
Algorithmi Combinatoris based on Sliing PosetsVijay K. Garg�Department of Eletrial and Computer EngineeringThe University of Texas at AustinAustin, TX 78712-1084, USAgarg�ee.utexas.eduAbstratWe show that some reent results in sliing of a distributed omputation an be applied to de-veloping algorithms to solve problems in ombinatoris. A ombinatorial problem usually requiresenumerating, ounting or asertaining existene of strutures that satisfy a given property B. Weast the ombinatorial problem as a distributed omputation suh that there is a bijetion betweenombinatorial strutures satisfying B and the global states that satisfy a property equivalent to B.We then apply results in sliing a omputation with respet to a prediate to obtain a small represen-tation of only those global states that satisfy B. The sliing results are based on a generalization ofBirkho�'s Theorem of representation of �nite distributive latties. This gives us an eÆient (poly-nomial time) algorithm to enumerate, ount or detet strutures that satisfy B when the total setof strutures is large but the set of strutures satisfying B is small. We illustrate our tehniques byanalyzing problems in integer partitions, set families, and set of permutations.1 IntrodutionConsider the following ombinatorial problems:(Q1) Count the number of subsets of the set [n℄ (the set f1 : : : ng) whih have sizem and do not ontainany onseutive numbers.(Q2) Enumerate all integer partitions less than (�1; �2; : : : ; �n) in whih the �rst part is equal to theseond part.(Q3) Give the number of permutations of [n℄ in whih i less than j implies that the number of inversionsof i is less than the number of inversions of j.Our goal in this paper is to show how suh problems an be solved mehanially and eÆiently forany �xed values of the parameters n and m.It is important to note that someone trained in ombinatoris may be able to solve all of theseproblems eÆiently (and the reader is enouraged to solve these problems before reading further). Ouremphasis is on tehniques that an be applied mehanially. On the other hand, one an also notethat for the �xed values of n and m, all the sets above are �nite and therefore all the problems anbe solved mehanially. Our emphasis is on eÆieny. To be more preise, let L be a large set ofombinatorial strutures (for example, all subsets of f1 : : : ng of size m, all permutations of [n℄ et.)Eah ombinatorial problem requires enumerating, ounting, or searhing the subset of strutures thatsatisfy a given property B. Call this set LB � L. For example, in the problem (Q1), L is the setof all subsets of [n℄ of size m and LB is the set of all subsets that do not ontain any onseutive�supported in part by the NSF Grants ECS-9907213, CCR-9988225, Texas Eduation Board Grant ARP-320, anEngineering Foundation Fellowship, and an IBM grant. 1



numbers from [n℄. For any �xed set of parameters m and n, the size of L is large but �nite, enablingone to enumerate all possible strutures and then to hek eah one of them for the property B. Thisapproah results in an algorithm that requires time proportional to the set L whih is exponential inn (or m). This paper proposes a tehnique that provides answers to some ombinatorial problems inpolynomial time and for others, suh as those involving enumeration, in time proportional to the sizeof LB (and not L). Our tehnique is appliable whenever B satis�es a property alled regularity andwe give several examples of regular B in this paper.To explain our tehnique, we use the term small to mean polynomial in n and m, and large tomean exponential in n or m. Thus, the set L is large. We �rst build a small struture P suh thatall elements of P an be generated by L. Seond, we ompute a slie of P with respet to B, denotedby PB , suh that PB generates all elements of LB and when B is regular only those elements. PB isa small struture and an be eÆiently analyzed to answer questions about LB. For regular B, oneould simply enumerate all elements of LB from PB .Our approah is based on some reent results on sliing a distributed omputation with respet toa prediate B [GM01, MG01℄. Informally, a slie of a omputation with respet to a prediate B is asubomputation with the least number of global states that ontains all global states that satisfy B.Sliing, in turn, is based on Birkho�'s Theorem of representation of �nite distributive latties [DP90℄.The small struture P is a direted graph representing a distributed omputation on n proesses. Theset of all (onsistent) global states of the omputation is the large struture L. Equivalently, P , whenayli, is a poset and the set L is the set of all order ideals of P . It is well known that L is a �nitedistributive lattie under the ontainment relation of order ideals. Conversely, the poset P an bereovered from L by fousing on its join-irreduible elements. From the algorithmi perspetive thisresult is very useful beause the set L an be exponentially bigger than the set P and therefore P anbe viewed as a generator of L.Consider any prediate B de�ned on L, or equivalently, the a subset LB of