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Abstract

Predicate detection is an important problem in test-
ing and debugging distributed programs. Cooper
and Marzullo introduced two modalitiespossibly anddefinitely as a solution to this problem. Given a predi-
catep, a computation satisfiespossibly : p if p is true for
some global state in the computation. A computation sat-
isfiesdefinitely : p if all paths from the initial to the fi-
nal global state go through some global state that satisfiesp. In general,definitely modality is used to detectgood
conditions such as “a leader is eventually chosen by all
processes”, or “a commit point is reached by every pro-
cess”, whereaspossibly modality is used to detect bad
conditions such as violation of mutual exclusion. There are
several efficient algorithms forpossibly modality in the lit-
erature [10, 14, 1, 2, 29]. However, this is not the case fordefinitely modality. Cooper and Marzullo’sdefinitely :p
algorithm for arbitraryp has a worst-case space and time
complexity exponential in the number of processes. This
is due to the state explosion problem. In this paper we
present efficient algorithms for detectingdefinitely : p. In
particular, we give a simple algorithm that uses polyno-
mial space. Then, we present an algorithm that can signif-
icantly reduce the global state-space. We determine neces-
sary conditions and sufficient conditions under which de-
tectingdefinitely : p may be efficiently solved. We apply
our algorithms to an example, achieving a speedup of over
100, compared to partial order reduction based technique
of SPIN [13].

1. Introduction

A fundamental problem in distributed computing is
predicate detection—deciding whether an execution trace�supported in part by the NSF Grants ECS-9907213, CCR-9988225,
Texas Education Board Grant ARP-320, an Engineering Foundation Fel-
lowship, and an IBM grant

of a distributed program satisfies a given predicate. This
problem arises in many contexts such as testing and debug-
ging of distributed programs. For example, when debug-
ging a distributed mutual exclusion algorithm, it is useful
to monitor the system to detect concurrent accesses to the
shared resources.

Cooper and Marzullo introduced two modalities for
predicate detection, which are denoted bypossibly anddefinitely. Given a predicatep, a computation satisfiespossibly :p if p is true for some global state in the computa-
tion. A computation satisfiesdefinitely :p if all paths from
the initial state to the final global state go through some
global state that satisfiesp. In general,possibly modality
is used to detectbadconditions such as the system reaches
a global state where the mutual exclusion predicate is false.
In contrast,definitely modality is in general used to de-
tectgoodconditions such as “a leader is eventually chosen
by all processes”, or “a commit point is reached by ev-
ery process”. Cooper and Marzullo’s definitions of these
modalities established an important conceptual framework
for predicate detection, which has been the basis of consid-
erable research. However, most of the research has focused
onpossibly modality [10, 14, 1, 2, 29].

Cooper and Marzullo present an algorithm for detect-
ing definitely : p for arbitrary predicatep. The worst-case
space and time complexity of the their algorithm is expo-
nential in the number of processes. This is due to thestate
explosion problem—in a distributed system ofn processes,
the number of possible global states (state-space) can be of
sizeO(mn), wherem is the maximum number of events
on a process.

This paper presents efficient algorithms for detectingdefinitely : p. We first present a simple algorithm fordefinitely : p that usesO(nm) space in Section 4. Then,
we present a polynomial-time state-space reduction algo-
rithm that enables us to work on a distributed computation
that is in general much smaller than the original compu-
tation. We prove that the original computation satisfiesdefinitely : p if and only if the smaller computation sat-



isfies it. It is, in general, coNP-complete to detect a pred-
icate underdefinitely modality [27]. In Sections 5 and
6, we determine necessary conditions and sufficient con-
ditions under which detectingdefinitely : p may be effi-
ciently solved. In order to develop these conditions, we
use lattice theoretic properties of distributed computations.
We validate the effectiveness of our algorithms with exper-
imental studies in Section 7. For this purpose, we imple-
ment our algorithms in the Partial Order Trace Analyzer
(POTA) tool [26] and compare performance to partial or-
der reduction based algorithms of model checker SPIN
[13]. In one case, our algorithms are significantly faster
and space efficient. We have measured over 100-fold gain.

