
Computation Sliing: Tehniques and TheoryNeeraj Mittal1 and Vijay K. Garg2?1 Department of Computer SienesThe University of Texas at Austin, Austin, TX 78712, USAneerajm�s.utexas.edu http://www.s.utexas.edu/users/neerajm2 Department of Eletrial and Computer EngineeringThe University of Texas at Austin, Austin, TX 78712, USAgarg�ee.utexas.edu http://www.ee.utexas.edu/~gargAbstrat. We generalize the notion of slie introdued in our earlierpaper [6℄. A slie of a distributed omputation with respet to a globalprediate is the smallest omputation that ontains all onsistent uts ofthe original omputation that satisfy the prediate. We prove that slieexists for all global prediates. We also establish that it is, in general,NP-omplete to ompute the slie. An optimal algorithm to omputeslies for speial ases of prediates is provided. Further, we present aneÆient algorithm to graft two slies, that is, given two slies, either om-pute the smallest slie that ontains all onsistent uts that are ommonto both slies or ompute the smallest slie that ontains all onsistentuts that belong to at least one of the slies. We give appliation of sli-ing in general and grafting in partiular to global property evaluationof distributed programs. Finally, we show that the results pertaining toonsistent global hekpoints [14, 18℄ an be derived as speial ases ofomputation sliing.1 IntrodutionWriting distributed programs is an error prone ativity; it is hard to reason aboutthem beause they su�er from the ombinatorial explosion problem. Testing anddebugging, and software fault-tolerane is an important way to ensure the reli-ability of distributed systems. Thus it beomes neessary to develop tehniquesthat failitate the analysis of distributed omputations. Various abstrationssuh as prediate detetion (e.g., [1, 3, 7℄) and prediate ontrol [16, 17, 11℄ havebeen de�ned to arry out suh analysis.In our earlier paper [6℄, we propose another abstration, alled omputationslie, whih was de�ned as: a slie of a distributed omputation with respet to aglobal prediate is another omputation that ontains those and only those on-sistent uts (or snapshots) of the original omputation that satisfy the prediate.In [6℄, we also introdue a lass of global prediates alled regular prediates: aglobal prediate is regular i� whenever two onsistent uts satisfy the prediate? supported in part by the NSF Grants ECS-9907213, CCR-9988225, Texas EduationBoard Grant ARP-320, an Engineering Foundation Fellowship, and an IBM grant.

x2P2

x3P3

x1P1

2
{w} {g}

{a,e,f,u,v} {b}

(b)(a)

0

4 4

1 −1 02

2

1

1 3

a b c d

e hf g

xwvuFig. 1. (a) A omputation and (b) its slie with respet to (x1 > 1) ^ (x3 6 3).then the uts given by their set intersetion and set union also satisfy the predi-ate. We show that slie exists only for regular prediates and present an eÆientalgorithm to ompute the slie. The lass of regular prediates is losed underonjuntion.A limitation of the de�nition of slie in [6℄ is that slie exists only for aspei� lass of prediates. This prompted us to weaken the de�nition of slieto the smallest omputation that ontains all onsistent uts of the originalomputation that satisfy the prediate. In this paper, we show that slie existsfor all global prediates.The notion of omputation slie is analogous to the onept of program slie[19℄. Given a program and a set of variables, a program slie onsists of allstatements in the program that may a�et the value of the variables in theset at some given point. A slie ould be stati [19℄ or dynami (for a spei�program input) [9℄. The notion of a slie has been also extended to distributedprograms [8℄. Program sliing has been shown to be useful in program debugging,testing, program understanding and software maintenane [9, 19℄. A slie ansigni�antly narrow the size of the program to be analyzed, thereby making theunderstanding of the program behaviour easier. We expet to reap the samebene�t from a omputation slie.Computation sliing is also useful for reduing searh spae for NP-ompleteproblems suh as prediate detetion [3, 7, 15, 13℄. Given a distributed omputa-tion and a global prediate, prediate detetion requires �nding a onsistent utof the omputation, if it exists, that satis�es the prediate. It is a fundamen-tal problem in distributed system and arises in ontexts suh as software faulttolerane, and testing and debugging.As an illustration, suppose we want to detet the prediate (x1 �x2+x3 < 5)^(x1 > 1) ^ (x3 6 3) in the omputation shown in Fig. 1(a). The omputationonsists of three proesses P1, P2 and P3 hosting integer variables x1, x2 and x3,respetively. The events are represented by solid irles. Eah event is labeledwith the value of the respetive variable immediately after the event is exeuted.For example, the value of variable x1 immediately after exeuting the event is �1. The �rst event on eah proess initializes the state of the proess andevery onsistent ut ontains these initial events. Without omputation sliing,

