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t. We generalize the notion of sli
e introdu
ed in our earlierpaper [6℄. A sli
e of a distributed 
omputation with respe
t to a globalpredi
ate is the smallest 
omputation that 
ontains all 
onsistent 
uts ofthe original 
omputation that satisfy the predi
ate. We prove that sli
eexists for all global predi
ates. We also establish that it is, in general,NP-
omplete to 
ompute the sli
e. An optimal algorithm to 
omputesli
es for spe
ial 
ases of predi
ates is provided. Further, we present aneÆ
ient algorithm to graft two sli
es, that is, given two sli
es, either 
om-pute the smallest sli
e that 
ontains all 
onsistent 
uts that are 
ommonto both sli
es or 
ompute the smallest sli
e that 
ontains all 
onsistent
uts that belong to at least one of the sli
es. We give appli
ation of sli
-ing in general and grafting in parti
ular to global property evaluationof distributed programs. Finally, we show that the results pertaining to
onsistent global 
he
kpoints [14, 18℄ 
an be derived as spe
ial 
ases of
omputation sli
ing.1 Introdu
tionWriting distributed programs is an error prone a
tivity; it is hard to reason aboutthem be
ause they su�er from the 
ombinatorial explosion problem. Testing anddebugging, and software fault-toleran
e is an important way to ensure the reli-ability of distributed systems. Thus it be
omes ne
essary to develop te
hniquesthat fa
ilitate the analysis of distributed 
omputations. Various abstra
tionssu
h as predi
ate dete
tion (e.g., [1, 3, 7℄) and predi
ate 
ontrol [16, 17, 11℄ havebeen de�ned to 
arry out su
h analysis.In our earlier paper [6℄, we propose another abstra
tion, 
alled 
omputationsli
e, whi
h was de�ned as: a sli
e of a distributed 
omputation with respe
t to aglobal predi
ate is another 
omputation that 
ontains those and only those 
on-sistent 
uts (or snapshots) of the original 
omputation that satisfy the predi
ate.In [6℄, we also introdu
e a 
lass of global predi
ates 
alled regular predi
ates: aglobal predi
ate is regular i� whenever two 
onsistent 
uts satisfy the predi
ate? supported in part by the NSF Grants ECS-9907213, CCR-9988225, Texas Edu
ationBoard Grant ARP-320, an Engineering Foundation Fellowship, and an IBM grant.
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omputation and (b) its sli
e with respe
t to (x1 > 1) ^ (x3 6 3).then the 
uts given by their set interse
tion and set union also satisfy the predi-
ate. We show that sli
e exists only for regular predi
ates and present an eÆ
ientalgorithm to 
ompute the sli
e. The 
lass of regular predi
ates is 
losed under
onjun
tion.A limitation of the de�nition of sli
e in [6℄ is that sli
e exists only for aspe
i�
 
lass of predi
ates. This prompted us to weaken the de�nition of sli
eto the smallest 
omputation that 
ontains all 
onsistent 
uts of the original
omputation that satisfy the predi
ate. In this paper, we show that sli
e existsfor all global predi
ates.The notion of 
omputation sli
e is analogous to the 
on
ept of program sli
e[19℄. Given a program and a set of variables, a program sli
e 
onsists of allstatements in the program that may a�e
t the value of the variables in theset at some given point. A sli
e 
ould be stati
 [19℄ or dynami
 (for a spe
i�
program input) [9℄. The notion of a sli
e has been also extended to distributedprograms [8℄. Program sli
ing has been shown to be useful in program debugging,testing, program understanding and software maintenan
e [9, 19℄. A sli
e 
ansigni�
antly narrow the size of the program to be analyzed, thereby making theunderstanding of the program behaviour easier. We expe
t to reap the samebene�t from a 
omputation sli
e.Computation sli
ing is also useful for redu
ing sear
h spa
e for NP-
ompleteproblems su
h as predi
ate dete
tion [3, 7, 15, 13℄. Given a distributed 
omputa-tion and a global predi
ate, predi
ate dete
tion requires �nding a 
onsistent 
utof the 
omputation, if it exists, that satis�es the predi
ate. It is a fundamen-tal problem in distributed system and arises in 
ontexts su
h as software faulttoleran
e, and testing and debugging.As an illustration, suppose we want to dete
t the predi
ate (x1 �x2+x3 < 5)^(x1 > 1) ^ (x3 6 3) in the 
omputation shown in Fig. 1(a). The 
omputation
onsists of three pro
esses P1, P2 and P3 hosting integer variables x1, x2 and x3,respe
tively. The events are represented by solid 
ir
les. Ea
h event is labeledwith the value of the respe
tive variable immediately after the event is exe
uted.For example, the value of variable x1 immediately after exe
uting the event 
is �1. The �rst event on ea
h pro
ess initializes the state of the pro
ess andevery 
onsistent 
ut 
ontains these initial events. Without 
omputation sli
ing,



