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Abstract. We generalize the notion of slice introduced in our earlier
paper [6]. A slice of a distributed computation with respect to a global
predicate is the smallest computation that contains all consistent cuts of
the original computation that satisfy the predicate. We prove that slice
exists for all global predicates. We also establish that it is, in general,
NP-complete to compute the slice. An optimal algorithm to compute
slices for special cases of predicates is provided. Further, we present an
efficient algorithm to graft two slices, that is, given two slices, either com-
pute the smallest slice that contains all consistent cuts that are common
to both slices or compute the smallest slice that contains all consistent
cuts that belong to at least one of the slices. We give application of slic-
ing in general and grafting in particular to global property evaluation
of distributed programs. Finally, we show that the results pertaining to
consistent global checkpoints [14,18] can be derived as special cases of
computation slicing.

1 Introduction

Writing distributed programs is an error prone activity; it is hard to reason about
them because they suffer from the combinatorial explosion problem. Testing and
debugging, and software fault-tolerance is an important way to ensure the reli-
ability of distributed systems. Thus it becomes necessary to develop techniques
that facilitate the analysis of distributed computations. Various abstractions
such as predicate detection (e.g., [1,3,7]) and predicate control [16,17,11] have
been defined to carry out such analysis.

In our earlier paper [6], we propose another abstraction, called computation
slice, which was defined as: a slice of a distributed computation with respect to a
global predicate is another computation that contains those and only those con-
sistent cuts (or snapshots) of the original computation that satisfy the predicate.
In [6], we also introduce a class of global predicates called regular predicates: a
global predicate is regular iff whenever two consistent cuts satisfy the predicate
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Fig.1. (a) A computation and (b) its slice with respect to (z1 = 1) A (z3 < 3).

then the cuts given by their set intersection and set union also satisfy the predi-
cate. We show that slice exists only for regular predicates and present an efficient
algorithm to compute the slice. The class of regular predicates is closed under
conjunction.

A limitation of the definition of slice in [6] is that slice exists only for a
specific class of predicates. This prompted us to weaken the definition of slice
to the smallest computation that contains all consistent cuts of the original
computation that satisfy the predicate. In this paper, we show that slice exists
for all global predicates.

The notion of computation slice is analogous to the concept of program slice
[19]. Given a program and a set of variables, a program slice consists of all
statements in the program that may affect the value of the variables in the
set at some given point. A slice could be static [19] or dynamic (for a specific
program input) [9]. The notion of a slice has been also extended to distributed
programs [8]. Program slicing has been shown to be useful in program debugging,
testing, program understanding and software maintenance [9,19]. A slice can
significantly narrow the size of the program to be analyzed, thereby making the
understanding of the program behaviour easier. We expect to reap the same
benefit from a computation slice.

Computation slicing is also useful for reducing search space for NP-complete
problems such as predicate detection [3,7,15,13]. Given a distributed computa-
tion and a global predicate, predicate detection requires finding a consistent cut
of the computation, if it exists, that satisfies the predicate. It is a fundamen-
tal problem in distributed system and arises in contexts such as software fault
tolerance, and testing and debugging.

As an illustration, suppose we want to detect the predicate (1 * z2 +x3 < 5)
A(z1 > 1) A (z3 < 3) in the computation shown in Fig. 1(a). The computation
consists of three processes Py, P, and P5 hosting integer variables z;, x5 and 3,
respectively. The events are represented by solid circles. Each event is labeled
with the value of the respective variable immediately after the event is executed.
For example, the value of variable x; immediately after executing the event ¢
is —1. The first event on each process initializes the state of the process and
every consistent cut contains these initial events. Without computation slicing,



