
Software Fault Tolerance of ConcurrentPrograms Using Controlled Re-execution ?Ashis Tarafdar1 and Vijay K. Garg21 Dept. of Computer Sciences, The Univ. of Texas at Austin, Austin, TX 78712ashis@cs.utexas.edu2 Dept. of Electr. and Comp. Engg., The Univ. of Texas at Austin, Austin, TX 78712garg@ece.utexas.eduAbstract. Concurrent programs often encounter failures, such as races,owing to the presence of synchronization faults (bugs). One existing tech-nique to tolerate synchronization faults is to roll back the program to aprevious state and re-execute, in the hope that the failure does not recur.Instead of relying on chance, our approach is to control the re-executionin order to avoid a recurrence of the synchronization failure. The controlis achieved by tracing information during an execution and using thisinformation to add synchronizations during the re-execution.The approach gives rise to a general problem, called the o�-line predicatecontrol problem, which takes a computation and a property speci�ed onthe computation, and outputs a \controlled" computation that maintainsthe property. We solve the predicate control problem for the mutualexclusion property, which is especially important in synchronization faulttolerance.1 IntroductionConcurrent programs are di�cult to write. The programmer is presented withthe task of balancing two competing forces: safety and liveness [8]. Frequently,the programmer leans too much in one of the two directions, causing either safetyfailures (e.g. races) or liveness failures (e.g. deadlocks). Such failures arise from aparticular kind of software fault (bug), known as a synchronization fault . Studieshave shown that synchronization faults account for a sizeable fraction of observedsoftware faults in concurrent programs [6]. Locating synchronization faults andeliminating them by reprogramming is always the best strategy. However, manysystems must maintain availability in spite of software failures. It is, therefore,desirable to be able to bypass a synchronization fault and recover from theresulting failure. This problem of software fault tolerance for synchronizationfaults in concurrent programs 1 is the primary motivation for this paper.? supported in part by the NSF ECS-9414780, CCR-9520540, a General Motors Fel-lowship, Texas Education Board ARP-320 and an IBM grant1 By concurrent programs, we include all parallel programming paradigms such as:multi-threaded programs, shared-memory parallel programs, message-passing dis-tributed programs, distributed shared-memory programs, etc. We will refer to aparallel entity as a process, although in practice it may also be a thread.



Traditionally, it was believed that software failures are permanent in natureand, therefore, they would recur in every execution of the program with thesame inputs. This belief led to the use of design diversity to recover from soft-ware failures. In approaches based on design diversity [1, 13], redundant moduleswith di�erent designs are used, ensuring that there is no single point-of-failure.Contrary to this belief, it was observed that many software failures are, in fact,transient - they may not recur when the program is re-executed with the sameinputs [3]. In particular, the failures caused by synchronization faults are usuallytransient in nature.The existence of transient software failures motivated a new approach tosoftware fault tolerance based on rolling back the processes to a previous stateand then restarting them (possibly with message reordering), in the hope thatthe transient failure will not recur in the new execution [5, 17]. Methods based onthis approach have relied on chance in order to recover from a transient softwarefailure. In the special case of synchronization faults, however, it is possible todo better. Instead of leaving recovery to chance, our approach ensures that thetransient synchronization failure does not recur. It does so by controlling there-execution, based on information traced during the failed execution.Our mechanism involves (i) tracing an execution, (ii) detecting a synchro-nization failure, (iii) determining a control strategy, and (iv) re-executing undercontrol. Each of these problems is also of independent interest. Our require-ments for tracing an execution and re-execution under control are very sim-ilar to trace-and-replay techniques in concurrent debugging. Trace-and-replaytechniques have been studied in various concurrent paradigms such as message-passing parallel programs [12], shared-memory parallel programs [11], distributedshared memory programs [15], and multi-threaded programs [2]. Among sychro-nization failures, this paper will focus on races. Race detection has been previ-ously studied [4, 10]. We will discuss tracing, failure detection, and re-executionunder control in greater depth in Section 4. This paper addresses the remainingproblem of determining a control strategy.