L. B is alled regularif LB is a sublattie of L. From Birkho�'s theorem we know that there exists a poset that generatesLB . We show that every sublattie of L an be generated by a poset that an be obtained by addingedges to the poset P . Note that when edges are added to the graph of a poset yles may form. In thisase we simply onsider the poset of strongly onneted omponents in the graph. We denote the smallstruture obtained after adding edges to P as PB . Now PB an be used to enumerate elements in LB , orto analyze the number of elements in LB . Many algorithms have been proposed to enumerate ideals ofa poset; for example by Steiner[Ste86℄ and Squire[Squ95℄. In distributed omputing, the algorithms toexplore the global state lattie address the idential problem (see [CM91, VD01, JMN95℄). Determiningthe ount of the elements in LB given PB is #P-omplete for general posets [PB83℄ but an be doneeÆiently for 2-dimensional posets[Ste84℄.When B is not regular, we an still use this idea by onsidering the struture PB whih properlyinludes all ideals in LB and as few other ideals as possible. In partiular, a property that an beexpressed as a onjuntion, disjuntion or negation of regular prediates an also be analyzed in thismanner.We apply these ideas to many traditional problems in ombinatoris. It is easily shown that mostombinatorial strutures suh as the set of permutations, set of all subsets, set of subsets of size k, allinteger partitions less than a given partition, all tuples in produt spaes et. an be generated as theset of order ideals of small posets. We show that many interesting subsets of these strutures an beeÆiently analyzed by generating appropriate slies. Due to the lak of spae, all proofs in this paperare in appendix.
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2 Notation and De�nitionsIn this setion we review the notation and the basi results in lattie theory [DP90℄. Let X be any�nite set. A pair (X;P ) is alled a partially ordered set or poset if X is a set and P is a reexive,antisymmetri, and transitive binary relation on X. We all X the ground set while P is a partial orderon X. We simply write P as a poset when X is lear from the ontext. We write e � f in P when(e; f) 2 P . We say that f overs e if e < f and there is no g suh that e < g < f . Let e; f 2 X withe 6= f . If either e < f or f < e, e and f are omparable. On the other hand, if neither e < f norf < e, then e and f are inomparable. A poset (X;P ) is alled hain if every distint pair of pointsfrom X is omparable in P . Similarly, a poset is an antihain if every distint pair of points from Xis inomparable in P .(X;P ) and (Y;Q) are isomorphi, if there exists a 1� 1 and onto map F : X �! Y suh that  � din P if and only if F () � F (d) in Q. A poset (X;Q) is an extension of (X;P ) if for all e; f 2 X, e < fin P implies e < f in Q. (X;Q) is a linear extension if it is an extension of (X;P ) and is a hain.A lattie is a poset L suh that for all x; y 2 L, the least upper bound of x and y exists, alled thejoin of x and y (denoted by x t y); and the greatest lower bound of x and y exists, alled the meetof x and y (denoted by x u y). A sublattie is a subset of L losed under join and meet. A sublattiefor whih there exists two elements  and d suh that it inludes all x whih lie between  and d (i.e. � x � d) is alled an interval lattie and denoted by [; d℄. A lattie L is distributive if for allx; y; z 2 X: x u (y t z) = (x u y) t (x u z).Next we provide the de�nition of order ideals or down-set of a poset P . Let (X;P ) be a poset andlet G � X. G is alled an order ideal in (X;P ) if e 2 G whenever f 2 G and e � f in P . Considerthe poset in Figure 1(a). The set fb; dg is an order ideal. The set fa; g is not beause it inludes but does not inlude b whih is smaller than . We simply use ideal for order ideal in this paper.Let L denote the family of all ideals of P . De�ne a partial order on L by G � H in L if and onlyif G � H. It is well known that the set of ideals forms a distributive lattie and onversely every�nite distributive lattie an be onstruted in this manner. Figure 1 shows a poset and its lattie ofideals. Given a �nite distributive lattie L, one an determine the poset that generates L as follows.An element e 2 L is join-irreduible if it annot be written as joins of two elements di�erent from e.Pitorially, in a �nite lattie, an element is join-irreduible i� it has exatly one lower over, that is,there is exatly one edge oming into the element. Figure 1(b) shows join-irreduible elements of thelattie. For any e 2 P , we use J(e) to denote the least ideal in L that ontains e. It is easy to showthat J(e) is join-irreduible. Let J(L) denote the set of all join-irreduible elements in L. Birkho�'stheorem states that any �nite distributive lattie L is isomorphi to the set of ideals of the poset J(L)(and dually, any �nite poset P is isomorphi to join-irreduible elements of the set of ideals of P ).Meet-irreduible elements of L an be de�ned in an analogous manner. M(f), the greatest ideal thatdoes not ontain f , is meet-irreduible. The