Software Fault Tolerance of Concurrent
Programs Using Controlled Re-execution *

Ashis Tarafdar! and Vijay K. Garg?

! Dept. of Computer Sciences, The Univ. of Texas at Austin, Austin, TX 78712
ashis@cs.utexas.edu
2 Dept. of Electr. and Comp. Engg., The Univ. of Texas at Austin, Austin, TX 78712

garg@ece.utexas.edu

Abstract. Concurrent programs often encounter failures, such as races,
owing to the presence of synchronization faults (bugs). One existing tech-
nique to tolerate synchronization faults is to roll back the program to a
previous state and re-execute, in the hope that the failure does not recur.
Instead of relying on chance, our approach is to control the re-execution
in order to avoid a recurrence of the synchronization failure. The control
is achieved by tracing information during an execution and using this
information to add synchronizations during the re-execution.

The approach gives rise to a general problem, called the off-line predicate
control problem, which takes a computation and a property specified on
the computation, and outputs a “controlled” computation that maintains
the property. We solve the predicate control problem for the mutual
exclusion property, which is especially important in synchronization fault
tolerance.

1 Introduction

Concurrent programs are difficult to write. The programmer is presented with
the task of balancing two competing forces: safety and liveness [8]. Frequently,
the programmer leans too much in one of the two directions, causing either safety
failures (e.g. races) or liveness failures (e.g. deadlocks). Such failures arise from a
particular kind of software fault (bug), known as a synchronization fault. Studies
have shown that synchronization faults account for a sizeable fraction of observed
software faults in concurrent programs [6]. Locating synchronization faults and
eliminating them by reprogramming is always the best strategy. However, many
systems must maintain availability in spite of software failures. It is, therefore,
desirable to be able to bypass a synchronization fault and recover from the
resulting failure. This problem of software fault tolerance for synchronization
faults in concurrent programs ! is the primary motivation for this paper.

* supported in part by the NSF ECS-9414780, CCR-9520540, a General Motors Fel-
lowship, Texas Education Board ARP-320 and an IBM grant

! By concurrent programs, we include all parallel programming paradigms such as:
multi-threaded programs, shared-memory parallel programs, message-passing dis-
tributed programs, distributed shared-memory programs, etc. We will refer to a
parallel entity as a process, although in practice it may also be a thread.

Traditionally, it was believed that software failures are permanent in nature
and, therefore, they would recur in every execution of the program with the
same inputs. This belief led to the use of design diversity to recover from soft-
ware failures. In approaches based on design diversity [1, 13], redundant modules
with different designs are used, ensuring that there is no single point-of-failure.
Contrary to this belief, it was observed that many software failures are, in fact,
transient - they may not recur when the program is re-executed with the same
inputs [3]. In particular, the failures caused by synchronization faults are usually
transient in nature.

The existence of transient software failures motivated a new approach to
software fault tolerance based on rolling back the processes to a previous state
and then restarting them (possibly with message reordering), in the hope that
the transient failure will not recur in the new execution [5, 17]. Methods based on
this approach have relied on chance in order to recover from a transient software
failure. In the special case of synchronization faults, however, it is possible to
do better. Instead of leaving recovery to chance, our approach ensures that the
transient synchronization failure does not recur. It does so by controlling the
re-execution, based on information traced during the failed execution.

Our mechanism involves (i) tracing an execution, (ii) detecting a synchro-
nization failure, (iii) determining a control strategy, and (iv) re-executing under
control. Each of these problems is also of independent interest. Our require-
ments for tracing an execution and re-execution under control are very sim-
ilar to trace-and-replay techniques in concurrent debugging. Trace-and-replay
techniques have been studied in various concurrent paradigms such as message-
passing parallel programs [12], shared-memory parallel programs [11], distributed
shared memory programs [15], and multi-threaded programs [2]. Among sychro-
nization failures, this paper will focus on races. Race detection has been previ-
ously studied [4,10]. We will discuss tracing, failure detection, and re-execution
under control in greater depth in Section 4. This paper addresses the remaining
problem of determining a control strategy.

Cs1 CH4 Cs1 CH4
Pl PL -
cs2 / o e / .
A A e
P3

(a) Trace (b) Trace with added synchronizations

P2
P3
Fig. 1. Example: Tracing and Controlling During Rollback Recovery
To illustrate what determining a control strategy involves, consider the exe-
cution shown in Figure 1(a). CS1 - CS4 are the critical sections of the execution.

The synchronizations between processes are shown as arrows from one process
execution to another. A synchronization ensures that the execution after the head

of the arrow can proceed only after the execution before the tail has completed.
A race occurs when two critical sections execute simultaneously. For example,
CS1 and CS2 may have a race, since the synchronizations do not prevent them
from executing simultaneously. A control strategy is a set of added synchroniza-
tions that would ensure that a race does not occur. The race can be avoided by
adding synchronizations, shown as broken arrows in Figure 1(b).