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(a) Trace (b) Trace with added synchronizationsFig. 1. Example: Tracing and Controlling During Rollback RecoveryTo illustrate what determining a control strategy involves, consider the exe-cution shown in Figure 1(a). CS1 - CS4 are the critical sections of the execution.The synchronizations between processes are shown as arrows from one processexecution to another. A synchronization ensures that the execution after the head



of the arrow can proceed only after the execution before the tail has completed.A race occurs when two critical sections execute simultaneously. For example,CS1 and CS2 may have a race, since the synchronizations do not prevent themfrom executing simultaneously. A control strategy is a set of added synchroniza-tions that would ensure that a race does not occur. The race can be avoided byadding synchronizations, shown as broken arrows in Figure 1(b).The focus of this paper is the problem of determining which synchroniza-tions to add to an execution trace in order to tolerate a synchronization fault inthe re-execution. This proves to be an important problem in its own right andcan be applied in areas other than software fault tolerance, such as concurrentdebugging. We generalize the problem using a framework known as the o�-linepredicate control problem. This problem was introduced in [16], where it wasapplied to concurrent debugging. Informally, o�-line predicate control speci�esthat, given a computation and a property on the computation, one must deter-mine a controlled computation (one with more synchronizations) that maintainsthe property. (We will use the term computation for a formal model of an exe-cution.) The previous work [16] solved the predicate control problem for a classof properties called disjunctive predicates . Applying the results of that studyto software fault tolerance would mean avoiding synchronization failures of theform: l1^ l2^ l3, where li is a local property speci�ed on process Pi. For example,if li speci�es that a server is unavailable, the synchronization failure is that allservers are unavailable at the same time.In this paper, we address a class of o�-line predicate control problems, char-acterized by the mutual exclusion property, that is especially useful in toleratingraces. We consider four classes of mutual exclusion properties: o�-line mutualexclusion, o�-line readers writers , o�-line independent mutual exclusion, ando�-line independent read-write mutual exclusion. For each of these classes ofproperties, we determine necessary and su�cient conditions under which theproblem may be solved. Furthermore, we design an e�cient algorithm that solvesthe most general of the problems, o�-line independent read-write mutual exclu-sion, and thus also solves each of the other three problems. The algorithm takesO(np) time, where n is the number of concurrent processes and p is the numberof critical sections.The problems have been termed o�-line problems to distinguish them fromtheir more popular on-line variants (i.e. the usual mutual exclusion problems[14]). The di�erence between the on-line and o�-line problems is that in the on-line case, the computation is provided on-line, whereas in the o�-line case, thecomputation is known a priori . Ignorance of the future makes on-line mutualexclusion a harder problem to solve. In general, in on-line mutual exclusion, onecannot avoid deadlocks without making some assumptions (e.g. critical sectionsdo not block). Thus, on-line mutual exclusion is impossible to solve. To under-stand why this is true, consider the scenario in Figure 1. Any on-line algorithm,being unaware of the future computation, would have a symmetric choice of en-tering CS1 or CS2 �rst. If CS2 is entered �rst, it would result in a deadlock.An o�-line algorithm, being aware of the future computation, could make the



