
Brief Announcement: Non-blocking Monitor

Executions for Increased Parallelism ⋆

Wei-Lun Hung, Himanshu Chauhan, and Vijay K. Garg

The University of Texas at Austin
{wlhung@,himanshu@,garg@ece.}utexas.edu

Motivation and Approach: Monitors are a prevalent programming tech-
nique for thread synchronization in shared-memory parallel programs. The cur-
rent design of monitors uses the wait/notification mechanism that blocks threads
from executing without exclusive access to critical sections. We explore the idea
of allowing non-blocking executions of monitor methods to improve the collective
worker thread throughput and cache-locality in multi-threaded programs.

Our proposed framework, called ActiveMonitor, uses the concept of futures
[1,2] to provide non-blocking monitors by creating: (i) an executor for every
monitor object (similar to remote-core-locking [3]), and (ii) tasks — equivalent
to monitor methods — that are submitted to the executors. Our framework
handles these steps automatically. The framework allows the programmer to use
the keyword ‘nonblocking’ in signatures of monitor methods to make their exe-
cution non-blocking. Non-blocking methods return a future reference, which can
be used to retrieve the result of method invocation. We re-interpret linearizabil-
ity in this context, and enforce two rules to guarantee correctness: (a) all the
tasks submitted to one monitor executor are processed in FIFO order. (b) tasks
corresponding to a worker thread’s invocations of methods on different monitors
are processed in program order (of the worker thread). See [4] for details.

Evaluation: We present the performance evaluation of our approach for two
monitor-based problems in Java. In our benchmark, worker threads collectively
perform 512000 operations in total on shared data protected by monitors. We
vary the number of workers from 2 to 24 on a 24-way machine, and measure the
time required for all the workers to complete their operations.

1. Bounded-Buffer Problem: Every producer’s put invocation is non-blocking,
and every consumer’s take is blocking. Items are plain objects. We also compare
runtimes of Java’s ArrayBlockingQueue based implementation (denoted by ABQ).
We collect runtimes by varying: (a) number of workers for a fixed buffer-size
(=4). (b) buffer-size for fixed number of producers/consumers (=16 each). (c)
limit on non-blocking tasks allowed for fixed buffer-size (=4), and 16 producers
and consumers each. Fig. 1 shows the results of these three experiments. Across
all results, we use these legends for implementation techniques: LK: Java Reen-
trant locks, AS: AutoSynch [5], AM: ActiveMonitor (this paper).
2. Sorted Linked-List Problem: Worker threads insert or remove, with equal

⋆ Supported in part by NSF Grants CNS-1346245, CNS-1115808, and Cullen Trust

 0
 1
 2
 3
 4
 5
 6
 7
 8

 2 4 8 16

R
un

tim
e(

se
cs

)

of Producers (= Consumers)

LK
AS

AM
ABQ

(a) Buffer-size = 4

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 1 2 4 8 16 32 64 128 256
Buffer size

LK
AS
AM

ABQ

(b) Varying buffer-size

 0
 1
 2
 3
 4
 5
 6
 7
 8

 5 10 15 20 25 30 35 40 45 50
Size of task queue

Queue size = x
Blocking

Unbounded Queue

(c) Varying tasks-queue size

Fig. 1: Runtimes (mean values across 25 runs) for bounded-buffer

probability, random integer values on a pre-populated linked-list of integers that
is sorted in non-decreasing order. Both insert and remove operations are non-
blocking. Each worker thread also performs some local operations outside the
critical section (CS) between successive updates to the list. We collect the
runtimes by varying: (a) number of workers, keeping local operations outside
CS/worker fixed at 250. (b) number of workers as well as number of local oper-
ations outside CS. The results of these two experiments are shown in Fig. 2.

See [4] for extended evaluation on other monitor problems, details of CPU and
memory consumption, and comparison with other implementation techniques.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 2 4 8 16

R
un

tim
e(

se
cs

)

of Threads

LK
AS
AM

(a) Varying # of workers

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0 200 400 600 800 1000

R
un

tim
e

ra
tio

: L
K

/A
M

of Operations outside CS

2T 4T 8T 16T 24T

(b) Varying # of workers, and ops outside CS

Fig. 2: Results (mean values across 25 runs) for sorted linked-list

References

1. R. H. Halstead, “Multilisp: A language for concurrent symbolic computation,” ACM

Trans. Program. Lang. Syst., vol. 7, no. 4, pp. 501–538, Oct. 1985.
2. A. Kogan and M. Herlihy, “The future(s) of shared data structures,” in PODC, 2014.
3. J.-P. Lozi et al., “Remote core locking: Migrating critical-section execution to im-

prove the performance of multithreaded applications,” in USENIX Annual Technical

Conference, 2012, pp. 65–76.
4. http://arxiv.org/abs/1408.0818.
5. W.-L. Hung and V. K. Garg, “AutoSynch: An Automatic-signal Monitor Based on

Predicate Tagging,” in PLDI, 2013, pp. 253–262.

http://arxiv.org/abs/1408.0818

	Brief Announcement: Non-blocking Monitor Executions for Increased Parallelism