The focus of this paper is the problem of determining which synchroniza-
tions to add to an execution trace in order to tolerate a synchronization fault in
the re-execution. This proves to be an important problem in its own right and
can be applied in areas other than software fault tolerance, such as concurrent
debugging. We generalize the problem using a framework known as the off-line
predicate control problem. This problem was introduced in [16], where it was
applied to concurrent debugging. Informally, off-line predicate control specifies
that, given a computation and a property on the computation, one must deter-
mine a controlled computation (one with more synchronizations) that maintains
the property. (We will use the term computation for a formal model of an eze-
cution.) The previous work [16] solved the predicate control problem for a class
of properties called disjunctive predicates. Applying the results of that study
to software fault tolerance would mean avoiding synchronization failures of the
form: I; Alx Als, where [; is a local property specified on process P;. For example,
if I; specifies that a server is unavailable, the synchronization failure is that all
servers are unavailable at the same time.

In this paper, we address a class of off-line predicate control problems, char-
acterized by the mutual exclusion property, that is especially useful in tolerating
races. We consider four classes of mutual exclusion properties: off-line mutual
exclusion, off-line readers writers, off-line independent mutual exclusion, and
off-line independent read-write mutual exclusion. For each of these classes of
properties, we determine necessary and sufficient conditions under which the
problem may be solved. Furthermore, we design an efficient algorithm that solves
the most general of the problems, off-line independent read-write mutual exclu-
sion, and thus also solves each of the other three problems. The algorithm takes
O(np) time, where n is the number of concurrent processes and p is the number
of critical sections.

The problems have been termed off-line problems to distinguish them from
their more popular on-line variants (i.e. the usual mutual exclusion problems
[14]). The difference between the on-line and off-line problems is that in the on-
line case, the computation is provided on-line, whereas in the off-line case, the
computation is known a priori. Ignorance of the future makes on-line mutual
exclusion a harder problem to solve. In general, in on-line mutual exclusion, one
cannot avoid deadlocks without making some assumptions (e.g. critical sections
do not block). Thus, on-line mutual exclusion is impossible to solve. To under-
stand why this is true, consider the scenario in Figure 1. Any on-line algorithm,
being unaware of the future computation, would have a symmetric choice of en-
tering CS1 or CS2 first. If CS2 is entered first, it would result in a deadlock.
An off-line algorithm, being aware of the future computation, could make the

correct decision to enter CS1 first and add a synchronization from CS1 to CS2. A
proof of the impossibility of on-line mutual exclusion follows along similar lines
as the proof of Theorem 3 in [16]. Thus, there will always be scenarios where
on-line mutual exclusion algorithms will fail, resulting in either race conditions
or deadlocks. In such scenarios, controlled re-execution based on off-line mutual
exclusion becomes vitally important.

2 Model and Problem Statement

The model that we present is of a single execution of the concurrent program.
The model is not at the programming language level, but at a lower level, at
which the execution consists of a sequence of states for each process and the
communications that occurred among them (similar to the happened before

model[7]).
Let S be a finite set of elementary entities known as states. S is partitioned
into subsets Si, Ss,---,S,, where n > 1. These partitions correspond to n pro-

cesses in the system. A subset G of S is called a global state iff Vi : |GNS;| = 1.
Let G; denote the unique element in GN S;. A global predicate is a function that
maps a global state onto a boolean value.

A computation is a partial order — on S such that Vi : —; is a total order
on S;, where —; represents — restricted to the set S;. Note that the states in a
single process are totally ordered while the states across processes are partially
ordered. We will use —, =%, —¢ to denote computations, and ||, ||¥, || to denote
the respective incomparability relations (e.g. s ||t = (s A& t) A (t /4 s)). Given
a computation — and a subset K of S, —-consistent(K) = Vs,t € K : s||t. In
particular, a global state may be —-consistent. The notion of consistency tells
us when a set of states could have occurred concurrently in a computation.

A computation — is extensible in S iff:

VK C S : —-consistent(K) = 3 global state G D K : —-consistent(Q)
Intuitively, extensibility allows us to extend a consistent set of states to a con-
sistent global state. Any computation in S can be made extensible by adding
“dummy” states to S. Therefore, we implicitly assume that any computation is
extensible.

Given a computation —, let < be a relation on global states defined as:
G<H = VYi: (Giy =-; H) V (G; = H;). It is a well-known fact that
the set of —-consistent global states is a lattice with respect to the < relation
[9]. In particular, we will use —-glb(G, H) for the greatest lower bound of G
and H with respect to = (so, =-glb(G, H); =—;-min(G;, H;)). If G and H are
—-consistent, then —-glb(G, H) is also —-consistent.