Our work constitutes part of the POTA tool [26, 22]
for testing distributed program execution traces using tem-
poral logic predicates. Figure 1 displays an overview of
POTA architecture. POTA consists of an instrumenta-
tion module, a translator module that translates execution
traces into Promela [13] (SPIN model checker input lan-
guage) and an analyzer module. The use of partial or-
der model for execution traces and the use of an effec-
tive abstraction technique for temporal logic verification
called computation slicing are significant aspects of POTA
and constitutes the analyzer module. POTA implements
polynomial-time temporal logic predicate detection algo-
rithms. The temporal logic used in POTA is a subset of
CTL [3]. With the results of this paper, we extend efficient
predicate detection algorithms in POTA fordefinitely op-
erator. Atomic propositions of the logic used in POTA are
regular predicates, which widely occur in practice during
verification. Some examples of regular predicates are con-
junction of local predicates [8, 15] such as “all processes
are inred state”, certain channel predicates [8] such as “at
mostk messages are in transit from processPi toPj”, and
some relational predicates [8].

2. Related Work

Our approach exploits the structure of the predicate
itself—by imposing restrictions—to evaluate its value ef-
ficiently for a given computation. Polynomial-time algo-
rithms for possibly : p have been developed whenp be-
longs to conjunctive [10, 14], observer-independent [1],
linear [2], and relational predicates [29]. Also in [21] there
is an extensive survey on predicate detection techniques.

Tarafdar and Garg [27] proved that it is, in general, NP-
complete to detect a predicate underontrollable modal-
ity. A computation satisfiesontrollable : p if every state
on some path from the initial global state to the final global
state satisfiesp. Since the problem of detecting a pred-
icate underdefinitely modality is the dual of the prob-
lem of detecting a predicate underontrollable modality,
it is, in general, coNP-complete to detect a predicate un-
derdefinitely modality. Using Tarafdar and Garg’s [28]

NP-completeness result for controlling a special case of
2-CNF predicates, calledindependent mutual exclusion
predicates, we can easily deduce that detecting a special
case of 2-DNF predicates, which is the dual of independent
mutual exclusion predicates, underdefinitely modality is
coNP-complete in general.

Fromentin and Raynal [7] presented a polynomial-time
algorithm to solve the predicate detection problem forproper modality, which is a special case ofdefinitely, A
computation satisfiesproper :p if all paths from the initial
state to the final global state go through auniqueglobal
state that satisfiesp.

Thedefinitely : p problem has efficient solutions when
the predicate is 1-CNF or 1-DNF [8]. However, the com-
plexity problem is open fordefinitely : p for regularp.
In this paper, we present efficient conditions to solve the
problem for both arbitrary and regular predicates.

The idea of using temporal logic in program testing
has been applied in several tools such as the commercial
Temporal Rover tool (TR) [6], the MaC tool [16], and the
JPaX tool [12]. TR allows the user to specify the tem-
poral formula in programs. These temporal formula are
translated into Java code before compilation. The MaC
and JPaX tools consider a totally ordered view of an ex-
ecution trace and therefore can potentially miss bugs that
can be deduced from a partial order view of the trace. Hal-
lal et al. in [11] uses a partial order view of an execution
trace as in POTA. They translate execution traces into SDL
and use commercial SDL tools for testing translated traces.
POTA incorporates several polynomial-time (polynomial
in the number of processes) predicate detection algorithms
whereas the complexity is exponential-time in [11].

3. Model

We assume a loosely-coupled message-passing asyn-
chronous system without any shared memory or a global
clock. A distributed programconsists ofn sequential
processes denoted byP1; P2; : : : ; Pn communicating via
asynchronous messages. In this paper, we are concerned
with a singlecomputation(execution) of a distributed pro-
gram. We assume that no messages are altered or spuri-
ously introduced. We do not make any assumptions about
FIFO nature of channels.

