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Abstract of a distributed program satisfies a given predicate. This
problem arises in many contexts such as testing and debug-
Predicate detection is an important problem in test- ging of distributed programs. For example, when debug-
ing and debugging distributed programs. Cooper ging a distributed mutual exclusion algorithm, it is useful
and Marzullo introduced two modalitiegossibly and to monitor the system to detect concurrent accesses to the
definitely as a solution to this problem. Given a predi- shared resources.

catep, a computation satisfiegossibly: p if p is true for Cooper and Marzullo introduced two modalities for
some global state in the computation. A computation sat-predicate detection, which are denoted gwgsibly and
isfiesdefinitely: p if all paths from the initial to the fi-  gefinitely. Given a predicate, a computation satisfies
nal global state go through some global state that satisfies jssibly :p if pis true for some global state in the computa-
p- In general,definitely modality is used to detegbod  tjon. A computation satisfietfinitely:pif all paths from
conditions such as “a leader is eventually chosen by all the initial state to the final global state go through some
processes”, or “a commit point is reached by every pro- global state that satisfigs In generalpossibly modality
cess”, whereagossibly modality is used to detect bad s used to detedtad conditions such as the system reaches
conditions such as violation of mutual exclusion. There are a g|oba| state where the mutual exclusion predicate is.false

several efficient algorithms fewssibly modalityinthelit- |n contrast,definitely modality is in general used to de-
erature [10, 14, 1, 2, 29]. However, this is not the case for tectgoodconditions such as “a leader is eventually chosen
definitely modality. Cooper and Marzullodefinitely : p by all processes”, or “a commit point is reached by ev-

algorithm for arbitraryp has a worst-case space and time ery process”. Cooper and Marzullo’s definitions of these
complexity exponential in the number of processes. Thismodalities established an important conceptual framework
is due to the state explosion problem. In this paper we for predicate detection, which has been the basis of consid-
present efficient algorithms for detectidgfinitely: p. In erable research. However, most of the research has focused
particular, we give a simple algorithm that uses polyno- on possibly modality [10, 14, 1, 2, 29].

mial space. Then, we present an algorithm that can signif- Cooper and Marzullo present an algorithm for detect-
icantly reduce the global state-space. We determine necesmg definitely : p for arbitrary predicate. The worst-case
sary conditions and sufficient conditions under which de- spacé and time complexity of the their algorithm is expo-
tectingdefinitely: p may be efficiently solved. We apply nential in the number of processes. This is due tcstage

our algorithms to an example, achieving a speedup of over g, n1nsjon probler-in a distributed system of processes,
100, compared to partial order reduction based technique the number of possible global states (state-space) can be of
of SPIN [13]. sizeO(m™), wherem is the maximum number of events

on a process.

. This paper presents efficient algorithms for detecting
1. Introduction definitely: p. We first present a simple algorithm for
definitely: p that use€)(nm) space in Section 4. Then,
A fundamental problem in distributed computing is we present a polynomial-time state-space reduction algo-
predicate detection-deciding whether an execution trace rithm that enables us to work on a distributed computation
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isfies it. Itis, in general, coNP-complete to detect a pred- NP-completeness result for controlling a special case of
icate underdefinitely modality [27]. In Sections 5 and 2-CNF predicates, callethdependent mutual exclusion
6, we determine necessary conditions and sufficient con-predicates, we can easily deduce that detecting a special

ditions under which detectindefinitely : p may be effi- case of 2-DNF predicates, which is the dual of independent
ciently solved. In order to develop these conditions, we mutual exclusion predicates, undiffinitely modality is
use lattice theoretic properties of distributed compotadi coNP-complete in general.