Given a computation — and a global predicate B, a computation —¢ is
called a controlling computation of B in — iff (1) -C—°, and (2) VG : —°-
consistent(G) = B(G). This tells us that a controlling computation is a
stricter partial order (containing more synchronizations). Further, any global
state that may occur in the controlling computation must satisfy the specified
global predicate. Thus, the problem of finding a controlling computation is to

add synchronizations until all global states that violate the global predicate are
made inconsistent. More formally,

The Off-line Predicate Control Problem: Given a computation — and a
global predicate B, find a controlling computation of B in —

3 Solving the Off-line Predicate Control Problem

In [16], it was proved that the Off-line Predicate Control is NP-Hard. Therefore,
it is important to solve useful restricted forms of the Off-line Predicate Control
Problem. Since we are interested in avoiding race conditions, we restrict the
general problem by letting B specify the mutual exclusion property.

Off-line Independent Read-Write Mutual Exclusion

Off-line Readers Writer§<> Off-line Independent Mutual Exclusion

Off-line Mutual Exclusion

Fig. 2. Variants of Off-line Mutual Exclusion

The simplest specification for mutual exclusion is: no two critical sections ex-
ecute at the same time. This corresponds to the semantics of a single exclusive
lock for all the critical sections. We call the corresponding problem the Off-
line Mutual Exclusion Problem. We can generalize this to the Off-line Readers
Writers Problem by specifying that only critical sections that “write” must be
exclusive, while critical sections that “read” need not be exclusive. This corre-
sponds to the semantics of read-exclusive-write locks. Another way to generalize
the Off-line Mutual Exclusion Problem is to allow the semantics of independent
locks. In this Off-line Independent Mutual Exclusion Problem, no two critical sec-
tions of the same lock can execute simultaneously. Finally, we can have critical
sections with the semantics of independent read-exclusive-write locks. This is the
Off-line Independent Read-Write Mutual Ezclusion Problem. Figure 2 illustrates
the relative generality of the four problems.

In traditional on-line mutual exclusion, there has been no “independent”
variant, since it trivially involves applying the same algorithm for each lock.
However, in off-line mutual exclusion, such an approach will not work, since
the synchronizations added by each independent algorithm may cause deadlocks
when applied together.

For the practitioner, an algorithm which solves Off-line Independent Read-
Write Mutual Exclusion would suffice, since it can be used to solve all other
variants. However, for the purpose of presentation we will start with the simplest
Off-line Mutual Exclusion Problem and then generalize it in steps. For each
problem, we will determine the necessary and sufficient conditions for finding a

solution. Finally, we will make use of the results in the design of an algorithm
which solves the most general of the four problems.

3.1 Off-line Mutual Exclusion

Off-line Mutual Exclusion is a specialization of Off-line Predicate Control to the
following class of global predicates:

Bryutex(G) = Y distinct s,t € G : —(critical(s) A critical(t))

where critical is a function that maps a state onto a boolean value. Thus, B,utes
specifies that at most one process may be critical in a global state.

Based on the critical boolean function on states, we define critical sections
as maximal intervals of critical states. More precisely: given a critical function
on S and a computation — on S, a critical section, C'S, is a non-empty, maximal
subset of an S; such that: (1) Vs € CS : critical(s), and (2) Vs,t € CS : Vu €
S;: s—u—t = uelCS.

Let CS.first and C'S.last be the minimum and maximum states respectively
in CS (w.r.t. —;). Let — be a relation on critical sections defined as: C'S —
CS'" = CS.first - CS'.last N CS # CS' Thus, — orders a critical section
before another if some state in the first happened before some state in the second.
Note that — may have cycles.

We will be dealing with different computations. All computations will have
the same total order —; for each S;. Therefore, the set of critical sections will
not change for each computation. However, the — relation will change, in gen-
eral. For computations —, —*, and —¢, the relation on critical sections will be
denoted as —, —* and —¢ respectively.

Theorem 1 (Necessary Condition) For a computation — of S, and a global
predicate B yutes,
a controlling computation of Bpyter in — exists = +— has no cycles

Proof: We prove the contrapositive. Let — have a cycle, say C'S; — CS; —
- CSy, — C8S1, (m > 2) and let —¢ be a computation such that —C—¢. Since
—¢ cannot have a cycle, at least one of:
CS1.lastA°CSs. first, CSy.lastA°CSs. first, - -+, and CS,,.lastA°CS;. first
must hold. Without loss of generality, let CS;.last4A°CSs. first. We also have
CSa2.last-A°CSy. first (since CS; — CSs3). Since —¢ is extensible, we can define
S as the maximum state in Sy such that C'Sy.last ||€ sz, and s; as the maximum
state in Sp such that C'Ss.last ||¢ s;. By extensibility of —¢, we can find —¢-
consistent global states G; and Gy containing {C'S;.last, s2} and {CS2.last, s1}
respectively. We now have two cases:

Case 1: [s1 € CS1 V s2 € CS3] In this case 7 Bputes (G2) V' " Bnutes (G1)-

Case 2: [s1 ¢ CS1 A sy ¢ CS,] Since s; ¢ CSy, there are two ways to
position s;: (a) s; =€ CS;.first or (b) CS;.last —¢ s1. In sub-case (a), since
CSs.lastA°CS,. first, either CSy.last||°C'S;.first or CS;.first —¢ CSs.last,
which gives us s; —¢ CSs.last. Both possibilities contradict the definition of

s1. This leaves sub-case (b) as the only possibility. Therefore, C'S;.last —¢ s1.
Similarly, we can prove C'Ss.last —°¢ s3. Let H =—°-glb(G1,G2). H contains
CSi.last and CSy.last and, so, = Byytes (H). Further, H is —¢-consistent (by
the lattice property).

So in either case, —¢ is not a controlling computation of By, ter in —. O

Theorem 2 (Sufficient Condition) For a computation — of S, and a global
predicate Bputez,
— has no cycles = a controlling computation of Byyter in — exists

Proof: Since — has no cycles, we can arrange all of the critical sections in a
sequence: CSy, CSs, --- CS,, such that CS; — CS; = 1 < j. Let =° be
defined as (— U {(CS;.last,CS;y1.first) | 1 <i<m —1})", where ()T is the
transitive closure. Clearly —C—*¢. In the next paragraph, we will prove that —¢
is a partial order. Assume that there is a global state G such that =By, ute. (G).
Therefore, we can find states s and ¢ such that critical(s) and critical(t). Let
CS; and CS; be the two critical sections to which s and ¢ belong respectively.
w.lo.g, let i < j. Therefore, s —¢ t, and = —°-consistent(G). Therefore, —°-
consistent(G) = Biutez(G). So —¢ is a controlling computation of By,ytep in
—.

Our remaining proof obligation is to prove that —¢ is a partial order. To this
end, let —F be defined as: (— U {(CS;.last,CS;11.first) |1 <i < k—1}T.
We make the following claim:

Claim: Y1 < k <m : (1) =¥ is a partial order, and (2) CS; =% CS; = i<
Clearly —+¢=—"" and so this claim implies that —¢ is a partial order.
Proof of Claim: (by Induction on k)

Base Case: Immediate from —=—"!.

Inductive Case: We make the inductive hypothesis that —*~1 is a partial
order, and that CS; =»*=1 CS; = i < j. We may rewrite the definition of
—* as: (=F~1 U {(CSy_1.last, CSy.first)})T. First we demonstrate that —F*
is irreflexive and transitive (which together imply asymmetry).

(i) Irreflexivity: Let s —F t. There are two possibilities: either s —*~1 ¢
or s =F"1 C8)_1.last A CSy.first =*~1 t. In the first case, the inductive
hypothesis tells us that —*~1 is irreflexive and so s # ¢. In the second case, part
(1) of the inductive hypothesis tells us that —*~! is transitive, and part (2) of
the inductive hypothesis tells us that C’Sk.fz'rstﬁk_lc’Sk,l.last and so s # t.

(ii) Transitivity: This is immediate from the definition of —F.

Therefore, —* is a partial order. We now show the second part of the claim.
Suppose C'S; —* CS;. This implies that C'S;.first =% CS;.last A i # j. There
are two cases: either C'S;.first =*1 CS;.last A i # j or CS;.first —F1
CSi_1.last N CSy.first =*"1 CS;.last Ai # j. In the first case, we have
CS; —F=1 CS; and so by the inductive hypothesis, i < j. In a similar manner,
the second case would giveusi < k—1 A k<jandsoi<j. O

In conclusion, the necessary and sufficient condition for finding a controlling
computation for Bi,uter is that there is no cycle of critical sections with respect
to . Further note that, since the proof of Theorem 2 is constructive, we can

use it to design a naive algorithm to find a controlling computation. (We will
see why this algorithm is naive in Section 3.5).

3.2 Off-line Readers Writers Problem

Let read_critical and write_critical be functions that map a state onto a boolean
value. Further, no state can be both read_critical and write_critical (any read
and write locked state is considered to be only write locked). Let critical(s) =
read_critical(s) V write_critical(s). The Off-line Readers Writers Problem is a
specialization of the Off-line Predicate Control Problem to the following class of
global predicates:

B, (G) = VY distinct s,t € G : —(write_critical(s) A critical(t))

Given a read_critical function and a write_critical function on S and a
computation — on S, we define a read critical section and a write critical section
in an analogous fashion to the critical sections that we defined before. Note
that, since no state is both read_critical and write_critical, critical sections in
a process do not overlap.