we are fored to examine all onsistent uts of the omputation, twenty eight intotal, to asertain whether some onsistent ut satis�es the prediate. Alterna-tively, we an ompute a slie of the omputation with respet to the prediate(x1 > 1) ^ (x3 6 3) as portrayed in Fig. 1(b). The slie is modeled by a diretedgraph. Eah vertex of the graph orresponds to a subset of events. If a vertex isontained in a onsistent ut, the interpretation is that all events orrespondingto the vertex are ontained in the ut. Moreover, a vertex belongs to a onsis-tent ut only if all its inoming neighbours are also present in the ut. We annow restrit our searh to the onsistent uts of the slie whih are only six innumber, namely fa; e; f; u; vg, fa; e; f; u; v; bg, fa; e; f; u; v; wg, fa; e; f; u; v; b; wg,fa; e; f; u; v; w; gg and fa; e; f; u; v; b; w; gg. The slie has muh fewer onsistentuts than the omputation itself|exponentially smaller in many ases|resultingin substantial savings.We also show that the results pertaining to onsistent global hekpoints[14, 18℄ an be derived as speial ases of omputation sliing. In partiular,we furnish an alternate haraterization of the ondition under whih individualloal hekpoints an be ombined with others to form a onsistent global hek-point (onsisteny theorem by Netzer and Xu [14℄): a set of loal hekpointsan belong to the same onsistent global snapshot i� the loal hekpoints inthe set are mutually onsistent (inluding with itself) in the slie. Moreover, theR-graph (rollbak-dependeny graph) de�ned by Wang [18℄ is a speial ase ofthe slie. The minimum and maximum onsistent global hekpoints that ontaina set of loal hekpoints [18℄ an also be easily obtained using the slie.In summary, this paper makes the following ontributions:{ In Setion 3, we generalize the notion of omputation slie introdued inour earlier paper [6℄. We show that slie exists for all global prediates inSetion 4.{ We establish that it is, in general, NP-omplete to determine whether aglobal prediate has a non-empty slie in Setion 4.{ In Setion 4, an appliation of omputation sliing to monitoring global prop-erties in distributed systems is provided. Spei�ally, we give an algorithm todetermine whether a global prediate satisfying ertain properties is possiblytrue, invariant or ontrollable in a distributed omputation using sliing.{ We present an eÆient representation of slie in Setion 5 that we use later todevise an eÆient algorithm to graft two slies in Setion 6. Grafting an bedone in two ways. Given two slies, we an either ompute the smallest sliethat ontains all onsistent uts that are ommon to both slies or omputethe smallest slie that ontains all onsistent uts that belong to at leastone of the slies. An eÆient algorithm using grafting to ompute slie foromplement of a regular prediate, alled o-regular prediate, is provided.We also show how grafting an be used to avoid examining many onsistentuts when deteting a prediate.{ We provide an optimal algorithm to ompute slies for speial ases of regularprediates in Setion 7. In our earlier paper [6℄, the algorithm to omputeslies has O(N2jEj) time omplexity, where N is the number of proesses

and E is the set of events in the distributed system. The algorithm presentedin this paper has O(jEj) omplexity whih is optimal.{ Finally, in Setion 7, we show that the results pertaining to onsistent globalhekpoints [14, 18℄ an be derived as speial ases of omputation sliing.Due to lak of spae, the proofs of lemmas, theorems and orollaries, andother details have been omitted. Interested reader an �nd them in the tehnialreport [12℄.2 Model and Notation2.1 LattiesGiven a lattie, we use u and t to denote its meet (in�mum) and join (supre-mum) operators, respetively. A lattie is distributive i� meet distributes overjoin. Formally, a u (b t) � (a u b) t (a u).2.2 Direted Graphs: Path- and Cut-EquivaleneTraditionally, a distributed omputation is modeled by a partial order on a set ofevents. We use direted graphs to model both distributed omputation and slie.Direted graphs allow us to handle both of them in a onvenient and uniformmanner.Given a direted graph G, let V(G) and E(G) denote its set of verties andedges, respetively. A subset of verties of a direted graph form a onsistent uti� the subset ontains a vertex only if it ontains all its inoming neighbours.Formally,C is a onsistent ut of G , h8e; f 2 V(G) : (e; f) 2 E(G) : f 2 C) e 2 CiObserve that a onsistent ut either ontains all verties in a yle or none ofthem. This observation an be generalized to a strongly onneted omponent.Traditionally, the notion of onsistent ut (down-set or order ideal) is de�nedfor partially ordered sets [5℄. Here, we extend the notion to sets with arbitraryorders. Let C(G) denote the set of onsistent uts of a direted graph G. Observethat the empty set ; and the set of verties V(G) trivially belong to C(G). Weall them trivial onsistent uts. The following theorem is a slight generalizationof the result in lattie theory that the set of down-sets of a partially ordered setforms a distributive lattie [5℄.Theorem 1. Given a direted graph G, hC(G);�i forms a distributive lattie.The theorem follows from the fat that, given two onsistent uts of a graph,the uts given by their set intersetion and set union are also onsistent.A direted graph G is ut-equivalent to a direted graph H i� they have thesame set of onsistent uts, that is, C(G) = C(H). Let P(G) denote the set ofpairs of verties (u; v) suh that there is a path from u to v in G. We assume