The execution of a process in a computation can be
viewed as a sequence of events with events across pro-
cesses ordered by Lamport’shappened-beforerelation,!
[17]. We use lowercase letterse andf to represent events.
The happened-beforerelation between any two eventse
andf can be formally stated as the smallest relation such
that e ! f if and only if e occurs beforef in the same
process, ore is a send of a message andf is a receive
of that message, or there exists an eventg such thate
happened-beforeg andg happened-beforef . We represent
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Figure 1. Overview of POTA Architecture

the set of events as the union of events from each process,E = SEi, for each1 � i � n. We define adistributed
computationas the partially ordered set consisting of the
set of events together with the happened-before relation
and denote it byhE;!i.

We define aconsistent cutof a computationhE;!i as
a subsetG � E such thatf 2 G ^ e ! f ) e 2 G.
We use uppercase lettersG, H , J , andK to represent
consistent cuts. A consistent cut captures the notion of a
reachable global state. We use consistent cut and global
state interchangeably. We denote the set of consistent
cuts of any distributed computationhE;!i by C(E). It
is well-known that the set of consistent cuts of any dis-
tributed computationhE;!i forms adistributive lattice,
under the relation� [18, 9]. We denote this lattice byL = (C(E);�) and also call this as thestate-spaceof
the distributed computation. For any partially ordered set,
we uset andu to denote join and meet operators. Note
that the join (resp. meet) of two consistent cuts correspond
to their union (resp. intersection). We use? to denote
the initial consistent cut,E to denote the final consistent
cut of all processes, and> to denote a fictitious final cut
occurring afterE.

We denote the set of maximal (with respect to
happened-before relation) elements of a consistent cutG
by frontier(G). Figure 2 shows a computation and its
lattice of consistent cuts. A consistent cut in the figure is
represented by its frontier. For example, the consistent cutfe3; e2; e1; f2; f1;?g is represented byfe3; f2g. A consis-
tent cutH is reachablefrom a consistent cutG iff it is pos-
sible to attainH fromG by executing zero or more events.
It is easy to see thatH is reachable fromG iff G � H . We
definesuccessorof a cut by a relation. � C(E) � C(E)
such thatG . H if and only if H = G [ feg for somee 2 E such thate 62 G. We say thatH is asuccessorof

G andG is apredecessorof H . A pathG0; G1; : : : ; Gl of(C(E);�) satisfies that for each0 � i < l, Gi . Gi+1.
A predicate is defined as a boolean-valued function on

variables of processes. Given a consistent cut, a predicate
is evaluated with respect to the values of variables result-
ing after executing all events in the cut. If a predicatep
evaluates to true for a consistent cutC, we say that “C sat-
isfiesp”. We leave the predicate undefined for>. A global
predicate islocal if it depends on variables of a single pro-
cess.

We say that a predicate isregular if the set of consistent
cuts that satisfy the predicate forms a sublattice of the lat-
tice of consistent cuts. Equivalently, if two consistent cuts
satisfy a regular predicate then the cuts given by their set
intersection and set union also satisfies the predicate. Letinf(p) andsup(p) denote the least and the greatest con-
sistent cut that satisfies a given predicatep, respectively.
From the definition of a regular predicate we deduce that
bothinf(p) andsup(p) exist for a regular predicate. There
are efficient algorithms for detecting regular predicates un-
derpossibly andontrollable modalities [9, 24].