Let — be a relation on both read and write critical sections defined as:
CS— CS" = CS.first » CS'.last N CS #CS'

Theorem 3 (Necessary Condition) For a computation — of S, and a global
predicate B,

a controlling computation of = all cycles in — contain
B, in — exists only read critical sections

Proof: The proof is similar to the proof of Theorem 1. We will prove the con-
trapositive. Let — have a cycle, say C'Sy — CSy — ---CS,, — CS1. Without
loss of generality, let C'S; be a write critical section. Let —¢ be a computation
such that —-C—*°.

First, we claim that there is at least one critical section in the cycle say CS
(where k # 1), such that CS;.lastA°CSy.first and CSy.last/A°CS;.first. To
prove this, we assume the opposite:

YOSk (k#1): CSyi.last =€ CSk.first V CSi.last —¢ CSy.first — (i)
and prove a contradiction as follows. C'S,, — CS; implies C'S;.last/~°CS,,. first.
Therefore, by (i), CSy,.last —¢ CSi.first. This allows us to define j as the
smallest integer such that CS;.last —¢ CS;.first. C'S1 — CS, implies that
CSy.last/°CS:. first. Therefore, j # 2. In particular, C'S;_; and C'S; are dis-
tinct. By our choice of j, CS;_1.lastA°CS,y. first. So, using (i), CSi.last —°¢
CS;_1.first. We now have a cycle: C'Sy.last =¢ CS;_1.first (as above),
CSj_1.first —»° CSj.last (since CS;_1 — CS;), CSj.last —°¢ CSy.first (by
our choice of j), and CSi.first —¢ CSi.last (by the definition of first and
last). This cycle contradicts the fact that —¢ is a partial order.

Since we have demonstrated the existence of a C'Sy such that CSi.last /4°¢
CSg.first and CSy.last /¢ CSy.first, we can use a proof similar to the one in
Theorem 1 to show that —¢ is not a controlling computation of B, in —. O

Theorem 4 (Sufficient Condition) For a computation — of S, and a global
predicate By,

all cycles in — contain = a controlling computation of
only read critical sections B, in — exists

Proof: Consider the set of strongly connected components of the set of critical
sections with respect to the — relation. Define the — relation on strongly con-
nected components as SCC — SCC' = ACS € SCC,CS" € SCC' : CS —
CS" N SCC # SCC'. It is verifiable that — is a partial order. Therefore,
we can linearize it to get a sequence of all strongly connected components, say
SCC.,8CC,,---SCC; such that SCC; — SCC; = i < j. Let —=° be de-
fined as (— U {(CS;.last,CS;.first) | CS; € SCCy,CS; € SCCjy1 for some
1<k <I1-1})". Clearly -C—°. We can show that —¢ is a partial order along
similar lines as the proof of Theorem 2.

We now show that —¢ is a controlling computation of B,., in —. Suppose G
is a global state such that — B, (G). Therefore, we can find states s and ¢ such
that write_critical(s) and critical(t). Let C'S be a write critical section that
contains s and let C'S’ be a critical section that contains ¢. Let SCC; and SCC;
be the strongly connected components that contain C'S and CS' respectively.
SCC; is distinct from SCCj since, otherwise, there would be a cycle in +— that
contains a write critical section. Without loss of generality, let ¢ < j. By the
definition of —¢, we have s —° ¢ and, therefore, = —°-consistent(G). Therefore,
—¢ is a controlling computation of By, in —. O

Note, as before, that the proof of Theorem 4 can be used to design an algo-
rithm to find a controlling computation.

3.3 Off-line Independent Mutual Exclusion

Let criticaly, criticals, - - - critical,, be functions that map an event onto a boolean
value. The Off-line Independent Mutual Exclusion Problem is a specialization of
the Off-line Predicate Control Problem to the following class of global predicates:

B;a(G) = V distinct s,t € G : Yi: —(critical;(s) A critical;(t))

Given a function critical; on S and a computation — on S, we define an
i-critical section in an analogous fashion to the critical sections that we defined
before. Note that the definition allows independent critical sections on the same
process to overlap. In particular the same set of states may correspond to two
different critical sections (corresponding to a critical section with multiple locks).
Let — be a relation on all critical sections defined as before.