we are forced to examine all consistent cuts of the computation, twenty eight in
total, to ascertain whether some consistent cut satisfies the predicate. Alterna-
tively, we can compute a slice of the computation with respect to the predicate
(z1 > 1) A (z3 < 3) as portrayed in Fig. 1(b). The slice is modeled by a directed
graph. Each vertex of the graph corresponds to a subset of events. If a vertex is
contained in a consistent cut, the interpretation is that all events corresponding
to the vertex are contained in the cut. Moreover, a vertex belongs to a consis-
tent cut only if all its incoming neighbours are also present in the cut. We can
now restrict our search to the consistent cuts of the slice which are only six in
number, namely {a, e, f,u,v}, {a,e, f,u,v,b}, {a,e, f,u,v,w}, {a,e, f,u,v,b,w},
{a,e, f,u,v,w, g} and {a,e, f,u,v,b,w, g}. The slice has much fewer consistent
cuts than the computation itself—exponentially smaller in many cases—resulting
in substantial savings.

We also show that the results pertaining to consistent global checkpoints
[14,18] can be derived as special cases of computation slicing. In particular,
we furnish an alternate characterization of the condition under which individual
local checkpoints can be combined with others to form a consistent global check-
point (consistency theorem by Netzer and Xu [14]): a set of local checkpoints
can belong to the same consistent global snapshot iff the local checkpoints in
the set are mutually consistent (including with itself) in the slice. Moreover, the
R-graph (rollback-dependency graph) defined by Wang [18] is a special case of
the slice. The minimum and maximum consistent global checkpoints that contain
a set of local checkpoints [18] can also be easily obtained using the slice.

In summary, this paper makes the following contributions:

— In Section 3, we generalize the notion of computation slice introduced in
our earlier paper [6]. We show that slice exists for all global predicates in
Section 4.

— We establish that it is, in general, NP-complete to determine whether a
global predicate has a non-empty slice in Section 4.

— In Section 4, an application of computation slicing to monitoring global prop-
erties in distributed systems is provided. Specifically, we give an algorithm to
determine whether a global predicate satisfying certain properties is possibly
true, invariant or controllable in a distributed computation using slicing.

— We present an efficient representation of slice in Section 5 that we use later to
devise an efficient algorithm to graft two slices in Section 6. Grafting can be
done in two ways. Given two slices, we can either compute the smallest slice
that contains all consistent cuts that are common to both slices or compute
the smallest slice that contains all consistent cuts that belong to at least
one of the slices. An efficient algorithm using grafting to compute slice for
complement of a regular predicate, called co-regular predicate, is provided.
We also show how grafting can be used to avoid examining many consistent
cuts when detecting a predicate.

— We provide an optimal algorithm to compute slices for special cases of regular
predicates in Section 7. In our earlier paper [6], the algorithm to compute
slices has O(N?|E|) time complexity, where N is the number of processes



and F is the set of events in the distributed system. The algorithm presented
in this paper has O(|E|) complexity which is optimal.

— Finally, in Section 7, we show that the results pertaining to consistent global
checkpoints [14, 18] can be derived as special cases of computation slicing.

Due to lack of space, the proofs of lemmas, theorems and corollaries, and
other details have been omitted. Interested reader can find them in the technical
report [12].

2 Model and Notation

2.1 Lattices

Given a lattice, we use M and U to denote its meet (infimum) and join (supre-
mum) operators, respectively. A lattice is distributive iff meet distributes over
join. Formally,a M (b U ¢) = (a M b) U (a M ¢).

2.2 Directed Graphs: Path- and Cut-Equivalence

Traditionally, a distributed computation is modeled by a partial order on a set of
events. We use directed graphs to model both distributed computation and slice.
Directed graphs allow us to handle both of them in a convenient and uniform
manner.

Given a directed graph G, let V(G) and E(G) denote its set of vertices and
edges, respectively. A subset of vertices of a directed graph form a consistent cut
iff the subset contains a vertex only if it contains all its incoming neighbours.
Formally,

C is a consistent cut of G = (Ve,f € V(G): (e, f) €EE(G):feC = ec ()

Observe that a consistent cut either contains all vertices in a cycle or none of
them. This observation can be generalized to a strongly connected component.
Traditionally, the notion of consistent cut (down-set or order ideal) is defined
for partially ordered sets [5]. Here, we extend the notion to sets with arbitrary
orders. Let C(G) denote the set of consistent cuts of a directed graph G. Observe
that the empty set §§ and the set of vertices V(G) trivially belong to C(G). We
call them trivial consistent cuts. The following theorem is a slight generalization
of the result in lattice theory that the set of down-sets of a partially ordered set
forms a distributive lattice [5].