We validate the effectiveness of our algorithms with exper- ~ Fromentin and Raynal [7] presented a polynomial-time
imental studies in Section 7. For this purpose, we imple- algorithm to solve the predicate detection problem for
ment our algorithms in the Partial Order Trace Analyzer proper modality, which is a special case @ffinitely, A
(POTA) tool [26] and compare performance to partial or- computation satisfiegroper : p if all paths from the initial
der reduction based algorithms of model checker SPIN state to the final global state go throughuiqueglobal
[13]. In one case, our algorithms are significantly faster state that satisfigs
and space efficient. We have measured over 100-fold gain.  Thedefinitely : p problem has efficient solutions when
Our work constitutes part of the POTA tool [26, 22] the predicate is 1-CNF or 1-DNF [8]. However, the com-
for testing distributed program execution traces using-tem plexity problem is open forlefinitely: p for regularp.
poral logic predicates. Figure 1 displays an overview of In this paper, we present efficient conditions to solve the
POTA architecture. POTA consists of an instrumenta- problem for both arbitrary and regular predicates.
tion module, a translator module that translates execution The idea of using temporal logic in program testing
traces into Promela [13] (SPIN model checker input lan- has been applied in several tools such as the commercial
guage) and an analyzer module. The use of partial or- Temporal Rover tool (TR) [6], the MaC tool [16], and the
der model for execution traces and the use of an effec-JPaX tool [12]. TR allows the user to specify the tem-
tive abstraction technique for temporal logic verification poral formula in programs. These temporal formula are
called computation slicing are significant aspects of POTA translated into Java code before compilation. The MaC
and constitutes the analyzer module. POTA implementsand JPaX tools consider a totally ordered view of an ex-
polynomial-time temporal logic predicate detection algo- ecution trace and therefore can potentially miss bugs that
rithms. The temporal logic used in POTA is a subset of can be deduced from a partial order view of the trace. Hal-
CTL [3]. With the results of this paper, we extend efficient lal et al. in [11] uses a partial order view of an execution
predicate detection algorithms in POTA fdxfinitely op- trace as in POTA. They translate execution traces into SDL
erator. Atomic propositions of the logic used in POTA are and use commercial SDL tools for testing translated traces.
regular predicates, which widely occur in practice during POTA incorporates several polynomial-time (polynomial
verification. Some examples of regular predicates are con-in the number of processes) predicate detection algorithms
junction of local predicates [8, 15] such as “all processes whereas the complexity is exponential-time in [11].
are inred state”, certain channel predicates [8] such as “at
mostk messages are in transit from procégo P;”, and

some relational predicates [8]. 3. Model

We assume a loosely-coupled message-passing asyn-
chronous system without any shared memory or a global
clock. A distributed programconsists ofn sequential

Our approach exploits the structure of the predicate processes denoted B, P, ..., P, communicating via
itself—by imposing restrictions—to evaluate its value ef- asynchronous messages. In this paper, we are concerned
ficiently for a given computation. Polynomial-time algo- with a singlecomputation(executiof of a distributed pro-
rithms for possibly : p have been developed whenbe- gram. We assume that no messages are altered or spuri-
longs to conjunctive [10, 14], observer-independent [1], ously introduced. We do not make any assumptions about
linear [2], and relational predicates [29]. Alsoin [21]the  FIFO nature of channels.
is an extensive survey on predicate detection techniques.  The execution of a process in a computation can be

Tarafdar and Garg [27] proved that it is, in general, NP- viewed as a sequence of events with events across pro-
complete to detect a predicate undentrollable modal- cesses ordered by Lamportiappened-befonelation,—
ity. A computation satisfiesontmllable: p if every state [17]. We use lowercase lettessand f to represent events.
on some path from the initial global state to the final global The happened-beforeslation between any two events
state satisfiep. Since the problem of detecting a pred- andf can be formally stated as the smallest relation such
icate underdefinitely modality is the dual of the prob- thate — f if and only if e occurs beforef in the same
lem of detecting a predicate undemtrollable modality, process, ok is a send of a message ayfids a receive
it is, in general, coNP-complete to detect a predicate un-of that message, or there exists an evgrguch thate
der definitely modality. Using Tarafdar and Garg's [28] happened-beforgandg happened-beforg. We represent

2. Related Work
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the set of events as the union of events from each process(7 andG is apredecessoof H. A pathGy, G4, ..., G, of

E = |JE;, foreachl < i < n. We define aistributed (C(E), C) satisfies that for each < i < I, G; > Git1.
computationas the partially ordered set consisting of the A predicate is defined as a boolean-valued function on
set of events together with the happened-before relationvariables of processes. Given a consistent cut, a predicate

and denote it by E, —). is evaluated with respect to the values of variables result-
We define aconsistent cubf a computatio E, —) as ing after executing all events in the cut. If a predicate
asubse? C Esuchthatf € GAe - f = e € G. evaluates to true for a consistent €ijtwe say that €' sat-

