
Implementing Fault-Tolerant Services Using State Machines:
Beyond Replication

Vijay K. Garg∗

Department of Electrical and Computer Engineering
The University of Texas at Austin

Austin, TX 78712-1084, USA
garg@ece.utexas.edu

Abstract

This paper describes a method to implement fault-tolerant services in distributed systems based on the
idea of fused state machines. The theory of fused state machines uses a combination of coding theory and
replication to ensure efficiency as well as savings in storage and messages during normal operations. Fused
state machines may incur higher overhead during recovery from crash or Byzantine faults, but that may be
acceptable if the probability of fault is low. Assuming n different state machines, pure replication based
schemes require n(f + 1) replicas to tolerate f crash faults in a system and n(2 f + 1) replicas to tolerate f
Byzantine faults. For crash faults, we give an algorithm that requires the optimal f backup state machines
for tolerating f faults in the system of n machines. For Byzantine faults, we propose an algorithm that
requires only n f + f additional state machines, as opposed to 2n f state machines. Our algorithm combines
ideas from coding theory with replication to provide low overhead during normal operation while keeping
the number of copies required to tolerate f faults small.

Submission to Disc 2010 as a regular paper
Not Eligible for Best Student Paper Award.

∗This research was supported in part by the NSF Grants CNS-0718990, CNS-0509024, Texas Education Board Grant 781, SRC
Grant 2006-TJ-1426, and Cullen Trust for Higher Education Endowed Professorship.

0

1 Introduction

The replicated state machine approach is a general method for implementing a fault-tolerant service by repli-
cating servers and coordinating client interactions with server replicas. This approach proposed by Lamport
in [Lam78, Lam84] and further elaborated by Schneider in [Sch90] are considered the standard solutions to
the problem of fault-tolerance in distributed systems. Note that replication has been considered wasteful in
the context of fault-tolerance of data (in communication and storage) for many decades, but in the distributed
systems replication continues to be the dominant approach for fault-tolerance [TDOK04, SSPvS04]. In this
paper, we give an alternate method for fault-tolerance that combines ideas from replication with coding theory
[MS81, vL98] to get main advantages of both the approaches. We use (sufficient) replication to guarantee low
overhead during normal operations and coding theory to reduce the number of copies to get space and message
savings.

We depart from the standard model of fault-tolerance in distributed systems in which the problem is to
tolerate faults in functioning of a single state machine. We will be concerned with fault-tolerance in a set of
state machines where the size of the set will usually be greater than one. While this assumption makes the
problem different from the usual set-up, we argue that our set-up is practically useful. Any large system is
generally constructed as a set of state machines rather than a single monolithic state machine. Even when the
server is constructed as a single state machine, it is quite natural to have multiple instances of the state machines
deployed for different departments of the organization.

In this paper, we show how services in a distributed system can be made fault-tolerant using fusion. Given
n different state machines running on different servers, we focus on tolerating f faults. We focus on two types
of faults: crash faults and Byzantine faults. For crash faults, faulty state machines lose their state. We assume
that crash faults are detectable and the problem that remains is to recover the lost state of state machines. For
Byzantine faults [PSL80], the state machine may go to an incorrect state spontaneously and the algorithm must
continue to provide correct responses to the client in spite of these faults.

For crash faults, we give a technique to construct additional f state machines (called fused state machines)
such that the system of n + f machines can tolerate crash of any f machines in the system. We illustrate
our technique on the resource allocation service from [Sch90], a causal ordering algorithm [RST91] and a
distributed mutual exclusion algorithm [RA81]. The fused state machines use a combination of erasure coding
and replication to ensure that during normal operations, the message and computation overhead on primary
state machines is close to that for replicated state machines. The updates of fused state machines are made
efficient using linearity of erasure coding scheme employed and sufficient replication.

For Byzantine faults, the problem of detection is harder from the perspective of computation and communi-
cation complexity. Here we use a hybrid of replication and coding theory. In particular, we give an algorithm
that keeps the overhead of the replicated state machine approach during normal operations but requires only
n f + f additional state machines (as opposed to 2n f state machines). Our algorithm is based on the following
observation that if there are f +1 copies of a state machine, then at least one of them is correct. In case of a fault,
we only need to determine which of these copies is correct. The traditional method of keeping 2 f + 1 copies
(and then using majority) is wasteful for the task. We introduce the notion of efficient liar detection based on
fused state machines. This allows us to prove the following main result in this paper (in Section 3). Let there
be n primary state machines, each with O(m) data structures. There exists an algorithm with additional n f + f
state machines that can tolerate f Byzantine faults and has the same overhead as the Replicated State Machine
approach during the normal operation and additional O(m f +nt2) overhead during recovery where t is the actual
number of faults that occurred in the system.

In our earlier work, we have given algorithms for fusible data structures. In particular, [GO07] gives
algorithms for arrays, stacks, queues, linked lists etc. to handle crash faults. This work has been generalized to
tolerate multiple crash faults in [BG09]. In contrast, the goal of the current work is to focus on the differences
between the replicated state machine approach and the fused state machine approach and also tackle Byzantine
faults. Furthermore, we show that our approach is applicable to many distributed algorithms including a causal

1

ordering algorithm [RST91], and Ricart and Agrawala’s mutual exclusion algorithm[RA81]. For both of these
algorithms, we get n-fold savings in space. We also get savings in messages for Ricart and Agarwala’s algorithm
because of aggregation that is possible in fused state machines. In [OBG09], an algorithm has been provided
to generate fused finite state machines. That algorithm assumes that the state space of the primary machines is
finite. In this paper, techniques are suitable even for infinite state space.