Theorem 1. Given a directed graph G, (C(G); C) forms a distributive lattice.

The theorem follows from the fact that, given two consistent cuts of a graph,
the cuts given by their set intersection and set union are also consistent.

A directed graph G is cut-equivalent to a directed graph H iff they have the
same set of consistent cuts, that is, C(G) = C(H). Let P(G) denote the set of
pairs of vertices (u,v) such that there is a path from u to v in G. We assume



that each vertex has a path to itself. A directed graph G is path-equivalent to a
directed graph H iff a path from vertex u to vertex v in G implies a path from
vertex u to vertex v in H and vice versa, that is, P(G) = P(H).

Lemma 1. Let G and H be directed graphs on the same set of vertices. Then,
P(G) CP(H) = C(G) 2 C(H)

Lemma 1 implies that two directed graphs are cut-equivalent iff they are
path-equivalent. This is significant because path-equivalence can be verified in
polynomial-time (|P(G)| = O(|V(G)|?)) as compared to cut-equivalence which
is computationally expensive to ascertain in general (|C(G)| = O(2V(@))).

2.3 Distributed Computations as Directed Graphs

We assume an asynchronous distributed system [12] with the set of processes
P ={P,Ps,...,Py}. Processes communicate and synchronize with each other
by sending messages over a set of reliable channels.

A local computation of a process is described by a sequence of events that
transforms the initial state of the process into the final state. At each step, the
local state of a process is captured by the initial state and the sequence of events
that have been executed up to that step. Each event is a send event, a receive
event, or an internal event. An event causes the local state of a process to be
updated. Additionally, a send event causes a message to be sent and a receive
event causes a message to be received. We assume the presence of fictitious
initial and final events on each process P;, denoted by 1; and T;, respectively.
The initial event occurs before any other event on the process and initializes the
state of the process. The final events occurs after all other events on the process.

Let proc(e) denote the process on which event e occurs. The predecessor and
successor events of e on proc(e) are denoted by pred(e) and succ(e), respectively,
if they exist. We denote the order of events on process F; by ~p,. Let ~>p be
the union of all ~ps, 1 <7 < N, and ~, denote the reflexive closure of ~p.

We model a distributed computation (or simply a computation), denoted by
(E,—), as a directed graph with vertices as the set of events F and edges as —.
To limit our attention to only those consistent cuts that can actually occur during
an execution, we assume that, for any computation (E, —), P((F, —)) contains
at least the Lamport’s happened-before relation [10]. We assume that the set of
all initial events belong to the same strongly connected component. Similarly,
the set of all final events belong to the same strongly connected component.
This ensures that any non-trivial consistent cut will contain all initial events
and none of the final events. As a result, every consistent cut of a computation
in traditional model is a non-trivial consistent cut of the computation in our
model and vice versa. Only non-trivial consistent cuts are of real interest to us.
We will see later that our model allows us to capture empty slices in a very
convenient fashion.

A distributed computation in our model can contain cycles. This is because
whereas a computation in the happened-before model captures the observable
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Fig. 2. (a) A computation and (b) the lattice corresponding to its consistent cuts.

order of execution of events, a computation in our model captures the set of
possible consistent cuts.