set of all meet-irreduible elements of L are denoted byM(L) and Birkho�'s theorem an also be stated using M(L).In this paper, P and posets derived from P will serve as the small strutures, and L and sublattiesof L will serve as the large strutures. We are usually interested in LB � L, ontaining ideals of L thatsatisfy a given prediate B. Instead of enumerating L and heking for prediate B, we use P and Bto derive a struture PB that generates LB.For ounting the number of elements in L and its sublatties, we use N(P ) to denote the numberof ideals of the poset P . Sine our interest is in eÆient alulation of N(P ), we will restrit thedimension of the partial order generating the lattie. For any poset (X;P ), the dimension of (X;P ),denoted by dim(X;P ), is the least positive integer t for whih there exists a family fC1; C2; : : : ; Ctg oflinear extensions of P (total orders ompatible with P ) suh that P = \ti=1Ci. Determining whether aposet P with n points is 2-dimensional and isomorphism testing for 2-dimensional orders an be donein O(n2) time [Spi85℄. All the posets used in this paper are 2-dimensional. The reader is referred to3
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(a) (b)Figure 1: (a) a partial order (b) the lattie of ideals.[Tro92℄ for dimension theory of posets. The following lemma shows that the number of ideals of a posetan be alulated eÆiently for series-parallel posets (a speial ase of 2-dimensional posets) [FLST86℄.For generalization to ounting ideals of two dimensional posets see [Ste84℄.Lemma 1 (Counting Lemma)(1) If Q is an extension of P then N(Q) � N(P ).(2) (Parallel) Let P +Q be the disjoint union (or diret sum) of posets P and Q (see [DP90℄). Then,N(P +Q) = N(P )N(Q).(3) (Series) Let P � Q be the ordinal sum of posets P and Q[DP90℄. Then, N(P � Q) = N(P ) +N(Q)� 1.(4) Assume that P an be deomposed into the least number of hains C1; C2; : : : Cn. ThenN(P ) � nYi=1(jCij+ 1):When eah hain is at most m in length, we get that N(P ) � (m+ 1)n.For some examples, instead of enumerating all ideals of a poset we may be interested in enumeratingor ounting ideals in a ertain level set. To de�ne level sets, �rst de�ne a poset to be ranked if foreah element x 2 P , one an assign a non-negative integer, rank(x), suh that if y overs x, thenrank(y) = rank(x) + 1. The set of all elements in P with rank i are alled it level set with rank i.Every distributive lattie is a ranked poset [Sta86℄.3 Our ModelTraditionally the duality is expressed between �nite posets and �nite distributive latties. In this paper,we are interested in produing strutures that generate subsets of the �nite distributive lattie. It is4
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(a) (b)Figure 2: (a) A slie of Figure 1 (b) the lattie of its ideals.more onvenient to use direted graphs instead of posets for this purpose beause, as shown later, wean get sublatties by simply adding edges to the original direted graph.The notion of ideals an be extended to graphs in a straightforward manner. A subset of verties ofa direted graph is an ideal i� the subset ontains a vertex only if it ontains all its inoming neighbors.Observe that an ideal either ontains all verties in a strongly onneted omponent or none of them.Let I(P ) denote the set of ideals of a direted graph P . Observe that the empty set ; and the setof all verties trivially belong to I(P ). We all them trivial ideals. The following theorem is a slightgeneralization of the result in lattie theory that the set of ideals of a partially ordered set forms adistributive lattie [DP90℄.Theorem 1 [MG01℄ Given a direted graph P , hI(P );�i forms a distributive lattie.Now assume that we are interested in the set of ideals that satisfy a prediate B. We will beinterested in deriving a graph suh that its ideals apture this set. A small diÆulty is that everygraph has at least two trivial ideals and therefore we annot apture the ase when the set of idealssatisfying B is empty. To address this problem, we add to the graph two additional verties ? and >suh that ? is the smallest vertex and > is the largest vertex. This ensures that any nontrivial idealwill ontain ? and will not ontain >. As a result, every ideal of a omputation in the traditionalmodel is a nontrivial ideal of the omputation in our model and vie versa. We will deal with onlynontrivial ideals from now on.Figure 2 shows the direted graph and its nontrivial ideals. The direted graph in Figure 2(a) isderived from Figure 1(a) by adding an edge from  to b and adding two additional verties ? and >.The resulting set of nontrivial ideals is a sublattie of Figure 1(b). In the �gure, we have not shown? in the ideals beause it is impliitly inluded in every nontrivial ideal. This example illustrates themain steps in our tehnique. Figure 1(a) is a small struture that generates the large struture Figure1(b)1. We are interested in enumerating or ounting the set of ideals that satisfy the property \theideal ontains b whenever it ontains ." To generate suh ideals it is suÆient to add an edge from to b. Figure 2(a) shows the small struture that generates all the ideals of interest to us. Figure 2(a)will be alled the slie of Figure 1(a) with respet to the prediate B. The formal de�nition of a slieis given in the next setion.1In this example, the number of ideals is atually not large. However, later we will see several examples where thelattie of ideals is exponentially bigger than the graph. 5