we are for
ed to examine all 
onsistent 
uts of the 
omputation, twenty eight intotal, to as
ertain whether some 
onsistent 
ut satis�es the predi
ate. Alterna-tively, we 
an 
ompute a sli
e of the 
omputation with respe
t to the predi
ate(x1 > 1) ^ (x3 6 3) as portrayed in Fig. 1(b). The sli
e is modeled by a dire
tedgraph. Ea
h vertex of the graph 
orresponds to a subset of events. If a vertex is
ontained in a 
onsistent 
ut, the interpretation is that all events 
orrespondingto the vertex are 
ontained in the 
ut. Moreover, a vertex belongs to a 
onsis-tent 
ut only if all its in
oming neighbours are also present in the 
ut. We 
annow restri
t our sear
h to the 
onsistent 
uts of the sli
e whi
h are only six innumber, namely fa; e; f; u; vg, fa; e; f; u; v; bg, fa; e; f; u; v; wg, fa; e; f; u; v; b; wg,fa; e; f; u; v; w; gg and fa; e; f; u; v; b; w; gg. The sli
e has mu
h fewer 
onsistent
uts than the 
omputation itself|exponentially smaller in many 
ases|resultingin substantial savings.We also show that the results pertaining to 
onsistent global 
he
kpoints[14, 18℄ 
an be derived as spe
ial 
ases of 
omputation sli
ing. In parti
ular,we furnish an alternate 
hara
terization of the 
ondition under whi
h individuallo
al 
he
kpoints 
an be 
ombined with others to form a 
onsistent global 
he
k-point (
onsisten
y theorem by Netzer and Xu [14℄): a set of lo
al 
he
kpoints
an belong to the same 
onsistent global snapshot i� the lo
al 
he
kpoints inthe set are mutually 
onsistent (in
luding with itself) in the sli
e. Moreover, theR-graph (rollba
k-dependen
y graph) de�ned by Wang [18℄ is a spe
ial 
ase ofthe sli
e. The minimum and maximum 
onsistent global 
he
kpoints that 
ontaina set of lo
al 
he
kpoints [18℄ 
an also be easily obtained using the sli
e.In summary, this paper makes the following 
ontributions:{ In Se
tion 3, we generalize the notion of 
omputation sli
e introdu
ed inour earlier paper [6℄. We show that sli
e exists for all global predi
ates inSe
tion 4.{ We establish that it is, in general, NP-
omplete to determine whether aglobal predi
ate has a non-empty sli
e in Se
tion 4.{ In Se
tion 4, an appli
ation of 
omputation sli
ing to monitoring global prop-erties in distributed systems is provided. Spe
i�
ally, we give an algorithm todetermine whether a global predi
ate satisfying 
ertain properties is possiblytrue, invariant or 
ontrollable in a distributed 
omputation using sli
ing.{ We present an eÆ
ient representation of sli
e in Se
tion 5 that we use later todevise an eÆ
ient algorithm to graft two sli
es in Se
tion 6. Grafting 
an bedone in two ways. Given two sli
es, we 
an either 
ompute the smallest sli
ethat 
ontains all 
onsistent 
uts that are 
ommon to both sli
es or 
omputethe smallest sli
e that 
ontains all 
onsistent 
uts that belong to at leastone of the sli
es. An eÆ
ient algorithm using grafting to 
ompute sli
e for
omplement of a regular predi
ate, 
alled 
o-regular predi
ate, is provided.We also show how grafting 
an be used to avoid examining many 
onsistent
uts when dete
ting a predi
ate.{ We provide an optimal algorithm to 
ompute sli
es for spe
ial 
ases of regularpredi
ates in Se
tion 7. In our earlier paper [6℄, the algorithm to 
omputesli
es has O(N2jEj) time 
omplexity, where N is the number of pro
esses