that eah vertex has a path to itself. A direted graph G is path-equivalent to adireted graph H i� a path from vertex u to vertex v in G implies a path fromvertex u to vertex v in H and vie versa, that is, P(G) = P(H).Lemma 1. Let G and H be direted graphs on the same set of verties. Then,P(G) � P(H) � C(G) � C(H)Lemma 1 implies that two direted graphs are ut-equivalent i� they arepath-equivalent. This is signi�ant beause path-equivalene an be veri�ed inpolynomial-time (jP(G)j = O(jV(G)j2)) as ompared to ut-equivalene whihis omputationally expensive to asertain in general (jC(G)j = O(2jV(G)j)).2.3 Distributed Computations as Direted GraphsWe assume an asynhronous distributed system [12℄ with the set of proessesP = fP1; P2; : : : ; PNg. Proesses ommuniate and synhronize with eah otherby sending messages over a set of reliable hannels.A loal omputation of a proess is desribed by a sequene of events thattransforms the initial state of the proess into the �nal state. At eah step, theloal state of a proess is aptured by the initial state and the sequene of eventsthat have been exeuted up to that step. Eah event is a send event, a reeiveevent, or an internal event. An event auses the loal state of a proess to beupdated. Additionally, a send event auses a message to be sent and a reeiveevent auses a message to be reeived. We assume the presene of �titiousinitial and �nal events on eah proess Pi, denoted by ?i and >i, respetively.The initial event ours before any other event on the proess and initializes thestate of the proess. The �nal events ours after all other events on the proess.Let pro(e) denote the proess on whih event e ours. The predeessor andsuessor events of e on pro(e) are denoted by pred(e) and su(e), respetively,if they exist. We denote the order of events on proess Pi by ;Pi . Let ;P bethe union of all ;Pis, 1 6 i 6 N , and ;P denote the reexive losure of ;P .We model a distributed omputation (or simply a omputation), denoted byhE;!i, as a direted graph with verties as the set of events E and edges as!.To limit our attention to only those onsistent uts that an atually our duringan exeution, we assume that, for any omputation hE;!i, P(hE;!i) ontainsat least the Lamport's happened-before relation [10℄. We assume that the set ofall initial events belong to the same strongly onneted omponent. Similarly,the set of all �nal events belong to the same strongly onneted omponent.This ensures that any non-trivial onsistent ut will ontain all initial eventsand none of the �nal events. As a result, every onsistent ut of a omputationin traditional model is a non-trivial onsistent ut of the omputation in ourmodel and vie versa. Only non-trivial onsistent uts are of real interest to us.We will see later that our model allows us to apture empty slies in a veryonvenient fashion.A distributed omputation in our model an ontain yles. This is beausewhereas a omputation in the happened-before model aptures the observable

1
e

1
e

2 1

2
f
2

f
12

f
1

f
1

f
2

f
2

2e
2

e
1

21e

1

1 1f

e
2

e2

1
e}

, }

{ }

{

}{ }

P

P

1

2 {,

{

y

x {

{

,

0 1 3

2 01

{ }, 2

, }

, ,

, }

DD

(b)

(a)Fig. 2. (a) A omputation and (b) the lattie orresponding to its onsistent uts.order of exeution of events, a omputation in our model aptures the set ofpossible onsistent uts.A frontier of a onsistent ut is the set of those events of the ut whosesuessors, if they exist, are not ontained in the ut. Formally,frontier(C) , fe 2 C j su(e) exists) su(e) 62 CgA onsistent ut is uniquely haraterized by its frontier and vie versa. Thussometimes, espeially in �gures, we speify a onsistent ut by simply listingthe events in its frontier instead of enumerating all its events. Two events aresaid to be onsistent i� they are ontained in the frontier of some onsistentut, otherwise they are inonsistent. It an be veri�ed that events e and f areonsistent i� there is no path in the omputation from su(e), if it exists, to fand from su(f), if it exists, to e. Also, note that, in our model, an event anbe inonsistent with itself. Fig. 2 depits a omputation and the lattie of its(non-trivial) onsistent uts. A onsistent ut in the �gure is represented by itsfrontier. For example, the onsistent ut D is represented by fe2; f1g.2.4 Global PrediatesA global prediate (or simply a prediate) is a boolean-valued funtion de�nedon variables of proesses. It is evaluated on events in the frontier of a onsistentut. Some examples are mutual exlusion and \at least one philosopher does nothave any fork". We leave the prediate unde�ned for the trivial onsistent uts.A global prediate is loal i� it depends on variables of at most one proess. Forexample, \Pi is in red state" and \Pi does not have the token".3 Sliing a Distributed ComputationIn this setion, we de�ne the notion of slie of a omputation with respet to aprediate. The de�nition given here is weaker than the de�nition given in our

