
Computation Sli
ing: Te
hniques and TheoryNeeraj Mittal1 and Vijay K. Garg2?1 Department of Computer S
ien
esThe University of Texas at Austin, Austin, TX 78712, USAneerajm�
s.utexas.edu http://www.
s.utexas.edu/users/neerajm2 Department of Ele
tri
al and Computer EngineeringThe University of Texas at Austin, Austin, TX 78712, USAgarg�e
e.utexas.edu http://www.e
e.utexas.edu/~gargAbstra
t. We generalize the notion of sli
e introdu
ed in our earlierpaper [6℄. A sli
e of a distributed
omputation with respe
t to a globalpredi
ate is the smallest
omputation that
ontains all
onsistent
uts ofthe original
omputation that satisfy the predi
ate. We prove that sli
eexists for all global predi
ates. We also establish that it is, in general,NP-
omplete to
ompute the sli
e. An optimal algorithm to
omputesli
es for spe
ial
ases of predi
ates is provided. Further, we present aneÆ
ient algorithm to graft two sli
es, that is, given two sli
es, either
om-pute the smallest sli
e that
ontains all
onsistent
uts that are
ommonto both sli
es or
ompute the smallest sli
e that
ontains all
onsistent
uts that belong to at least one of the sli
es. We give appli
ation of sli
-ing in general and grafting in parti
ular to global property evaluationof distributed programs. Finally, we show that the results pertaining to
onsistent global
he
kpoints [14, 18℄
an be derived as spe
ial
ases of
omputation sli
ing.1 Introdu
tionWriting distributed programs is an error prone a
tivity; it is hard to reason aboutthem be
ause they su�er from the
ombinatorial explosion problem. Testing anddebugging, and software fault-toleran
e is an important way to ensure the reli-ability of distributed systems. Thus it be
omes ne
essary to develop te
hniquesthat fa
ilitate the analysis of distributed
omputations. Various abstra
tionssu
h as predi
ate dete
tion (e.g., [1, 3, 7℄) and predi
ate
ontrol [16, 17, 11℄ havebeen de�ned to
arry out su
h analysis.In our earlier paper [6℄, we propose another abstra
tion,
alled
omputationsli
e, whi
h was de�ned as: a sli
e of a distributed
omputation with respe
t to aglobal predi
ate is another
omputation that
ontains those and only those
on-sistent
uts (or snapshots) of the original
omputation that satisfy the predi
ate.In [6℄, we also introdu
e a
lass of global predi
ates
alled regular predi
ates: aglobal predi
ate is regular i� whenever two
onsistent
uts satisfy the predi
ate? supported in part by the NSF Grants ECS-9907213, CCR-9988225, Texas Edu
ationBoard Grant ARP-320, an Engineering Foundation Fellowship, and an IBM grant.

x2P2

x3P3

x1P1

2
{w} {g}

{a,e,f,u,v} {b}

(b)(a)

0

4 4

1 −1 02

2

1

1 3

a b c d

e hf g

xwvuFig. 1. (a) A
omputation and (b) its sli
e with respe
t to (x1 > 1) ^ (x3 6 3).then the
uts given by their set interse
tion and set union also satisfy the predi-
ate. We show that sli
e exists only for regular predi
ates and present an eÆ
ientalgorithm to
ompute the sli
e. The
lass of regular predi
ates is
losed under
onjun
tion.A limitation of the de�nition of sli
e in [6℄ is that sli
e exists only for aspe
i�

lass of predi
ates. This prompted us to weaken the de�nition of sli
eto the smallest
omputation that
ontains all
onsistent
uts of the original
omputation that satisfy the predi
ate. In this paper, we show that sli
e existsfor all global predi
ates.The notion of
omputation sli
e is analogous to the
on
ept of program sli
e[19℄. Given a program and a set of variables, a program sli
e
onsists of allstatements in the program that may a�e
t the value of the variables in theset at some given point. A sli
e
ould be stati
 [19℄ or dynami
 (for a spe
i�
program input) [9℄. The notion of a sli
e has been also extended to distributedprograms [8℄. Program sli
ing has been shown to be useful in program debugging,testing, program understanding and software maintenan
e [9, 19℄. A sli
e
ansigni�
antly narrow the size of the program to be analyzed, thereby making theunderstanding of the program behaviour easier. We expe
t to reap the samebene�t from a
omputation sli
e.Computation sli
ing is also useful for redu
ing sear
h spa
e for NP-
ompleteproblems su
h as predi
ate dete
tion [3, 7, 15, 13℄. Given a distributed
omputa-tion and a global predi
ate, predi
ate dete
tion requires �nding a
onsistent
utof the
omputation, if it exists, that satis�es the predi
ate. It is a fundamen-tal problem in distributed system and arises in
ontexts su
h as software faulttoleran
e, and testing and debugging.As an illustration, suppose we want to dete
t the predi
ate (x1 �x2+x3 < 5)^(x1 > 1) ^ (x3 6 3) in the
omputation shown in Fig. 1(a). The
omputation
onsists of three pro
esses P1, P2 and P3 hosting integer variables x1, x2 and x3,respe
tively. The events are represented by solid
ir
les. Ea
h event is labeledwith the value of the respe
tive variable immediately after the event is exe
uted.For example, the value of variable x1 immediately after exe
uting the event
is �1. The �rst event on ea
h pro
ess initializes the state of the pro
ess andevery
onsistent
ut
ontains these initial events. Without
omputation sli
ing,