and E is the set of events in the distributed system. The algorithm presentedin this paper has O(jEj) 
omplexity whi
h is optimal.{ Finally, in Se
tion 7, we show that the results pertaining to 
onsistent global
he
kpoints [14, 18℄ 
an be derived as spe
ial 
ases of 
omputation sli
ing.Due to la
k of spa
e, the proofs of lemmas, theorems and 
orollaries, andother details have been omitted. Interested reader 
an �nd them in the te
hni
alreport [12℄.2 Model and Notation2.1 Latti
esGiven a latti
e, we use u and t to denote its meet (in�mum) and join (supre-mum) operators, respe
tively. A latti
e is distributive i� meet distributes overjoin. Formally, a u (b t 
) � (a u b) t (a u 
).2.2 Dire
ted Graphs: Path- and Cut-Equivalen
eTraditionally, a distributed 
omputation is modeled by a partial order on a set ofevents. We use dire
ted graphs to model both distributed 
omputation and sli
e.Dire
ted graphs allow us to handle both of them in a 
onvenient and uniformmanner.Given a dire
ted graph G, let V(G) and E(G) denote its set of verti
es andedges, respe
tively. A subset of verti
es of a dire
ted graph form a 
onsistent 
uti� the subset 
ontains a vertex only if it 
ontains all its in
oming neighbours.Formally,C is a 
onsistent 
ut of G , h8e; f 2 V(G) : (e; f) 2 E(G) : f 2 C ) e 2 CiObserve that a 
onsistent 
ut either 
ontains all verti
es in a 
y
le or none ofthem. This observation 
an be generalized to a strongly 
onne
ted 
omponent.Traditionally, the notion of 
onsistent 
ut (down-set or order ideal) is de�nedfor partially ordered sets [5℄. Here, we extend the notion to sets with arbitraryorders. Let C(G) denote the set of 
onsistent 
uts of a dire
ted graph G. Observethat the empty set ; and the set of verti
es V(G) trivially belong to C(G). We
all them trivial 
onsistent 
uts. The following theorem is a slight generalizationof the result in latti
e theory that the set of down-sets of a partially ordered setforms a distributive latti
e [5℄.Theorem 1. Given a dire
ted graph G, hC(G);�i forms a distributive latti
e.The theorem follows from the fa
t that, given two 
onsistent 
uts of a graph,the 
uts given by their set interse
tion and set union are also 
onsistent.A dire
ted graph G is 
ut-equivalent to a dire
ted graph H i� they have thesame set of 
onsistent 
uts, that is, C(G) = C(H). Let P(G) denote the set ofpairs of verti
es (u; v) su
h that there is a path from u to v in G. We assume



that ea
h vertex has a path to itself. A dire
ted graph G is path-equivalent to adire
ted graph H i� a path from vertex u to vertex v in G implies a path fromvertex u to vertex v in H and vi
e versa, that is, P(G) = P(H).Lemma 1. Let G and H be dire
ted graphs on the same set of verti
es. Then,P(G) � P(H) � C(G) � C(H)Lemma 1 implies that two dire
ted graphs are 
ut-equivalent i� they arepath-equivalent. This is signi�
ant be
ause path-equivalen
e 
an be veri�ed inpolynomial-time (jP(G)j = O(jV(G)j2)) as 
ompared to 
ut-equivalen
e whi
his 
omputationally expensive to as
ertain in general (jC(G)j = O(2jV(G)j)).2.3 Distributed Computations as Dire
ted GraphsWe assume an asyn
hronous distributed system [12℄ with the set of pro
essesP = fP1; P2; : : : ; PNg. Pro
esses 
ommuni
ate and syn
hronize with ea
h otherby sending messages over a set of reliable 
hannels.A lo
al 
omputation of a pro
ess is des
ribed by a sequen
e of events thattransforms the initial state of the pro
ess into the �nal state. At ea
h step, thelo
al state of a pro
ess is 
aptured by the initial state and the sequen
e of eventsthat have been exe
uted up to that step. Ea
h event is a send event, a re
eiveevent, or an internal event. An event 
auses the lo
al state of a pro
ess to beupdated. Additionally, a send event 
auses a message to be sent and a re
eiveevent 
auses a message to be re
eived. We assume the presen
e of �
titiousinitial and �nal events on ea
h pro
ess Pi, denoted by ?i and >i, respe
tively.The initial event o

urs before any other event on the pro
ess and initializes thestate of the pro
ess. The �nal events o

urs after all other events on the pro
ess.Let pro
(e) denote the pro
ess on whi
h event e o

urs. The prede
essor andsu

essor events of e on pro
(e) are denoted by pred(e) and su

(e), respe
tively,if they exist. We denote the order of events on pro
ess Pi by ;Pi . Let ;P bethe union of all ;Pis, 1 6 i 6 N , and ;P denote the re
exive 
losure of ;P .We model a distributed 
omputation (or simply a 
omputation), denoted byhE;!i, as a dire
ted graph with verti
es as the set of events E and edges as!.To limit our attention to only those 
onsistent 
uts that 
an a
tually o

ur duringan exe
ution, we assume that, for any 
omputation hE;!i, P(hE;!i) 
ontainsat least the Lamport's happened-before relation [10℄. We assume that the set ofall initial events belong to the same strongly 
onne
ted 
omponent. Similarly,the set of all �nal events belong to the same strongly 
onne
ted 
omponent.This ensures that any non-trivial 
onsistent 
ut will 
ontain all initial eventsand none of the �nal events. As a result, every 
onsistent 
ut of a 
omputationin traditional model is a non-trivial 
onsistent 
ut of the 
omputation in ourmodel and vi
e versa. Only non-trivial 
onsistent 
uts are of real interest to us.We will see later that our model allows us to 
apture empty sli
es in a very
onvenient fashion.A distributed 
omputation in our model 
an 
ontain 
y
les. This is be
ausewhereas a 
omputation in the happened-before model 
aptures the observable
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(a)Fig. 2. (a) A 
omputation and (b) the latti
e 
orresponding to its 
onsistent 
uts.order of exe
ution of events, a 
omputation in our model 
aptures the set ofpossible 
onsistent 
uts.A frontier of a 
onsistent 
ut is the set of those events of the 
ut whosesu

essors, if they exist, are not 
ontained in the 
ut. Formally,frontier(C) , fe 2 C j su