f
1{ } 2f

2 1
e

2 , , , }{

1 2,{ } e
1{ }

f
1

e
1

21e

1

1 1f

{

}{ }{, ,

{ }, 2

, }

(b)(a)Fig. 3. (a) The sublattie of the lattie in Fig. 2(b) with respet to the prediate((x < 2) ^ (y > 1))W(x < 1), and (b) the orresponding slie.earlier paper [6℄. However, slie now exists with respet to every prediate (notjust spei� prediates).De�nition 1 (Slie). A slie of a omputation with respet to a prediate is thesmallest direted graph (with minimum number of onsistent uts) that ontainsall onsistent uts of the original omputation that satisfy the prediate.We will later show that the smallest omputation is well-de�ned for everyprediate. A slie of omputation hE;!i with respet to a prediate b is denotedby hE;!ib. Note that hE;!i = hE;!itrue. In the rest of the paper, we use theterms \omputation", \slie" and \direted graph" interhangeably.Fig. 3(a) depits the set of onsistent uts of the omputation in Fig. 2(a)that satisfy the prediate ((x < 2) ^ (y > 1)) W (x < 1). The ut shown withdashed outline does not atually satisfy the prediate but has to be inludedto omplete the sublattie. Fig. 3(b) depits the slie of the omputation withrespet to the prediate. In the �gure, all events in a subset belong to the samestrongly onneted omponent.In our model, every slie derived from the omputation hE;!i will have thetrivial onsistent uts (; and E) among its set of onsistent uts. Consequently,a slie is empty i� it has no non-trivial onsistent uts. In the rest of the paper,unless otherwise stated, a onsistent ut refers to a non-trivial onsistent ut.A slie of a omputation with respet to a prediate is lean i� every onsistentut of the slie satis�es the prediate.4 Regular PrediatesA global prediate is regular i� the set of onsistent uts that satisfy the prediateforms a sublattie of the lattie of onsistent uts [6℄. Equivalently, if two onsis-tent uts satisfy a regular prediate then the uts given by their set intersetionand set union will also satisfy the prediate. Some examples of regular predi-ates are any loal prediate and hannel prediates suh as `there are at mostk messages in transit from Pi to Pj". The lass of regular prediates is losedunder onjuntion [6℄. We prove elsewhere [6℄ that the slie of a omputationwith respet to a prediate is lean i� the prediate is regular. We next show how

sliing an be used to monitor prediates in distributed systems. Later, we usethe notion of regular prediates to prove that the slie exists and is well-de�nedwith respet to every prediate.4.1 Using Slies to Monitor Regular PrediatesA prediate an be monitored under four modalities, namely possibly, definitely,invariant and ontrollable [3, 7, 17, 11℄. A prediate is possibly true in a ompu-tation i� there is a onsistent ut of the omputation that satis�es the prediate.On the other hand, a prediate de�nitely holds in a omputation i� it eventuallybeomes true in all runs of the omputation (a run is a path in the lattie ofonsistent uts). The prediates invariant :b and ontrollable :b are duals of pred-iates possibly : b and ontrollable : b, respetively. Prediate detetion normallyinvolves deteting a prediate under possibly modality whereas prediate ontrolinvolves monitoring a prediate under ontrollable modality. Monitoring has ap-pliations in the areas of testing and debugging and software fault-tolerane ofdistributed programs.The next theorem desribes how possibly : b, invariant : b and ontrollable : ban be omputed using the notion of slie when b is a regular prediate. We donot yet know the omplexity of omputing definitely : b when b is regular.Theorem 2. A regular prediate is1. possibly true in a omputation i� the slie of the omputation with respetto the prediate has at least one non-trivial onsistent ut, that is, it has atleast two strongly onneted omponents.2. invariant in a omputation i� the slie of the omputation with respet tothe prediate is ut-equivalent to the omputation.3. ontrollable in a omputation i� the slie of the omputation with respetto the prediate has the same number of strongly onneted omponents asthe omputation.Observe that the �rst proposition holds for any arbitrary prediate. Sinedeteting whether a prediate possibly holds in a omputation is NP-omplete ingeneral [2, 15, 13℄, it is, in general, NP-omplete to determine whether a prediatehas a non-empty slie.4.2 Regularizing a Non-Regular PrediateIn this setion, we show that slie exists and is well-de�ned with respet to everyprediate. We know that it is true for at least regular prediates [6℄. In addition,the slie with respet to a regular prediate is lean. We exploit these fats and de-�ne a losure operator, denoted by reg, whih, given a omputation, onverts anarbitrary prediate into a regular prediate satisfying ertain properties. Givena omputation, let R denote the set of prediates that are regular with respetto the omputation.