4. Polynomial-Space Algorithm

The performance of algorithms for detectingdefinitely : p can be improved by considering a smaller
state-space, that is, a smaller computation than the original
computation. In this section, we present a polynomial-
time algorithm for reducing the size of the computation.
We show that detectingdefinitely : p on the original
computation is the same as detectingdefinitely : p on
the smaller computation. For this purpose, we define aninterval of a computationhE;!i with respect to con-
sistent cutsC andD as the computationinterval(C;D),
which is a subset ofhE;!i and only the cuts between
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Figure 2. (a) A computation (b) meet-irreducible cuts (c) co rresponding lattice of the computationC and D (including C and D) of hE;!i belong tointerval(C;D).
We state informally a lemma before presenting our

state-space reduction algorithm. Given three consistent
cutsG;H andJ , whereH is reachable fromJ andH
is a successor ofG, the intersection ofG andJ is eitherJ or it is a predecessor ofJ . We present the proof of this
lemma in the extended version of this paper [25].

Theorem 1 (NSC) Given a computation hE;!i,definitely : p holds in hE;!i iff definitely : p holds ininterval(C;D), whereC is the meet of predecessors ofinf(p), if the predecessors exist, otherwiseinf(p), andD
is the join of successors ofsup(p), if the successors exist,
otherwisesup(p).

Proof: Without loss of generality, assume that bothC
andD exist and are different from the initial and final
consistent cut ofhE;!i. We prove the contrapositives.):
We obtain a path from the initial consistent cut to the fi-
nal consistent cut inhE;!i as follows: Pick an arbitrary
path from the initial consistent cut ofhE;!i to C. We
know that none of the cuts on this path satisfyp since all
cuts that satisfyp belong tointerval(C;D). Next, using
the assumption, continue this arbitrary path with a path ininterval(C;D) where none of the cuts on the path sat-
isfy p. Finally, pick an arbitrary path fromD to the final
consistent cut ofhE;!i.(:
Now we prove that if there exists a path from the initial to
the final cut inhE;!i where all cuts on the path satisfy:p then there exists a path from the initial to the final con-
sistent cut ininterval(C;D) where all cuts on the path
satisfy:p. We prove the claim in two Steps.

Step 1:We first show that if there exists a path,P , from
the initial to the final consistent cut inhE;!i where all
cuts on the path satisfy:p then there exists a path from

the initial to the final cut ininterval(C;E) where all cuts
on the path satisfy:p.

Let � be the first cut on the pathP such thatinf(p) ��. Let�0 be the predecessor of� on the pathP . From the
lemma stated above, the meet of�0 and inf(p) is eitherinf(p) or a predecessor ofinf(p), sayC 0. However, if
the meet isinf(p) theninf(p) � �0. Since�0 is also on
the pathP we have that�0 is the first cut on the pathP
such thatinf(p) � �. This is a contradiction since� is
the first such cut. Therefore the meet of�0 andinf(p) isC 0.

There exists a path fromC 0 to �0 becauseC 0 � �0.
Furthermore every cut on this path satisfies:p. We prove
this as follows. From the definition ofinterval(C;D),
only cuts ininterval(inf(p); sup(p)) satisfyp. Now con-
sider all cutsF such thatC 0 � F � �0. We have thatinf(p) 6� �0 and thereforeinf(p) 6� F . Therefore,�0
and all suchF do not satisfyp. SinceC is the meet
of all predecessors ofinf(p) andC 0 is a predecessor ofinf(p), C � C 0 and thereforeC � F . Also, all cuts
from C to C 0 satisfy:p since none of them belong tointerval(inf(p); sup(p)).

We obtain the required path as follows. Choose an ar-
bitrary path fromC to C 0, then continue the path fromC 0
to �0 and then to�. Continue the path from� to the final
cut with the same path from� to the final cut as in pathP .

Step 2:Now we show that if there exists a path,P , from
the initial to the final consistent cut ininterval(C;E)
where all cuts on the path satisfy:p then there ex-
ists a path from the initial to the final consistent cut ininterval(C;D) where all cuts on the path satisfy:p.