(e) exists ) su

(e) 62 CgA 
onsistent 
ut is uniquely 
hara
terized by its frontier and vi
e versa. Thussometimes, espe
ially in �gures, we spe
ify a 
onsistent 
ut by simply listingthe events in its frontier instead of enumerating all its events. Two events aresaid to be 
onsistent i� they are 
ontained in the frontier of some 
onsistent
ut, otherwise they are in
onsistent. It 
an be veri�ed that events e and f are
onsistent i� there is no path in the 
omputation from su

(e), if it exists, to fand from su

(f), if it exists, to e. Also, note that, in our model, an event 
anbe in
onsistent with itself. Fig. 2 depi
ts a 
omputation and the latti
e of its(non-trivial) 
onsistent 
uts. A 
onsistent 
ut in the �gure is represented by itsfrontier. For example, the 
onsistent 
ut D is represented by fe2; f1g.2.4 Global Predi
atesA global predi
ate (or simply a predi
ate) is a boolean-valued fun
tion de�nedon variables of pro
esses. It is evaluated on events in the frontier of a 
onsistent
ut. Some examples are mutual ex
lusion and \at least one philosopher does nothave any fork". We leave the predi
ate unde�ned for the trivial 
onsistent 
uts.A global predi
ate is lo
al i� it depends on variables of at most one pro
ess. Forexample, \Pi is in red state" and \Pi does not have the token".3 Sli
ing a Distributed ComputationIn this se
tion, we de�ne the notion of sli
e of a 
omputation with respe
t to apredi
ate. The de�nition given here is weaker than the de�nition given in our
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(b)(a)Fig. 3. (a) The sublatti
e of the latti
e in Fig. 2(b) with respe
t to the predi
ate((x < 2) ^ (y > 1))W(x < 1), and (b) the 
orresponding sli
e.earlier paper [6℄. However, sli
e now exists with respe
t to every predi
ate (notjust spe
i�
 predi
ates).De�nition 1 (Sli
e). A sli
e of a 
omputation with respe
t to a predi
ate is thesmallest dire
ted graph (with minimum number of 
onsistent 
uts) that 
ontainsall 
onsistent 
uts of the original 
omputation that satisfy the predi
ate.We will later show that the smallest 
omputation is well-de�ned for everypredi
ate. A sli
e of 
omputation hE;!i with respe
t to a predi
ate b is denotedby hE;!ib. Note that hE;!i = hE;!itrue. In the rest of the paper, we use theterms \
omputation", \sli
e" and \dire
ted graph" inter
hangeably.Fig. 3(a) depi
ts the set of 
onsistent 
uts of the 
omputation in Fig. 2(a)that satisfy the predi
ate ((x < 2) ^ (y > 1)) W (x < 1). The 
ut shown withdashed outline does not a
tually satisfy the predi
ate but has to be in
ludedto 
omplete the sublatti
e. Fig. 3(b) depi
ts the sli
e of the 
omputation withrespe
t to the predi
ate. In the �gure, all events in a subset belong to the samestrongly 
onne
ted 
omponent.In our model, every sli
e derived from the 
omputation hE;!i will have thetrivial 
onsistent 
uts (; and E) among its set of 
onsistent 
uts. Consequently,a sli
e is empty i� it has no non-trivial 
onsistent 
uts. In the rest of the paper,unless otherwise stated, a 
onsistent 
ut refers to a non-trivial 
onsistent 
ut.A sli
e of a 
omputation with respe
t to a predi
ate is lean i� every 
onsistent
ut of the sli
e satis�es the predi
ate.4 Regular Predi
atesA global predi
ate is regular i� the set of 
onsistent 
uts that satisfy the predi
ateforms a sublatti
e of the latti
e of 
onsistent 
uts [6℄. Equivalently, if two 
onsis-tent 
uts satisfy a regular predi
ate then the 
uts given by their set interse
tionand set union will also satisfy the predi
ate. Some examples of regular predi-
ates are any lo
al predi
ate and 
hannel predi
ates su
h as `there are at mostk messages in transit from Pi to Pj". The 
lass of regular predi
ates is 
losedunder 
onjun
tion [6℄. We prove elsewhere [6℄ that the sli
e of a 
omputationwith respe
t to a predi
ate is lean i� the predi
ate is regular. We next show how