De�nition 2 (reg). Given a prediate b, we de�ne reg (b) as the prediate thatsatis�es the following onditions:1. it is regular, that is, reg (b) 2 R,2. it is weaker than b, that is, b) reg (b), and3. it is stronger than any other prediate that satis�es 1 and 2, that is,h8 b0 : b0 2 R : (b) b0)) (reg (b)) b0)iInformally, reg (b) is the strongest regular prediate weaker than b. In general,reg (b) not only depends on the prediate b but also on the omputation underonsideration. We assume the dependene on omputation to be impliit andmake it expliit only when neessary. The next theorem establishes that reg (b)exists for every prediate. Observe that the slie for b is given by the slie forreg (b). Thus slie exists and is well-de�ned for all prediates.Theorem 3. Given a prediate b, reg (b) exists and is well-de�ned.Thus, given a omputation hE;!i and a prediate b, the slie of hE;!i withrespet to b an be obtained by �rst applying reg operator to b to get reg (b)and then omputing the slie of hE;!i with respet to reg (b).Theorem 4. reg is a losure operator. Formally,1. reg (b) is weaker than b, that is, b) reg (b),2. reg is monotoni, that is, (b) b0)) (reg (b)) reg (b0)), and3. reg is idempotent, that is, reg (reg (b)) � reg (b).From the above theorem it follows that [5, Theorem 2.21℄,Corollary 1. hR;)i forms a lattie.The meet and join of two regular prediates b1 and b2 is given byb1 u b2 , b1 ^ b2b1 t b2 , reg (b1 _ b2)The dual notion of reg (b), the weakest regular prediate stronger than b, isoneivable. However, suh a prediate may not always be unique [12℄.5 Representing a SlieObserve that any direted graph that is ut-equivalent or path-equivalent to aslie onstitutes its valid representation. However, for omputational purposes,it is preferable to selet those graphs to represent a slie that have fewer edgesand an be onstruted heaply. In this setion, we show that every slie anrepresented by a direted graph with O(jEj) verties and O(N jEj) edges. Fur-thermore, the graph an be built in O(N2jEj) time.

1
e

1
e

2 1

2
f
2

f
12

P

P

1

2Fig. 4. The skeletal representation of the slie in Fig. 3(b) (without self-loops).Given a omputation hE;!i, a regular prediate b and an event e, let Jb(e)denote the least onsistent ut of hE;!i that ontains e and satis�es b. IfJb(e) does not exist then it is set to the trivial onsistent ut E. Here, weuse E as a sentinel ut. Fig. 4 depits a direted graph that represents theslie shown in Fig. 3(b). In the �gure, Jb(e1) = f?1; e1;?2g and Jb(f2) =f?1; e1; e2;>1;?2; f1; f2;>2g.The ut Jb(e) an also be viewed as the least onsistent ut of the sliehE;!ib that ontains the event e. The results in [6℄ establish that it is suÆientto know Jb(e) for eah event e in order to reover the slie. In partiular, adireted graph with E as the set of verties and an edge from an event e to anevent f i� Jb(e) � Jb(f) is ut-equivalent to the slie hE;!ib. We also presentan O(N2jEj) algorithm to ompute Jb(e) for eah event e. However, the graphso obtained an have as many as
(jEj2) edges.Let Fb(e; i) denote the earliest event f on Pi suh that Jb(e) � Jb(f). In-formally, Fb(e; i) is the earliest event on Pi that is reahable from e in the sliehE;!ib. For example, in Fig. 4, Fb(e1; 1) = e1 and Fb(e1; 2) = f2. Given Jb(e)for eah event e, Fb(e; i) for eah event e and proess Pi an be omputed inO(N jEj) time [12℄. We now onstrut a direted graph that we all the skeletalrepresentation of the slie with respet to b and denote it by Gb. The graph Gbhas E as the set of verties and the following edges: (1) for eah event e, thatis not a �nal event, there is an edge from e to su(e), and (2) for eah event eand proess Pi, there is an edge from e to Fb(e; i).The skeletal representation of the slie depited in Fig. 3(b) is shown in Fig. 4.To prove that the graph Gb is atually ut-equivalent to the slie hE;!ib, itsuÆes to show the following:Theorem 5. For events e and f , Jb(e) � Jb(f) � (e; f) 2 P(Gb).Besides having omputational bene�ts, the skeletal representation of a sliean be used to devise a simple and eÆient algorithm to graft two slies.6 Grafting Two SliesIn this setion, we present algorithm to graft two slies whih an be done withrespet to meet or join. Informally, the former ase orresponds to the smallestslie that ontains all onsistent uts ommon to both slies whereas the latterase orresponds to the smallest slie that ontains onsistent uts of both slies.