correct decision to enter CS1 �rst and add a synchronization from CS1 to CS2. Aproof of the impossibility of on-line mutual exclusion follows along similar linesas the proof of Theorem 3 in [16]. Thus, there will always be scenarios whereon-line mutual exclusion algorithms will fail, resulting in either race conditionsor deadlocks. In such scenarios, controlled re-execution based on o�-line mutualexclusion becomes vitally important.2 Model and Problem StatementThe model that we present is of a single execution of the concurrent program.The model is not at the programming language level, but at a lower level, atwhich the execution consists of a sequence of states for each process and thecommunications that occurred among them (similar to the happened beforemodel[7]).Let S be a �nite set of elementary entities known as states . S is partitionedinto subsets S1; S2; � � � ; Sn, where n > 1. These partitions correspond to n pro-cesses in the system. A subset G of S is called a global state i� 8i : jG\Sij = 1.Let Gi denote the unique element in G\Si. A global predicate is a function thatmaps a global state onto a boolean value.A computation is a partial order ! on S such that 8i : !i is a total orderon Si, where !i represents ! restricted to the set Si. Note that the states in asingle process are totally ordered while the states across processes are partiallyordered. We will use!,!k,!c to denote computations, and k, kk, kc to denotethe respective incomparability relations (e.g. s k t � (s 6! t) ^ (t 6! s)). Givena computation! and a subset K of S,!-consistent(K) � 8s; t 2 K : s k t. Inparticular, a global state may be !-consistent. The notion of consistency tellsus when a set of states could have occurred concurrently in a computation.A computation ! is extensible in S i�:8K � S : !-consistent(K) ) 9 global state G � K : !-consistent(G)Intuitively, extensibility allows us to extend a consistent set of states to a con-sistent global state. Any computation in S can be made extensible by adding\dummy" states to S. Therefore, we implicitly assume that any computation isextensible.Given a computation !, let � be a relation on global states de�ned as:G � H � 8i : (Gi !i Hi) _ (Gi = Hi). It is a well-known fact thatthe set of !-consistent global states is a lattice with respect to the � relation[9]. In particular, we will use !-glb(G;H) for the greatest lower bound of Gand H with respect to ! (so, !-glb(G;H)i =!i-min(Gi; Hi)). If G and H are!-consistent, then !-glb(G;H) is also !-consistent.Given a computation ! and a global predicate B, a computation !c iscalled a controlling computation of B in ! i� (1) !�!c, and (2) 8G : !c-consistent(G) ) B(G). This tells us that a controlling computation is astricter partial order (containing more synchronizations). Further, any globalstate that may occur in the controlling computation must satisfy the speci�edglobal predicate. Thus, the problem of �nding a controlling computation is to



add synchronizations until all global states that violate the global predicate aremade inconsistent. More formally,The O�-line Predicate Control Problem: Given a computation ! and aglobal predicate B, �nd a controlling computation of B in !3 Solving the O�-line Predicate Control ProblemIn [16], it was proved that the O�-line Predicate Control is NP-Hard. Therefore,it is important to solve useful restricted forms of the O�-line Predicate ControlProblem. Since we are interested in avoiding race conditions, we restrict thegeneral problem by letting B specify the mutual exclusion property.
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Off-line Independent Mutual ExclusionFig. 2. Variants of O�-line Mutual ExclusionThe simplest speci�cation for mutual exclusion is: no two critical sections ex-ecute at the same time. This corresponds to the semantics of a single exclusivelock for all the critical sections. We call the corresponding problem the O�-line Mutual Exclusion Problem. We can generalize this to the O�-line ReadersWriters Problem by specifying that only critical sections that \write" must beexclusive, while critical sections that \read" need not be exclusive. This corre-sponds to the semantics of read-exclusive-write locks. Another way to generalizethe O�-line Mutual Exclusion Problem is to allow the semantics of independentlocks. In this O�-line Independent Mutual Exclusion Problem, no two critical sec-tions of the same lock can execute simultaneously. Finally, we can have criticalsections with the semantics of independent read-exclusive-write locks. This is theO�-line Independent Read-Write Mutual Exclusion Problem. Figure 2 illustratesthe relative generality of the four problems.In traditional on-line mutual exclusion, there has been no \independent"variant, since it trivially involves applying the same algorithm for each lock.However, in o�-line mutual exclusion, such an approach will not work, sincethe synchronizations added by each independent algorithm may cause deadlockswhen applied together.For the practitioner, an algorithm which solves O�-line Independent Read-Write Mutual Exclusion would su�ce, since it can be used to solve all othervariants. However, for the purpose of presentation we will start with the simplestO�-line Mutual Exclusion Problem and then generalize it in steps. For eachproblem, we will determine the necessary and su�cient conditions for �nding a