we are for
ed to examine all
onsistent
uts of the
omputation, twenty eight intotal, to as
ertain whether some
onsistent
ut satis�es the predi
ate. Alterna-tively, we
an
ompute a sli
e of the
omputation with respe
t to the predi
ate(x1 > 1) ^ (x3 6 3) as portrayed in Fig. 1(b). The sli
e is modeled by a dire
tedgraph. Ea
h vertex of the graph
orresponds to a subset of events. If a vertex is
ontained in a
onsistent
ut, the interpretation is that all events
orrespondingto the vertex are
ontained in the
ut. Moreover, a vertex belongs to a
onsis-tent
ut only if all its in
oming neighbours are also present in the
ut. We
annow restri
t our sear
h to the
onsistent
uts of the sli
e whi
h are only six innumber, namely fa; e; f; u; vg, fa; e; f; u; v; bg, fa; e; f; u; v; wg, fa; e; f; u; v; b; wg,fa; e; f; u; v; w; gg and fa; e; f; u; v; b; w; gg. The sli
e has mu
h fewer
onsistent
uts than the
omputation itself|exponentially smaller in many
ases|resultingin substantial savings.We also show that the results pertaining to
onsistent global
he
kpoints[14, 18℄
an be derived as spe
ial
ases of
omputation sli
ing. In parti
ular,we furnish an alternate
hara
terization of the
ondition under whi
h individuallo
al
he
kpoints
an be
ombined with others to form a
onsistent global
he
k-point (
onsisten
y theorem by Netzer and Xu [14℄): a set of lo
al
he
kpoints
an belong to the same
onsistent global snapshot i� the lo
al
he
kpoints inthe set are mutually
onsistent (in
luding with itself) in the sli
e. Moreover, theR-graph (rollba
k-dependen
y graph) de�ned by Wang [18℄ is a spe
ial
ase ofthe sli
e. The minimum and maximum
onsistent global
he
kpoints that
ontaina set of lo
al
he
kpoints [18℄
an also be easily obtained using the sli
e.In summary, this paper makes the following
ontributions:{ In Se
tion 3, we generalize the notion of
omputation sli
e introdu
ed inour earlier paper [6℄. We show that sli
e exists for all global predi
ates inSe
tion 4.{ We establish that it is, in general, NP-
omplete to determine whether aglobal predi
ate has a non-empty sli
e in Se
tion 4.{ In Se
tion 4, an appli
ation of
omputation sli
ing to monitoring global prop-erties in distributed systems is provided. Spe
i�
ally, we give an algorithm todetermine whether a global predi
ate satisfying
ertain properties is possiblytrue, invariant or
ontrollable in a distributed
omputation using sli
ing.{ We present an eÆ
ient representation of sli
e in Se
tion 5 that we use later todevise an eÆ
ient algorithm to graft two sli
es in Se
tion 6. Grafting
an bedone in two ways. Given two sli
es, we
an either
ompute the smallest sli
ethat
ontains all
onsistent
uts that are
ommon to both sli
es or
omputethe smallest sli
e that
ontains all
onsistent
uts that belong to at leastone of the sli
es. An eÆ
ient algorithm using grafting to
ompute sli
e for
omplement of a regular predi
ate,
alled
o-regular predi
ate, is provided.We also show how grafting
an be used to avoid examining many
onsistent
uts when dete
ting a predi
ate.{ We provide an optimal algorithm to
ompute sli
es for spe
ial
ases of regularpredi
ates in Se
tion 7. In our earlier paper [6℄, the algorithm to
omputesli
es has O(N2jEj) time
omplexity, where N is the number of pro
esses

and E is the set of events in the distributed system. The algorithm presentedin this paper has O(jEj)
omplexity whi
h is optimal.{ Finally, in Se
tion 7, we show that the results pertaining to
onsistent global
he
kpoints [14, 18℄
an be derived as spe
ial
ases of
omputation sli
ing.Due to la
k of spa
e, the proofs of lemmas, theorems and
orollaries, andother details have been omitted. Interested reader
an �nd them in the te
hni
alreport [12℄.2 Model and Notation2.1 Latti
esGiven a latti
e, we use u and t to denote its meet (in�mum) and join (supre-mum) operators, respe
tively. A latti
e is distributive i� meet distributes overjoin. Formally, a u (b t
) � (a u b) t (a u
).2.2 Dire
ted Graphs: Path- and Cut-Equivalen
eTraditionally, a distributed
omputation is modeled by a partial order on a set ofevents. We use dire
ted graphs to model both distributed
omputation and sli
e.Dire
ted graphs allow us to handle both of them in a
onvenient and uniformmanner.Given a dire
ted graph G, let V(G) and E(G) denote its set of verti
es andedges, respe
tively. A subset of verti
es of a dire
ted graph form a
onsistent
uti� the subset
ontains a vertex only if it
ontains all its in
oming neighbours.Formally,C is a
onsistent
ut of G , h8e; f 2 V(G) : (e; f) 2 E(G) : f 2 C) e 2 CiObserve that a
onsistent
ut either
ontains all verti
es in a
y
le or none ofthem. This observation
an be generalized to a strongly
onne
ted
omponent.Traditionally, the notion of
onsistent
ut (down-set or order ideal) is de�nedfor partially ordered sets [5℄. Here, we extend the notion to sets with arbitraryorders. Let C(G) denote the set of
onsistent
uts of a dire
ted graph G. Observethat the empty set ; and the set of verti
es V(G) trivially belong to C(G). We
all them trivial
onsistent
uts. The following theorem is a slight generalizationof the result in latti
e theory that the set of down-sets of a partially ordered setforms a distributive latti
e [5℄.Theorem 1. Given a dire
ted graph G, hC(G);�i forms a distributive latti
e.The theorem follows from the fa
t that, given two
onsistent
uts of a graph,the
uts given by their set interse
tion and set union are also
onsistent.A dire
ted graph G is
ut-equivalent to a dire
ted graph H i� they have thesame set of
onsistent
uts, that is, C(G) = C(H). Let P(G) denote the set ofpairs of verti
es (u; v) su
h that there is a path from u to v in G. We assume