sli
ing 
an be used to monitor predi
ates in distributed systems. Later, we usethe notion of regular predi
ates to prove that the sli
e exists and is well-de�nedwith respe
t to every predi
ate.4.1 Using Sli
es to Monitor Regular Predi
atesA predi
ate 
an be monitored under four modalities, namely possibly, definitely,invariant and 
ontrollable [3, 7, 17, 11℄. A predi
ate is possibly true in a 
ompu-tation i� there is a 
onsistent 
ut of the 
omputation that satis�es the predi
ate.On the other hand, a predi
ate de�nitely holds in a 
omputation i� it eventuallybe
omes true in all runs of the 
omputation (a run is a path in the latti
e of
onsistent 
uts). The predi
ates invariant :b and 
ontrollable :b are duals of pred-i
ates possibly : b and 
ontrollable : b, respe
tively. Predi
ate dete
tion normallyinvolves dete
ting a predi
ate under possibly modality whereas predi
ate 
ontrolinvolves monitoring a predi
ate under 
ontrollable modality. Monitoring has ap-pli
ations in the areas of testing and debugging and software fault-toleran
e ofdistributed programs.The next theorem des
ribes how possibly : b, invariant : b and 
ontrollable : b
an be 
omputed using the notion of sli
e when b is a regular predi
ate. We donot yet know the 
omplexity of 
omputing definitely : b when b is regular.Theorem 2. A regular predi
ate is1. possibly true in a 
omputation i� the sli
e of the 
omputation with respe
tto the predi
ate has at least one non-trivial 
onsistent 
ut, that is, it has atleast two strongly 
onne
ted 
omponents.2. invariant in a 
omputation i� the sli
e of the 
omputation with respe
t tothe predi
ate is 
ut-equivalent to the 
omputation.3. 
ontrollable in a 
omputation i� the sli
e of the 
omputation with respe
tto the predi
ate has the same number of strongly 
onne
ted 
omponents asthe 
omputation.Observe that the �rst proposition holds for any arbitrary predi
ate. Sin
edete
ting whether a predi
ate possibly holds in a 
omputation is NP-
omplete ingeneral [2, 15, 13℄, it is, in general, NP-
omplete to determine whether a predi
atehas a non-empty sli
e.4.2 Regularizing a Non-Regular Predi
ateIn this se
tion, we show that sli
e exists and is well-de�ned with respe
t to everypredi
ate. We know that it is true for at least regular predi
ates [6℄. In addition,the sli
e with respe
t to a regular predi
ate is lean. We exploit these fa
ts and de-�ne a 
losure operator, denoted by reg, whi
h, given a 
omputation, 
onverts anarbitrary predi
ate into a regular predi
ate satisfying 
ertain properties. Givena 
omputation, let R denote the set of predi
ates that are regular with respe
tto the 
omputation.



De�nition 2 (reg). Given a predi
ate b, we de�ne reg (b) as the predi
ate thatsatis�es the following 
onditions:1. it is regular, that is, reg (b) 2 R,2. it is weaker than b, that is, b) reg (b), and3. it is stronger than any other predi
ate that satis�es 1 and 2, that is,h8 b0 : b0 2 R : (b) b0)) (reg (b)) b0)iInformally, reg (b) is the strongest regular predi
ate weaker than b. In general,reg (b) not only depends on the predi
ate b but also on the 
omputation under
onsideration. We assume the dependen
e on 
omputation to be impli
it andmake it expli
it only when ne
essary. The next theorem establishes that reg (b)exists for every predi
ate. Observe that the sli
e for b is given by the sli
e forreg (b). Thus sli
e exists and is well-de�ned for all predi
ates.Theorem 3. Given a predi
ate b, reg (b) exists and is well-de�ned.Thus, given a 
omputation hE;!i and a predi
ate b, the sli
e of hE;!i withrespe
t to b 
an be obtained by �rst applying reg operator to b to get reg (b)and then 
omputing the sli
e of hE;!i with respe
t to reg (b).Theorem 4. reg is a 
losure operator. Formally,1. reg (b) is weaker than b, that is, b ) reg (b),2. reg is monotoni
, that is, (b) b0) ) (reg (b)) reg (b0)), and3. reg is idempotent, that is, reg (reg (b)) � reg (b).From the above theorem it follows that [5, Theorem 2.21℄,Corollary 1. hR;)i forms a latti
e.The meet and join of two regular predi
ates b1 and b2 is given byb1 u b2 , b1 ^ b2b1 t b2 , reg (b1 _ b2)The dual notion of reg (b), the weakest regular predi
ate stronger than b, is
on
eivable. However, su
h a predi
ate may not always be unique [12℄.5 Representing a Sli
eObserve that any dire
ted graph that is 
ut-equivalent or path-equivalent to asli
e 
onstitutes its valid representation. However, for 
omputational purposes,it is preferable to sele
t those graphs to represent a sli
e that have fewer edgesand 
an be 
onstru
ted 
heaply. In this se
tion, we show that every sli
e 
anrepresented by a dire
ted graph with O(jEj) verti
es and O(N jEj) edges. Fur-thermore, the graph 
an be built in O(N2jEj) time.
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ut of hE;!i that 
ontains e and satis�es b. IfJb(e) does not exist then it is set to the trivial 
onsistent 
ut E. Here, weuse E as a sentinel 
ut. Fig. 4 depi
ts a dire
ted graph that represents thesli
e shown in Fig. 3(b). In the �gure, Jb(e1) = f?1; e1;?2g and Jb(f2) =f?1; e1; e2;>1;?2; f1; f2;>2g.The 
ut Jb(e) 
an also be viewed as the least 
onsistent 
ut of the sli
ehE;!ib that 
ontains the event e. The results in [6℄ establish that it is suÆ
ientto know Jb(e) for ea
h event e in order to re
over the sli
e. In parti
ular, adire
ted graph with E as the set of verti
es and an edge from an event e to anevent f i� Jb(e) � Jb(f) is 
ut-equivalent to the sli
e hE;!ib. We also presentan O(N2jEj) algorithm to 
ompute Jb(e) for ea
h event e. However, the graphso obtained 
an have as many as 
(jEj2) edges.Let Fb(e; i) denote the earliest event f on Pi su
h that Jb(e) � Jb(f). In-formally, Fb(e; i) is the earliest event on Pi that is rea
hable from e in the sli
ehE;!ib. For example, in Fig. 4, Fb(e1; 1) = e1 and Fb(e1; 2) = f2. Given Jb(e)for ea
h event e, Fb(e; i) for ea
h event e and pro
ess Pi 
an be 
omputed inO(N jEj) time [12℄. We now 
onstru
t a dire
ted graph that we 
all the skeletalrepresentation of the sli
e with respe
t to b and denote it by Gb. The graph Gbhas E as the set of verti
es and the following edges: (1) for ea
h event e, thatis not a �nal event, there is an edge from e to su