We use uppercase lette€s, H, J, and K to represent iSfieSp". We leave the predicate undefined for A glObal
consistent cuts. A consistent cut captures the notion of apredicate isocalif it depends on variables of a single pro-
reachable global state. We use consistent cut and globaf€ss.

state interchangeably. We denote the set of consistent e say that a predicaterisgularif the set of consistent
cuts of any distributed computatiqiz, —) by C(E). It cuts that satisfy the predicate forms a sublattice of the lat
is well-known that the set of consistent cuts of any dis- tice of consistent cuts. Equivalently, if two consistentscu
tributed computatio Z, —) forms adistributive lattice ~ satisfy a regular predicate then the cuts given by their set
under the relatiorC [18, 9]. We denote this lattice by intersection and set union also satisfies the predicate. Let
L = (C(E),C) and also call this as thstate-spacef ~ inf(p) andsup(p) denote the least and the greatest con-
the distributed computation. For any partially ordered set Sistent cut that satisfies a given predicateespectively.

we uselLl andr to denote join and meet Operators_ Note From the definition of a regular predicate we deduce that
that the join (resp. meet) of two consistent cuts correspondbothin f(p) andsup(p) existfor a regular predicate. There
to their union (resp. intersection). We ugeto denote are efficient algorithms for detecting regular predicates u
the initial consistent cutf to denote the final consistent derpossibly andcontrollable modalities [9, 24].

cut of all processes, and to denote a fictitious final cut

occurring aftert. 4. Polynomial-Space Algorithm
We denote the set of maximal (with respect to
happened-before relation) elements of a consistengcut The performance of algorithms for detecting

by frontier(G). Figure 2 shows a computation and its definitely: p can be improved by considering a smaller
lattice of consistent cuts. A consistent cut in the figure is state-space, that is, a smaller computation than the atigin
represented by its frontier. For example, the consistent cu computation. In this section, we present a polynomial-
{es, ea, €1, fo, f1, L} isrepresented bfes, f2}. A consis- time algorithm for reducing the size of the computation.
tent cutH is reachabldrom a consistent cuf iff it is pos- We show that detectinglefinitely: p on the original
sible to attain from GG by executing zero or more events. computation is the same as detectidgfinitely: p on

Itis easy to see thdi is reachable frond7 iff G C H. We the smaller computation. For this purpose, we define an
definesuccessoof a cut by a relatiom C C(F) x C(E) interval of a computation(F, —) with respect to con-
such thatG > H if and only if H = G U {e} for some sistent cuts” and D as the computatiointerval (C, D),

e € E such thate ¢ G. We say thatH is asuccessopf which is a subset ofE, —) and only the cuts between
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C and D (including C' and D) of (E,—) belong to
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rresponding lattice of the computation
the initial to the final cut innterval (C, E) where all cuts

on the path satisfy:p.
Let 8 be the first cut on the patR such thatn f(p) C

state-space reduction algorithm. Given three consistents. Let 5’ be the predecessor gfon the pati?. From the

cutsG, H and.J, where H is reachable from/ and H
is a successor dff, the intersection o7 and.J is either
J oritis a predecessor of. We present the proof of this
lemma in the extended version of this paper [25].

Theorem 1 (NSC) Given a computation (E,—),
definitely: p holds in (E, —) iff definitely: p holds in
interval(C, D), whereC' is the meet of predecessors of
inf(p), if the predecessors exist, otherwisg (p), and D

is the join of successors efip(p), if the successors exist,
otherwisesup(p).

Proof: Without loss of generality, assume that bath
and D exist and are different from the initial and final
consistent cut of £, —). We prove the contrapositives.
=
We obtain a path from the initial consistent cut to the fi-
nal consistent cut iRE, —) as follows: Pick an arbitrary
path from the initial consistent cut 4, —) to C. We
know that none of the cuts on this path satigfgince all
cuts that satisfy belong tointerval(C, D). Next, using
the assumption, continue this arbitrary path with a path in
interval(C, D) where none of the cuts on the path sat-
isfy p. Finally, pick an arbitrary path fronb to the final
consistent cut of £, —).
<=
Now we prove that if there exists a path from the initial to
the final cut in(E, —) where all cuts on the path satisfy
—-p then there exists a path from the initial to the final con-
sistent cut ininterval(C, D) where all cuts on the path
satisfy—p. We prove the claim in two Steps.