In other words, given slies hE;!ib1 and hE;!ib2 , where b1 and b2 are regularprediates, we provide algorithm to ompute the slie hE;!ib, where b is eitherb1 u b2 = b1^ b2 or b1 t b2 = reg (b1_ b2). Grafting enables us to ompute theslie for an arbitrary boolean expression of loal prediates|by rewriting it inDNF|although it may require exponential time in the worst ase. Later, in thissetion, we present an eÆient algorithm based on grafting to ompute slie fora o-regular prediate (omplement of a regular prediate). We also show howgrafting an be used to avoid examining many onsistent uts when deteting aprediate under possibly modality.6.1 Grafting with respet to Meet: b � b1 u b2 � b1^ b2In this ase, the slie hE;!ib ontains a onsistent ut of hE;!i i� the utsatis�es b1 as well as b2. Let Fmin(e; i) denote the earlier of events Fb1(e; i)and Fb2(e; i), that is, Fmin(e; i) = minfFb1(e; i); Fb2(e; i)g. The following lemmaestablishes that, for eah event e and proess Pi, Fmin(e; i) annot our beforeFb(e; i).Lemma 2. For eah event e and proess Pi, Fb(e; i) ;P Fmin(e; i).We now onstrut a direted graph Gmin whih is similar to Gb, the skeletalrepresentation for hE;!ib, exept that we use Fmin(e; i) instead of Fb(e; i) in itsonstrution. The next theorem proves that Gmin is ut-equivalent to Gb.Theorem 6. Gmin is ut-equivalent to Gb.Roughly speaking, the aforementioned algorithm omputes the union of thesets of edges of eah slie. Note that, in general, Fb(e; i) need not be same asFmin(e; i) [12℄. This algorithm an be generalized to onjuntion of an arbitrarynumber of regular prediates.6.2 Grafting with respet to Join: b � b1 t b2 � reg (b1 _ b2)In this ase, the slie hE;!ib ontains a onsistent ut of hE;!i if the ut satis-�es either b1 or b2. The dual of the graph Gmin|min replaed by max|denotedby Gmax (surprisingly) turns out to be ut-equivalent to the slie hE;!ib. Asbefore, let Fmax(e; i) denote the later of events Fb1(e; i) and Fb2(e; i), that is,Fmax(e; i) = maxfFb1(e; i); Fb2(e; i)g. The following lemma establishes that, foreah event e and proess Pi, Fb(e; i) annot our before Fmax(e; i).Lemma 3. For eah event e and proess Pi, Fmax(e; i) ;P Fb(e; i).We now onstrut a direted graph Gmax that is similar to Gb, the skeletalrepresentation for hE;!ib, exept that we use Fmax(e; i) instead of Fb(e; i) inits onstrution. The next theorem proves that Gmax is ut-equivalent to Gb.Theorem 7. Gmax is ut-equivalent to Gb.Intuitively, the above-mentioned algorithm omputes the intersetion of thesets of edges of eah slie. In this ase, in ontrast to the former ase, Fb(e; i)is atually idential to Fmax(e; i) [12℄. This algorithm an be generalized to dis-juntion of an arbitrary number of regular prediates.

6.3 Appliations of GraftingComputing Slie for a Co-Regular Prediate. Given a regular prediate,we give an algorithm to ompute the slie of a omputation with respet toits negation|a o-regular prediate. In partiular, we express the negation asdisjuntion of polynomial number of regular prediates. The slie an then beomputed by grafting together slies for eah disjunt.Let hE;!i be a omputation and hE;!ib be its slie with respet to a regularprediate b. For onveniene, let!b be the edge relation for the slie.We assumethat both ! and !b are transitive relations. Our objetive is to �nd a propertythat distinguishes the onsistent uts that belong to the slie from the onsistentuts that do not. Consider events e and f suh that e 6! f but e !b f . Then,learly, a onsistent ut that ontains f but does not ontain e annot belongto the slie. On the other hand, every onsistent ut of the slie that ontains falso ontains e. This motivates us to de�ne a prediate prevents(f; e) as follows:C satis�es prevents(f; e) , (f 2 C) ^ (e 62 C)It an be proved that prevents(f; e) is a regular prediate [12℄. It turns outthat every onsistent ut that does not belong to the slie satis�es prevents(f; e)for some events e and f suh that (e 6! f) ^ (e!b f) holds. Formally,Theorem 8. Let C be a onsistent ut of hE;!i. Then,C satis�es :b � h9 e; f : (e!b f) ^ (e 6! f) : C satis�es prevents(f; e)iTheorem 8 implies that :b an be expressed as disjuntion of prevents'.Pruning State Spae for Prediate Detetion. Deteting a prediate underpossibly modality is NP-omplete in general [2, 15, 13℄. Using grafting, we anredue the searh spae for prediates omposed from loal prediates using :,^ and _ operators. We �rst transform the prediate into an equivalent prediatein whih : is applied diretly to the loal prediates and never to more omplexexpressions. Observe that the negation of a loal prediate is also a loal pred-iate. We start by omputing slies with respet to these loal prediates. Thisan be done beause a loal prediate is regular and hene the algorithm givenin [6℄ an be used to ompute the slie. We then reursively graft slies together,with respet to the appropriate operator, working our way out from the loalprediates until we reah the whole prediate. This will give us a slie of theomputation|not neessarily the smallest|whih ontains all onsistent utsof the omputation that satisfy the prediate. In many ases, the slie obtainedwill be muh smaller than the omputation itself enabling us to ignore manyonsistent uts in our searh.For example, suppose we wish to ompute the slie of a omputation withrespet to the prediate (x1 _ x2) ^ (x3 _ x4), where xi is a boolean variableon proess pi. As explained, we �rst ompute slies for the loal prediates x1,x2, x3 and x4. We then graft the �rst two and the last two slies together with