that ea
h vertex has a path to itself. A dire
ted graph G is path-equivalent to adire
ted graph H i� a path from vertex u to vertex v in G implies a path fromvertex u to vertex v in H and vi
e versa, that is, P(G) = P(H).Lemma 1. Let G and H be dire
ted graphs on the same set of verti
es. Then,P(G) � P(H) � C(G) � C(H)Lemma 1 implies that two dire
ted graphs are
ut-equivalent i� they arepath-equivalent. This is signi�
ant be
ause path-equivalen
e
an be veri�ed inpolynomial-time (jP(G)j = O(jV(G)j2)) as
ompared to
ut-equivalen
e whi
his
omputationally expensive to as
ertain in general (jC(G)j = O(2jV(G)j)).2.3 Distributed Computations as Dire
ted GraphsWe assume an asyn
hronous distributed system [12℄ with the set of pro
essesP = fP1; P2; : : : ; PNg. Pro
esses
ommuni
ate and syn
hronize with ea
h otherby sending messages over a set of reliable
hannels.A lo
al
omputation of a pro
ess is des
ribed by a sequen
e of events thattransforms the initial state of the pro
ess into the �nal state. At ea
h step, thelo
al state of a pro
ess is
aptured by the initial state and the sequen
e of eventsthat have been exe
uted up to that step. Ea
h event is a send event, a re
eiveevent, or an internal event. An event
auses the lo
al state of a pro
ess to beupdated. Additionally, a send event
auses a message to be sent and a re
eiveevent
auses a message to be re
eived. We assume the presen
e of �
titiousinitial and �nal events on ea
h pro
ess Pi, denoted by ?i and >i, respe
tively.The initial event o

urs before any other event on the pro
ess and initializes thestate of the pro
ess. The �nal events o

urs after all other events on the pro
ess.Let pro
(e) denote the pro
ess on whi
h event e o

urs. The prede
essor andsu

essor events of e on pro
(e) are denoted by pred(e) and su

(e), respe
tively,if they exist. We denote the order of events on pro
ess Pi by ;Pi . Let ;P bethe union of all ;Pis, 1 6 i 6 N , and ;P denote the re
exive
losure of ;P .We model a distributed
omputation (or simply a
omputation), denoted byhE;!i, as a dire
ted graph with verti
es as the set of events E and edges as!.To limit our attention to only those
onsistent
uts that
an a
tually o

ur duringan exe
ution, we assume that, for any
omputation hE;!i, P(hE;!i)
ontainsat least the Lamport's happened-before relation [10℄. We assume that the set ofall initial events belong to the same strongly
onne
ted
omponent. Similarly,the set of all �nal events belong to the same strongly
onne
ted
omponent.This ensures that any non-trivial
onsistent
ut will
ontain all initial eventsand none of the �nal events. As a result, every
onsistent
ut of a
omputationin traditional model is a non-trivial
onsistent
ut of the
omputation in ourmodel and vi
e versa. Only non-trivial
onsistent
uts are of real interest to us.We will see later that our model allows us to
apture empty sli
es in a very
onvenient fashion.A distributed
omputation in our model
an
ontain
y
les. This is be
ausewhereas a
omputation in the happened-before model
aptures the observable

1
e

1
e

2 1

2
f
2

f
12

f
1

f
1

f
2

f
2

2e
2

e
1

21e

1

1 1f

e
2

e2

1
e}

, }

{ }

{

}{ }

P

P

1

2 {,

{

y

x {

{

,

0 1 3

2 01

{ }, 2

, }

, ,

, }

DD

(b)

(a)Fig. 2. (a) A
omputation and (b) the latti
e
orresponding to its
onsistent
uts.order of exe
ution of events, a
omputation in our model
aptures the set ofpossible
onsistent
uts.A frontier of a
onsistent
ut is the set of those events of the
ut whosesu

essors, if they exist, are not
ontained in the
ut. Formally,frontier(C) , fe 2 C j su

(e) exists) su

(e) 62 CgA
onsistent
ut is uniquely
hara
terized by its frontier and vi
e versa. Thussometimes, espe
ially in �gures, we spe
ify a
onsistent
ut by simply listingthe events in its frontier instead of enumerating all its events. Two events aresaid to be
onsistent i� they are
ontained in the frontier of some
onsistent
ut, otherwise they are in
onsistent. It
an be veri�ed that events e and f are
onsistent i� there is no path in the
omputation from su