Theorem 5 (Necessary Condition)
For a computation — of S, and a global predicate Bjpgq,

a controlling computation of = — has no cycles of i-critical
Bing tn — exists sections, for some @

Proof: The proof is almost identical to the proof of Theorem 1. O

Theorem 6 (Sufficient Condition) For a computation — of S, and a global
predicate Bipg,

— has no cycles of i-critical = a controlling computation of
sections, for some i Bing tn — exists

Proof: The proof is along similar lines to the proof of Theorem 4. In this case
we take strongly connected components as before, but make use of the fact that
no two i-critical sections may be in the same strongly connected component
(otherwise, there would be a cycle of i-critical sections). O

3.4 Off-line Independent Read-Write Mutual Exclusion

Using similar definitions, the Off-line Independent Read-Write Mutual Exclusion
Problem is a specialization of the Off-line Predicate Control Problem to the
following class of global predicates:

Bini—rw(G) = Y distinct s,t € G: Vi: —(write_critical;(s) A critical;(t))

As before, we define i-read critical sections and i-write critical section (1 <
i < m). Similarly, let — be a relation on all critical sections. The necessary and
sufficient condition is a combination of that of the previous two sections. Since
the proofs are similar to the previous ones, we simply state:

Theorem 7 (Necessary and Sufficient Condition)
For a computation — of S, and a global predicate Bing— 1w,

a controlling computation of = all cycles of i-critical sections in —
Bind—rw tn — exists contain only read critical sections

3.5 Algorithm

Figure 3 shows the algorithm to find a controlling computation of Bj,q—y in
—. Since the other forms of mutual exclusion are special cases of Bjnq_rw, this
algorithm can be applied to any of them.

The input to the algorithm is the computation, represented by n lists of
critical sections Cy,---,C),. For now, to simplify presentation, we assume that
critical sections are totally ordered on each process. Each critical section is rep-
resented as its process id, its first and last states, a type identifier cs_id that
specifies the critical.s_jq function, and a flag indicating if it is a write or read
critical section. The partial order is implicitly maintained by vector clocks [9]
associated with the first and last states of each critical section. The algorithm
outputs the —¢ relation specified as a list of ordered pairs of states.

The first while loop of the algorithm builds ordered, a totally ordered set of
strongly connected components of critical sections (called scc’s from here on).
The second while loop simply uses ordered to construct the —¢ relation.

Types: state: (pid: int; v: vector_clock);
critical_section: (pid: int; first: state; last: state;
cs_id: integer; write_critical: boolean);
strongly_conn_component: set of critical_section;
Input: C1,Cs,---,Cy: list of critical_section

Output: O: list of (state, state), initially null
Vars: scc_set, crossable: set of strongly_conn_component
crossed, prev,curr: strongly_conn_component
cs,cs': critical _section
ordered: list of strongly_conn_component

while (Vi : C; # null) do
scc_set ;= get_scc(C1.head, C2.head, - - -, Cy.head)
crossable := { s € scc_set | Vs' € sccset, s' #s: s 45}
crossed := select(crossable);
if (not_valid(crossed)) then
exit(“No Controlled Computation Ezists”);
for each cs in crossed do
Cos pida-delete_head();
ordered.add_head(crossed);
prev := ordered.delete_head();
while (ordered # null) do
curr = ordered.delete_head();
for each cs in prev and cs’ in curr do
if (cs.last /4 cs'.first) then
O.add_head(cs.last,cs'. first);

Fig. 3. Algorithm for Off-line Independent Read-Write Mutual Exclusion

The goal of each iteration of the first while loop is to add an scc, which is min-
imal w.r.t. <, to ordered (where < is the relation on scc’s defined in the proof
of Theorem 4). To determine this scc, it first computes the set of scc’s among
the leading critical sections in C,---C),. Since no scc can contain two critical
sections from the same process, it is sufficient to consider only the leading critical
sections. From the set of scc’s, it determines the set of minimal scc’s, crossable.
It then randomly selects one of the minimal scc’s. Finally, before adding the scc
to ordered, it must check if the scc is not-valid, where not_valid(crossed) =
des,cs' € crossed : cs.cs_id = cs'.cs_id N cs.write_critical. If an invalid scc is
found, no controlling computation exists (by Theorem 7).

The main while loop of the algorithm executes p times in the worst case,
where p is the number of critical sections in the computation. Each iteration
takes O(n2), since it must compute the scc’s. Thus, a simple implementation
of the algorithm will have a time complexity of O(n2p). However, a better im-
plementation of the algorithm would amortize the cost of computing scc’s over
multiple iterations of the loop. Each iteration would compare each of the critical
sections that have newly reached the heads of the lists with the existing scc’s,
thus forming new scc’s. Therefore, each of the p critical section reaches the head

of the list just once, when it is compared with n — 1 critical sections to deter-
mine the new scc’s. The time complexity of the algorithm with this improved
implementation is, therefore, O(np). Note that a naive algorithm based directly
on the constructive proof of the sufficient condition in Theorem 7 would take
O(p?). We have reduced the complexity significantly by using the fact that the
critical sections in a process are totally ordered.

The algorithm has implicitly assumed a total ordering of critical sections
in each process. However, as noted before, independent critical sections on the
same process may overlap, and may even coincide exactly (a critical section with
multiple locks is treated as multiple critical sections that completely overlap).
The algorithm can be extended to handle such cases by first determining the
sce’s within a process. These sce’s correspond to maximal sets of overlapping
critical sections. The input to the algorithm would consist of n lists of such
process-local scc’s. The remainder of the algorithm remains unchanged.