The proof is similar to Step 1 with the paths reversed.
In this case we choose� as the last cut on the pathP such
that� � sup(p) and�0 as the successor of� on the pathP .
Furthermore, we chooseD0 as a successor ofinf(p). We
can show in a similar fashion as in Step 1 that there exists
a path from�0 to D0 where all cuts on the path satisfy
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:p. Finally, we can construct a path fromC to D as the
concatenation of the paths fromC to �, � to �0, �0 to D0,
andD0 toD.

We can computeinterval(C;D) by computinginf(p)
andsup(p) in O(njEj) time for regularp [9]. Similarly,
we can compute the predecessors and successors of a cut
in O(n) time. Note that the above theorem is not restricted
to predicates with a single least and greatest cut only. For
example, if the predicate has several least cuts then first we
take the intersection of all those cuts; second, we find the
predecessors of the intersection; and finally, we compute
the intersection of the predecessors to obtainC.

Although the time complexity of computinginterval(C;D) is polynomial, the time and space
complexity of detectingdefinitely : p on this reduced
state-space may be exponential sinceinterval(C;D) may
contain exponential number of global states. However, it
is always better to work oninterval(C;D) rather thanhE;!i sinceinterval(C;D) is a subset ofhE;!i. In
fact, we believe thatinterval(C;D) is generally much
smaller than the original computationhE;!i and we
validate this belief with experimental work. Furthermore,
Theorem 1 is orthogonal to the conditions we will present
for detectingdefinitely : p, that is, we can always first
computeinterval(C;D) and then apply those conditions.

Next, we present a polynomial-space algorithm fordefinitely : p. Cooper and Marzullo [4] presented a
worst case exponential-space and time algorithm when
they introduceddefinitely : p. Their algorithm detectsdefinitely : p using level sets where alevel setis the set of
successors of a consistent cut. The algorithm starts from
the initial consistent cut. Ifp is true in the initial con-
sistent cut we are done. Otherwise, it constructs the next
level set including only those consistent cuts in which:p is
true. Continuing in this manner, if the algorithm can reach
the final consistent cut, thendefinitely : p is false; other-
wise, it is true. This algorithm requires space proportional
to the size of the largest level set, which is exponential.
We obtain a simple space efficient algorithm for detectingdefinitely : p by generating all paths of cuts for the given
computation. This algorithm is based on generating lin-
earizations of a partial order [20]. For each such path, we
check whether:p holds on every cut on the path. If such
a path exists thendefinitely : p is not satisfied otherwise
it is satisfied. The length of every path is at mostjEj, the
total number of events in the system. A frontier of a con-
sistent cut can be represented by ann-dimensional vector.
Therefore, for each consistent cutO(n) space is required
giving us the space complexity ofO(njEj). The time com-
plexity is bounded by the number of paths, which may be
exponential in the number of processes. We can improve
the time complexity using computation slicing technique
explained later in this paper.

Figure 3 shows a polynomial-spacedefinitely : p algo-
rithm that uses the techniques developed in this section.

5. Polynomial-Time Necessary Conditions

Now we present a polynomial-time necessary condition
to detectdefinitely : p that uses meet-irreducible cuts [5].
We say that a cut ismeet-irreducibleif it has only one suc-
cessor consistent cut. For example, the predecessors of
the final consistent cut of a computation (e.g. predeces-
sors of the final cutfe3; f3g in Figure 2(b)) are all meet-
irreducible cuts. The number of meet-irreducible cuts of a
distributive lattice is generally exponentially smaller than
the number of all cuts in the lattice. In fact, for a finite
distributive lattice, the number of meet-irreducible cutsis
exactly equal to the size of the longest chain in the lattice
[5]. In our case, the length of the longest chain is equal
to the number of eventsjEj. Hence, if some computation
can be done on meet-irreducible cuts, we get a significant
computational advantage.