(e), if it exists, to fand from su

(f), if it exists, to e. Also, note that, in our model, an event
anbe in
onsistent with itself. Fig. 2 depi
ts a
omputation and the latti
e of its(non-trivial)
onsistent
uts. A
onsistent
ut in the �gure is represented by itsfrontier. For example, the
onsistent
ut D is represented by fe2; f1g.2.4 Global Predi
atesA global predi
ate (or simply a predi
ate) is a boolean-valued fun
tion de�nedon variables of pro
esses. It is evaluated on events in the frontier of a
onsistent
ut. Some examples are mutual ex
lusion and \at least one philosopher does nothave any fork". We leave the predi
ate unde�ned for the trivial
onsistent
uts.A global predi
ate is lo
al i� it depends on variables of at most one pro
ess. Forexample, \Pi is in red state" and \Pi does not have the token".3 Sli
ing a Distributed ComputationIn this se
tion, we de�ne the notion of sli
e of a
omputation with respe
t to apredi
ate. The de�nition given here is weaker than the de�nition given in our

f
1{ } 2f

2 1
e

2 , , , }{

1 2,{ } e
1{ }

f
1

e
1

21e

1

1 1f

{

}{ }{, ,

{ }, 2

, }

(b)(a)Fig. 3. (a) The sublatti
e of the latti
e in Fig. 2(b) with respe
t to the predi
ate((x < 2) ^ (y > 1))W(x < 1), and (b) the
orresponding sli
e.earlier paper [6℄. However, sli
e now exists with respe
t to every predi
ate (notjust spe
i�
 predi
ates).De�nition 1 (Sli
e). A sli
e of a
omputation with respe
t to a predi
ate is thesmallest dire
ted graph (with minimum number of
onsistent
uts) that
ontainsall
onsistent
uts of the original
omputation that satisfy the predi
ate.We will later show that the smallest
omputation is well-de�ned for everypredi
ate. A sli
e of
omputation hE;!i with respe
t to a predi
ate b is denotedby hE;!ib. Note that hE;!i = hE;!itrue. In the rest of the paper, we use theterms \
omputation", \sli
e" and \dire
ted graph" inter
hangeably.Fig. 3(a) depi
ts the set of
onsistent
uts of the
omputation in Fig. 2(a)that satisfy the predi
ate ((x < 2) ^ (y > 1)) W (x < 1). The
ut shown withdashed outline does not a
tually satisfy the predi
ate but has to be in
ludedto
omplete the sublatti
e. Fig. 3(b) depi
ts the sli
e of the
omputation withrespe
t to the predi
ate. In the �gure, all events in a subset belong to the samestrongly
onne
ted
omponent.In our model, every sli
e derived from the
omputation hE;!i will have thetrivial
onsistent
uts (; and E) among its set of
onsistent
uts. Consequently,a sli
e is empty i� it has no non-trivial
onsistent
uts. In the rest of the paper,unless otherwise stated, a
onsistent
ut refers to a non-trivial
onsistent
ut.A sli
e of a
omputation with respe
t to a predi
ate is lean i� every
onsistent
ut of the sli
e satis�es the predi
ate.4 Regular Predi
atesA global predi
ate is regular i� the set of
onsistent
uts that satisfy the predi
ateforms a sublatti
e of the latti
e of
onsistent
uts [6℄. Equivalently, if two
onsis-tent
uts satisfy a regular predi
ate then the
uts given by their set interse
tionand set union will also satisfy the predi
ate. Some examples of regular predi-
ates are any lo
al predi
ate and
hannel predi
ates su
h as `there are at mostk messages in transit from Pi to Pj". The
lass of regular predi
ates is
losedunder
onjun
tion [6℄. We prove elsewhere [6℄ that the sli
e of a
omputationwith respe
t to a predi
ate is lean i� the predi
ate is regular. We next show how

sli
ing
an be used to monitor predi
ates in distributed systems. Later, we usethe notion of regular predi
ates to prove that the sli
e exists and is well-de�nedwith respe
t to every predi
ate.4.1 Using Sli
es to Monitor Regular Predi
atesA predi
ate
an be monitored under four modalities, namely possibly, definitely,invariant and
ontrollable [3, 7, 17, 11℄. A predi
ate is possibly true in a
ompu-tation i� there is a
onsistent
ut of the
omputation that satis�es the predi
ate.On the other hand, a predi
ate de�nitely holds in a
omputation i� it eventuallybe
omes true in all runs of the
omputation (a run is a path in the latti
e of
onsistent
uts). The predi
ates invariant :b and
ontrollable :b are duals of pred-i
ates possibly : b and
ontrollable : b, respe
tively. Predi
ate dete
tion normallyinvolves dete
ting a predi
ate under possibly modality whereas predi
ate
ontrolinvolves monitoring a predi
ate under
ontrollable modality. Monitoring has ap-pli
ations in the areas of testing and debugging and software fault-toleran
e ofdistributed programs.The next theorem des
ribes how possibly : b, invariant : b and
ontrollable : b
an be
omputed using the notion of sli
e when b is a regular predi
ate. We donot yet know the
omplexity of
omputing definitely : b when b is regular.Theorem 2. A regular predi
ate is1. possibly true in a
omputation i� the sli
e of the
omputation with respe
tto the predi
ate has at least one non-trivial
onsistent
ut, that is, it has atleast two strongly
onne
ted
omponents.2. invariant in a
omputation i� the sli
e of the
omputation with respe
t tothe predi
ate is
ut-equivalent to the
omputation.3.
ontrollable in a
omputation i� the sli
e of the
omputation with respe
tto the predi
ate has the same number of strongly
onne
ted
omponents asthe
omputation.Observe that the �rst proposition holds for any arbitrary predi
ate. Sin
edete
ting whether a predi
ate possibly holds in a
omputation is NP-
omplete ingeneral [2, 15, 13℄, it is, in general, NP-
omplete to determine whether a predi
atehas a non-empty sli
e.4.2 Regularizing a Non-Regular Predi
ateIn this se
tion, we show that sli
e exists and is well-de�ned with respe
t to everypredi
ate. We know that it is true for at least regular predi
ates [6℄. In addition,the sli
e with respe
t to a regular predi
ate is lean. We exploit these fa
ts and de-�ne a
losure operator, denoted by reg, whi
h, given a
omputation,
onverts anarbitrary predi
ate into a regular predi
ate satisfying
ertain properties. Givena
omputation, let R denote the set of predi
ates that are regular with respe
tto the
omputation.