4 Slies and Regular PrediatesWe denote the slie of a direted graph P with respet to a prediate B by slie(P;B). The slie(P;B)is a graph derived from P suh that all the ideals in I(P ) that satisfy B are inluded in I(slie(P;B)).Note that the slie may inlude some additional ideals whih do not satisfy the prediate. Formally,De�nition 1 (Slie [MG01℄) A slie of a graph P with respet to a prediate B is the direted graphobtained from P by adding edges suh that (1) it ontains all the ideals of P that satisfy B and (2) ofall the graphs that satisfy (1), it has the least number of ideals.It is shown in [MG01℄ that the slie exists and is unique for every prediate. Computing slies forprediates in general is NP-hard but one an eÆiently ompute slies for regular prediates.De�nition 2 (Regular Prediates [GM01℄) A prediate is regular if the set of ideals that satisfythe prediate forms a sublattie of the lattie of ideals.Equivalently, a prediate B is regular with respet to P if it is losed under t and u, i.e.,8G;H 2 I(P ) : B(G) ^B(H)) B(G tH) ^B(G uH)We now show that regular prediates an be deomposed into simpler strutures alled simpleprediates. Our motivation is that omputing slies for simple prediates is easy.De�nition 3 (Simple Prediates) A prediate B is simple if there exists e; f 2 P suh that8G 2 I(P ) : B(G) � ((f 2 G)) (e 2 G))Denote this prediate by S(e; f). Thus, a simple prediate is of the form: G satis�es B i� whenever itinludes f it inludes e.We �rst show a useful property of simple prediates.Lemma 2 A simple prediate S(e; f) partitions the lattie of ideals into two sublatties. Moreover,:S(e; f) is equivalent to the interval lattie [J(f);M(e)℄.In Figure 2(a), our prediate is S(; b). The sublattie for S(; b) is shown in Figure 2(b). Its omple-ment, the set of ideals [ fbg; fa; bg; fb; dg; fa; b; dg ℄ is also a sublattie.We now show an easy test that indiates whether a regular prediate B is stronger than S(e; f).Let JB(e) denote the least ideal that inludes e and satis�es B. Sine the prediate B is regular andthe prediate \the ideal inludes e" is also regular, it follows that JB(e) is well de�ned.Lemma 3 For regular B and any e,fe 2 JB(f) � JB(e) � JB(f) � B ) S(e; f)We now turn our attention to haraterizing the set of ideals that satisfy B.Lemma 4 An ideal G satis�es a regular prediate B i� 8f 2 G : JB(f) � G.We now provide a deomposition theorem for regular prediates.Theorem 2 For any regular prediate B, let EB = f(e; f)jB ) S(e; f)g. Then,B = ^(e;f)2EB S(e; f)6



From the deomposition theorem and properties of simple prediates we get that B is a regularprediate i� it an be expressed as a onjuntion of simple prediates. As a orollary (by applyingDe Morgan's and using the result about omplement of simple prediates), we also get the followingRival's theorem [Riv73℄.Corollary 1 A omplement of a sublattie an be expressed as a union of interval latties of the form[; d℄ where  is a join-irreduible element and d is a meet-irreduible element.This also implies thatCorollary 2 There are O(2n2) distributive latties on n points.The orollary follows beause every distributive lattie is a sublattie of the boolean lattie on nelements and therefore equivalent to a regular prediate. By the deomposition theorem, a regularprediate is a onjuntion of at most O(n2) simple prediates. Note that there an be as many asO(22n) subsets of the boolean lattie but only very few of them are sublatties.Now obtaining slies for a regular prediate B is an easy task. We simply add edge (e; f) to thegraph of P for every simple prediate S(e; f) suh that B ) S(e; f). Therefore, we haveTheorem 3 Let P be a direted graph. Let Q be a direted graph obtained by adding edges to P . Then,I(Q) is a sublattie of I(P ). Conversely, every sublattie of I(P ) is generated by some direted graphQ obtained from P by adding edges.Suppose that the poset P has n hains eah of size at most m. There are at most O(mn) vertiesand O(m2n2) edges in the poset viewed as a direted graph. Therefore, a regular prediate B is aonjuntion of at most O(m2n2) simple prediates. We an redue this number by the observation thatif f � g in poset P , then for any e, S(e; f) implies S(e; g). Therefore, for any event e there need to beat most n simple prediates (at most one for every hain). We onlude that every regular prediatean be expressed as onjuntion of at most n2m simple prediates. Note that this result may be derivedwith some e�ort from the algorithm in [MG01℄. We have made it expliit and given a diret proof inthis paper using the notion of simple prediates.5 Appliation to CombinatorisIn this setion we give several examples of ombinatorial strutures that an be viewed as the set