Theorem 2 (NC) Given a computationhE;!i and a reg-
ular predicatep, if :p holds at the initial consistent cut
and at the successor of every meet-irreducible cut thendefinitely : p does not hold inhE;!i.
Proof: We show that there exists a path from the initial to

the final consistent cut in the computationhE;!i where
all cuts on the path satisfy:p. Given an arbitrary con-
sistent cutC that satisfies:p and different from the final
consistent cut, we first show that there exists a successor
of C that satisfies:p. There are two cases.
Case 1:C has a single successor. In this caseC is a meet-
irreducible cut and from the assumption:p holds at the
successor ofC.
Case 2:C has at least two successors. Observe that if more
than one successor ofC satisfiesp then from the regularity
of p, the intersection of those successor cuts, which isC,
satisfiesp. This leads to a contradiction. Therefore, there
exists at least one successor ofC where:p holds.

We construct the path as follows: From the assumption,:p holds at the initial cut. From above we have that for ev-
ery consistent cut that satisfies:p we can find a successor
consistent cut that satisfies:p. Finally, we reach the final
consistent cut which is the successor of a cut that satisfies:p.

The converse of Theorem 2 is false. Figure 2(c) displays
the lattice of consistent cuts of the computation in Figure
2(a). From the lattice we observe that this computation sat-
isfies the right side of Theorem 2. However, the left side
of the theorem does not hold because the successor of the
meet-irreducible cutff3g satisfiesp. A similar condition
can be given for join-irreducible cuts. Ajoin-irreducible
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Input: A computation hE;!i and a predicate p
Output: definitely : p is satisfied or not

1. compute inf(p) and sup(p);
2. let C be the intersection of predecessors of inf(p);
3. let D be the union of successors of sup(p);
4. use C and D to obtain interval(C;D); // reduce the number of global states
5. for each path in interval(C;D) do // obtain paths using [20]
6. let G be the first cut on the path
7. while G satisfies :p do
8. G := successor of G on the path;
9. endwhile;
10. if G = D then // final cut is reached
11. return false;
12. endif;
13. endfor;
14. return true;

Figure 3. A polynomial-space algorithm for detecting definitely : p
cut of a distributive lattice is such that it has only one pre-
decessor consistent cut. Meet and join-irreducible cuts are
duals of each other.

Theorem 3 Given a computationhE;!i and a regular
predicatep, if :p holds at the final consistent cut and at the
predecessor of every join-irreducible cut thendefinitely :p
does not hold inhE;!i.
We can check Theorem 2 (resp. Theorem 3) by finding the
meet-irreducible (resp. join-irreducible) cuts of the com-
putation inO(n2jEj) time for regularp [23].

Next we present another polynomial-time condition for
detectingdefinitely : p based on the notion of intervals
introduced earlier. We say that a predicate is aninter-
val predicateif there exists a unique initial cut,C, and
a unique final cut,D, that satisfies the predicate and the
predicate holds inall cuts betweenC andD. An interval
predicate with the initial and final cutsC andD defines aninterval(C;D) in a computationhE;!i. Observe thatinterval(C;D) may partition the lattice of consistent cuts
of a computation as in Figure 4. The patterned region in
the figure denotes the cuts that belong tointerval(C;D),
i.e., the set of cuts that satisfy the interval predicate. A
cutF belongs to partition I ifC 6� F � D, partition II ifC 6� F 6� D, partition III if C � F � D, and partition
IV if C � F 6� D. Given thatinterval(C;D) exists, that
is, partition III exists, other partitions may not exist. For
example, ifC is the initial consistent cut ofhE;!i andD
is the final consistent cut ofhE;!i then only partition III
exists.