solution. Finally, we will make use of the results in the design of an algorithmwhich solves the most general of the four problems.3.1 O�-line Mutual ExclusionO�-line Mutual Exclusion is a specialization of O�-line Predicate Control to thefollowing class of global predicates:Bmutex(G) � 8 distinct s; t 2 G : :(critical(s) ^ critical(t))where critical is a function that maps a state onto a boolean value. Thus, Bmutexspeci�es that at most one process may be critical in a global state.Based on the critical boolean function on states, we de�ne critical sectionsas maximal intervals of critical states. More precisely: given a critical functionon S and a computation! on S, a critical section, CS, is a non-empty, maximalsubset of an Si such that: (1) 8s 2 CS : critical(s), and (2) 8s; t 2 CS : 8u 2Si : s! u! t ) u 2 CS.Let CS:first and CS:last be the minimum and maximum states respectivelyin CS (w.r.t. !i). Let 7! be a relation on critical sections de�ned as: CS 7!CS0 � CS:first ! CS0:last ^ CS 6= CS0 Thus, 7! orders a critical sectionbefore another if some state in the �rst happened before some state in the second.Note that 7! may have cycles.We will be dealing with di�erent computations. All computations will havethe same total order !i for each Si. Therefore, the set of critical sections willnot change for each computation. However, the 7! relation will change, in gen-eral. For computations !, !k, and !c, the relation on critical sections will bedenoted as 7!, 7!k and 7!c respectively.Theorem 1 (Necessary Condition) For a computation ! of S, and a globalpredicate Bmutex,a controlling computation of Bmutex in ! exists ) 7! has no cyclesProof: We prove the contrapositive. Let 7! have a cycle, say CS1 7! CS2 7!� � �CSm 7! CS1, (m � 2) and let !c be a computation such that !�!c. Since!c cannot have a cycle, at least one of:CS1:last 6!cCS2:first, CS2:last 6!cCS3:first, � � �, and CSm:last 6!cCS1:firstmust hold. Without loss of generality, let CS1:last 6!cCS2:first. We also haveCS2:last 6!cCS1:first (since CS1 7! CS2). Since!c is extensible, we can de�nes2 as the maximum state in S2 such that CS1:last kc s2, and s1 as the maximumstate in S1 such that CS2:last kc s1. By extensibility of !c, we can �nd !c-consistent global states G1 and G2 containing fCS1:last; s2g and fCS2:last; s1grespectively. We now have two cases:Case 1: [s1 2 CS1 _ s2 2 CS2] In this case :Bmutex(G2) _ :Bmutex(G1).Case 2: [s1 =2 CS1 ^ s2 =2 CS2] Since s1 =2 CS1, there are two ways toposition s1: (a) s1 !c CS1:first or (b) CS1:last !c s1. In sub-case (a), sinceCS2:last 6!cCS1:first, either CS2:lastkcCS1:first or CS1:first !c CS2:last,which gives us s1 !c CS2:last. Both possibilities contradict the de�nition of



s1. This leaves sub-case (b) as the only possibility. Therefore, CS1:last !c s1.Similarly, we can prove CS2:last !c s2. Let H =!c-glb(G1; G2). H containsCS1:last and CS2:last and, so, :Bmutex(H). Further, H is !c-consistent (bythe lattice property).So in either case, !c is not a controlling computation of Bmutex in !. 2Theorem 2 (Su�cient Condition) For a computation ! of S, and a globalpredicate Bmutex,7! has no cycles ) a controlling computation of Bmutex in ! existsProof: Since 7! has no cycles, we can arrange all of the critical sections in asequence: CS1, CS2, � � � CSm such that CSi 7! CSj ) i < j. Let !c bede�ned as (! [ f(CSi:last; CSi+1:first) j 1 � i � m� 1g)+, where ()+ is thetransitive closure. Clearly!�!c. In the next paragraph, we will prove that!cis a partial order. Assume that there is a global state G such that :Bmutex(G).Therefore, we can �nd states s and t such that critical(s) and critical(t). LetCSi and CSj be the two critical sections to which s and t belong respectively.w.l.o.g, let i < j. Therefore, s !c t, and : !c-consistent(G). Therefore, !c-consistent(G) ) Bmutex(G). So !c is a controlling computation of Bmutex in!. Our remaining proof obligation is to prove that!c is a partial order. To thisend, let !k be de�ned as: (! [ f(CSi:last; CSi+1:first) j 1 � i � k � 1g)+.We make the following claim:Claim: 81 � k � m : (1) !k is a partial order, and (2) CSi 7!k CSj ) i < jClearly !c=!m and so this claim implies that !c is a partial order.Proof of Claim: (by Induction on k)Base Case: Immediate from !