ofideals generated by a slie and show that the slie an be generated mehanially.5.1 Boolean Algebra and Set FamiliesLet X be a ground set on n elements. Assume that we are interested in the sets of subsets of X. Byusing � as the order relation, we an view it as a distributive lattie L. This lattie has n+1 levels andeah level set of rank k in the boolean lattie orresponds to �nk� sets of size k. L is generated by thedireted graph in Figure 3(a) whih an also be interpreted as a distributed omputation n proessesfP1; : : : Png. Eah proess Pi exeutes a single event ei. It is easy to verify that there is a bijetionbetween every nontrivial global state of the omputation and a subset of X.Now onsider all subsets of X suh that if they inlude ei then they also inlude ej. To obtain theslie with respet to this prediate we just need to add an edge from ej to ei. Figure 3(b) shows theslie with respet to the prediate that if e3 is inludes then so is e2. To ensure the ondition that eiis always inluded, we simply add an edge from ei to ? and to ensure that ei is never inluded in any7
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(a) (b) (c)Figure 3: Graphs and slies for generating subsets of Xsubset, we add an edge from > to ei. Figure 3() shows the slie whih gives all subsets that alwaysontain e1, never ontain e4 and ontain e2 whenever they ontain e3.As an appliation, we now solve some ombinatorial problems. Let n be even. We are required toalulate the total number of subsets of [n℄ whih satisfy the property that if they ontain any oddinteger i, then they also ontain i + 1 (or equivalently, ompute the number of ways to selet groupsfrom n=2 ouples suh that a wife is always aompanied by her husband in the group although ahusband may not be aompanied by his wife). Although this problem an be solved diretly by aombinatorial argument, we will show how our method an be applied. We �rst onstrut the posetwhih generates all the subsets of [n℄. It is Figure 3(a) in this ase. We now de�ne the subset ofinterest by a prediate B. For any subset G of [n℄, we let B(G) to be true if G ontain i+ 1 wheneverit ontains any odd integer i. From our disussion of regular prediates, it is lear that B is regularand equivalent to S(e2; e1) ^ S(e4; e3) : : : ^ S(en; en�1)To ompute the slie, it is suÆient to add an edge from ei+1 to ei for odd i. The slie onsists of n=2hains eah with exatly 2 events (ignoring ? and >). From the ounting lemma (Lemma 1), it followsthat the total number of ideals is (2 + 1)n=2 = 3n=2. The reader should note that for any �xed value ofn, the problem an be solved by a omputer automatially and eÆiently (beause the slie results ina series-parallel poset).5.2 Set families of Size kIt is important to note that regularity of B is dependent upon the lattie struture of L. For example,in many appliations of set families, we are interested in sets of a �xed size k. The prediate B thatthe ideal is of size k is not regular. However, by onsidering alternative posets, this set family an stillbe analyzed. Figure 4 shows a omputation suh that all the subsets of X of size k are its ideals. Forlarity, we have not drawn > and ? in the �gure.There are k proesses in this omputation and eah proess exeutes n�k events. By the strutureof the omputation, if in a global state Pi has exeuted j events, then Pi+1 must have also exeutedat least j events. The orrespondene between subsets of X and global states an be understood asfollows. If proess Pi has exeuted t events in the global state, then the element t+ i is in the set Y .Thus proess P1 hooses a number from 1 : : : n � k + 1 (beause there are n � k events); proess P2hooses the next larger number and so on. It an also be easily veri�ed that the poset in Figure 4(a) isa 2-dimensional poset and that there are �nk� ideals of this poset. From symmetry it also follows that�nk� equals � nn�k�. Figure 4 gives an example of the omputation for subsets of size 3 of the set [6℄. Theglobal state, or the ideal, shown orresponds to the subset f1; 3; 4g.8
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(b)Figure 4: Graphs for generating subsets of X of size kNow let us apply our theory to the �rst ombinatorial problem (Q1) mentioned in the introdution.Assume that we are interested in ounting all subsets of n of size k whih do not have any onseutivenumbers. In this example, G satis�es B if whenever Pi has t events in G, Pi+1 has at least t + 1events in G. This ondition is regular and we an use Lemma 3 and Theorem 2 to ompute the slie.(for every event f , we only need to determine whether e 2 JB(f)). Figure 5 shows the slie whihinludes preisely suh subsets. By ollapsing all strongly onneted omponents and by removing thetransitively implied edges we get a graph whih is isomorphi to the ase when there are k proessesand eah proess exeutes n� k � (k � 1) events. Therefore, the total number of suh sets is �n�k+1k �.Again one an ome up with a ombinatorial argument to solve the problem (for example, see Theorem13.1 and Example 13.1 in [vLW92℄), but the sliing approah is ompletely mehanial.