A frontier of a consistent cut is the set of those events of the cut whose
successors, if they exist, are not contained in the cut. Formally,

frontier(C) = {e € C|succ(e) exists = succ(e) € C}

A consistent cut is uniquely characterized by its frontier and vice versa. Thus
sometimes, especially in figures, we specify a consistent cut by simply listing
the events in its frontier instead of enumerating all its events. Two events are
said to be consistent iff they are contained in the frontier of some consistent
cut, otherwise they are inconsistent. It can be verified that events e and f are
consistent iff there is no path in the computation from succ(e), if it exists, to f
and from succ(f), if it exists, to e. Also, note that, in our model, an event can
be inconsistent with itself. Fig. 2 depicts a computation and the lattice of its
(non-trivial) consistent cuts. A consistent cut in the figure is represented by its
frontier. For example, the consistent cut D is represented by {es, f1}.

2.4 Global Predicates

A global predicate (or simply a predicate) is a boolean-valued function defined
on variables of processes. It is evaluated on events in the frontier of a consistent
cut. Some examples are mutual exclusion and “at least one philosopher does not
have any fork”. We leave the predicate undefined for the trivial consistent cuts.
A global predicate is local iff it depends on variables of at most one process. For
example, “P; is in red state” and “P; does not have the token”.

3 Slicing a Distributed Computation

In this section, we define the notion of slice of a computation with respect to a
predicate. The definition given here is weaker than the definition given in our
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Fig. 3. (a) The sublattice of the lattice in Fig. 2(b) with respect to the predicate
((z <2)A(y>1))V(z <1), and (b) the corresponding slice.

earlier paper [6]. However, slice now exists with respect to every predicate (not
just specific predicates).

Definition 1 (Slice). A slice of a computation with respect to a predicate is the
smallest directed graph (with minimum number of consistent cuts) that contains
all consistent cuts of the original computation that satisfy the predicate.

We will later show that the smallest computation is well-defined for every
predicate. A slice of computation (E, —) with respect to a predicate b is denoted
by (E,—)p. Note that (E, =) = (E, —)twe. In the rest of the paper, we use the
terms “computation”, “slice” and “directed graph” interchangeably.

Fig. 3(a) depicts the set of consistent cuts of the computation in Fig. 2(a)
that satisfy the predicate ((z < 2) A (y > 1)) V (z < 1). The cut shown with
dashed outline does not actually satisfy the predicate but has to be included
to complete the sublattice. Fig. 3(b) depicts the slice of the computation with
respect to the predicate. In the figure, all events in a subset belong to the same
strongly connected component.

In our model, every slice derived from the computation (£, —) will have the
trivial consistent cuts () and E) among its set of consistent cuts. Consequently,
a slice is empty iff it has no non-trivial consistent cuts. In the rest of the paper,
unless otherwise stated, a consistent cut refers to a non-trivial consistent cut.

A slice of a computation with respect to a predicate is lean iff every consistent
cut of the slice satisfies the predicate.

4 Regular Predicates

A global predicate is regular iff the set of consistent cuts that satisfy the predicate
forms a sublattice of the lattice of consistent cuts [6]. Equivalently, if two consis-
tent cuts satisfy a regular predicate then the cuts given by their set intersection
and set union will also satisfy the predicate. Some examples of regular predi-
cates are any local predicate and channel predicates such as ‘there are at most
k messages in transit from P; to P;”. The class of regular predicates is closed
under conjunction [6]. We prove elsewhere [6] that the slice of a computation
with respect to a predicate is lean iff the predicate is regular. We next show how



slicing can be used to monitor predicates in distributed systems. Later, we use
the notion of regular predicates to prove that the slice exists and is well-defined
with respect to every predicate.

4.1 Using Slices to Monitor Regular Predicates

A predicate can be monitored under four modalities, namely possibly, definitely,
invariant and controllable [3,7,17,11]. A predicate is possibly true in a compu-
tation iff there is a consistent cut of the computation that satisfies the predicate.
On the other hand, a predicate definitely holds in a computation iff it eventually
becomes true in all runs of the computation (a run is a path in the lattice of
consistent cuts). The predicates invariant :b and controllable:b are duals of pred-
icates possibly: b and controllable: b, respectively. Predicate detection normally
involves detecting a predicate under possibly modality whereas predicate control
involves monitoring a predicate under controllable modality. Monitoring has ap-
plications in the areas of testing and debugging and software fault-tolerance of
distributed programs.