=!1.Inductive Case: We make the inductive hypothesis that !k�1 is a partialorder, and that CSi 7!k�1 CSj ) i < j. We may rewrite the de�nition of!k as: (!k�1 [ f(CSk�1:last; CSk:first)g)+. First we demonstrate that !kis irreexive and transitive (which together imply asymmetry).(i) Irreexivity: Let s !k t. There are two possibilities: either s !k�1 tor s !k�1 CSk�1:last ^ CSk:first !k�1 t. In the �rst case, the inductivehypothesis tells us that!k�1 is irreexive and so s 6= t. In the second case, part(1) of the inductive hypothesis tells us that !k�1 is transitive, and part (2) ofthe inductive hypothesis tells us that CSk:first 6!k�1CSk�1:last and so s 6= t.(ii)Transitivity: This is immediate from the de�nition of !k.Therefore,!k is a partial order. We now show the second part of the claim.Suppose CSi 7!k CSj . This implies that CSi:first!k CSj :last ^ i 6= j. Thereare two cases: either CSi:first !k�1 CSj :last ^ i 6= j or CSi:first !k�1CSk�1:last ^ CSk:first !k�1 CSj :last ^ i 6= j. In the �rst case, we haveCSi 7!k�1 CSj and so by the inductive hypothesis, i < j. In a similar manner,the second case would give us i � k � 1 ^ k � j and so i < j. 2In conclusion, the necessary and su�cient condition for �nding a controllingcomputation for Bmutex is that there is no cycle of critical sections with respectto 7!. Further note that, since the proof of Theorem 2 is constructive, we can



use it to design a naive algorithm to �nd a controlling computation. (We willsee why this algorithm is naive in Section 3.5).3.2 O�-line Readers Writers ProblemLet read critical and write critical be functions that map a state onto a booleanvalue. Further, no state can be both read critical and write critical (any readand write locked state is considered to be only write locked). Let critical(s) �read critical(s) _ write critical(s). The O�-line Readers Writers Problem is aspecialization of the O�-line Predicate Control Problem to the following class ofglobal predicates:Brw(G) � 8 distinct s; t 2 G : :(write critical(s) ^ critical(t))Given a read critical function and a write critical function on S and acomputation! on S, we de�ne a read critical section and a write critical sectionin an analogous fashion to the critical sections that we de�ned before. Notethat, since no state is both read critical and write critical, critical sections ina process do not overlap.Let 7! be a relation on both read and write critical sections de�ned as:CS 7! CS0 � CS:first! CS0:last ^ CS 6= CS0Theorem 3 (Necessary Condition) For a computation ! of S, and a globalpredicate Brw,a controlling computation of ) all cycles in 7! containBrw in ! exists only read critical sectionsProof: The proof is similar to the proof of Theorem 1. We will prove the con-trapositive. Let 7! have a cycle, say CS1 7! CS2 7! � � �CSm 7! CS1. Withoutloss of generality, let CS1 be a write critical section. Let !c be a computationsuch that !�!c.First, we claim that there is at least one critical section in the cycle say CSk(where k 6= 1), such that CS1:last 6!cCSk:first and CSk :last 6!cCS1:first. Toprove this, we assume the opposite:8CSk (k 6= 1) : CS1:last!c CSk:first _ CSk:last!c CS1:first { (i)and prove a contradiction as follows.CSm 7! CS1 implies CS1:last 6!cCSm:first.Therefore, by (i), CSm:last !c CS1:first. This allows us to de�ne j as thesmallest integer such that CSj :last !c CS1:first. CS1 7! CS2 implies thatCS2:last 6!cCS1:first. Therefore, j 6= 2. In particular, CSj�1 and CS1 are dis-tinct. By our choice of j, CSj�1:last 6!cCS1:first. So, using (i), CS1:last !cCSj�1:first. We now have a cycle: CS1:last!c CSj�1:first (as above),CSj�1:first !c CSj :last (since CSj�1 7! CSj), CSj :last !c CS1:first (byour choice of j), and CS1:first !c CS1:last (by the de�nition of first andlast). This cycle contradicts the fact that !c is a partial order.Since we have demonstrated the existence of a CSk such that CS1:last 6!cCSk:first and CSk:last 6!c CS1:first, we can use a proof similar to the one inTheorem 1 to show that !c is not a controlling computation of Brw in !. 2