In data storage and communication, coding theory is extensively used to recover from faults. For exam-
ple, RAID disks use disk striping and parity based schemes (or erasure codes) to recover from the disk faults
[PGK88, CLG+94, Pla97]. As another example, network coding [LMS+97, BLMR98] has been used for re-
covering from packet loss or to reduce communication overhead for multicast. In these applications, the data is
viewed as a set of data entities such as disk blocks for storage applications and packets for network applications.
Coding theory techniques [vL98] are oblivious to the structure of the data. The details of actual operations on
the data are ignored and the codes are simply recomputed after any write update. To tolerate crash failures
for servers, one can view the memory of the server as a set of pages and apply coding theory to maintain code
words. This approach, however, may not be practical because a small change in data may require recomputation
of the backup for one or more pages. This results in a high computational and communication overhead. We
show in this paper that with data structure-aware programming and partial state replication, backup machines
can be designed so that they provide fault-tolerance in an efficient manner.

2 Fusible State Machines

There are n deterministic primary state machines, P(i), where i ranges from 1 to n. Each state machine receives
an input from the client (or environment). On receiving the input, the state machine applies the state transition
function to change its state. The set of states and inputs may be infinite.

We require state machines to be deterministic just as required by the replicated state machine approach.
Given the state of a machine and the sequence of inputs, the behavior of the state machine is required to be
unique. This assumption is crucial in both the replicated state machine (RSM) and the fused state machine
(fused-SM) approaches.

Throughout this paper we assume that channels are reliable and FIFO and that there is a fixed upper bound
for all message delivery. We also assume that crashes of processes are reliably detected.

2.1 Event Counter

To concretize our discussion, we start with n simple state machines, P(i)’s, shown in Fig. 1. Each of these n
machines accept two types of input: entry(v) and exit(v). These state machines may, for example, be counting
the number of people of type i entering a room. Each state machine has a variable count with domain as non-
negative integers. When P(i) receives an event entry(v), it increments its count if v is equal to i and decrements
it when it receives similar exit(v) event.

P(i) :: i = 1..n
int counti = 0;
On event entry(v):

if (v == i) counti = counti + 1;
On event exit(v):

if (v == i) counti = counti − 1;

F(j) :: j = 1.. f
int fCount j = 0;
On event entry(i), for any i

fCount j = fCount j + i j−1;
On event exit(i) for any i

fCount j = fCount j − i j−1;

Figure 1: Fusion of Counter State Machines

To tolearte f faults, the Replicated State Machine (RSM) approach requires f additional state machines for

2

each of P(i) resulting in the total of n f additional state machines. For fusion, we add just f additional machines,
F(1)..F(f) as shown in Fig. 1. F(j) increases its count by i j−1 for any event entry(i) and decrements by the
same amount for exit(i). It can be seen that the fused-SM F(1) tracks the sum of all counts. It increments the
variable fCount1 on entry(i) for any i and decrements it for any exit(i). F(2) maintains fCount2 =

∑
i i∗counti.

More generally, fCount j satisfies the following invariant:

fCount j =
∑

i

i j−1 ∗ counti f or all j = 1.. f

The recovery procedure for fusible SM is more complex than for replication. It crucially depends on the
fact that if any of P(i) crashes, the rest of the machines are still available. F(1) is sufficient to recover from
one crash fault. If P(c) has failed, then its state countc can be recovered as fCount1 −

∑
i,c counti. In general,

we can recover states of any f failed state machines using the remaining machines. For example, consider the
case when f is two and the machines that crashed are P(c) and P(d). Using fusion machine F(1) and remaining
counts we can get the value of countc + countd. Using fCount2, we can get the value of c ∗ countc + d ∗ countd.
We have two linearly independent equations in two variables which can be solved to get the values of countc
and countd. More generally, recovery from f faults reduces to solving f linearly independent equations in f
variables.

A reader well-versed in coding theory would realize that if (count1, count2, , countn) is viewed as data,
(count1,count2,..countn, fCount1, fCount2,.. fCount f) can be viewed as a code word. The code word obtained
is equivalent to one obtained by multiplying data vector by the identity matrix adjoined with the transpose of
the Vandermonde matrix[MS81]. The unique solvability of all the counts is easy to show; the proof is given in
Appendix A for completeness sake.

Theorem 1 Suppose x = (count1, count2, , countn) is the state of the primary state machines. Assume

fCount j =
∑

i

i j−1 ∗ counti f or all j = 1.. f

Given any n values out of y = (count1, count2, ..countn, fCount1, fCount2, .. fCount f) the remaining values in x
can be uniquely determined.

It is important to note the distinction between a server and a state machine. In the event counter example,
to tolerate f crash faults among n state machines, the RSM approach need not run all n f on distinct servers.
We could, for example, run one copy of each of the state machines for all P(1)..P(n), on one server. Thus,
the number of servers required to tolerate f crash faults can still be considered to be f for the RSM approach.
However, the fused state machine approach provides upto n-fold savings in the space required for keeping back-
ups. We now show that the fused-SM approach also yields benefits in computation and communication when
events are shared between primary state machines. Suppose that each P(i) has an additional event called incr
which increases counti by 1. When the event incr happens, all Pi increment their counts. In the RSM approach
the event incr would be communicated to n f state machines, and will be executed n f times. In the Fused-SM
approach, we require F(j) to execute incr as

fCount j = fCount j +

i=n∑
i=1

i j−1

The total number of events that are executed is exactly f , one for each fused-SM. Thus, when events are
shared across primary state machines, we get the advantage of aggregation thereby reducing the message and
computation complexity for backup.

Note that we do not require the fused-SMs to be synchronized with primary state machines. The only
requirement is that all updates from primary state machines are applied in the same order at all the fused-SMs.
The messages at fused-SMs may be buffered because the primary state machines never wait for fused-SMs to

3

finish their updates. In case of a failure of a primary machine, all the pending updates at the fused-SMs must
be applied before the recovery.