Theorem 4 Given a computationhE;!i and an interval
predicatep with interval(C;D), there exists a consistent
cutF that belongs to partition II inhE;!i iff definitely :p
does not hold inhE;!i.
Proof:

����
����
����
����
����

����
����
����
����
����

III

C

D

final cut

initial cut

II II

IV

I

Figure 4. interval(C;D) partitions the lattice
of consistent cuts):

We know thatF is reachable from the initial cut. For the
purpose of contradiction, assume that there exists a cutH
on a path from? toF such thatH satisfiesp . ForF to be
reachable fromH , we must have thatH � F . However
sinceH satisfiesp, C � H and sinceF is in partition
II, C 6� F , therefore we have a contradiction. Similarly,
we can show that there does not exist a cutH 0 on a path
from F to E such thatH 0 satisfiesp. C cannot be? andD cannot beE because we assume that partition II exists.
Therefore, partitions I and IV also exist. Now we obtain
a path where all cuts satisfy:p by starting from? and
following an arbitrary path in partition I such that the path
reachesF in partition II. Then we follow an arbitrary path
fromF to the final consistent cut.(:
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We prove by contradiction. Suppose that partition II does
not exist and there exists a path inhE;!i from initial to
the final consistent cut where all cuts on the path satisfy:p. Since there exists such a path, we have that partitions
I and IV exist. Otherwise,C = ? andD = E and we do
not have a path from? to E where:p holds on the path.
Since partition II does not exist and a path of cuts satisfy-
ing:p exists, there is a path from partition I to partition IV
without passing through partition III (sincep is an interval
predicate). We will show that this is impossible.

Consider two cuts,F andH , on a path from? to E
where:p holds on the path, such thatF belongs to par-
tition I andH belongs to partition IV andH is a succes-
sor ofF . From the definition of partitions, we have thatC 6� F � D andC � H 6� D. Furthermore, from the
definition of successor of a cut, we know thatH = F[feg,
wheree is an event inhE;!i ande 62 F . To obtainH
from F , there are two cases: On one hand, we should adde 62 D toF (thereforee 62 C) so thatH 6� D. On the other
hand, we should adde 2 C to F (therefore ine 2 D) so
thatC � H . However,e 2 D ande 62 D leads to a con-
tradiction.

We present a weaker result for regular predicates. The nec-
essary conditions of Theorem 2 and 3 are not comparable
with the condition of Theorem 5 below. Furthermore, ob-
serve that the converse of the next condition is false.

Theorem 5 Given a computationhE;!i, and a regular
predicatep with interval(C;D), whereC = inf(p) andD = sup(p), if there exists a consistent cutF that belongs
to partition II in hE;!i thendefinitely : p does not hold
in hE;!i.

We can use a technique called slicing, which we ex-
plain next, to detect whether there exists a consistent cutF in partition II. The overall complexity of checking the
existence ofF using slicing isO(n2jEj2) [19].

6. Polynomial-Time Sufficient Condition

We have advocated the use of a technique calledcom-
putation slicingfor predicate detection in [9, 19, 24]. The
notion of computation slice is based on Birkhoff’s Repre-
sentation Theorem for Finite Distributive Lattices [5]. The
readers who are not familiar with earlier papers on slicing
[9, 19, 24] are strongly urged to read the extended version
of this paper in [25]. We also use a directed graph model
of a computation to handle both computations and com-
putation slices in a uniform and convenient manner. In
this model, a distributed computationhE;!i is a directed
graph with vertices as the set of events and edges as!.
A subset of vertices forms a consistent cut if the subset
contains a vertex only if it also contains all its incoming

neighbours. Observe that a consistent cut either contains
all vertices in a strongly connected component or none of
them. Roughly speaking, a computation slice (or simply
a slice) is a concise representation of all those consistent
cuts of the computation that satisfy the predicate. More
precisely,

Definition 1 (slice [19]) A sliceof a computation with re-
spect to a predicate is a directed graph with the least num-
ber of consistent cuts that contains all consistent cuts of
the given computation for which the predicate evaluates to
true.