The next theorem describes how possibly: b, invariant: b and controllable: b
can be computed using the notion of slice when b is a regular predicate. We do
not yet know the complexity of computing definitely: b when b is regular.

Theorem 2. A regular predicate is

1. possibly true in a computation iff the slice of the computation with respect
to the predicate has at least one non-trivial consistent cut, that is, it has at
least two strongly connected components.

2. invariant in a computation iff the slice of the computation with respect to
the predicate is cut-equivalent to the computation.

3. controllable in a computation iff the slice of the computation with respect
to the predicate has the same number of strongly connected components as
the computation.

Observe that the first proposition holds for any arbitrary predicate. Since
detecting whether a predicate possibly holds in a computation is NP-complete in
general [2,15,13], it is, in general, NP-complete to determine whether a predicate
has a non-empty slice.

4.2 Regularizing a Non-Regular Predicate

In this section, we show that slice exists and is well-defined with respect to every
predicate. We know that it is true for at least regular predicates [6]. In addition,
the slice with respect to a regular predicate is lean. We exploit these facts and de-
fine a closure operator, denoted by reg, which, given a computation, converts an
arbitrary predicate into a regular predicate satisfying certain properties. Given
a computation, let R denote the set of predicates that are regular with respect
to the computation.



Definition 2 (reg). Given a predicate b, we define reg (b) as the predicate that
satisfies the following conditions:

1. it is regular, that is, reg (b) € R,

2. it is weaker than b, that is, b = reg (b), and

3. it is stronger than any other predicate that satisfies 1 and 2, that is,
(Vo' :beR: (b=>1) = (reg(b) =1b'))

Informally, reg (b) is the strongest regular predicate weaker than b. In general,
reg (b) not only depends on the predicate b but also on the computation under
consideration. We assume the dependence on computation to be implicit and
make it explicit only when necessary. The next theorem establishes that reg (b)
exists for every predicate. Observe that the slice for b is given by the slice for
reg (b). Thus slice exists and is well-defined for all predicates.

Theorem 3. Given a predicate b, reg (b) exists and is well-defined.

Thus, given a computation (£, —) and a predicate b, the slice of (E, —) with
respect to b can be obtained by first applying reg operator to b to get reg (b)
and then computing the slice of (F,—) with respect to reg (b).

Theorem 4. reg is a closure operator. Formally,

1. reg (b) is weaker than b, that is, b = reg (b),
2. reg is monotonic, that is, (b = b') = (reg(b) = reg (b)), and
3. reg is idempotent, that is, reg (reg (b)) = reg (b).

From the above theorem it follows that [5, Theorem 2.21],
Corollary 1. (R;=) forms a lattice.
The meet and join of two regular predicates b; and bs is given by

by Mby = by Aby
bll_|62 é reg(bl\/bz)

The dual notion of reg (b), the weakest regular predicate stronger than b, is
conceivable. However, such a predicate may not always be unique [12].

5 Representing a Slice

Observe that any directed graph that is cut-equivalent or path-equivalent to a
slice constitutes its valid representation. However, for computational purposes,
it is preferable to select those graphs to represent a slice that have fewer edges
and can be constructed cheaply. In this section, we show that every slice can
represented by a directed graph with O(|E|) vertices and O(N|E|) edges. Fur-
thermore, the graph can be built in O(N?|E|) time.
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Fig. 4. The skeletal representation of the slice in Fig. 3(b) (without self-loops).