Step 1:We first show that if there exists a path, from
the initial to the final consistent cut it¥, —) where all
cuts on the path satisfyp then there exists a path from

lemma stated above, the meetgfandin f(p) is either
inf(p) or a predecessor ah f(p), sayC’'. However, if
the meet isin f(p) theninf(p) C 5'. Sincep’ is also on
the pathP we have thats’ is the first cut on the patt®
such thatinf(p) C 5. This is a contradiction sincg is
the first such cut. Therefore the meet@fandin f(p) is
C'.

There exists a path fro’ to 3’ because”’ C 3.
Furthermore every cut on this path satisfigs We prove
this as follows. From the definition ohterval(C, D),
only cuts ininterval (inf(p), sup(p)) satisfyp. Now con-
sider all cutsF' such thatC’ C F C '. We have that
inf(p) € B and thereforenf(p) € F. Therefore,g’
and all suchF’ do not satisfyp. SinceC is the meet
of all predecessors afuf(p) andC’ is a predecessor of
inf(p), C C C'" and thereforeC C F. Also, all cuts
from C to C' satisfy —p since none of them belong to
interval (in f(p), sup(p)).

We obtain the required path as follows. Choose an ar-
bitrary path fromC to C’, then continue the path frodl’
to 5" and then tg3. Continue the path frond to the final
cut with the same path from to the final cut as in pati®.

Step 2.Now we show that if there exists a pafh, from
the initial to the final consistent cut imterval(C, E)
where all cuts on the path satisfyp then there ex-
ists a path from the initial to the final consistent cut in
interval (C, D) where all cuts on the path satisfy.

The proof is similar to Step 1 with the paths reversed.
In this case we choosgas the last cut on the pathsuch
that8 C sup(p) andp’ as the successor gfon the patiP.
Furthermore, we choose’ as a successor of f(p). We
can show in a similar fashion as in Step 1 that there exists
a path fromg’ to D’ where all cuts on the path satisfy




—p. Finally, we can construct a path froé to D as the Figure 3 shows a polynomial-spadefinitely : p algo-
concatenation of the paths frofto 3, 5 to g/, 5' to D', rithm that uses the techniques developed in this section.
andD' to D. ]