(e), and (2) for ea
h event eand pro
ess Pi, there is an edge from e to Fb(e; i).The skeletal representation of the sli
e depi
ted in Fig. 3(b) is shown in Fig. 4.To prove that the graph Gb is a
tually 
ut-equivalent to the sli
e hE;!ib, itsuÆ
es to show the following:Theorem 5. For events e and f , Jb(e) � Jb(f) � (e; f) 2 P(Gb).Besides having 
omputational bene�ts, the skeletal representation of a sli
e
an be used to devise a simple and eÆ
ient algorithm to graft two sli
es.6 Grafting Two Sli
esIn this se
tion, we present algorithm to graft two sli
es whi
h 
an be done withrespe
t to meet or join. Informally, the former 
ase 
orresponds to the smallestsli
e that 
ontains all 
onsistent 
uts 
ommon to both sli
es whereas the latter
ase 
orresponds to the smallest sli
e that 
ontains 
onsistent 
uts of both sli
es.



In other words, given sli
es hE;!ib1 and hE;!ib2 , where b1 and b2 are regularpredi
ates, we provide algorithm to 
ompute the sli
e hE;!ib, where b is eitherb1 u b2 = b1^ b2 or b1 t b2 = reg (b1_ b2). Grafting enables us to 
ompute thesli
e for an arbitrary boolean expression of lo
al predi
ates|by rewriting it inDNF|although it may require exponential time in the worst 
ase. Later, in thisse
tion, we present an eÆ
ient algorithm based on grafting to 
ompute sli
e fora 
o-regular predi
ate (
omplement of a regular predi
ate). We also show howgrafting 
an be used to avoid examining many 
onsistent 
uts when dete
ting apredi
ate under possibly modality.6.1 Grafting with respe
t to Meet: b � b1 u b2 � b1^ b2In this 
ase, the sli
e hE;!ib 
ontains a 
onsistent 
ut of hE;!i i� the 
utsatis�es b1 as well as b2. Let Fmin(e; i) denote the earlier of events Fb1(e; i)and Fb2(e; i), that is, Fmin(e; i) = minfFb1(e; i); Fb2(e; i)g. The following lemmaestablishes that, for ea
h event e and pro
ess Pi, Fmin(e; i) 
annot o

ur beforeFb(e; i).Lemma 2. For ea
h event e and pro
ess Pi, Fb(e; i) ;P Fmin(e; i).We now 
onstru
t a dire
ted graph Gmin whi
h is similar to Gb, the skeletalrepresentation for hE;!ib, ex
ept that we use Fmin(e; i) instead of Fb(e; i) in its
onstru
tion. The next theorem proves that Gmin is 
ut-equivalent to Gb.Theorem 6. Gmin is 
ut-equivalent to Gb.Roughly speaking, the aforementioned algorithm 
omputes the union of thesets of edges of ea
h sli
e. Note that, in general, Fb(e; i) need not be same asFmin(e; i) [12℄. This algorithm 
an be generalized to 
onjun
tion of an arbitrarynumber of regular predi
ates.6.2 Grafting with respe
t to Join: b � b1 t b2 � reg (b1 _ b2)In this 
ase, the sli
e hE;!ib 
ontains a 
onsistent 
ut of hE;!i if the 
ut satis-�es either b1 or b2. The dual of the graph Gmin|min repla
ed by max|denotedby Gmax (surprisingly) turns out to be 
ut-equivalent to the sli
e hE;!ib. Asbefore, let Fmax(e; i) denote the later of events Fb1(e; i) and Fb2(e; i), that is,Fmax(e; i) = maxfFb1(e; i); Fb2(e; i)g. The following lemma establishes that, forea
h event e and pro
ess Pi, Fb(e; i) 
annot o