So far we had assumed that by adding numbers we do not get overflow. If overflow is possible, there
are two approaches to tackle it. The first approach is to do all the arithmetic, i.e. addition (subtraction), and
multiplication (division) in finite Galois field as typically done in coding theory [MS81]. In that case the matrix
G can either be chosen as a Cauchy Matrix or a Vandermonde matrix reduced using elementary transformations
so that the first n rows form an identity matrix [P05]. The other possibility is to guarantee that there is never
any overflow in any computation. This can be done, for example, by using BigInteger package in Java.

2.2 Causal Ordering

We now generalize the Event Counter example to primary state machines that contain not one variable but a
set of data structures. Whenever a primary state machine receives an event from the client and updates it data
structures, it also sends a message to the fused state machines with the list of variables and the incremental
change in their values. We illustrate this method for a causal ordering algorithm [BJ87] in a group of n
processes.

Consider the version described by Raynal, Schiper, and Toueg [RST91]. Each process maintains a matrix
M of integers. The entry M[q, r] at P(i) records the number of messages sent by process P(q) to process P(r)
as known by process P(i). Whenever a message is sent from P(i) to P(r), the matrix M is piggybacked with
the message. A message is eligible to be received when the number of messages sent from any process P(q) to
P(i), as indicated by the matrix W received in the message, is less than or equal to the number recorded in the
matrix M.

Suppose, we would like the system to be able to tolerate f crash faults, i.e., recover matrices for processes
that have crashed. We require P(i)’s to send an ”M-Update” message with incremental changes in entries of the
matrix to the fused processes F(j). Instead of maintaining f copies of the matrix for each primary process, the
fused-SM algorithm requires a single (fused) matrix for every fault. Thus, the storage requirement for fused
processes is O(f n2) as opposed to O(f n3) required by a replication based algorithm. The entire algorithm
is shown in Appendix D. A similar algorithm can be used to recover vector clocks[Mat89, Fid89] of faulty
processes in distributed systems.

2.3 Resource Allocator

The technique outlined in previous section may not be practical when a simple change in data structure results
in a significant change in the state. We show that by analysis of the data structure, and by selective replication
the size of the messages from primary messages to fusion processes can be reduced significantly.

To illustrate this point, we apply the method of fusion to the resource allocator state machine in [Sch90].
Assume that there are n different type of resources that can only be used in mutually exclusive fashion. The
state machine P(i) shown in Fig. 2 handles clients requesting resource i. It maintains two variables: user, an
integer which records the current user of the resource if any, and waiting, a queue of integers which stores the
id’s of clients waiting for the resource.

Suppose that we want to tolerate one fault in any of these n machines. Whenever, the variable user changes
we can send the incremental change to fusion processes. But, what should we do about the waiting list? If we
view the bit representation of waiting list as an integer (a big integer), then computing the code at fusion pro-
cesses after every change would be very inefficient. We use the technique from fusible data structures[GO07].
Instead of sending the change in state, we send the event that allows the fused structure to be maintained ef-
ficiently. The primary state machine that uses fused-SM approach is shown in Fig. 3. Whenever any data
structure changes, it sends to the fused machines the change that needs to be made in the data structure in a
manner that is tailored to the data structure. Note that the primary machine does not send the changed queue

4

user: int initially 0;// resource idle
waiting: queue of int initially null;

On receiving acquire from client pid
if (user == 0) {

send(OK) to client pid; user = pid;}
else append(waiting, pid);

On receiving release
if (waiting.isEmpty())

user = 0;
else { user = waiting.head();

send(OK) to user;
waiting.removeHead(); }

Figure 2: Resource Allocator State Machine from [Sch90] P(i) :: i = 1..n

or even the incremental difference from the old queue and the new queue. It only sends enough information so
that the fused queues can carry out the state change.

P(i) :: i = 1..n
On receiving acquire from client pid

if (user == 0) { send(OK) to client pid;
user = pid;
send(USER, i, user) to F(j)’s;}

else { append(waiting, pid);
send(ADD-WAITING, i, pid) to F(j)’s;}

On receiving release
if (waiting.isEmpty()) { olduser = user;

user = 0;
send(USER, i, user − olduser) to F(j)’s }

else { olduser = user;
user = waiting.head();
send(OK) to waiting.head();
waiting.removeHead();
send(USER, i, user − olduser) to F(j)’s
send(DEL-WAITING, i, user) to F(j)’s ; }

F(j) :: j = 1.. f
f user:int initially 0;
f waiting:fused queue initially 0;

On receiving (USER, i, val)
f user = f user + i j−1 ∗ val;

On receiving (ADD-WAITING, i, pid)
f waiting.append(i, pid);

On receiving (DEL-WAITING, i, user)
f waiting.deleteHead(i, user);

Figure 3: Algorithm A: Fused State Machine for Resource Allocation

The code for the fused-SM is shown in Fig. 3. In F(j) we have used f waiting as a fused queue. For
simplicity, we use a circular array based implementation (a linked list based implementation is in [GO07]).

The above method has reduced the number of backup state machines n f to f and yet it can tolerate any
f faults from P(1)..P(n). The recovery process is more complex than replication but the significant savings
(n-fold) in the reduced number of active state machines may justify this added complexity especially when the
probability of faults is small.

Remark: So far we had assumed that the clients interact only with the primary machines which, in turn,
interacted with fusion machines to keep them up-to-date. In many examples, an alternate design is possible in
which the commands to the primary state machines are also issued to the fused-SMs. The pseudo-code for such
a design is shown in Appendix B.