Theorem 4 (Su�cient Condition) For a computation ! of S, and a globalpredicate Brw,all cycles in 7! contain ) a controlling computation ofonly read critical sections Brw in ! existsProof: Consider the set of strongly connected components of the set of criticalsections with respect to the 7! relation. De�ne the ,! relation on strongly con-nected components as SCC ,! SCC 0 � 9CS 2 SCC;CS0 2 SCC 0 : CS 7!CS0 ^ SCC 6= SCC 0. It is veri�able that ,! is a partial order. Therefore,we can linearize it to get a sequence of all strongly connected components, saySCC1; SCC2; � � �SCCl such that SCCi ,! SCCj ) i < j. Let !c be de-�ned as (! [ f(CSi:last; CSj :first) j CSi 2 SCCk; CSj 2 SCCk+1 for some1 � k � l� 1g)+. Clearly !�!c. We can show that !c is a partial order alongsimilar lines as the proof of Theorem 2.We now show that !c is a controlling computation of Brw in !. Suppose Gis a global state such that :Brw(G). Therefore, we can �nd states s and t suchthat write critical(s) and critical(t). Let CS be a write critical section thatcontains s and let CS0 be a critical section that contains t. Let SCCi and SCCjbe the strongly connected components that contain CS and CS0 respectively.SCCi is distinct from SCCj since, otherwise, there would be a cycle in 7! thatcontains a write critical section. Without loss of generality, let i < j. By thede�nition of !c, we have s!c t and, therefore, : !c-consistent(G). Therefore,!c is a controlling computation of Brw in !. 2Note, as before, that the proof of Theorem 4 can be used to design an algo-rithm to �nd a controlling computation.3.3 O�-line Independent Mutual ExclusionLet critical1; critical2; � � � criticalm be functions that map an event onto a booleanvalue. The O�-line Independent Mutual Exclusion Problem is a specialization ofthe O�-line Predicate Control Problem to the following class of global predicates:Bind(G) � 8 distinct s; t 2 G : 8i : :(criticali(s) ^ criticali(t))Given a function criticali on S and a computation ! on S, we de�ne ani-critical section in an analogous fashion to the critical sections that we de�nedbefore. Note that the de�nition allows independent critical sections on the sameprocess to overlap. In particular the same set of states may correspond to twodi�erent critical sections (corresponding to a critical section with multiple locks).Let 7! be a relation on all critical sections de�ned as before.Theorem 5 (Necessary Condition)For a computation ! of S, and a global predicate Bind,a controlling computation of ) 7! has no cycles of i-criticalBind in ! exists sections, for some i



Proof: The proof is almost identical to the proof of Theorem 1. 2Theorem 6 (Su�cient Condition) For a computation ! of S, and a globalpredicate Bind,7! has no cycles of i-critical ) a controlling computation ofsections, for some i Bind in ! existsProof: The proof is along similar lines to the proof of Theorem 4. In this casewe take strongly connected components as before, but make use of the fact thatno two i-critical sections may be in the same strongly connected component(otherwise, there would be a cycle of i-critical sections). 23.4 O�-line Independent Read-Write Mutual ExclusionUsing similar de�nitions, the O�-line Independent Read-Write Mutual ExclusionProblem is a specialization of the O�-line Predicate Control Problem to thefollowing class of global predicates:Bind�rw(G) � 8 distinct s; t 2 G : 8i : :(write criticali(s) ^ criticali(t))As before, we de�ne i-read critical sections and i-write critical section (1 �i � m). Similarly, let 7! be a relation on all critical sections. The necessary andsu�cient condition is a combination of that of the previous two sections. Sincethe proofs are similar to the previous ones, we simply state:Theorem 7 (Necessary and Su�cient Condition)For a computation ! of S, and a global predicate Bind�rw,a controlling computation of � all cycles of i-critical sections in 7!Bind�rw in ! exists contain only read critical sections3.5 AlgorithmFigure 3 shows the algorithm to �nd a controlling computation of Bind�rw in!. Since the other forms of mutual exclusion are special cases of Bind�rw, thisalgorithm can be applied to any of them.The input to the algorithm is the computation, represented by n lists ofcritical sections C1; � � � ; Cn. For now, to simplify presentation, we assume thatcritical sections are totally ordered on each process. Each critical section is rep-resented as its process id, its �rst and last states, a type identi�er cs id thatspeci�es the criticalcs id function, and a ag indicating if it is a write or readcritical section. The partial order is implicitly maintained by vector clocks [9]associated with the �rst and last states of each critical section. The algorithmoutputs the !c relation speci�ed as a list of ordered pairs of states.The �rst while loop of the algorithm builds ordered, a totally ordered set ofstrongly connected components of critical sections (called scc's from here on).The second while loop simply uses ordered to construct the !c relation.