ur before Fmax(e; i).Lemma 3. For ea
h event e and pro
ess Pi, Fmax(e; i) ;P Fb(e; i).We now 
onstru
t a dire
ted graph Gmax that is similar to Gb, the skeletalrepresentation for hE;!ib, ex
ept that we use Fmax(e; i) instead of Fb(e; i) inits 
onstru
tion. The next theorem proves that Gmax is 
ut-equivalent to Gb.Theorem 7. Gmax is 
ut-equivalent to Gb.Intuitively, the above-mentioned algorithm 
omputes the interse
tion of thesets of edges of ea
h sli
e. In this 
ase, in 
ontrast to the former 
ase, Fb(e; i)is a
tually identi
al to Fmax(e; i) [12℄. This algorithm 
an be generalized to dis-jun
tion of an arbitrary number of regular predi
ates.



6.3 Appli
ations of GraftingComputing Sli
e for a Co-Regular Predi
ate. Given a regular predi
ate,we give an algorithm to 
ompute the sli
e of a 
omputation with respe
t toits negation|a 
o-regular predi
ate. In parti
ular, we express the negation asdisjun
tion of polynomial number of regular predi
ates. The sli
e 
an then be
omputed by grafting together sli
es for ea
h disjun
t.Let hE;!i be a 
omputation and hE;!ib be its sli
e with respe
t to a regularpredi
ate b. For 
onvenien
e, let!b be the edge relation for the sli
e.We assumethat both ! and !b are transitive relations. Our obje
tive is to �nd a propertythat distinguishes the 
onsistent 
uts that belong to the sli
e from the 
onsistent
uts that do not. Consider events e and f su
h that e 6! f but e !b f . Then,
learly, a 
onsistent 
ut that 
ontains f but does not 
ontain e 
annot belongto the sli
e. On the other hand, every 
onsistent 
ut of the sli
e that 
ontains falso 
ontains e. This motivates us to de�ne a predi
ate prevents(f; e) as follows:C satis�es prevents(f; e) , (f 2 C) ^ (e 62 C)It 
an be proved that prevents(f; e) is a regular predi
ate [12℄. It turns outthat every 
onsistent 
ut that does not belong to the sli
e satis�es prevents(f; e)for some events e and f su
h that (e 6! f) ^ (e!b f) holds. Formally,Theorem 8. Let C be a 
onsistent 
ut of hE;!i. Then,C satis�es :b � h9 e; f : (e!b f) ^ (e 6! f) : C satis�es prevents(f; e)iTheorem 8 implies that :b 
an be expressed as disjun
tion of prevents'.Pruning State Spa
e for Predi
ate Dete
tion. Dete
ting a predi
ate underpossibly modality is NP-
omplete in general [2, 15, 13℄. Using grafting, we 
anredu
e the sear
h spa
e for predi
ates 
omposed from lo
al predi
ates using :,^ and _ operators. We �rst transform the predi
ate into an equivalent predi
atein whi
h : is applied dire
tly to the lo
al predi
ates and never to more 
omplexexpressions. Observe that the negation of a lo
al predi
ate is also a lo
al pred-i
ate. We start by 
omputing sli
es with respe
t to these lo
al predi
ates. This
an be done be
ause a lo
al predi
ate is regular and hen
e the algorithm givenin [6℄ 
an be used to 
ompute the sli
e. We then re
ursively graft sli
es together,with respe
t to the appropriate operator, working our way out from the lo
alpredi
ates until we rea
h the whole predi
ate. This will give us a sli
e of the
omputation|not ne
essarily the smallest|whi
h 
ontains all 
onsistent 
utsof the 
omputation that satisfy the predi
ate. In many 
ases, the sli
e obtainedwill be mu
h smaller than the 
omputation itself enabling us to ignore many
onsistent 
uts in our sear
h.For example, suppose we wish to 
ompute the sli
e of a 
omputation withrespe
t to the predi
ate (x1 _ x2) ^ (x3 _ x4), where xi is a boolean variableon pro
ess pi. As explained, we �rst 
ompute sli
es for the lo
al predi
ates x1,x2, x3 and x4. We then graft the �rst two and the last two sli
es together with
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2 2Fig. 5. An optimal algorithm to 
ompute the sli
e for a 
onjun
tive predi
ate.respe
t to join to obtain sli
es for the 
lauses x1 _ x2 and x3 _ x4, respe
tively.Finally, we graft the sli
es for both 
lauses together with respe
t to meet to getthe sli
e for the predi
ate reg (x1 _ x2)^reg (x3 _ x4) whi
h, in general, is largerthan the sli
e for the predi
ate (x1 _ x2) ^ (x3 _ x4) but mu
h smaller than the
omputation itself.The result of Se
tion 6.3 allows us to generalize this approa
h to predi
ates
omposed from arbitrary regular predi
ates using :, ^ and _ operators. Weplan to 
ondu
t experiments to quantitatively evaluate the e�e
tiveness of ourapproa
h. Although our fo
us is on dete
ting predi
ates under possiblymodality,sli
ing 
an be used to prune sear
h spa
e for monitoring predi
ates under othermodalities too.7 Optimal Algorithm for Sli
ingThe algorithm we presented in [6℄ to 
ompute sli
es for regular predi
ates hasO(N2jEj) time 
omplexity, where N is the number of pro
esses and E is theset of events. In this se
tion we present an optimal algorithm for 
omputingsli
es for spe
ial 
ases of regular predi
ates. Our algorithm will have O(jEj)time 
omplexity. Due to la
k of spa
e, only the optimal algorithm for 
onjun
tivepredi
ates is presented. The optimal algorithm for other regular predi
ates su
has 
hannel predi
ates 
an be found elsewhere [12℄.A 
onjun
tive predi
ate is a 
onjun
tion of lo
al predi
ates. For example, \P1is in red state" ^ \P2 is in green state" ^ \P3 is in blue state". Given a set oflo
al predi
ates, one for ea
h pro
ess, we 
an 
ategorize events on ea
h pro
essinto true events and false events. An event is a true event i� the 
orrespondinglo
al predi
ate evaluates to true, otherwise it is a false event.To 
ompute the sli
e of a 
omputation for a 
onjun
tive predi
ate, we 
on-stru
t a dire
ted graph with verti
es as events in the 
omputation and the follow-ing edges: (1) from an event, that is not a �nal event, to its su