e1 e21 1

2 f
1

f
2 2Fig. 5. An optimal algorithm to ompute the slie for a onjuntive prediate.respet to join to obtain slies for the lauses x1 _ x2 and x3 _ x4, respetively.Finally, we graft the slies for both lauses together with respet to meet to getthe slie for the prediate reg (x1 _ x2)^reg (x3 _ x4) whih, in general, is largerthan the slie for the prediate (x1 _ x2) ^ (x3 _ x4) but muh smaller than theomputation itself.The result of Setion 6.3 allows us to generalize this approah to prediatesomposed from arbitrary regular prediates using :, ^ and _ operators. Weplan to ondut experiments to quantitatively evaluate the e�etiveness of ourapproah. Although our fous is on deteting prediates under possiblymodality,sliing an be used to prune searh spae for monitoring prediates under othermodalities too.7 Optimal Algorithm for SliingThe algorithm we presented in [6℄ to ompute slies for regular prediates hasO(N2jEj) time omplexity, where N is the number of proesses and E is theset of events. In this setion we present an optimal algorithm for omputingslies for speial ases of regular prediates. Our algorithm will have O(jEj)time omplexity. Due to lak of spae, only the optimal algorithm for onjuntiveprediates is presented. The optimal algorithm for other regular prediates suhas hannel prediates an be found elsewhere [12℄.A onjuntive prediate is a onjuntion of loal prediates. For example, \P1is in red state" ^ \P2 is in green state" ^ \P3 is in blue state". Given a set ofloal prediates, one for eah proess, we an ategorize events on eah proessinto true events and false events. An event is a true event i� the orrespondingloal prediate evaluates to true, otherwise it is a false event.To ompute the slie of a omputation for a onjuntive prediate, we on-strut a direted graph with verties as events in the omputation and the follow-ing edges: (1) from an event, that is not a �nal event, to its suessor, (2) froma send event to the orresponding reeive event, and (3) from the suessor of afalse event to the false event.For the purpose of building the graph, we assume that all �nal events are trueevents. Thus every false event has a suessor. The �rst two kinds of edges en-sure that the Lamport's happened-before relation is aptured in the graph. Thealgorithm is illustrated Fig. 5. In the �gure, all true events have been enirled.It an be proved that the direted graph obtained is ut-equivalent to the slieof the omputation with respet to the given onjuntive prediate [4℄. It is easy

to see that the graph has O(jEj) verties, O(jEj) edges (at most three edges perevent assuming that an event that is not loal either sends at most one messageor reeives at most one message but not both) and an be built in O(jEj) time.The slie an be omputed by �nding out the strongly onneted omponentsof the graph [4℄. Thus the algorithm has O(jEj) overall time omplexity. It alsogives us an O(jEj) algorithm to evaluate possibly : b when b is a onjuntiveprediate (see Theorem 2).By de�ning a loal prediate (evaluated on an event) to be true i� the eventorresponds to a loal hekpoint, it an be veri�ed that there is a zigzag path[14, 18℄ from a loal hekpoint to a loal hekpoint 0 in a omputation i� thereis a path from su(), if it exists, to 0 in the orresponding slie|whih anbe asertained by omparing Jb(su()) and Jb(0). An alternative formulationof the onsisteny theorem in [14℄ an thus be obtained as follows:Theorem 9. A set of loal hekpoints an belong to the same onsistent globalsnapshot i� the loal hekpoints in the set are mutually onsistent (inludingwith itself) in the orresponding slie.Moreover, the R-graph (rollbak-dependeny graph) [18℄ is path-equivalentto the slie when eah ontiguous sequene of false events on a proess is mergedwith the nearest true event that ours later on the proess. The minimumonsistent global hekpoint that ontains a set of loal hekpoints [18℄ an beomputed by taking the set union of Jb's for eah loal hekpoint in the set.The maximum onsistent global hekpoint an be similarly obtained by usingthe dual of Jb.8 Conlusion and Future WorkIn this paper, the notion of slie introdued in our earlier paper [6℄ is generalizedand its existene for all global prediates is established. The intratability ofomputing the slie, in general, is also proved. An optimal algorithm to omputeslies for speial ases of prediates is provided. Moreover, an eÆient algorithmto graft two slies is also given. Appliation of sliing in general and graftingin partiular to global property evaluation of distributed programs is disussed.Finally, the results pertaining to onsistent global hekpoints [14, 18℄ are shownto be speial ases of omputation sliing.As future work, we plan to study grafting in greater detail. Spei�ally, weplan to ondut experiments to quantitatively evaluate its e�etiveness in weed-ing out unneessary onsistent uts from examination during state spae searhfor prediate detetion. Another diretion for future researh is to extend thenotion of sliing to inlude temporal prediates.Referenes1. K. M. Chandy and L. Lamport. Distributed Snapshots: Determining Global Statesof Distributed Systems. ACM Transations on Computer Systems, 3(1):63{75,February 1985.