Types: state: (pid: int; v: vector clock);critical section: (pid: int; first: state; last: state;cs id: integer; write critical: boolean);strongly conn component: set of critical section;Input: C1; C2; � � � ; Cn: list of critical sectionOutput: O: list of (state, state), initially nullVars: scc set; crossable: set of strongly conn componentcrossed; prev; curr: strongly conn componentcs; cs0: critical sectionordered: list of strongly conn componentwhile (8i : Ci 6= null) doscc set := get scc(C1:head; C2:head; � � � ; Cn:head)crossable := f s 2 scc set j 8s0 2 scc set; s0 6= s : s0 6,! s gcrossed := select(crossable);if (not valid(crossed)) thenexit(\No Controlled Computation Exists");for each cs in crossed doCcs:pid:delete head();ordered:add head(crossed);prev := ordered:delete head();while (ordered 6= null) docurr := ordered:delete head();for each cs in prev and cs0 in curr doif (cs:last 6! cs0:first) thenO:add head(cs:last; cs0:first);Fig. 3. Algorithm for O�-line Independent Read-Write Mutual ExclusionThe goal of each iteration of the �rst while loop is to add an scc, which is min-imal w.r.t. ,!, to ordered (where ,! is the relation on scc's de�ned in the proofof Theorem 4). To determine this scc, it �rst computes the set of scc's amongthe leading critical sections in C1; � � �Cn. Since no scc can contain two criticalsections from the same process, it is su�cient to consider only the leading criticalsections. From the set of scc's, it determines the set of minimal scc's, crossable.It then randomly selects one of the minimal scc's. Finally, before adding the sccto ordered, it must check if the scc is not valid, where not valid(crossed) �9cs; cs0 2 crossed : cs:cs id = cs0:cs id ^ cs:write critical. If an invalid scc isfound, no controlling computation exists (by Theorem 7).The main while loop of the algorithm executes p times in the worst case,where p is the number of critical sections in the computation. Each iterationtakes O(n2), since it must compute the scc's. Thus, a simple implementationof the algorithm will have a time complexity of O(n2p). However, a better im-plementation of the algorithm would amortize the cost of computing scc's overmultiple iterations of the loop. Each iteration would compare each of the criticalsections that have newly reached the heads of the lists with the existing scc's,thus forming new scc's. Therefore, each of the p critical section reaches the head



of the list just once, when it is compared with n � 1 critical sections to deter-mine the new scc's. The time complexity of the algorithm with this improvedimplementation is, therefore, O(np). Note that a naive algorithm based directlyon the constructive proof of the su�cient condition in Theorem 7 would takeO(p2). We have reduced the complexity signi�cantly by using the fact that thecritical sections in a process are totally ordered.The algorithm has implicitly assumed a total ordering of critical sectionsin each process. However, as noted before, independent critical sections on thesame process may overlap, and may even coincide exactly (a critical section withmultiple locks is treated as multiple critical sections that completely overlap).The algorithm can be extended to handle such cases by �rst determining thescc's within a process. These scc's correspond to maximal sets of overlappingcritical sections. The input to the algorithm would consist of n lists of suchprocess-local scc's. The remainder of the algorithm remains unchanged.4 Application to Software Fault ToleranceOur proposed scheme for software fault tolerance consists of four parts: (i) tracingan execution, (ii) detecting a synchronization failure, (iii) determining a controlstrategy, and (iv) re-executing under control. This paper has focused mainly onthe problem of determining a control strategy. We have designed an e�cientalgorithm that determines which synchronizations to add in order to avoid verygeneral forms of mutual exclusion violation. As mentioned before, the other threeparts of our scheme have been addressed as independent problems. We now putall the pieces together for a comprehensive look at how race failures (mutualexclusion violations) can be tolerated.