We now do overhead analysis for both RSM and the fused-SM approach.
Overhead Under Normal Operation: For replication, we require additional n f state machines, f replicas

for each of the primary state machine. Each operation requires a message to the primary state machine and
f replicas. For fused-SM approach, we require additional f machines. Each operation still requires f + 1
messages, one to the primary state machine and f messages from the primary to fused-SMs. The message to
the primary state machine is same as for the RSM approach, however messages to the fused-SMs may contain

5

f Queue: array[0..M − 1] of int initially 0;
head, tail, size: array[1..n] of int initially 0;

append(i, v);
if (size[i] == M)

throw Exception(”Full Queue”);
f Queue[tail[i]] = f Queue[tail[i]] + i j−1 ∗ v;
tail[i] = (tail[i] + 1)%M;
size[i] = size[i] + 1;

deleteHead(i, v);
if (size[i] == 0)

throw Exception(”Empty Queue”);
f Queue[head[i]] = f Queue[head[i]] - i j−1 ∗ v;
head[i] = (head[i] + 1)%M;
size[i] = size[i] − 1;

isEmpty(i);
return (size[i] == 0);

Figure 4: Fused Queue Implementation at F(j)

additional state information so that fused machines can execute the event despite availability only of fused data
structures.

Assume that the waiting list can have size at most O(m). The RSM approach requires O(n f m) space to
tolerate f faults among n machines. The fused-SM approach requires O(f m+n f) space. The component O(n f)
is required because we allow O(1) state information for each of the n state machines at the fused-SMs. In the
example, we kept head[i], tail[i] and size[i] for each state machine.

The number of events and messages required to be processed at the fused-SM is n times more than the
number of events processed by a replica. Thus, if n is large the fused-SMs may become bottleneck. In these
cases, one could easily use a hybrid of replicated and fused-SM approach.

Complexity for Recovery after Failure: The RSM approach has minimal overhead for recovery after failure.
As soon as a primary machine is detected to be crashed, the replica with the highest id that survives can take
over and start functioning as primary.

The recovery overhead in the fused-SM approach is crucially dependent on the number of actual faults t.
Let the state of any primary state machine be O(m). First consider the most probable case for faults, i.e. t equals
1. The recovery algorithm will require O(n) messages, one from each of the surviving machines of size O(m).
It will take O(nm) time to recover the state of the crashed machine. For t > 1 faults, we would be required to
solve t linearly independent equations. Equivalently, it can be viewed as multiplying the fusion vector with the
inverse of the equation matrix. Since m is large compared to t, we ignore the one time cost of computing the
inverse. Thus, we get the overall cost as O(m(nt + t2)).

2.4 Application to Ricart and Agrawala’s Algorithm

The state machine for the resource allocator example was based on a centralized algorithm for mutual exclusion.
We now show that the technique is also applicable to distributed algorithms such as Ricart and Agarwala’s
algorithm[RA81]. Suppose that there are n primary processes P(1)..P(n) that are coordinating access to a single
critical section. For the RSM based approach, each Pi would need f backups and will result in n f additional
state machines (even if they are run on only f additional servers). Since each state machine requires O(n) space
to keep track of pending requests, the total space requirement is O(f n2). The code for the fused-SM based
Ricart and Agrawals’s algorithm is shown in Appendix C. With the fused-SM approach, we use f additional
state machines with total of O(f n) space. Any request message is also sent to the fused processes which update
the fused data structures on behalf of all the processes in the system. Similarly, okay messages are also sent to
the fused processes.

The non fault-tolerant algorithm requires 2n messages per CS invocation. With the RSM approach, every
message needs to be sent to f backup processes resulting in 2n(f + 1) messages. The Fused-SM approach
requires an additional request message and n− 1 okays to be sent to any fused process. Thus, the total message
requirement is only 2n + n f , which results in savings of n f messages.

6

3 Byzantine Faults

So far we had focused on crash faults. We now discuss Byzantine faults where any state machine may change its
state arbitrarily. The RSM approach requires that there be 2 f backup replicas for each primary state machine.
Since there are 2 f + 1 values available, even if f of them are faulty, the majority will always be correct. When
this approach is applied to n different servers, the RSM approach requires additional 2n f replicas. For data
coding, it is well known that by appending 2 f parity check symbols, one can recover from f unknown data
errors. Can the same ideas be applied to fault-tolerance of state machines?

The additional constraint we have for tolerating Byzantine faults in state machines is that during normal
(fault-free) operation, we would like to have as little overhead as possible. Specifically, we would like to
avoid the overhead of decoding the state during normal operations. To achieve this goal, we give an algorithm
that combines replication with coding theory. We first consider the case of a single Byzantine fault. Next
we generalize the algorithm to tolerate f Byzantine faults but assume that each state machine has O(1) state.
Finally, we give the algorithm that tolerates f Byzantine faults and each primary state machine may have O(m)
state.

3.1 Tolerating Single Byzantine Fault

We start with the case of detecting and tolerating a single Byzantine fault among n primary state machines.
The pure RSM approach requires two replicas for every primary machine resulting in 3n state machines in all.
The pure Fused-SM approach would require n + 2 machines in all. However, in the pure Fused-SM approach,
even the normal operations may be inefficient. For crash faults, the decoding was required only when there
was a failure, a low probability event. For Byzantine faults, a pure Fused-SM approach would require decoding
even during normal operations just to detect if one of the primary machines is faulty. We now show a hybrid
approach that is efficient during normal operation and still requires less number of processes than the RSM
approach.

Our algorithm is based on two observations. First, if we have two copies of a primary state machine P(i),
then one of these copies is guaranteed to be correct. The RSM approach relies on keeping an additional copy so
that majority can be used to determine which is correct. In our approach, we use the concept of liar detection.
We use the fused-SMs to determine which of the two copies is faulty. The liar detection approach is more
efficient in terms of the total number of copies required. The second observation we use is that if two copies
of P(i) agree on some value, then that value is guaranteed to be correct (because, there can be at most one
Byzantine fault).

Theorem 2 Let there be n primary state machines, each with O(m) data structures. There exists an algorithm
with additional n + 1 state machines that can tolerate a single Byzantine fault and has the same overhead as
the RSM approach during normal operation and additional O(m + n) overhead during recovery.