De�nition 2 (reg). Given a predi
ate b, we de�ne reg (b) as the predi
ate thatsatis�es the following
onditions:1. it is regular, that is, reg (b) 2 R,2. it is weaker than b, that is, b) reg (b), and3. it is stronger than any other predi
ate that satis�es 1 and 2, that is,h8 b0 : b0 2 R : (b) b0)) (reg (b)) b0)iInformally, reg (b) is the strongest regular predi
ate weaker than b. In general,reg (b) not only depends on the predi
ate b but also on the
omputation under
onsideration. We assume the dependen
e on
omputation to be impli
it andmake it expli
it only when ne
essary. The next theorem establishes that reg (b)exists for every predi
ate. Observe that the sli
e for b is given by the sli
e forreg (b). Thus sli
e exists and is well-de�ned for all predi
ates.Theorem 3. Given a predi
ate b, reg (b) exists and is well-de�ned.Thus, given a
omputation hE;!i and a predi
ate b, the sli
e of hE;!i withrespe
t to b
an be obtained by �rst applying reg operator to b to get reg (b)and then
omputing the sli
e of hE;!i with respe
t to reg (b).Theorem 4. reg is a
losure operator. Formally,1. reg (b) is weaker than b, that is, b) reg (b),2. reg is monotoni
, that is, (b) b0)) (reg (b)) reg (b0)), and3. reg is idempotent, that is, reg (reg (b)) � reg (b).From the above theorem it follows that [5, Theorem 2.21℄,Corollary 1. hR;)i forms a latti
e.The meet and join of two regular predi
ates b1 and b2 is given byb1 u b2 , b1 ^ b2b1 t b2 , reg (b1 _ b2)The dual notion of reg (b), the weakest regular predi
ate stronger than b, is
on
eivable. However, su
h a predi
ate may not always be unique [12℄.5 Representing a Sli
eObserve that any dire
ted graph that is
ut-equivalent or path-equivalent to asli
e
onstitutes its valid representation. However, for
omputational purposes,it is preferable to sele
t those graphs to represent a sli
e that have fewer edgesand
an be
onstru
ted
heaply. In this se
tion, we show that every sli
e
anrepresented by a dire
ted graph with O(jEj) verti
es and O(N jEj) edges. Fur-thermore, the graph
an be built in O(N2jEj) time.

1
e

1
e

2 1

2
f
2

f
12

P

P

1

2Fig. 4. The skeletal representation of the sli
e in Fig. 3(b) (without self-loops).Given a
omputation hE;!i, a regular predi
ate b and an event e, let Jb(e)denote the least
onsistent
ut of hE;!i that
ontains e and satis�es b. IfJb(e) does not exist then it is set to the trivial
onsistent
ut E. Here, weuse E as a sentinel
ut. Fig. 4 depi
ts a dire
ted graph that represents thesli
e shown in Fig. 3(b). In the �gure, Jb(e1) = f?1; e1;?2g and Jb(f2) =f?1; e1; e2;>1;?2; f1; f2;>2g.The
ut Jb(e)
an also be viewed as the least
onsistent
ut of the sli
ehE;!ib that
ontains the event e. The results in [6℄ establish that it is suÆ
ientto know Jb(e) for ea
h event e in order to re
over the sli
e. In parti
ular, adire
ted graph with E as the set of verti
es and an edge from an event e to anevent f i� Jb(e) � Jb(f) is
ut-equivalent to the sli
e hE;!ib. We also presentan O(N2jEj) algorithm to
ompute Jb(e) for ea
h event e. However, the graphso obtained
an have as many as
(jEj2) edges.Let Fb(e; i) denote the earliest event f on Pi su
h that Jb(e) � Jb(f). In-formally, Fb(e; i) is the earliest event on Pi that is rea
hable from e in the sli
ehE;!ib. For example, in Fig. 4, Fb(e1; 1) = e1 and Fb(e1; 2) = f2. Given Jb(e)for ea
h event e, Fb(e; i) for ea
h event e and pro
ess Pi
an be
omputed inO(N jEj) time [12℄. We now
onstru
t a dire
ted graph that we
all the skeletalrepresentation of the sli
e with respe
t to b and denote it by Gb. The graph Gbhas E as the set of verti
es and the following edges: (1) for ea
h event e, thatis not a �nal event, there is an edge from e to su

(e), and (2) for ea
h event eand pro
ess Pi, there is an edge from e to Fb(e; i).The skeletal representation of the sli
e depi
ted in Fig. 3(b) is shown in Fig. 4.To prove that the graph Gb is a
tually
ut-equivalent to the sli
e hE;!ib, itsuÆ
es to show the following:Theorem 5. For events e and f , Jb(e) � Jb(f) � (e; f) 2 P(Gb).Besides having
omputational bene�ts, the skeletal representation of a sli
e
an be used to devise a simple and eÆ
ient algorithm to graft two sli
es.6 Grafting Two Sli
esIn this se
tion, we present algorithm to graft two sli
es whi
h
an be done withrespe
t to meet or join. Informally, the former
ase
orresponds to the smallestsli
e that
ontains all
onsistent
uts
ommon to both sli
es whereas the latter
ase
orresponds to the smallest sli
e that
ontains
onsistent
uts of both sli
es.