4 Application to Software Fault Tolerance

Our proposed scheme for software fault tolerance consists of four parts: (i) tracing
an execution, (ii) detecting a synchronization failure, (iii) determining a control
strategy, and (iv) re-executing under control. This paper has focused mainly on
the problem of determining a control strategy. We have designed an efficient
algorithm that determines which synchronizations to add in order to avoid very
general forms of mutual exclusion violation. As mentioned before, the other three
parts of our scheme have been addressed as independent problems. We now put
all the pieces together for a comprehensive look at how race failures (mutual
exclusion violations) can be tolerated.

cst cst cst c cst cst
P1 P1 .
cs2 / c2 \cR / .
P2 P2 -
\
k / ((rj Ccs3 cs3 k / f Ccs3!
P3 P3

(a) Traced Computation (b) Critical Section Graph (c) Controlling Computation

Fig. 4. Example: Tolerating Races in a Concurrent Execution

The problem of determining a control strategy was placed in a very general
model of concurrent execution. However, tracing, detection, and controlled re-
execution depend greatly on the particular concurrent paradigm. We choose a
simple example that demonstrates the key issues that will arise in most concur-
rent paradigms. Consider a distributed system of processes that write to a single
shared file. The file system itself does not synchronize accesses and so the pro-
cesses are responsible for synchronizing their accesses to the file. If they do not

do so, the writes may interleave and the data may get corrupted. Since the file
data is very crucial, we must ensure that races can be tolerated. Synchronization
occurs through the use of explicit message passing between the processes.

The first part of our mechanism involves tracing the execution. The concern
during tracing is to reduce the space and time overhead, so that tolerating a
possible fault does not come at too great a cost. Much work has been done
in implementing tracing in various paradigms, while keeping the overhead low
[2,11,12,15]. In our example, we use a vector clock mechanism [9], updating
the vector clock at each send and receive point. This vector clock needs to be
logged for each of the writes to the file (for our algorithm). The vector clock
values must also be logged for each receive point (for replay). When a write is
initiated, and when it returns, the vector clock must be logged. In our example,
the writes are typically very long and therefore are performed asynchronously.
Thus, execution continues while the write is in progress. In particular, the process
may receive a message from another process during its write to the file. Inserting
some computation at the send, receive, write initiation, and write completion
points can be achieved either by code instrumentation, or by modifying the
run-time environment (message-passing interface and the file system interface).

The second part of our mechanism is detecting when a race occurs. Many
existing tools have been built to solve exactly this problem [4,10]. Since we use
message passing as our synchronization mechanism, the methods described in
[10] are particularly applicable.

Once a race has been detected, we roll-back all processes to a consistent
global state prior to the race. We also roll-back the file to a version consistent
with the rolled-back state of the processes. (We assume a versioned file system
with the ability to roll back.) We then take the section of the traced vector
clock values that occur after the rolled-back state. These indicate the critical
section entry and exit points required by our algorithm. The algorithm would
take O(np) time, where n is the number of processes and p is the number of
critical sections that have been rolled back. The output of the algorithm is
the set of added synchronizations specified as pairs of critical section boundary
points. Figure 4 demonstrates a possible scenario. Here the semantics of mutual
exclusion correspond to a single exclusive lock. Therefore, the necessary and
sufficient condition is that there are no cycles in the critical section graph shown
in Figure 4(b). Applying the algorithm would add synchronizations to give the
controlling computation shown in Figure 4(c).

The next step is to replay the processes using the logged vector clock values
of the receive points. Each receive point must be blocked until the same message
arrives as in the previous execution. This is a standard replay mechanism (e.g.
[12]). In addition to this replay, we must impose additional synchronizations. For
example, suppose (s,t) is one of the synchronizations output by our algorithm.
The state s is a critical section exit point while ¢ is a critical section entry point.
Each of these additional synchronizations is implemented by a control message
sent from s and received before ¢. Thus, at each critical section exit point, we
must check the added synchronizations to decide if a control message must be

sent. At each critical section entry point, we must check the added synchro-
nizations to decide if the process must block waiting for a control message. As
in tracing, the points at which computation must be added are the write ini-
tiation and completion points, and the send and receive points. Again, we can
accomplish this by code instrumentation or run-time environment modification.

We have chosen an example in which the processes only write to the file. If
the processes were to read from the file as well, then that would cause causal
dependencies between processes. Then we would have to track these causal de-
pendencies as we did for messages. Another option would be to assume that
these causal dependencies do not affect the message communications, in which
case, we do not have to track them. However, if we take this approach, we would
have to check to see that our traced computation is the same as the one be-
ing replayed. In case of a divergence, we would leave the execution to proceed
uncontrolled from the point of divergence.