Given a computation (E, —), a regular predicate b and an event e, let Jy(e)
denote the least consistent cut of (E,—) that contains e and satisfies b. If
Jp(e) does not exist then it is set to the trivial consistent cut E. Here, we
use F as a sentinel cut. Fig. 4 depicts a directed graph that represents the
slice shown in Fig. 3(b). In the figure, Jy(e1) = {L1,e1, L2} and Jy(f2) =
{Li,e1,e2, T1, Lo, f1, fa, T2}

The cut Jy(e) can also be viewed as the least consistent cut of the slice
(E, —)p that contains the event e. The results in [6] establish that it is sufficient
to know Jp(e) for each event e in order to recover the slice. In particular, a
directed graph with E as the set of vertices and an edge from an event e to an
event f iff Jy(e) C Jy(f) is cut-equivalent to the slice (F,—),. We also present
an O(N?|E|) algorithm to compute J,(e) for each event e. However, the graph
so obtained can have as many as 2(|E|?) edges.

Let Fy(e,i) denote the earliest event f on P; such that Jy(e) C Jp(f). In-
formally, F}(e, ) is the earliest event on P; that is reachable from e in the slice
(E, —)p. For example, in Fig. 4, Fy(e1,1) = e; and Fy(e1,2) = fo. Given Jy(e)
for each event e, Fy(e, i) for each event e and process P; can be computed in
O(N|E|) time [12]. We now construct a directed graph that we call the skeletal
representation of the slice with respect to b and denote it by Gy. The graph Gy
has E as the set of vertices and the following edges: (1) for each event e, that
is not a final event, there is an edge from e to succ(e), and (2) for each event e
and process P;, there is an edge from e to Fy(e,1).

The skeletal representation of the slice depicted in Fig. 3(b) is shown in Fig. 4.
To prove that the graph G} is actually cut-equivalent to the slice (E, —), it
suffices to show the following:

Theorem 5. For events e and f, Jy(e) C Jy(f) = (e, f) € P(Gp).

Besides having computational benefits, the skeletal representation of a slice
can be used to devise a simple and efficient algorithm to graft two slices.

6 Grafting Two Slices

In this section, we present algorithm to graft two slices which can be done with
respect to meet or join. Informally, the former case corresponds to the smallest
slice that contains all consistent cuts common to both slices whereas the latter
case corresponds to the smallest slice that contains consistent cuts of both slices.



In other words, given slices (E, —);, and (E,—);,, where b; and bs are regular
predicates, we provide algorithm to compute the slice (E, —);, where b is either
by M by = by A be or by LI by = reg (b1 V be). Grafting enables us to compute the
slice for an arbitrary boolean expression of local predicates—by rewriting it in
DNF—although it may require exponential time in the worst case. Later, in this
section, we present an efficient algorithm based on grafting to compute slice for
a co-regular predicate (complement of a regular predicate). We also show how
grafting can be used to avoid examining many consistent cuts when detecting a
predicate under possibly modality.

6.1 Grafting with respect to Meet: b = b; M by = b; A by

In this case, the slice (E,—); contains a consistent cut of (E,—) iff the cut
satisfies b, as well as by. Let Fn(e,i) denote the earlier of events Fy,(e,1)
and Fp, (e, 1), that is, Fiuin(e, ) = min{Fy, (e, ), Fy,(e,7)}. The following lemma
establishes that, for each event e and process P;, Fi,in(€,%) cannot occur before
Fb(e,i).

Lemma 2. For each event e and process P;, Fy(e,i) ~p Fiin(e, ).

We now construct a directed graph G.,in, which is similar to Gy, the skeletal
representation for (£, —);, except that we use Fi,i, (e, 1) instead of Fy(e, ) in its
construction. The next theorem proves that G, is cut-equivalent to Gy.

Theorem 6. G, is cut-equivalent to Gy.

Roughly speaking, the aforementioned algorithm computes the union of the
sets of edges of each slice. Note that, in general, Fj(e,i) need not be same as
Finin(e,7) [12]. This algorithm can be generalized to conjunction of an arbitrary
number of regular predicates.

6.2 Grafting with respect to Join: b = b; LI by = reg(by V by)

In this case, the slice (F, —); contains a consistent cut of (E, —) if the cut satis-
fies either b; or by. The dual of the graph G,i,—min replaced by max—denoted
by Gumax (surprisingly) turns out to be cut-equivalent to the slice (E, —);. As
before, let Fi,.x(e,i) denote the later of events Fj, (e,i) and Fj,(e, i), that is,
Fax(e,t) = max{Fy, (e,i), Fp,(e,1)}. The following lemma establishes that, for
each event e and process P;, Fy(e,i) cannot occur before Fp.x(e,1).