5. Polynomial-Time Necessary Conditions

We can computeénterval(C, D) by computingin f(p)
andsup(p) in O(n|E|) time for regularp [9]. Similarly, Now we present a polynomial-time necessary condition
we can compute the predecessors and successors of a ci® detectiefinitely: p that uses meet-irreducible cuts [5].
in O(n) time. Note that the above theorem is not restricted We say that a cut imeet-irreduciblef it has only one suc-
to predicates with a single least and greatest cut only. Forcessor consistent cut. For example, the predecessors of
example, if the predicate has several least cuts then first wethe final consistent cut of a computation (e.g. predeces-
take the intersection of all those cuts; second, we find thesors of the final cufes, f3} in Figure 2(b)) are all meet-
predecessors of the intersection; and finally, we computeirreducible cuts. The number of meet-irreducible cuts of a
the intersection of the predecessors to ob&in distributive lattice is generally exponentially smallaah
Although the time complexity of computing the number of all cuts in the lattice. In fact, for a finite
interval(C, D) is polynomial, the time and space distributive lattice, the number of meet-irreducible cists
complexity of detectingdefinitely: p on this reduced  exactly equal to the size of the longest chain in the lattice
state-space may be exponential sineerval (C, D) may [5]. In our case, the length of the longest chain is equal
contain exponential number of global states. However, it to the number of even{gs|. Hence, if some computation
is always better to work oninterval(C, D) rather than ~ can be done on meet-irreducible cuts, we get a significant
(E, =) sinceinterval(C, D) is a subset of £, —). In computational advantage.
fact, we believe thainterval(C, D) is generally much
smaller than the original computatioff;, —) and we  Theorem 2 (NC) Given a computatioft, —) and a reg-
validate this belief with experimental work. Furthermore, ular predicatep, if —p holds at the initial consistent cut
Theorem 1 is orthogonal to the conditions we will present and at the successor of every meet-irreducible cut then
for detectingdefinitely: p, that is, we can always first definitely: p does not hold i{E, —).
computeinterval(C, D) and then apply those conditions.  Proof: We show that there exists a path from the initial to
Next, we present a polynomial-space algorithm for the final consistent cut in the computatiohi, —) where
definitely: p. Cooper and Marzullo [4] presented a all cuts on the path satisfyp. Given an arbitrary con-
worst case exponential-space and time algorithm whensistent cutC' that satisfies-p and different from the final
they introduceddefinitely: p. Their algorithm detects  consistent cut, we first show that there exists a successor
definitely : p using level sets wherelavel sefs the setof ~ of C that satisfies-p. There are two cases.
successors of a consistent cut. The algorithm starts fromCase 1:C' has a single successor. In this cases a meet-
the initial consistent cut. I is true in the initial con-  irreducible cut and from the assumptiem holds at the
sistent cut we are done. Otherwise, it constructs the nextsuccessor of’.
level set including only those consistent cuts in whighis Case 2C has at least two successors. Observe that if more
true. Continuing in this manner, if the algorithm can reach than one successor 6fsatisfiegp then from the regularity
the final consistent cut, thefefinitely: p is false; other-  of p, the intersection of those successor cuts, whiofl,is
wise, it is true. This algorithm requires space proportiona satisfiesp. This leads to a contradiction. Therefore, there
to the size of the largest level set, which is exponential. exists at least one successoxbivhere—p holds.
We obtain a simple space efficient algorithm for detecting ~ We construct the path as follows: From the assumption,
definitely : p by generating all paths of cuts for the given —p holds at the initial cut. From above we have that for ev-
computation. This algorithm is based on generating lin- ery consistent cut that satisfiep we can find a successor
earizations of a partial order [20]. For each such path, we consistent cut that satisfieg. Finally, we reach the final
check whetheryp holds on every cut on the path. If such consistent cut which is the successor of a cut that satisfies
a path exists thedefinitely: p is not satisfied otherwise  —p. [
it is satisfied. The length of every path is at mpgst, the
total number of events in the system. A frontier of a con-
sistent cut can be represented byradimensional vector.  The converse of Theorem 2 is false. Figure 2(c) displays
Therefore, for each consistent ditn) space is required the lattice of consistent cuts of the computation in Figure
giving us the space complexity 6f(n|E|). The time com-  2(a). From the lattice we observe that this computation sat-
plexity is bounded by the number of paths, which may be isfies the right side of Theorem 2. However, the left side
exponential in the number of processes. We can improveof the theorem does not hold because the successor of the
the time complexity using computation slicing technique meet-irreducible cuf f5} satisfiesp. A similar condition
explained later in this paper. can be given for join-irreducible cuts. @in-irreducible



Input: A computation (E, —) and a predicate p
Output: definitely: p is satisfied or not

1. compute inf(p) and sup(p);

2. let C be the intersection of predecessors of inf(p);
3. let D be the union of successors of sup(p);
4. use C and D to obtain interval(C, D);

5. for each path in interval(C, D) do

6. let G be the first cut on the path

7. while G satisfies —p do

8. G := successor of G on the path;
9. endwhile;

10. if G = D then

11. return false;

12. endif;

13. endfor;

14. return true;

/I reduce the number of global states
/l obtain paths using [20]

/I final cut is reached

Figure 3. A polynomial-space algorithm for detecting

cut of a distributive lattice is such that it has only one pre-
decessor consistent cut. Meet and join-irreducible cugs ar
duals of each other.

Theorem 3 Given a computatiof £, —) and a regular
predicatep, if —p holds at the final consistent cut and at the
predecessor of every join-irreducible cut th&tfinitely :p
does not hold iIME, —).

We can check Theorem 2 (resp. Theorem 3) by finding the

meet-irreducible (resp. join-irreducible) cuts of the com
putation inO(n?| E|) time for regulamp [23].