In other words, given sli
es hE;!ib1 and hE;!ib2 , where b1 and b2 are regularpredi
ates, we provide algorithm to
ompute the sli
e hE;!ib, where b is eitherb1 u b2 = b1^ b2 or b1 t b2 = reg (b1_ b2). Grafting enables us to
ompute thesli
e for an arbitrary boolean expression of lo
al predi
ates|by rewriting it inDNF|although it may require exponential time in the worst
ase. Later, in thisse
tion, we present an eÆ
ient algorithm based on grafting to
ompute sli
e fora
o-regular predi
ate (
omplement of a regular predi
ate). We also show howgrafting
an be used to avoid examining many
onsistent
uts when dete
ting apredi
ate under possibly modality.6.1 Grafting with respe
t to Meet: b � b1 u b2 � b1^ b2In this
ase, the sli
e hE;!ib
ontains a
onsistent
ut of hE;!i i� the
utsatis�es b1 as well as b2. Let Fmin(e; i) denote the earlier of events Fb1(e; i)and Fb2(e; i), that is, Fmin(e; i) = minfFb1(e; i); Fb2(e; i)g. The following lemmaestablishes that, for ea
h event e and pro
ess Pi, Fmin(e; i)
annot o

ur beforeFb(e; i).Lemma 2. For ea
h event e and pro
ess Pi, Fb(e; i) ;P Fmin(e; i).We now
onstru
t a dire
ted graph Gmin whi
h is similar to Gb, the skeletalrepresentation for hE;!ib, ex
ept that we use Fmin(e; i) instead of Fb(e; i) in its
onstru
tion. The next theorem proves that Gmin is
ut-equivalent to Gb.Theorem 6. Gmin is
ut-equivalent to Gb.Roughly speaking, the aforementioned algorithm
omputes the union of thesets of edges of ea
h sli
e. Note that, in general, Fb(e; i) need not be same asFmin(e; i) [12℄. This algorithm
an be generalized to
onjun
tion of an arbitrarynumber of regular predi
ates.6.2 Grafting with respe
t to Join: b � b1 t b2 � reg (b1 _ b2)In this
ase, the sli
e hE;!ib
ontains a
onsistent
ut of hE;!i if the
ut satis-�es either b1 or b2. The dual of the graph Gmin|min repla
ed by max|denotedby Gmax (surprisingly) turns out to be
ut-equivalent to the sli
e hE;!ib. Asbefore, let Fmax(e; i) denote the later of events Fb1(e; i) and Fb2(e; i), that is,Fmax(e; i) = maxfFb1(e; i); Fb2(e; i)g. The following lemma establishes that, forea
h event e and pro
ess Pi, Fb(e; i)
annot o

ur before Fmax(e; i).Lemma 3. For ea
h event e and pro
ess Pi, Fmax(e; i) ;P Fb(e; i).We now
onstru
t a dire
ted graph Gmax that is similar to Gb, the skeletalrepresentation for hE;!ib, ex
ept that we use Fmax(e; i) instead of Fb(e; i) inits
onstru
tion. The next theorem proves that Gmax is
ut-equivalent to Gb.Theorem 7. Gmax is
ut-equivalent to Gb.Intuitively, the above-mentioned algorithm
omputes the interse
tion of thesets of edges of ea
h sli
e. In this
ase, in
ontrast to the former
ase, Fb(e; i)is a
tually identi
al to Fmax(e; i) [12℄. This algorithm
an be generalized to dis-jun
tion of an arbitrary number of regular predi
ates.

6.3 Appli
ations of GraftingComputing Sli
e for a Co-Regular Predi
ate. Given a regular predi
ate,we give an algorithm to
ompute the sli
e of a
omputation with respe
t toits negation|a
o-regular predi
ate. In parti
ular, we express the negation asdisjun
tion of polynomial number of regular predi
ates. The sli
e
an then be
omputed by grafting together sli
es for ea
h disjun
t.Let hE;!i be a
omputation and hE;!ib be its sli
e with respe
t to a regularpredi
ate b. For
onvenien
e, let!b be the edge relation for the sli
e.We assumethat both ! and !b are transitive relations. Our obje
tive is to �nd a propertythat distinguishes the
onsistent
uts that belong to the sli
e from the
onsistent
uts that do not. Consider events e and f su
h that e 6! f but e !b f . Then,
learly, a
onsistent
ut that
ontains f but does not
ontain e
annot belongto the sli
e. On the other hand, every
onsistent
ut of the sli
e that
ontains falso
ontains e. This motivates us to de�ne a predi
ate prevents(f; e) as follows:C satis�es prevents(f; e) , (f 2 C) ^ (e 62 C)It
an be proved that prevents(f; e) is a regular predi
ate [12℄. It turns outthat every
onsistent
ut that does not belong to the sli
e satis�es prevents(f; e)for some events e and f su
h that (e 6! f) ^ (e!b f) holds. Formally,Theorem 8. Let C be a
onsistent
ut of hE;!i. Then,C satis�es :b � h9 e; f : (e!b f) ^ (e 6! f) : C satis�es prevents(f; e)iTheorem 8 implies that :b
an be expressed as disjun
tion of prevents'.Pruning State Spa
e for Predi
ate Dete
tion. Dete
ting a predi
ate underpossibly modality is NP-
omplete in general [2, 15, 13℄. Using grafting, we
anredu
e the sear
h spa
e for predi
ates
omposed from lo
al predi
ates using :,^ and _ operators. We �rst transform the predi
ate into an equivalent predi
atein whi
h : is applied dire
tly to the lo
al predi
ates and never to more
omplexexpressions. Observe that the negation of a lo
al predi
ate is also a lo
al pred-i
ate. We start by
omputing sli
es with respe
t to these lo
al predi
ates. This
an be done be
ause a lo
al predi
ate is regular and hen
e the algorithm givenin [6℄
an be used to
ompute the sli
e. We then re
ursively graft sli
es together,with respe
t to the appropriate operator, working our way out from the lo
alpredi
ates until we rea
h the whole predi
ate. This will give us a sli
e of the
omputation|not ne
essarily the smallest|whi
h
ontains all
onsistent
utsof the
omputation that satisfy the predi
ate. In many
ases, the sli
e obtainedwill be mu
h smaller than the
omputation itself enabling us to ignore many
onsistent
uts in our sear
h.For example, suppose we wish to
ompute the sli
e of a
omputation withrespe
t to the predi
ate (x1 _ x2) ^ (x3 _ x4), where xi is a boolean variableon pro
ess pi. As explained, we �rst
ompute sli
es for the lo
al predi
ates x1,x2, x3 and x4. We then graft the �rst two and the last two sli
es together with