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less than (4; 3; 3). Fix any partition �. The set of all partitions that are less than or equal to � formthe Young's lattie denoted by Y�.
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(a)
(b)Figure 6: (a) A Ferrer diagram (b) A graph for generating Young's lattieWe now apply our approah to Y�. Let the number of parts and the largest part in the partition� be m and n respetively. Then we have a distributed omputation of n proesses with at most mevents per proess as shown in Figure 6(b). Pi exeutes as many events as �i. It is lear that for anyglobal state, the number of events exeuted by Pi is at least as many as exeuted by Pi+1. Clearly,the set of global states of the omputation as in Figure 6(b) is isomorphi to Young's lattie for theorresponding partition.It follows that Young's lattie is distributive. One an see that the lattie of subsets of size k fromthe set of size n is a speial ase of Youngs's lattie when all �i's are equal. Therefore, the number ofinteger partitions whose Ferrers diagrams �t in a box of size k by n� k is equal to �nk� (providing analternate proof of Theorem 3.2 in [SW86℄). Let q(N; k;m) denote the number of partitions of N whoseFerrer's diagram �t in a box of size k by m. By summing up the sizes of all level sets, it also followsthat �nk� = k(n�k)Xl=0 q(l; k; n� k)Sine the poset that generates orresponding Young's lattie is symmetri with respet to k and m, weget that q(N; k;m) equals q(N;m; k); and sine the poset is dual of itself (i.e. we get bak the sameposet when all ars are reversed) we also get that q(N; k;m) equals q(mk �N; k;m). All these resultsare well known and generally derived using Gaussian polynomials (see [vLW92℄).We now fous on subsets of partitions. Assume that we are interested in all those partitions suhthat their seond omponent is some �xed value say b. It is easy to verify that partitions Æ 2 Y� suhthat Æ = b form a sublattie and therefore the ondition Æ = b is a regular prediate.Figure 7(a) gives the slie of partitions in whih Æ2 = 2. Sine the seond part must be 2, we addedges to ensure that P2 exeutes exatly 2 events. On ollapsing the strongly onneted omponentsand transitively reduing the graph we get Figure 7(b). By applying ounting lemma, we get that thereare (2 + 1)(2 + 1) = 9 suh partitions whih an all be enumerated automatially using Figure 7(b).They are: f220; 221; 222; 320; 321; 322; 420; 421; 422gAs another example assume that we are interested in all partitions less than � whih have distintparts. Figure 8(a) gives the slie and Figure 8(b) gives the graph after simpli�ation. The graph isequivalent to that of subsets of size 3 from [5℄. Hene, there are �53� suh partitions. These partitionsan also be enumerated from the �gure. They are:f210; 310; 410; 320; 420; 430; 321; 421; 431; 432g:10
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(a) Figure 7: Slie for Æ2 = 2Some other subsets of partitions disussed in the literature are \partitions with odd number of parts",\partitions with distint odd parts," \partitions with even number of parts" et. These are also regularprediates.