Next we present another polynomial-time condition for
detectingdefinitely: p based on the notion of intervals
introduced earlier. We say that a predicate isiatier-
val predicateif there exists a unique initial cuty, and
a unique final cutD, that satisfies the predicate and the
predicate holds irll cuts betweer® andD. An interval
predicate with the initial and final cuts and D defines an
interval(C, D) in a computation E, —). Observe that
interval (C, D) may partition the lattice of consistent cuts
of a computation as in Figure 4. The patterned region in
the figure denotes the cuts that belongreerval (C, D),
i.e., the set of cuts that satisfy the interval predicate. A
cut F' belongs to partition 1 iiC ¢ F C D, partition Il if
C ¢ F ¢ D, partition lll if C C F C D, and partition
IVif C C F ¢ D. Given thatinterval (C, D) exists, that
is, partition Il exists, other partitions may not exist. rFo
example, ifC' is the initial consistent cut df£, —) andD
is the final consistent cut d7, —) then only partition IlI
exists.

Theorem 4 Given a computatiofE, —) and an interval
predicatep with interval(C, D), there exists a consistent
cut F' that belongs to partition Il il E, —) iff definitely :p
does not hold iIME, —).

Proof:

definitely: p

final cut

initial cut

Figure 4. interval(C, D) partitions the lattice
of consistent cuts

We know thatF' is reachable from the initial cut. For the
purpose of contradiction, assume that there exists @cut
on a path fromL to F' such thatH satisfieg . For F' to be
reachable fromH, we must have thall C F. However
since H satisfiesp, C C H and sinceF is in partition

II, C ¢ F, therefore we have a contradiction. Similarly,
we can show that there does not exist a Hiton a path
from F' to FE such thatd’ satisfiegp. C' cannot bel and

D cannot beFl because we assume that partition Il exists.
Therefore, partitions | and IV also exist. Now we obtain
a path where all cuts satisfyp by starting from_L and
following an arbitrary path in partition | such that the path
reached” in partition Il. Then we follow an arbitrary path
from F' to the final consistent cut.

&



We prove by contradiction. Suppose that partition Il does neighbours. Observe that a consistent cut either contains
not exist and there exists a path(if, —) from initial to all vertices in a strongly connected component or none of
the final consistent cut where all cuts on the path satisfy them. Roughly speaking, a computation slice (or simply

—p. Since there exists such a path, we have that partitionsa slice) is a concise representation of all those consistent

| and IV exist. Otherwise(’ = 1 andD = E and we do
not have a path from. to £ where—p holds on the path.
Since partition 1l does not exist and a path of cuts satisfy-
ing —p exists, there is a path from partition | to partition IV
without passing through patrtition Il (singeis an interval
predicate). We will show that this is impossible.
Consider two cutsf' and H, on a path fromL to £
where—p holds on the path, such that belongs to par-
tition | and H belongs to partition IV and? is a succes-
sor of F'. From the definition of partitions, we have that
C ¢ F CDandC C H ¢ D. Furthermore, from the
definition of successor of a cut, we know tifat= F'U{e},
wheree is an event ilE, —) ande ¢ F. To obtainH

cuts of the computation that satisfy the predicate. More
precisely,

Definition 1 (slice [19]) A slice of a computation with re-
spect to a predicate is a directed graph with the least num-
ber of consistent cuts that contains all consistent cuts of
the given computation for which the predicate evaluates to
true.

We denote the slice of a computatiof, —) with re-
spect to a predicate by slice((E, —),p). It was shown
in [19] that the slice exists and is uniquely defined for all
predicates. Intuitively, the consistent cuts that belamg t
the slice are obtained by computing the union and inter-

from F', there are two cases: On one hand, we should addsection closure of the cuts in the computation that satisfy

e & DtoF (thereforee ¢ C)sothatd ¢ D. On the other
hand, we should adel € C to F' (therefore ine € D) so
thatC C H. Howevere € D ande ¢ D leads to a con-
tradiction. ]

We present a weaker result for regular predicates. The nec-

the predicate. In other words, if two cutsand H satisfy
p, then the slice contains cufsll H andG M H too.

Given a computation as in Figure 5(a), and a regular
predicatep, such as(z = 4), wherex is a local vari-
able defined on procedd, now we consider the slice of
the computation with respect tap as displayed in Figure
5(b). The consistent cuts that belong to the slice are de-

essary conditions of Theorem 2 and 3 are not comparablg’®ted by white filled circles in Figure 5(c). Note that in

with the condition of Theorem 5 below. Furthermore, ob-
serve that the converse of the next condition is false.