2. C. Chase and V. K. Garg. Detetion of Global Prediates: Tehniques and theirLimitations. Distributed Computing, 11(4):191{201, 1998.3. R. Cooper and K. Marzullo. Consistent Detetion of Global Prediates. In Pro-eedings of the ACM/ONR Workshop on Parallel and Distributed Debugging, pages163{173, Santa Cruz, California, 1991.4. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introdution to Algorithms. TheMIT Press, Cambridge, Massahusetts, 1990.5. B. A. Davey and H. A. Priestley. Introdution to Latties and Order. CambridgeUniversity Press, Cambridge, UK, 1990.6. V. K. Garg and N. Mittal. On Sliing a Distributed Computation. In Proeed-ings of the 21st IEEE International Conferene on Distributed Computing Systems(ICDCS), pages 322{329, Phoenix, Arizona, April 2001.7. V. K. Garg and B. Waldeker. Detetion of Unstable Prediates. In Proeedingsof the ACM/ONR Workshop on Parallel and Distributed Debugging, Santa Cruz,California, May 1991.8. B. Korel and R. Ferguson. Dynami Sliing of Distributed Programs. AppliedMathematis and Computer Siene Journal, 2(2):199{215, 1992.9. B. Korel and J. Rilling. Appliation of Dynami Sliing in Program Debugging.In Mariam Kamkar, editor, Proeedings of the 3rd International Workshop on Au-tomated Debugging (AADEBUG), pages 43{57, Link�oping, Sweden, May 1997.10. L. Lamport. Time, Cloks, and the Ordering of Events in a Distributed System.Communiations of the ACM (CACM), 21(7):558{565, July 1978.11. N. Mittal and V. K. Garg. Debugging Distributed Programs Using Controlled Re-exeution. In Proeedings of the 19th ACM Symposium on Priniples of DistributedComputing (PODC), pages 239{248, Portland, Oregon, July 2000.12. N. Mittal and V. K. Garg. Computation Sliing: Tehniques and Theory. TehnialReport TR-PDS-2001-002, The Parallel and Distributed Systems Laboratory, De-partment of Eletrial and Computer Engineering, The University of Texas atAustin, April 2001. Available at http://www.s.utexas.edu/users/neerajm.13. N. Mittal and V. K. Garg. On Deteting Global Prediates in Distributed Compu-tations. In Proeedings of the 21st IEEE International Conferene on DistributedComputing Systems (ICDCS), pages 3{10, Phoenix, Arizona, April 2001.14. R. H. B. Netzer and J. Xu. Neessary and SuÆient Conditions for Consis-tent Global Snapshots. IEEE Transations on Parallel and Distributed Systems,6(2):165{169, February 1995.15. S. D. Stoller and F. Shnieder. Faster Possibility Detetion by Combining TwoApproahes. In Proeedings of the Workshop on Distributed Algorithms (WDAG),Frane, September 1995.16. A. Tarafdar and V. K. Garg. Prediate Control for Ative Debugging of DistributedPrograms. In Proeedings of the 9th IEEE Symposium on Parallel and DistributedProessing (SPDP), Orlando, 1998.17. A. Tarafdar and V. K. Garg. Software Fault Tolerane of Conurrent Programs Us-ing Controlled Re-exeution. In Proeedings of the 13th Symposium on DistributedComputing (DISC), pages 210{224, Bratislava, Slovak Republi, September 1999.18. Yi-Min Wang. Consistent Global Chekpoints that Contain a Given Set of LoalChekpoints. IEEE Transations on Computers, 46(4):456{468, April 1997.19. M. Weiser. Programmers Use Slies when Debugging. Communiations of theACM (CACM), 25(7):446{452, 1982.