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(a) Traced Computation (b) Critical Section Graph (c) Controlling ComputationFig. 4. Example: Tolerating Races in a Concurrent ExecutionThe problem of determining a control strategy was placed in a very generalmodel of concurrent execution. However, tracing, detection, and controlled re-execution depend greatly on the particular concurrent paradigm. We choose asimple example that demonstrates the key issues that will arise in most concur-rent paradigms. Consider a distributed system of processes that write to a singleshared �le. The �le system itself does not synchronize accesses and so the pro-cesses are responsible for synchronizing their accesses to the �le. If they do not



do so, the writes may interleave and the data may get corrupted. Since the �ledata is very crucial, we must ensure that races can be tolerated. Synchronizationoccurs through the use of explicit message passing between the processes.The �rst part of our mechanism involves tracing the execution. The concernduring tracing is to reduce the space and time overhead, so that tolerating apossible fault does not come at too great a cost. Much work has been donein implementing tracing in various paradigms, while keeping the overhead low[2, 11, 12, 15]. In our example, we use a vector clock mechanism [9], updatingthe vector clock at each send and receive point. This vector clock needs to belogged for each of the writes to the �le (for our algorithm). The vector clockvalues must also be logged for each receive point (for replay). When a write isinitiated, and when it returns, the vector clock must be logged. In our example,the writes are typically very long and therefore are performed asynchronously.Thus, execution continues while the write is in progress. In particular, the processmay receive a message from another process during its write to the �le. Insertingsome computation at the send, receive, write initiation, and write completionpoints can be achieved either by code instrumentation, or by modifying therun-time environment (message-passing interface and the �le system interface).The second part of our mechanism is detecting when a race occurs. Manyexisting tools have been built to solve exactly this problem [4, 10]. Since we usemessage passing as our synchronization mechanism, the methods described in[10] are particularly applicable.Once a race has been detected, we roll-back all processes to a consistentglobal state prior to the race. We also roll-back the �le to a version consistentwith the rolled-back state of the processes. (We assume a versioned �le systemwith the ability to roll back.) We then take the section of the traced vectorclock values that occur after the rolled-back state. These indicate the criticalsection entry and exit points required by our algorithm. The algorithm wouldtake O(np) time, where n is the number of processes and p is the number ofcritical sections that have been rolled back. The output of the algorithm isthe set of added synchronizations speci�ed as pairs of critical section boundarypoints. Figure 4 demonstrates a possible scenario. Here the semantics of mutualexclusion correspond to a single exclusive lock. Therefore, the necessary andsu�cient condition is that there are no cycles in the critical section graph shownin Figure 4(b). Applying the algorithm would add synchronizations to give thecontrolling computation shown in Figure 4(c).The next step is to replay the processes using the logged vector clock valuesof the receive points. Each receive point must be blocked until the same messagearrives as in the previous execution. This is a standard replay mechanism (e.g.[12]). In addition to this replay, we must impose additional synchronizations. Forexample, suppose (s; t) is one of the synchronizations output by our algorithm.The state s is a critical section exit point while t is a critical section entry point.Each of these additional synchronizations is implemented by a control messagesent from s and received before t. Thus, at each critical section exit point, wemust check the added synchronizations to decide if a control message must be



sent. At each critical section entry point, we must check the added synchro-nizations to decide if the process must block waiting for a control message. Asin tracing, the points at which computation must be added are the write ini-tiation and completion points, and the send and receive points. Again, we canaccomplish this by code instrumentation or run-time environment modi�cation.We have chosen an example in which the processes only write to the �le. Ifthe processes were to read from the �le as well, then that would cause causaldependencies between processes. Then we would have to track these causal de-pendencies as we did for messages. Another option would be to assume thatthese causal dependencies do not a�ect the message communications, in whichcase, we do not have to track them. However, if we take this approach, we wouldhave to check to see that our traced computation is the same as the one be-ing replayed. In case of a divergence, we would leave the execution to proceeduncontrolled from the point of divergence.5 Concluding RemarksWe have presented an approach for tolerating synchronization faults in concur-rent programs based on rollback and controlled re-execution. Our focus in thispaper has been on races, which form a particular type of synchronization fault.In order to determine a control strategy that avoids races while re-executing, wehave solved the o�-line predicate control problem for various forms of mutualexclusion properties. We have determined the necessary and su�cient condi-tions for solving o�-line predicate control for simple mutual exlusion, read-writemutual exclusion, independent mutual exclusion, and independent read-writemutual exclusion. We have presented an e�cient algorithm that solves for themost general property, independent read-write mutual exclusion. The algorithmtakes O(np) time, where n is the number of processes and p is the number ofcritical sections. Finally, we have demonstrated how races can be tolerated usingour algorithm. An implementation of software fault tolerance using controlledre-execution is currently being developed in order to evaluate the performanceand e�ectiveness of the technique in practice.It may be argued that mutual exclusion could be simply handled at the pro-gramming language level using locks (in other words, on-line mutual exclusion,as opposed to o�-line mutual exclusion). However, there are good reasons for ourapproach. Firstly, as noted in Section 1, it is impossible to ensure that there willbe no deadlocks with on-line locking unless some assumptions are made, suchas non-blocking critical sections. In o�-line mutual exclusion, no such assump-tions are required. Secondly, programmers make mistakes, being prone to reducelocking for greater e�ciency. Thirdly, source code is often unavailable for mod-i�cation, while requirements change dynamically. In modern component-basedsystems, di�erent components may come from di�erent vendors and it may bedi�cult to ensure a consistent locking discipline throughout the code. The bestapproach is to use both good programming discipline and a sofware fault toler-ance technique to make programs more resistant to failures.
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