Proof: We keep one replica Q(i) for every primary state machine P(i) and a fused-SM F(1) for the entire
system. Thus, we keep 2n + 1 state machines in all. During normal operation (when there is no fault), the value
of any output at P(i) and Q(i) must be identical. In this case, we do not decode the value from F(1). As soon
as P(i) and Q(i) differ for any i, we have detected Byzantine fault in the system. Note that we do not observe
the state of P(i) and Q(i) at all events. We only look at the response of P(i) and Q(i) for input events and take
action when the response (output) at P(i) differs from Q(i). At this point, we know that either P(i) is correct
or Q(i) is correct, but do not know the identity of the liar yet. We now invoke the liar detection algorithm as
follows. Given the state of P(i) and Q(i), in O(m) time we can determine the data of size O(1) that is different
in them and therefore responsible for different outputs. We use the fused process F(1) to determine which of
these values is correct. This step will require messages of size O(1) from other n−1 primary processes. In O(n)
time the correct value of the data can be determined. We now have the identity and therefore the state of the
correct process. The liar process can be killed and a new copy of the correct process can be started.

7

Observe that in the above algorithm we never decode the data structure at the fused-SM. During normal
operations, we only do the encoding. Whenever there is Byzantine fault detected, we use F(1) only to determine
which of the copies is correct. We can encode O(1) crucial information to determine whether P(i) or Q(i)
is a liar. Also observe that if the fault occurs in the fused machine, it does not affect the overall operation
of the system and it is not even detected. If early detection of fault in the fused machine is important for
some application, then periodically (or during off-peak period) one could simply reset and recompute the fused
process data. Thus, decoding of the fused-SM is not required.

3.2 Tolerating f Byzantine faults in State Machines with O(1) State

To generalize the above algorithm for f faults, we maintain the invariant that there is at least one correct copy
in spite of f faults. Therefore, we keep f copies of each of the primary server and f fused copies. Thus, we
have total of n ∗ f + f state machines in addition to n primary machines. The only requirement on the fused
copies {H(j), j = 1.. f }is that if H(j) is not faulty and if we have n − 1 correct values of the primary machines,
then the remaining one can be determined using H(j). Thus, a simple xor or sum based fused-SM is sufficient.
Even though we are tolerating f faults, the requirement on the fused copy is only for a single fault (because we
are also using replication).

The primary copy together with its f replicas are called unfused copies. If any of f + 1 unfused copies
differ, we call the primary server mismatched. Let the value of one of the copies be v. The number of unfused
copies with value v is called the multiplicity of that copy.

We now generalize Theorem 2 for f ≥ 1 faults. At first, we will assume that the state space of each of the
state machines is small. Later, we generalize it to the case when each of the state machine has O(m) state.

Theorem 3 There exists an algorithm with f n + f backup state machines that can tolerate f Byzantine faults
and has the same overhead as the RSM approach during normal operation and additional O(n f) overhead
during recovery.

Proof: We keep f copies for each primary state machine and f overall fused machines. This results in additional
n f + f state machines in the system. If there are no faults among unfused copies, all f + 1 copies will result in
the same output and therefore the system will incur same overhead as the RSM approach.

Our algorithm first checks the number of primary state machines that are mismatched. First consider the
case when there is a mismatch between primary state machine P(i) and its replica for at most one value of
i = 1..n. Let that primary machine be P(c). Since there are at most f faults, we can conclude that we have the
correct state of all other primary state machines P(i), i , c. Now given the correct state of all other primary
machines, we can successively retrieve the state of P(c) from fused machines H(j), j = 1.. f till we find one of
the unfused machine that has f + 1 multiplicity. We will have to decode at most f fused machines each at cost
of O(n).

Now consider the case when there is a mismatch for at least two primary state machines, say P(c) and P(d).
Let α(c) and α(d) be the largest multiplicity among unfused copies of P(c) and P(d) respectively. Without loss
of generality, assume that α(c) ≥ α(d). We show that the copy with multiplicity α(c) is correct.

If this copy is not correct, then there are at least α(c) liars among unfused copies of P(c). We now claim
that there are at least f + 1 − α(d) liars among unfused copies of P(d) which gives us the total number of liars
as α(c) + f + 1 − α(d) ≥ f + 1 contradicting the assumption on the maximum number of liars. Consider the
copy among unfused copies of P(d) with multiplicity α(d). If this copy is correct we have f + 1 − α(d) liars. If
this value is false, we know that the correct value has multiplicity less than or equal to α(d) and therefore there
are at least f + 1 − α(d) liars among unfused copies of P(d).

By identifying the correct value, we have reduced the number of mismatched primary state machines by 1.
By repeating this argument, we get to the case when there is exactly one mismatched primary machine.

8

Based on the proof of Theorem 3, we get the algorithm C shown in Figure 5, to tolerate f Byzantine faults
with n f replicated and f fused-SMs.

Unfused Copies:
On receiving any message from client

Update local copy;
send state update to fused processes;
send response to the client;

Client:
send event to all unfused f + 1 copies;
if (all f + 1 responses identical)

use the response;
else invoke recovery algorithm;

Fused Copies:
On receiving any update from unfused copy

if (all f + 1 updates identical)
carry out the update

else invoke recovery algorithm;

Recovery Algorithm:
Let t be the number of mismatched state ma-
chines;
while t > 1 do

choose the copy with largest multiplicity;
kill all incorrect unfused copies;
restart killed processes with the chosen copy;
t = t − 1;

// Can assume that t equals one.
// Let the mismatched machine be P(c)
for (j = 1; j ≤ f ; j + +)

create new copy using H(j) and P(i), i , c;
if (any copy has multiplicity f + 1)

recover to that copy and return;

Figure 5: Algorithm C: Tolerating f Byzantine faults

In Algorithm C, we had to decode the fused-SMs during the recovery algorithm. The algorithm requires at
most f fusion processes to be decoded in the worst case. If there are t ≤ f faults, we are guaranteed that after
decoding t fused-SMs we will have f + 1 + t unfused copies. At least one of these copies will have multiplicity
of f + 1 or more. Alternatively, we can try out all the values of unfused copies of P(c) and {P(i), i , c} to
compute H and thereby determine multiplicity of various copies.