Lemma 3. For each event e and process P;, Fnax(e,i) ~p Fy(e,i).

We now construct a directed graph G, that is similar to Gj, the skeletal
representation for (E, —);, except that we use Fp.x(e, 1) instead of Fy(e,i) in
its construction. The next theorem proves that G,.x is cut-equivalent to G.

Theorem 7. G, is cut-equivalent to Gy.

Intuitively, the above-mentioned algorithm computes the intersection of the
sets of edges of each slice. In this case, in contrast to the former case, Fy(e,1)
is actually identical to Fi,ax(e,?) [12]. This algorithm can be generalized to dis-
junction of an arbitrary number of regular predicates.



6.3 Applications of Grafting

Computing Slice for a Co-Regular Predicate. Given a regular predicate,
we give an algorithm to compute the slice of a computation with respect to
its negation—a co-regular predicate. In particular, we express the negation as
disjunction of polynomial number of regular predicates. The slice can then be
computed by grafting together slices for each disjunct.

Let (F,—) be a computation and (E, —);, be its slice with respect to a regular
predicate b. For convenience, let —; be the edge relation for the slice. We assume
that both — and — are transitive relations. Our objective is to find a property
that distinguishes the consistent cuts that belong to the slice from the consistent
cuts that do not. Consider events e and f such that e /A f but e —; f. Then,
clearly, a consistent cut that contains f but does not contain e cannot belong
to the slice. On the other hand, every consistent cut of the slice that contains f
also contains e. This motivates us to define a predicate prevents(f, e) as follows:

C satisfies prevents(f,e) = (f€C) A (egO)

It can be proved that prevents(f,e) is a regular predicate [12]. It turns out
that every consistent cut that does not belong to the slice satisfies prevents(f, e)
for some events e and f such that (e /& f) A (e = f) holds. Formally,

Theorem 8. Let C be a consistent cut of (E,—). Then,
C satisfies =b = (Fe, f:(e = f)A(es f): C satisfies prevents(f,e))

Theorem 8 implies that —b can be expressed as disjunction of prevents’.

Pruning State Space for Predicate Detection. Detecting a predicate under
possibly modality is NP-complete in general [2,15,13]. Using grafting, we can
reduce the search space for predicates composed from local predicates using —,
A and V operators. We first transform the predicate into an equivalent predicate
in which — is applied directly to the local predicates and never to more complex
expressions. Observe that the negation of a local predicate is also a local pred-
icate. We start by computing slices with respect to these local predicates. This
can be done because a local predicate is regular and hence the algorithm given
in [6] can be used to compute the slice. We then recursively graft slices together,
with respect to the appropriate operator, working our way out from the local
predicates until we reach the whole predicate. This will give us a slice of the
computation—not necessarily the smallest—which contains all consistent cuts
of the computation that satisfy the predicate. In many cases, the slice obtained
will be much smaller than the computation itself enabling us to ignore many
consistent cuts in our search.

For example, suppose we wish to compute the slice of a computation with
respect to the predicate (x1 V z2) A (23 V z4), where z; is a boolean variable
on process p;. As explained, we first compute slices for the local predicates x1,
Zo, 3 and x4. We then graft the first two and the last two slices together with



Fig. 5. An optimal algorithm to compute the slice for a conjunctive predicate.

respect to join to obtain slices for the clauses z; V z2 and z3 V x4, respectively.
Finally, we graft the slices for both clauses together with respect to meet to get
the slice for the predicate reg (z1 V z2) Areg (3 V x4) which, in general, is larger
than the slice for the predicate (z1 V z2) A (23 V 24) but much smaller than the
computation itself.