5 Concluding Remarks

We have presented an approach for tolerating synchronization faults in concur-
rent programs based on rollback and controlled re-execution. Our focus in this
paper has been on races, which form a particular type of synchronization fault.
In order to determine a control strategy that avoids races while re-executing, we
have solved the off-line predicate control problem for various forms of mutual
exclusion properties. We have determined the necessary and sufficient condi-
tions for solving off-line predicate control for simple mutual exlusion, read-write
mutual exclusion, independent mutual exclusion, and independent read-write
mutual exclusion. We have presented an efficient algorithm that solves for the
most general property, independent read-write mutual exclusion. The algorithm
takes O(np) time, where n is the number of processes and p is the number of
critical sections. Finally, we have demonstrated how races can be tolerated using
our algorithm. An implementation of software fault tolerance using controlled
re-execution is currently being developed in order to evaluate the performance
and effectiveness of the technique in practice.

It may be argued that mutual exclusion could be simply handled at the pro-
gramming language level using locks (in other words, on-line mutual exclusion,
as opposed to off-line mutual exclusion). However, there are good reasons for our
approach. Firstly, as noted in Section 1, it is impossible to ensure that there will
be no deadlocks with on-line locking unless some assumptions are made, such
as non-blocking critical sections. In off-line mutual exclusion, no such assump-
tions are required. Secondly, programmers make mistakes, being prone to reduce
locking for greater efficiency. Thirdly, source code is often unavailable for mod-
ification, while requirements change dynamically. In modern component-based
systems, different components may come from different vendors and it may be
difficult to ensure a consistent locking discipline throughout the code. The best
approach is to use both good programming discipline and a sofware fault toler-
ance technique to make programs more resistant to failures.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

A. Avizienis and L. Chen. On the implementation of n-version programming for
software fault tolerance during execution. In Proc. of the First IEEE-CS Inter-
national Conference on Computer Software and Applications, pages 149 — 155,
November 1977.

J. D. Choi and H. Srinivasan. Deterministic replay of java multithreaded applica-
tions. In 2nd SIGMETRICS Symp. on Parallel and Distr. Tools, pages 48 — 59,
Aug. 1998.

F. Cristian. Understanding fault-tolerant distributed systems. CACM, 34(2):56 —
78, Feb 1991.

. M. Feng and C. E. Leiserson. Efficient detection of determinacy races in cilk

programs. In Proc. of 9th Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 22-25, Newport, USA, June 1997.

Y. Huang and C. Kintala. Software implemented fault tolerance: technologies and
experience. In Proc. IEEE Fault-Tolerant Comp. Symp., pages 138 — 144, June
1993.

R. K. Iyer and I. Lee. Software fault tolerance in computer operating systems. In
M. R. Lyu, editor, Software Fault Tolerance, Trends in Software Series, chapter 11,
pages 249 — 278. John Wiley & Sons, Inc., 1995.

L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558 — 565, July 1978.

D. Lea. Concurrent Programming in Java: Design Principles and Patterns, chapter
3.1.2. The Java Series. Addison Wesley Longman, Inc., 1997.

F. Mattern. Virtual time and global states of distributed systems. In Parallel
and Distributed Algorithms: Proc. of the International Workshop on Parallel and
Distributed Algorithms, pages 215 — 226. Elsevier Science Publishers B. V. (North
Holland), 1989.

R. H. B. Netzer. Race condition detection for debugging shared-memory parallel
programs. PhD thesis, University of Wisconsin-Madison, 1991.

R. H. B. Netzer. Optimal tracing and replay for debugging shared-memory parallel
programs. In Proc. of ACM/ONR Workshop on Parallel and Distributed Debug-
ging, pages 1 — 11, May 1993. Also available as ACM SIGPLAN Notices Vol. 28,
No. 12.

R. H. B. Netzer and B. P. Miller. Optimal tracing and replay for debugging
message-passing parallel programs. In Supercomputing ’92, pages 502 — 511,
November 1992.

B. Randell. System structure for software fault-tolerance. IEEE Transactions on
Software Engineering, 1(2):220 — 232, June 1975.

M. Raynal. Algorithms for mutual exclusion. MIT Press, 1986.

M. Ronnse and W. Zwaenepoel. Execution replay for treadmarks. In Proc. of the
5th EUROMICRO Workshop on Parallel and Distributed Processing (PDP’97),
pages 343-350, January 1997.

A. Tarafdar and V. K. Garg. Predicate control for active debugging of distributed
programs. In Proc. of the 9th Symposium on Parallel and Distributed Processing,
Orlando, USA, April 1998. IEEE.

Y. M. Wang, Y. Huang, W. K. Fuchs, C. Kintala, , and G. Suri. Progressive
retry for software failure recovery in message-passing applications. IEEE Trans.
on Computers, 46(10):1137-1141, October 1997.