We denote the slice of a computationhE;!i with re-
spect to a predicatep by slice(hE;!i; p). It was shown
in [19] that the slice exists and is uniquely defined for all
predicates. Intuitively, the consistent cuts that belong to
the slice are obtained by computing the union and inter-
section closure of the cuts in the computation that satisfy
the predicate. In other words, if two cutsG andH satisfyp, then the slice contains cutsG tH andG uH too.

Given a computation as in Figure 5(a), and a regular
predicatep, such as(x = 4), wherex is a local vari-
able defined on processP1, now we consider the slice of
the computation with respect to:p as displayed in Figure
5(b). The consistent cuts that belong to the slice are de-
noted by white filled circles in Figure 5(c). Note that in
this example the cuts that belong to the slice are already
closed under union and intersection. We make the fol-
lowing two observations on the computation and its slice.
First, consider the cuts in the computation. On every path
from the initial to the final consistent cut there is a consis-
tent cut that contains evente2 but note3. These cuts arefe2; f1g; fe2; f2g; fe2; f3g. Furthermore, all of these cuts
satisfyp. Second, consider the cuts in the slice, when the
slice contains a non-trivial strongly connected component,
such asfe2; e3g in Figure 5 (b), then none of the cuts of
the original computation that contain a single element from
this component belongs to the slice. For example, cuts that
contain onlye2 but note3 do not belong to the slice.

From the above two observations, if the slice for:p
contains a non-trivial strongly connected component then
in the computation, on every path from the initial to the
final consistent cut, there exists a consistent cut that sat-
isfies p which does not belong to the slice. Therefore,definitely :p holds. We can use these observations to state
a sufficient condition for detectingdefinitely : p.

Theorem 6 (SC) Given a computationhE;!i and a reg-
ular predicatep, if slie(hE;!i;:p) contains a non-
trivial strongly connected component thendefinitely : p
holds inhE;!i.

We can check this condition by finding the slice inO(n2jEj2) time [19] and then checking the strongly con-
nected components of the slice inO(njEj) time [19].
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Figure 5. (a) A computation (b) slice wrt x 6= 4 (c) lattice of consistent cuts of the computation

The converse of Theorem 6 is false. Figure 6(a) dis-
plays a computation that satisfiesdefinitely : p. When we
compute the union and intersection closure of the cuts that
satisfy the predicate (the closure of white filled circles),we
obtain the set of consistent cuts that belongs to the compu-
tation, that is,slie(hE;!i;:p) has the same set of cuts
as hE;!i. Therefore, the slice does not contain a non-
trivial strongly connected component not inhE;!i.

Another advantage of slicing is that, We can use the
slice with respect to:p instead of the computation to
obtain a smaller number of linearizations for the first
polynomial-space algorithm explained in Section 4.

7. Experimental Results

We implemented the conditions in this paper
in POTA and applied it to a leader election pro-
tocol. The leader election protocol implements
the Chang-Roberts algorithm where processes
are arranged in a unidirectional ring. We checkdefinitely : (done0 ^ done1 ^ : : : ^ donen�1) which
denotes that eventually a leader is chosen by every
process. In order to evaluate the effectiveness of our
conditions, we compare our approach with a partial
order reduction based model checker SPIN [13]. For this
purpose, we used the translator from execution traces
to Promela (input language of SPIN). We restricted the
memory usage to 256MB. We manually instrumented
the program. The computations are obtained by running
the program for 20 seconds. Our results are shown in
Table 1. The column labeled by NSC+SC+NC denotes
experiments performed by applying all three Theorems
1, 2, 6. Observe that our improvement in space and time

performance is in the order of magnitude. Due to lack
of space further experimental results are not reported in
the current version of the paper but these results and their
detailed explanations are available at POTA website [22].

8. Conclusion

We presented space and time efficient algorithms for
detectingdefinitely : p. Earlier, we developed polynomial
time detection algorithms for predicates from a subset of
the temporal logic CTL [3] in POTA that did not include
definitely modality. We can enlarge this subset by the re-
sults of this paper.
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