e1 e21 1

2 f
1

f
2 2Fig. 5. An optimal algorithm to
ompute the sli
e for a
onjun
tive predi
ate.respe
t to join to obtain sli
es for the
lauses x1 _ x2 and x3 _ x4, respe
tively.Finally, we graft the sli
es for both
lauses together with respe
t to meet to getthe sli
e for the predi
ate reg (x1 _ x2)^reg (x3 _ x4) whi
h, in general, is largerthan the sli
e for the predi
ate (x1 _ x2) ^ (x3 _ x4) but mu
h smaller than the
omputation itself.The result of Se
tion 6.3 allows us to generalize this approa
h to predi
ates
omposed from arbitrary regular predi
ates using :, ^ and _ operators. Weplan to
ondu
t experiments to quantitatively evaluate the e�e
tiveness of ourapproa
h. Although our fo
us is on dete
ting predi
ates under possiblymodality,sli
ing
an be used to prune sear
h spa
e for monitoring predi
ates under othermodalities too.7 Optimal Algorithm for Sli
ingThe algorithm we presented in [6℄ to
ompute sli
es for regular predi
ates hasO(N2jEj) time
omplexity, where N is the number of pro
esses and E is theset of events. In this se
tion we present an optimal algorithm for
omputingsli
es for spe
ial
ases of regular predi
ates. Our algorithm will have O(jEj)time
omplexity. Due to la
k of spa
e, only the optimal algorithm for
onjun
tivepredi
ates is presented. The optimal algorithm for other regular predi
ates su
has
hannel predi
ates
an be found elsewhere [12℄.A
onjun
tive predi
ate is a
onjun
tion of lo
al predi
ates. For example, \P1is in red state" ^ \P2 is in green state" ^ \P3 is in blue state". Given a set oflo
al predi
ates, one for ea
h pro
ess, we
an
ategorize events on ea
h pro
essinto true events and false events. An event is a true event i� the
orrespondinglo
al predi
ate evaluates to true, otherwise it is a false event.To
ompute the sli
e of a
omputation for a
onjun
tive predi
ate, we
on-stru
t a dire
ted graph with verti
es as events in the
omputation and the follow-ing edges: (1) from an event, that is not a �nal event, to its su

essor, (2) froma send event to the
orresponding re
eive event, and (3) from the su

essor of afalse event to the false event.For the purpose of building the graph, we assume that all �nal events are trueevents. Thus every false event has a su

essor. The �rst two kinds of edges en-sure that the Lamport's happened-before relation is
aptured in the graph. Thealgorithm is illustrated Fig. 5. In the �gure, all true events have been en
ir
led.It
an be proved that the dire
ted graph obtained is
ut-equivalent to the sli
eof the
omputation with respe
t to the given
onjun
tive predi
ate [4℄. It is easy

to see that the graph has O(jEj) verti
es, O(jEj) edges (at most three edges perevent assuming that an event that is not lo
al either sends at most one messageor re
eives at most one message but not both) and
an be built in O(jEj) time.The sli
e
an be
omputed by �nding out the strongly
onne
ted
omponentsof the graph [4℄. Thus the algorithm has O(jEj) overall time
omplexity. It alsogives us an O(jEj) algorithm to evaluate possibly : b when b is a
onjun
tivepredi
ate (see Theorem 2).By de�ning a lo
al predi
ate (evaluated on an event) to be true i� the event
orresponds to a lo
al
he
kpoint, it
an be veri�ed that there is a zigzag path[14, 18℄ from a lo
al
he
kpoint
 to a lo
al
he
kpoint
0 in a
omputation i� thereis a path from su

(
), if it exists, to
0 in the
orresponding sli
e|whi
h
anbe as
ertained by
omparing Jb(su