The result of Section 6.3 allows us to generalize this approach to predicates
composed from arbitrary regular predicates using —, A and V operators. We
plan to conduct experiments to quantitatively evaluate the effectiveness of our
approach. Although our focus is on detecting predicates under possibly modality,
slicing can be used to prune search space for monitoring predicates under other
modalities too.

7 Optimal Algorithm for Slicing

The algorithm we presented in [6] to compute slices for regular predicates has
O(N?|E|) time complexity, where N is the number of processes and E is the
set of events. In this section we present an optimal algorithm for computing
slices for special cases of regular predicates. Our algorithm will have O(|E|)
time complexity. Due to lack of space, only the optimal algorithm for conjunctive
predicates is presented. The optimal algorithm for other regular predicates such
as channel predicates can be found elsewhere [12].

A conjunctive predicate is a conjunction of local predicates. For example, “P;
is in red state” A “P; is in green state” A “Ps is in blue state”. Given a set of
local predicates, one for each process, we can categorize events on each process
into true events and false events. An event is a true event iff the corresponding
local predicate evaluates to true, otherwise it is a false event.

To compute the slice of a computation for a conjunctive predicate, we con-
struct a directed graph with vertices as events in the computation and the follow-
ing edges: (1) from an event, that is not a final event, to its successor, (2) from
a send event to the corresponding receive event, and (3) from the successor of a
false event to the false event.

For the purpose of building the graph, we assume that all final events are true
events. Thus every false event has a successor. The first two kinds of edges en-
sure that the Lamport’s happened-before relation is captured in the graph. The
algorithm is illustrated Fig. 5. In the figure, all true events have been encircled.

It can be proved that the directed graph obtained is cut-equivalent to the slice
of the computation with respect to the given conjunctive predicate [4]. It is easy



to see that the graph has O(|E|) vertices, O(| E|) edges (at most three edges per
event assuming that an event that is not local either sends at most one message
or receives at most one message but not both) and can be built in O(|E|) time.
The slice can be computed by finding out the strongly connected components
of the graph [4]. Thus the algorithm has O(|E|) overall time complexity. It also
gives us an O(|E|) algorithm to evaluate possibly: b when b is a conjunctive
predicate (see Theorem 2).

By defining a local predicate (evaluated on an event) to be true iff the event
corresponds to a local checkpoint, it can be verified that there is a zigzag path
[14, 18] from a local checkpoint ¢ to a local checkpoint ¢’ in a computation iff there
is a path from succ(c), if it exists, to ¢’ in the corresponding slice—which can
be ascertained by comparing J;(succ(c)) and Jy(c'). An alternative formulation
of the consistency theorem in [14] can thus be obtained as follows:

Theorem 9. A set of local checkpoints can belong to the same consistent global
snapshot iff the local checkpoints in the set are mutually consistent (including
with itself) in the corresponding slice.

Moreover, the R-graph (rollback-dependency graph) [18] is path-equivalent
to the slice when each contiguous sequence of false events on a process is merged
with the nearest true event that occurs later on the process. The minimum
consistent global checkpoint that contains a set of local checkpoints [18] can be
computed by taking the set union of Jp’s for each local checkpoint in the set.
The maximum consistent global checkpoint can be similarly obtained by using
the dual of J,.

8 Conclusion and Future Work

In this paper, the notion of slice introduced in our earlier paper [6] is generalized
and its existence for all global predicates is established. The intractability of
computing the slice, in general, is also proved. An optimal algorithm to compute
slices for special cases of predicates is provided. Moreover, an efficient algorithm
to graft two slices is also given. Application of slicing in general and grafting
in particular to global property evaluation of distributed programs is discussed.
Finally, the results pertaining to consistent global checkpoints [14, 18] are shown
to be special cases of computation slicing.

As future work, we plan to study grafting in greater detail. Specifically, we
plan to conduct experiments to quantitatively evaluate its effectiveness in weed-
ing out unnecessary consistent cuts from examination during state space search
for predicate detection. Another direction for future research is to extend the
notion of slicing to include temporal predicates.
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