(a) (b) Figure 8: Slie for \distint parts"Now the reader may also see the solution for the seond problem (Q2) mentioned in the introdution|enumerating all partitions in the Young's lattie Y� with �rst part equal to the seond part. We simplyde�ne the prediate B on a partition Æ to be true when Æ1 equals Æ2. It is lear that the prediate islosed under joins and meets and is therefore a regular prediate. One an draw the slie and onludethat the number of partitions Æ in Y� satisfying Æ1 = Æ2 is equal to the number of partitions in YÆ whereÆ = (�2; �3; : : : ; �k). The slie an also be used to enumerate all required partitions.Note that the level set of rank N of Y� (where � = (�1; �2 : : : ; �t)) orresponds to all partitionsof N with at most t parts and the largest part at most �1. It follows that all partitions of N an beenumerated as the elements in level set of rank N of Y(N;N;::N).5.4 PermutationsPermutations play a fundamental role not only in ombinatoris but also in group theory. We �rstshow a small omputation that generates all permutations of n symbols. The omputation onsists ofn � 1 proesses. Proess Pi exeutes i � 1 events. There are multiple ways to interpret the hoiesmade by proesses.(1) The simplest way is to view it as a problem of putting n symbols into n plaes. We require Pi toplae the symbol i+ 1. We start with plaing n and then go bakwards to 1. Proess Pn�1 hasn hoies for plaes. This we an determine from the number of events exeuted by Pn�1 fromf0::n� 1g. Pn�2 has n� 1 hoies and so on.11



(2) Another method is to use the inversion table[Knu98℄. The number of inversions of i in a per-mutation � is the number of symbols less than i that appear to the right of i in �. The way apermutation is generated from a global state is as follows. We begin the permutation by writing1. P1 deides where to insert the symbol 2. There are two hoies. These hoies orrespondto number of inversions introdued by 2. If we plae 2 after 1, then we introdue zero inver-sions; otherwise we introdue one inversion. Proeeding in this manner we get that there isa bijetion between the set of permutations and the global states. This is similar to Johnson-Trotter method of enumerating all permutations or showing bijetion between inversion table andpermutations[SW86℄.We will fous on the interpretation based on inversions. It is easy to show that the followingprediates are regular. Further by omputing the slie, we an also alulate the number of permutationssatisfying B.Lemma 5 All the following properties of permutations are regular.(1) The symbol m < n has at most j inversions (for j < m). The total number of suh permutationsis n!(j+1)m .(2) i � j implies that i has at most as many inversions as j. The total number of suh permutationsis same as the number of integer partitions less than (n� 1; n� 2; :::; 1).The level set at rank k of the permutation lattie onsists of all permutations with total number ofinversions equal to k and therefore suh permutations an be eÆiently enumerated [Knu98, ER02℄.6 Conlusions and Future WorkIn this paper we have shown that the idea of small generators is quite useful in mehanial analysis ofombinatorial problems. In summary, the paper makes the following ontributions.� We introdue the notion of a simple prediate on the lattie of ideals. We show that a simpleprediate deomposes the lattie into two sublatties.� We show that every regular prediate an be obtained as onjuntion of simple prediates. Ouronstrution also provides an alternative proof of Rival's theorem[Riv73℄. As a orollary, weobtain that every sublattie of a �nite distributive lattie L an be derived from the poset P thatgenerates L by adding edges to P .� We show that for regular prediates we an mehanially synthesize a small struture that gener-ates all ombinatorial strutures satisfying B. The omplexity of our algorithm is O(n2m) wherethe poset an be deomposed into n hains eah of at most m height.� We show the appliations of these results to set of subsets, integer partitions, and permutations.This is the main fous of the paper. The appendix gives other examples of regular prediatesdrawn from other areas.Referenes
12