(
)) and Jb(
0). An alternative formulationof the
onsisten
y theorem in [14℄
an thus be obtained as follows:Theorem 9. A set of lo
al
he
kpoints
an belong to the same
onsistent globalsnapshot i� the lo
al
he
kpoints in the set are mutually
onsistent (in
ludingwith itself) in the
orresponding sli
e.Moreover, the R-graph (rollba
k-dependen
y graph) [18℄ is path-equivalentto the sli
e when ea
h
ontiguous sequen
e of false events on a pro
ess is mergedwith the nearest true event that o

urs later on the pro
ess. The minimum
onsistent global
he
kpoint that
ontains a set of lo
al
he
kpoints [18℄
an be
omputed by taking the set union of Jb's for ea
h lo
al
he
kpoint in the set.The maximum
onsistent global
he
kpoint
an be similarly obtained by usingthe dual of Jb.8 Con
lusion and Future WorkIn this paper, the notion of sli
e introdu
ed in our earlier paper [6℄ is generalizedand its existen
e for all global predi
ates is established. The intra
tability of
omputing the sli
e, in general, is also proved. An optimal algorithm to
omputesli
es for spe
ial
ases of predi
ates is provided. Moreover, an eÆ
ient algorithmto graft two sli
es is also given. Appli
ation of sli
ing in general and graftingin parti
ular to global property evaluation of distributed programs is dis
ussed.Finally, the results pertaining to
onsistent global
he
kpoints [14, 18℄ are shownto be spe
ial
ases of
omputation sli
ing.As future work, we plan to study grafting in greater detail. Spe
i�
ally, weplan to
ondu
t experiments to quantitatively evaluate its e�e
tiveness in weed-ing out unne
essary
onsistent
uts from examination during state spa
e sear
hfor predi
ate dete
tion. Another dire
tion for future resear
h is to extend thenotion of sli
ing to in
lude temporal predi
ates.Referen
es1. K. M. Chandy and L. Lamport. Distributed Snapshots: Determining Global Statesof Distributed Systems. ACM Transa
tions on Computer Systems, 3(1):63{75,February 1985.

2. C. Chase and V. K. Garg. Dete
tion of Global Predi
ates: Te
hniques and theirLimitations. Distributed Computing, 11(4):191{201, 1998.3. R. Cooper and K. Marzullo. Consistent Dete
tion of Global Predi
ates. In Pro-
eedings of the ACM/ONR Workshop on Parallel and Distributed Debugging, pages163{173, Santa Cruz, California, 1991.4. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introdu
tion to Algorithms. TheMIT Press, Cambridge, Massa
husetts, 1990.5. B. A. Davey and H. A. Priestley. Introdu
tion to Latti
es and Order. CambridgeUniversity Press, Cambridge, UK, 1990.6. V. K. Garg and N. Mittal. On Sli
ing a Distributed Computation. In Pro
eed-ings of the 21st IEEE International Conferen
e on Distributed Computing Systems(ICDCS), pages 322{329, Phoenix, Arizona, April 2001.7. V. K. Garg and B. Walde
ker. Dete
tion of Unstable Predi
ates. In Pro
eedingsof the ACM/ONR Workshop on Parallel and Distributed Debugging, Santa Cruz,California, May 1991.8. B. Korel and R. Ferguson. Dynami
 Sli
ing of Distributed Programs. AppliedMathemati
s and Computer S
ien
e Journal, 2(2):199{215, 1992.9. B. Korel and J. Rilling. Appli
ation of Dynami
 Sli
ing in Program Debugging.In Mariam Kamkar, editor, Pro
eedings of the 3rd International Workshop on Au-tomated Debugging (AADEBUG), pages 43{57, Link�oping, Sweden, May 1997.10. L. Lamport. Time, Clo
ks, and the Ordering of Events in a Distributed System.Communi
ations of the ACM (CACM), 21(7):558{565, July 1978.11. N. Mittal and V. K. Garg. Debugging Distributed Programs Using Controlled Re-exe
ution. In Pro
eedings of the 19th ACM Symposium on Prin
iples of DistributedComputing (PODC), pages 239{248, Portland, Oregon, July 2000.12. N. Mittal and V. K. Garg. Computation Sli
ing: Te
hniques and Theory. Te
hni
alReport TR-PDS-2001-002, The Parallel and Distributed Systems Laboratory, De-partment of Ele
tri
al and Computer Engineering, The University of Texas atAustin, April 2001. Available at http://www.
s.utexas.edu/users/neerajm.13. N. Mittal and V. K. Garg. On Dete
ting Global Predi
ates in Distributed Compu-tations. In Pro
eedings of the 21st IEEE International Conferen
e on DistributedComputing Systems (ICDCS), pages 3{10, Phoenix, Arizona, April 2001.14. R. H. B. Netzer and J. Xu. Ne
essary and SuÆ
ient Conditions for Consis-tent Global Snapshots. IEEE Transa
tions on Parallel and Distributed Systems,6(2):165{169, February 1995.15. S. D. Stoller and F. S
hnieder. Faster Possibility Dete
tion by Combining TwoApproa
hes. In Pro
eedings of the Workshop on Distributed Algorithms (WDAG),Fran
e, September 1995.16. A. Tarafdar and V. K. Garg. Predi
ate Control for A
tive Debugging of DistributedPrograms. In Pro
eedings of the 9th IEEE Symposium on Parallel and DistributedPro
essing (SPDP), Orlando, 1998.17. A. Tarafdar and V. K. Garg. Software Fault Toleran
e of Con
urrent Programs Us-ing Controlled Re-exe
ution. In Pro
eedings of the 13th Symposium on DistributedComputing (DISC), pages 210{224, Bratislava, Slovak Republi
, September 1999.18. Yi-Min Wang. Consistent Global Che
kpoints that Contain a Given Set of Lo
alChe
kpoints. IEEE Transa
tions on Computers, 46(4):456{468, April 1997.19. M. Weiser. Programmers Use Sli
es when Debugging. Communi
ations of theACM (CACM), 25(7):446{452, 1982.