3.3 Tolerating f Byzantine faults for State Machines with O(m) state

We now extend the algorithm to the case when each of the primary state machine has O(m) state. We would like
to avoid decoding or encoding the entire fused process. As observed earlier, one of the f + 1 unfused copies is
guaranteed to be correct and it is sufficient to locate this copy using fused copies. We give an algorithm with
O(m f + nt2) time complexity to locate the correct copy. Assume that we are trying to locate the correct copy
among unfused copies of P(c).

In the algorithm shown in Fig. 6, the set Z maintains the invariant that it includes all the correct unfused
copies (and may include incorrect copies as well). The invariant is initially true because all indices from 1.. f +1
are in Z. Since the set has f + 1 indices and there are at most f faults, we know that the set Z always contains
at least one correct copy.

The outer while loop iterates until all copies are identical. If all copies in Z are identical, from the invariant
it follows that all of them must be correct and we can simply return any of the copies in Z. Otherwise, there exist
at least two different copies in Z, say p and q. Let w be the first index in which states of copies p and q differ 1.
Either copy p or the copy q (or both) are liars. We now use the fused machines to recreate copies of state[w].
Since we have the correct copies of all other primary machines P(i), i , c, we can use them with the fused
copies H(j), j = 1.. f . Note that the fused copies may themselves be wrong so it is necessary to get enough
multiplicity for any value to determine if some copy is faulty. Suppose that for some v, we get multiplicity of

1For simplicity, we view the state of machines as an O(m) array (though in practice it could be any structure with size O(m)).

9

Z:set of copies initially {1.. f + 1};
while (all unfused copies in Z not identical)

w = min{r : ∃p, q ∈ Z : statep[r] , stateq[r]};
j = 1;
while (no copy with multiplicity f + 1)

create state[w] using H(j) and P(i), i , c;
j = j + 1;

endwhile;
delete other copies from Z;

endwhile;
return any copy from Z;

Figure 6: Locating A Correct Unfused Copy for mismatched P(c) locate(int c)

f + 1. This implies that any copy with state[w] , v must be faulty and therefore can safely be deleted from Z.
We are guaranteed to get a value with multiplicity f + 1 out of total 2 f + 1 copies. Further, since copies p and q
differ in state[w], we are guaranteed to delete at least one of them in each iteration of while. Eventually, the set
Z would either be singleton or will contain only identical copies. In either case, the while loop terminates and
we have located a correct copy.

We now analyze the time complexity of the procedure locate. Assume that there are t ≤ f actual faults that
occurred. We delete at least one index in each iteration of the outer while loop and there are at most t faulty
processes giving us the bound of t for the number of iterations of the while loop. In each iteration, creating
state[w] requires at most O(1) state to be decoded for each fusion process at the cost of O(n). The maximum
number of fused processes that would be required is t. Thus, O(nt) work is required for a single iteration before
a copy is deleted from Z. To determine w in incremental fashion requires O(m f) work cumulative over all
iterations. Combining these costs we get the complexity of the algorithm to be O(m f + nt2).

By using the method locate, in the recovery algorithm we get the following result – the main result of the
paper.

Theorem 4 Let there be n primary state machines, each with O(m) data structures. There exists an algorithm
with additional n f + f state machines that can tolerate f Byzantine faults and has the same overhead as the
RSM approach during the normal operation and additional O(m f + nt2) overhead during recovery where t is
the actual number of faults that occurred in the system.

Theorem 4 combines advantages of replication and coding theory. We have enough replication to guarantee
that there is at least one correct copy at all time and therefore we do not need to decode the entire state machine
but only locate the correct copy. We have also taken advantage of coding theory to reduce the number of copies
from 2 f to f .

It can be seen that our algorithm is optimal in the number of unfused and fused copies it maintains to
guarantee that there is at least one correct unfused copy and that faults of any f machines can be tolerated.
The first requirement dictates that there be at least f + 1 unfused copies and the recovery from Byzantine fault
requires that there be at least 2 f + 1 fused or unfused copies in all.

4 Conclusions

We have presented efficient distributed algorithms to tolerate crash and Byzantine faults of state machines in
distributed systems. Our algorithms use a combination of replication and coding theory to achieve efficiency
in detection and correction of faults. Our algorithms use fewer backup state machines (and therefore smaller
space, and fewer messages in many cases) while providing the same level of fault-tolerance.

10

References

[BG09] Bharath Balasubramanian and Vijay K. Garg. A fusion-based approach for handling multiple faults
in data structures. Technical Report ECE-PDS-2009-001, Parallel and Distributed Systems Labo-
ratory, ECE Dept. University of Texas at Austin, 2009.

[BJ87] K. P. Birman and T. A. Joseph. Reliable communication in the presence of failures. ACM Trans-
actions on Computer Systems, 5(1):47–76, 1987.

[Bla03] Richard E. Blahut. Algebraic Codes for Data Transmission. Cambridge University Press, 2003.

[BLMR98] John W. Byers, Michael Luby, Michael Mitzenmacher, and Ashutosh Rege. A digital fountain
approach to reliable distribution of bulk data. SIGCOMM Comput. Commun. Rev., 28(4):56–67,
1998.

[CLG+94] Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H. Katz, and David A. Patterson. Raid:
high-performance, reliable secondary storage. ACM Comput. Surv., 26(2):145–185, 1994.

[Fid89] C. J. Fidge. Partial orders for parallel debugging. Proceedings of the ACM SIGPLAN/SIGOPS
Workshop on Parallel and Distributed Debugging, published in ACM SIGPLAN Notices,
24(1):183–194, January 1989.

[GO07] Vijay K. Garg and Vinit A. Ogale. Fusible data structures for fault-tolerance. In ICDCS, page 20.
IEEE Computer Society, 2007.