essor, (2) froma send event to the 
orresponding re
eive event, and (3) from the su

essor of afalse event to the false event.For the purpose of building the graph, we assume that all �nal events are trueevents. Thus every false event has a su

essor. The �rst two kinds of edges en-sure that the Lamport's happened-before relation is 
aptured in the graph. Thealgorithm is illustrated Fig. 5. In the �gure, all true events have been en
ir
led.It 
an be proved that the dire
ted graph obtained is 
ut-equivalent to the sli
eof the 
omputation with respe
t to the given 
onjun
tive predi
ate [4℄. It is easy



to see that the graph has O(jEj) verti
es, O(jEj) edges (at most three edges perevent assuming that an event that is not lo
al either sends at most one messageor re
eives at most one message but not both) and 
an be built in O(jEj) time.The sli
e 
an be 
omputed by �nding out the strongly 
onne
ted 
omponentsof the graph [4℄. Thus the algorithm has O(jEj) overall time 
omplexity. It alsogives us an O(jEj) algorithm to evaluate possibly : b when b is a 
onjun
tivepredi
ate (see Theorem 2).By de�ning a lo
al predi
ate (evaluated on an event) to be true i� the event
orresponds to a lo
al 
he
kpoint, it 
an be veri�ed that there is a zigzag path[14, 18℄ from a lo
al 
he
kpoint 
 to a lo
al 
he
kpoint 
0 in a 
omputation i� thereis a path from su

(
), if it exists, to 
0 in the 
orresponding sli
e|whi
h 
anbe as
ertained by 
omparing Jb(su

(
)) and Jb(
0). An alternative formulationof the 
onsisten
y theorem in [14℄ 
an thus be obtained as follows:Theorem 9. A set of lo
al 
he
kpoints 
an belong to the same 
onsistent globalsnapshot i� the lo
al 
he
kpoints in the set are mutually 
onsistent (in
ludingwith itself) in the 
orresponding sli
e.Moreover, the R-graph (rollba
k-dependen
y graph) [18℄ is path-equivalentto the sli
e when ea
h 
ontiguous sequen
e of false events on a pro
ess is mergedwith the nearest true event that o

urs later on the pro
ess. The minimum
onsistent global 
he
kpoint that 
ontains a set of lo
al 
he
kpoints [18℄ 
an be
omputed by taking the set union of Jb's for ea
h lo
al 
he
kpoint in the set.The maximum 
onsistent global 
he
kpoint 
an be similarly obtained by usingthe dual of Jb.8 Con
lusion and Future WorkIn this paper, the notion of sli
e introdu
ed in our earlier paper [6℄ is generalizedand its existen
e for all global predi
ates is established. The intra
tability of
omputing the sli
e, in general, is also proved. An optimal algorithm to 
omputesli
es for spe
ial 
ases of predi
ates is provided. Moreover, an eÆ
ient algorithmto graft two sli
es is also given. Appli
ation of sli
ing in general and graftingin parti
ular to global property evaluation of distributed programs is dis
ussed.Finally, the results pertaining to 
onsistent global 
he
kpoints [14, 18℄ are shownto be spe
ial 
ases of 
omputation sli
ing.As future work, we plan to study grafting in greater detail. Spe
i�
ally, weplan to 
ondu
t experiments to quantitatively evaluate its e�e
tiveness in weed-ing out unne
essary 
onsistent 
uts from examination during state spa
e sear
hfor predi
ate dete
tion. Another dire
tion for future resear
h is to extend thenotion of sli
ing to in
lude temporal predi
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