Theorem 5 Given a computatiofE, —), and a regular
predicatep with interval(C, D), whereC = inf(p) and
D = sup(p), if there exists a consistent chtthat belongs
to partition Il in (E, —) thendefinitely : p does not hold
in(E, —).

We can use a technique called slicing, which we ex-
plain next, to detect whether there exists a consistent cu
F'in partition 1. The overall complexity of checking the
existence oft" using slicing isO(n?|E|?) [19].

6. Polynomial-Time Sufficient Condition

We have advocated the use of a technique calted-
putation slicingfor predicate detection in [9, 19, 24]. The
notion of computation slice is based on Birkhoff’s Repre-
sentation Theorem for Finite Distributive Lattices [5].€'h
readers who are not familiar with earlier papers on slicing

[9, 19, 24] are strongly urged to read the extended version

of this paper in [25]. We also use a directed graph model

of a computation to handle both computations and com-

putation slices in a uniform and convenient manner. In
this model, a distributed computati¢®’, —) is a directed
graph with vertices as the set of events and edges as

t

this example the cuts that belong to the slice are already
closed under union and intersection. We make the fol-
lowing two observations on the computation and its slice.
First, consider the cuts in the computation. On every path
from the initial to the final consistent cut there is a consis-
tent cut that contains event but note;. These cuts are
{ea, f1},{e2, f2},{ea, f3}. Furthermore, all of these cuts
satisfyp. Second, consider the cuts in the slice, when the
slice contains a non-trivial strongly connected component
such as{es, e3} in Figure 5 (b), then none of the cuts of
the original computation that contain a single element from
this component belongs to the slice. For example, cuts that
contain onlye, but note; do not belong to the slice.

From the above two observations, if the slice fav
contains a non-trivial strongly connected component then
in the computation, on every path from the initial to the
final consistent cut, there exists a consistent cut that sat-
isfies p which does not belong to the slice. Therefore,
definitely : p holds. We can use these observations to state
a sufficient condition for detectingefinitely : p.

Theorem 6 (SC) Given a computatiofF, —) and a reg-
ular predicatep, if slice((E,—),—p) contains a non-

trivial strongly connected component thdpfinitely: p
holds in(E, —).

We can check this condition by finding the slice in

A subset of vertices forms a consistent cut if the subsetO(n?|E|?) time [19] and then checking the strongly con-

contains a vertex only if it also contains all its incoming

nected components of the sliceli{n|E|) time [19].
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The converse of Theorem 6 is false. Figure 6(a) dis-
plays a computation that satisfiésfinitely: p. When we

attice of consistent cuts of the computation

performance is in the order of magnitude. Due to lack
of space further experimental results are not reported in

compute the union and intersection closure of the cuts thatthe current version of the paper but these results and their

satisfy the predicate (the closure of white filled circleg,

detailed explanations are available at POTA website [22].

obtain the set of consistent cuts that belongs to the compu-

tation, that is,slice((F,—), —p) has the same set of cuts
as(E,—). Therefore, the slice does not contain a non-
trivial strongly connected component not(ii, —).

Another advantage of slicing is that, We can use the
slice with respect to-p instead of the computation to
obtain a smaller number of linearizations for the first
polynomial-space algorithm explained in Section 4.

7. Experimental Results

We implemented the conditions in this paper
in POTA and applied it to a leader election pro-
tocol. The leader election protocol implements
the Chang-Roberts algorithm where processes
are arranged in a unidirectional ring. We check
definitely: (doneg A doney A ... A done, 1) Wwhich
denotes that eventually a leader is chosen by every
process. In order to evaluate the effectiveness of our
conditions, we compare our approach with a partial
order reduction based model checker SPIN [13]. For this
purpose, we used the translator from execution traces
to Promela (input language of SPIN). We restricted the
memory usage to 256MB. We manually instrumented
the program. The computations are obtained by running
the program for 20 seconds. Our results are shown in
Table 1. The column labeled by NSC+SC+NC denotes
experiments performed by applying all three Theorems
1, 2, 6. Observe that our improvement in space and time

8. Conclusion

We presented space and time efficient algorithms for
detectinglefinitely : p. Earlier, we developed polynomial
time detection algorithms for predicates from a subset of
the temporal logic CTL [3] in POTA that did not include
definitely modality. We can enlarge this subset by the re-
sults of this paper.
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