Appendix: Proofs of TheoremsProof: Lemma 2 We show that both S(e; f) as well as :S(e; f) are regular. Let G and H be twoideals suh that they satisfy S(e; f). We �rst show that G [ H also satis�es S(e; f). Assume thatG[H inludes f . This implies that either G or H inludes f . In either ase, we get that e is inludedin G [H beause both G and H satisfy S(e; f). The proof for G \H is similar.We �rst show that :S(e; f) is equivalent to the interval lattie [J(f);M(e)℄. Sine any intervallattie is a sublattie the result follows. First onsider any ideal G in the interval lattie. It is easyto verify that G inludes f but does not inlude e by the de�nitions of J(f) and M(e). Therefore,it satis�es :S(e; f). Conversely, assume that G satis�es :S(e; f). This means that G inludes f anddoes not inlude e. Sine G inludes f , it is greater than or equal to J(f), and sine it does not ontaine it is smaller than or equal to M(e). Therefore, it belongs to [J(f);M(e)℄.Proof: Lemma 3 We �rst show that e 2 JB(f) � JB(e) � JB(f). The fat e 2 JB(f) impliesthat JB(f) satis�es B and inludes e. Sine JB(e) is the least suh ideal, we get that JB(e) � JB(f).Converse is obvious beause e 2 JB(e).We now show that e 2 JB(f) � B ) S(e; f): First assume e 2 JB(f), i.e., the least ideal thatsatis�es B and inludes f also inludes e. Sine all ideals that satisfy B and inlude f are bigger thanJ(f) it follows that all those ideals inlude e. Hene, any ideal that satis�es B also satis�es S(e; f).Conversely, assume that B ) S(e; f). This implies that any ideal that satis�es B also satis�esS(e; f). Therefore, all ideals that satisfy B and inlude f also inlude e. Sine B is regular, the meetsof all the ideals that satisfy B and inlude f also satis�es B and inludes f . Hene, e 2 JB(f).Proof: Lemma 4 For the forward diretion assume that G satis�es B. For any f 2 G we havethat G inludes f and satis�es B. JB(f) is the least suh ideal, therefore, JB(f) � G.For the bakward diretion, onsider the ideal H de�ned asH = [f2G JB(f)Sine JB(f) � G, it follows that H � G. However, any f 2 G is also in JB(f). Therefore, G � H.This implies that G = H. Beause B is regular, it is lear that H satis�es B and therefore G alsosatis�es B.Proof: Theorem 2B(G)� 8f 2 G : JB(f) � G f Lemma 4 g� 8f 2 G : 8e : e 2 JB(f)) e 2 G f de�nition � g� 8e; f : (f 2 G) ^ (e 2 JB(f))) e 2 G f rearranging terms g� 8e; f : (f 2 G) ^ (B ) S(e; f))) e 2 G f Lemma 3 g� 8e; f 2 EB : (f 2 G)) e 2 G f rearranging terms, de�nition EB g� 8e; f 2 EB : S(e; f) f de�nition S(e; f) g
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Proof: Lemma 5 For the �rst part, note that it is suÆient to add an edge from > to event ej inproess Pm+1. This ensures that symbol m annot have more than j inversions. Figure 9(a) shows theslie for set of permutations on [5℄ suh that the symbol 4 has at most 1 inversion.For the seond part, we simple add an edge from event ej on Pi+1 to Pi for all j and i. Thus Pian exeute j events only if Pi+1 has exeuted j or more events. The laim then follows by omparingthe poset with that orresponding to Young's lattie.

(a) (b) Figure 9: Slie for subsets of permutations7 Other Examples7.1 Bipartite GraphsConsider the set of independent sets in a bipartite graph (X;Y;E). Every independent set S an bewritten as union of SX = S \X and SY = S \ Y . Given two independent sets S and T , de�neS � T � SX � TX ^ SY � TY :It is easy to see that the set of all independent sets form a distributive lattie.Now let us fous on subsets of independent sets. We have the following lemma.Lemma 6 The set of independent sets whih ontain x only if they ontain y form a sublattie andthe slie an be omputed for enumeration.7.2 Subsets with no divisorsAs another example, let us enumerate the subsets fa1; : : : ; amg of n suh that for all i and j, ai doesnot divide aj. We have the following result.Lemma 7 Consider the graph Q obtained from Figure 3(a) by adding an edge from i to j wheneveri divides j. Then, Q an be used to enumerate all subsets of [n℄ whih do not ontain any ai and ajsuh that ai divides aj.Proof: De�ne B(G) as 8i; j : (i 6= j) ^ ai divides aj ^ (aj 2 G) ) (ai 2 G). It is lear that B is aregular prediate and the resulting slie is ayli. Eah desired subset is simply the antihains of theposet so obtained. There is 1-1 orrespondene between antihains and ideals [DP90℄.14



7.3 Produt SpaeConsider the set of all n-tuples suh that ith oordinate belongs to [mi℄. This set has m1m2 : : : mnelements and is the ideal lattie of disjoint union of n hains, C1; C2; : : : ; Cn suh that jCij = mi � 1.This set redues to the boolean lattie when all mi equal 2 and to the set of all permutations whenmi = i. It an be easily shown that eah of the following prediates are regular and therefore thesubsets orresponding to them an be enumerated eÆiently.(1) The set of all tuples (a1; a2; : : : ; an) suh that 8i; j : i � j ) ai � aj .(2) The set of all tuples (a1; a2; : : : ; an) suh that ai �  (or ai = , ai 6=  et.) for some onstant .(3) The set of all tuples (a1; a2; : : : ; an) suh that ai = aj for �xed i and j.
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