[GS99] Venkatesan Guruswami and Madhu Sudan. Improved decoding of reed-solomon and algebraic-
geometry codes. IEEE Transactions on Information Theory, 45(6):1757–1767, 1999.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM,
21(7):558–565, 1978.

[Lam84] Leslie Lamport. Using time instead of timeout for fault-tolerant distributed systems. ACM Trans.
Program. Lang. Syst., 6(2):254–280, 1984.

[LF03] Jérôme Lacan and Jérôme Fimes. A construction of matrices with no singular square submatrices.
In Gary L. Mullen, Alain Poli, and Henning Stichtenoth, editors, International Conference on
Finite Fields and Applications, volume 2948 of Lecture Notes in Computer Science, pages 145–
147. Springer, 2003.

[LMS+97] Michael G. Luby, Michael Mitzenmacher, M. Amin Shokrollahi, Daniel A. Spielman, and Volker
Stemann. Practical loss-resilient codes. In STOC ’97: Proceedings of the twenty-ninth annual ACM
symposium on Theory of computing, pages 150–159, New York, NY, USA, 1997. ACM Press.

[Mat89] F. Mattern. Virtual time and global states of distributed systems. In Parallel and Distributed
Algorithms: Proc. of the International Workshop on Parallel and Distributed Algorithms, pages
215–226. Elsevier Science Publishers B.V. (North-Holland), 1989.

[MS81] F J MacWilliams and N J A Sloane. The Theory of Error-Correcting Codes. North-Holland
Publishing Company, 1981.

[OBG09] Vinit A. Ogale, Bharath Balasubramanian, and Vijay K. Garg. A fusion-based approach for toler-
ating faults in finite state machines. In IPDPS, pages 1–11. IEEE, 2009.

[P05] James S. Plank and Ying Ding 0002. Note: Correction to the 1997 tutorial on reed-solomon coding.
Softw., Pract. Exper., 35(2):189–194, 2005.

11

[PGK88] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redundant arrays of inexpensive
disks (raid). In SIGMOD ’88: Proceedings of the 1988 ACM SIGMOD international conference
on Management of data, pages 109–116, New York, NY, USA, 1988. ACM Press.

[Pla97] J. S. Plank. A tutorial on Reed-Solomon coding for fault-tolerance in RAID-like systems. Software
– Practice & Experience, 27(9):995–1012, September 1997.

[PSL80] M. Pease, R. Shostak, and L. Lamport. Reaching agreements in the presence of faults. Journal of
the ACM, 27(2):228–234, April 1980.

[RA81] G. Ricart and A. K. Agrawala. An optimal algorithm for mutual exclusion in computer networks.
Communications of the ACM, 24, 1981.

[Rab89] Michael O. Rabin. Efficient dispersal of information for security, load balancing, and fault toler-
ance. J. ACM, 36(2):335–348, 1989.

[RST91] M. Raynal, A. Schiper, and S. Toueg. The causal ordering abstraction and a simple way to imple-
ment it. Information Processing Letters, 39(6):343–350, July 1991.

[Sch90] Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Comput. Surv., 22(4):299–319, 1990.

[SSPvS04] Swaminathan Sivasubramanian, Michal Szymaniak, Guillaume Pierre, and Maarten van Steen.
Replication for web hosting systems. ACM Comput. Surv., 36(3):291–334, 2004.

[TDOK04] Fathi Tenzakhti, Khaled Day, and M. Ould-Khaoua. Replication algorithms for the world-wide
web. J. Syst. Archit., 50(10):591–605, 2004.

[vL98] J. H. van Lint. Introduction to Coding Theory. Springer-Verlag, 1998.

12

Appendix A

A.1 Proof of Theorem 1

Theorem 5 Suppose x = (count1, count2, , countn) is the state of the primary state machines. Assume

fCount j =
∑

i

i j−1 ∗ counti f or all j = 1.. f

Given any n values out of y = (count1, count2, ..countn, fCount1, fCount2, .. fCount f) the remaining values in x
can be uniquely determined.

Proof: View the state of the primary state machines as x, a 1 × n vector. The vector y is a (n + f) × 1 vector
consisting of the current state of the primary machines adjoined with the states of the fused machines. By
definition of fCount, we can view the system as y = xG where G is n × (n + f) matrix which is n × n identity
matrix adjoined with the transpose of Vandermonde matrix. Let f values of y be erased. By suppressing the
indices corresponding to the lost values in y, we get the vector y′ of size n. By deleting corresponding columns
in G, we get a square matrix M of size n×n. We know that y′ = xM. Furthermore, when elements of G are from
the (infinite) field of real numbers, it is known that M is a nonsingular matrix for all choices of the columns in
G[MS81]. Hence M is invertible, and x can be obtained as y′M−1.

A.2 Alternative Methods for Systematic Coding
In this section, we briefly outline some other systematic linear coding algorithms that can be employed in our
setting. In Section 2.1, we had used transpose of Vandermonde matrix. When the value of the variable counti
changed by δ, we simply added i j−1δ to the code stored at F(j). Alternatively, we could add ji−1δ to the code
stored at F(j) (i.e., switch the roles of i and j).

It can be verified that fCount j now satisfies the invariant:

fCount j =
∑

i

ji−1 ∗ counti f or all j = 1.. f

Another way to look at fCount j is to consider the polynomial

p(x) =
∑

i

counti ∗ xi−1

Then, fCount j is just the evaluation of the polynomial p(x) on j. It can be verified that this method also allows
the system to recover from f faults. However, we have preferred the transpose of the Vandermonde rather than
Vandermonde matrix for the following reason. We expect that for practical applications n would be much larger
than f . In our original proposal the computation required for smaller number of faults is much simpler. For
small values of f , the value of fCount j would be at most O(f log k + m) bits where m is the maximum number
of bits required to store any counti.

