedto the second naive approach.5 ApplicationsApplying Strong Causality Diagrams:

The main application of predicate detection hasbeen in distributed debugging and testing. A traceof the distributed computation is taken at run-timeand provides the information necessary for the modelof a distributed computation. Our extension to thestrong causality model allows us to debug distributedprograms with multi-threaded processes.The usual practical representation of the happened-before or causally precedes relation, !, has been us-ing vector clocks [9]. Two states can then be easilychecked for their ! relationship by comparing theirvector clocks. Since we allow partial orders on each ofthe processes, we must extend the vector clocks to avector of partially ordered logical clocks [5]. Each suchclock value would be an unbounded set in the generalcase. However, since, in practice, we can place a pre-de�ned bound on the number of concurrent threads,we can represent each partially ordered logical clockas a �xed-size vector. The total clock size would thenbe n � l where n is the number of processes and l isthe maximum number of concurrent threads on a pro-cess. Given such \expanded" clocks of two states, wecan check their !s relationship in constant time (ifwe know which processes and threads the two statesbelong to).The expanded clocks keep track of the ; relationby logging send and receive events. The <s relation isa little more involved because we have to decide whentwo states are independent. In multi-threaded pro-cesses, we can keep track of all fork and join points andinter-thread communications through shared memoryas described in [5]. Although multi-threaded processesare the most direct application of strong causality di-agrams, there are other types of independent eventsthat may be identi�ed in processes. Within the strongcausality diagram model, two events are independentso long as reversing their order of execution does notchange the values of any of the predicates that maybe applied to them. This allows a wide variety of in-dependences to be de�ned. For example, operationson independent objects are independent, and so arereceives or sends on independent ports.Applying Conjunctive Predicates:Local predicates are any boolean-valued functionsde�ned on the states in a process. In practice, thesestates are the values of the variables de�ning the stateof execution of the process. An example of a localpredicate would be to check if a program reaches acertain function in the program text. This is equiv-alent to checking if the program counter variable forany thread reaches the function.Global predicates can be any conjunctive predi-



cates. Further, we can detect any predicates that maybe reduced to conjunctive predicates. Any predicatethat is a boolean expression (i.e. expression on localpredicates using :;^;_) may be converted into dis-junctive normal form and we may then apply a detec-tion algorithm for each of the conjunctions indepen-dently. Further, any global predicate that is only sat-is�ed by a �nite set of global states may be expressed(though ine�ciently) as a boolean expression of lo-cal predicates [7]. An example of a global predicatewould be detecting if functions on two processes areentered at the same time, violating a required mutual-exclusion property.Applying Our Results:We have provided e�cient solutions to the conjunc-tive predicate detection problems for two classes ofstrong causality diagrams { receive-ordered and send-ordered. As we will now illustrate, these restrictionsare met by many distributed computations in practice.A scenario that arises very often, especially inclient-server systems, is:repeatreceive a request ;create a thread to process the requestuntil doneIt is clear that such a scenario is receive-ordered eventhough the sends and per-request processing may beindependent.Another scenario that is often used to model syn-chronous rounds is:repeatreceive and process messagesuntil time = end-of-round ;send messagesuntil doneIf the sends in a round occur in a �xed order or use thesame port, then they are totally ordered while receivesand local processing may be independent. Thus, a dis-tributed computation resulting from such a programwould be send-ordered.Thus, very often the natural design of distributedprograms involves totally ordering the sends and/orthe receives.References[1] O. Babaoglu and K. Marzullo. Consistent globalstates of distributed systems: fundamental con-

cepts and mechanisms. In S. Mullender, editor,Distributed Systems, chapter 4. Addison-Wesley,1993.[2] K. M. Chandy and L. Lamport. Distributed snap-shots: Determining global states of distributed sys-tems. ACM Transactions on Computer Systems,3(1):63 { 75, February 1985.[3] D. R. Cheriton and D. Skeen. Understanding thelimitations of causally and totally ordered commu-nication. In Proc. of the 11th Symp. on OperatingSystem Principles, pages 44 { 57. ACM, 1993.[4] R. Cooper and K. Marzullo. Consistent detec-tion of global predicates. In Proceedings of theACM/ONR Workshop on Parallel and DistributedDebugging, pages 163 { 173, Santa Cruz, Califor-nia, 1991.[5] C. Fidge. Logical time in distributed computingsystems. IEEE Computer, 24(8):28 { 33, August1991.[6] V. K. Garg. Observation of global properties indistributed systems. In Proceedings of the IEEEInternational Conference on Software and Knowl-edge Engineering, pages 418 { 425, Lake Tahoe,Nevada, 1996.[7] V. K. Garg and B. Waldecker. Detection of weakunstable predicates in distributed programs. IEEETransactions on Parallel and Distributed Systems,5(3):299 { 307, March 1994.[8] L. Lamport. Time, clocks, and the ordering ofevents in a distributed system. Communicationsof the ACM, 21(7):558 { 565, July 1978.[9] F. Mattern. Virtual time and global states of dis-tributed systems. In Parallel and Distributed Al-gorithms: Proc. of the International Workshop onParallel and Distributed Algorithms, pages 215 {226. Elsevier Science Publishers B. V. (North Hol-land), 1989.[10] V. Pratt. Modelling concurrency with partial or-ders. International Journal of Parallel Program-ming, 15(1):33 { 71, 1986.[11] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro,and T. Anderson. Eraser: A dynamic data racedetector for multi-threaded programs. In Proc. ofthe 16th Symp. on Operating System Principles.ACM, October 1997. (To be published).