Another possibility is to use Cauchy Matrices as used in [Rab89]. It is well known that any square submatrix
of a Cauchy Matrix is also a Cauchy matrix (and therefore non-singular). The advantage of Cauchy Matrices
is that they allow systematic coding for finite fields. We can choose the generator matrix G for coding as [I|C]
where C is a Cauchy Matrix. Every square submatrix of G is invertible. Vandermonde matrices do not satisfy
this property for finite fields. However, variants of these matrices do satisy the required property[LF03]. We
have chosen to use transpose of Vandemonde matrices for their simplicity in explaining the concepts in the
context for infinite precision fields and the discussion will carry over to variants such as Cauchy Matrices.

By using List Decoding algorithms[GS99], one may be able to tolerate even a larger percentage of faults;
but we do not pursue that approach here.

13

Appendix B: Alternate Design of Fused Resource Allocator Machine

An alternate design is possible for toerating faults in the primary state machines which is closer to the structure
of RSM. Suppose that the commands to the primary machines are also issued to the fusion machines. In the
alternate design, the primary machines do not send all the incremental changes to the fusion machines. They
only send minimal change in state that cannot be determined by the fusion machines themselves. In the resource
allocator example, the fused machine will be required to send the update only of the user variable when it is
extracted from the waiting list. Since fusion processes keep the lists in fused form, they cannot determine it
directly without the help of primary processes. The fusion process G(1) is shown in Figure 7. In this design,
the primary processes will be same as in Fig. 2 used for RSM approach except that the statement “send(OK) to
waiting.head();” will be changed to “ send(OK, user) to user and fusion processes;”

G(j) :: j = 1.. f
gUser:int initially 0;
gWaiting: fused queue; (see Fig. 4)

On receiving acquire resource i from client pid
if (gWaiting.isEmpty(i))

gUser = gUser + pid ∗ i j−1;
else gWaiting.append(i, pid);

On receiving release resource i from client pid
gUser = gUser − pid ∗ i j−1;

On receiving (OK, pid) from P(i)
gWaiting.deleteHead(i, pid);
gUser = gUser + pid ∗ i j−1;

Figure 7: Algorithm B: Alternative Design of Fused State Machines

14

Appendix C: Fused State Machine for Ricart and Agrawala’s Algorithm

In Ricart and Agrawala’s algorithm, to request a resource, a process Pi sends a timestamped request message
to all processes. On receiving a request from any other process, the process sends an okay message if either the
process is not interested in the critical section or its own request has a higher timestamp value. Otherwise, that
request is marked to be pending. To release a resource, the process Pi sends okay to all the processes whose
requests were marked pending. Pi is granted the resource when it has requested the resource and it has received
the okay message from every other process in response to its request message.

The pseudo-code for Ricart and Agrawala’s algorithm modified to tolerate a single crash fault is shown in
Fig. 8. The fused process F(j) requires n + 2 messages to maintain the fused data structures. On receiving
a request message from Pi, a fused process updates pending for all processes that would have received the
request.

Pi::i = 1..n
var

pending: array[1..n] of {0,1} init 0;
myts: integer initially 0;
numOkay: integer initially 0;
wantCS : integer initially 0;
inCS : integer initially 0;

receive(”requestCS ”) from client:
wantsCS := 1;
myts := logical clock;
send (”request”, myts) to all (and F(1));

receive(”request”, d) from Pq:
pending[q] = 1;
if (wantCS == 0)||(d < myts) then

send okay to process Pq (and F(1));
pending[q] = 0;

receive(”okay”):
numOkay := numOkay + 1;
if (numOkay = n − 1) then

send(”grantedCS”) to client, F(1);
inCS := 1;

receive(”releaseCS ”) from client:
send(”releasedCS”, myts) to F(1);
myts, numOkay,wantCS , inCS := 0, 0, 0, 0;
for q ∈ {1..n} do

if (pending[q]) {
send okay to the process q;
pending[q] := 0; }

F(j):: j = 1.. f
var

f pending: array[1..n] of int initially all 0;
f myts: integer initially 0;
f numOkay: integer initially 0;
f wantCS : integer initially 0;
f inCS : integer initially 0;

receive(”request”, d) from Pi:
f wantsCS := f wantCS + i j−1;
f myts := f myts + i j−1 ∗ d;
// aggregate action: n − 1 pending added
f pending[i] = f pending[i] +

∑
k,i k j−1;

receive(”okay”) from Pk to Pi:
f numOkay := f numOkay + i j−1;
f pending[i] = f pending[i] − k j−1;

receive(”grantedCS ”) from Pi:
f inCS := f inCS + i j−1;

receive(”releasedCS ”, d) from Pi:
f inCS := f inCS − i j−1;
f numOkay := f numOkay − i j−1 ∗ (n − 1);
f wantCS := f wantCS − i j−1;
f myts := f myts − i j−1 ∗ d;

Figure 8: Primary and Fusin Processes for Ricart and Agrawala’s algorithm

15

Appendix D: A Fault-tolerant Causal Ordering Algorithm

The algorithm for process P(i) and fused process F(j) is given in Fig. 9. It only requires P(i)’s to send an
”M-Update” message with incremental changes in entries of the matrix.

P(i) :: i = 1..n
M:array[1..n, 1..n] of int init ∀q, r : M[q, r] = 0;

To send a message to P(r):
piggyback M as part of the message;
M[i, r] := M[i, r] + 1;
send(M-Update, {(i, r, 1)}) to F(j);

To receive a message with matrix W from P(r)
enabled if ∀q : M[q, i] ≥ W[q, i]
M := max(M,W);
M[r, i] := M[r, i] + 1;
send(M-Update, list of δ) to F(j);

F(j) :: j = 1.. f
M:array[1..n, 1..n] of int

init ∀q, r : M[q, r] = 0;

On receiving (M-Update, list of δ) from P(i)
for all (q, r) with change δ

M[q, r] = M[q, r] + i j−1 ∗ δ

Figure 9: A fault-tolerant algorithm for causal ordering of messages

16

