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s based on Sli
ingPosetsVijay K. Garg?Department of Ele
tri
al and Computer EngineeringThe University of Texas at AustinAustin, TX 78712-1084, USAandDepartment of Computer S
ien
e & EngineeringIndian Institute of Te
hnology,Kanpur, IndiaAbstra
t. We show that some re
ent results in sli
ing of a distributed
omputation 
an be applied to developing algorithms to solve problems in
ombinatori
s. A 
ombinatorial problem usually requires enumerating,
ounting or as
ertaining existen
e of stru
tures that satisfy a given prop-erty B. We 
ast the 
ombinatorial problem as a distributed 
omputationsu
h that there is a bije
tion between 
ombinatorial stru
tures satisfy-ing B and the global states that satisfy a property equivalent to B. Wethen apply results in sli
ing a 
omputation with respe
t to a predi
ate toobtain a small representation of only those global states that satisfy B.The sli
ing results are based on a generalization of Birkho�'s Theoremof representation of �nite distributive latti
es. This gives us an eÆ
ient(polynomial time) algorithm to enumerate, 
ount or dete
t stru
tures thatsatisfy B when the total set of stru
tures is large but the set of stru
turessatisfying B is small. We illustrate our te
hniques by analyzing problemsin integer partitions, set families, and set of permutations.1 Introdu
tionConsider the following 
ombinatorial problems:(Q1) Count the number of subsets of the set [n℄ (the set f1 : : : ng) whi
h havesize m and do not 
ontain any 
onse
utive numbers.(Q2) Enumerate all integer partitions less than (�1; �2; : : : ; �n) in whi
h the �rstpart is equal to the se
ond part.(Q3) Give the number of permutations of [n℄ in whi
h i � j implies that thenumber of inversions of i is atmost the number of inversions of j.Our goal in this paper is to show how su
h problems 
an be solved me-
hani
ally and eÆ
iently for any �xed values of the parameters n and m. It isimportant to note that someone trained in 
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of these problems eÆ
iently. Our emphasis is on te
hniques that 
an be appliedme
hani
ally. On the other hand, for the �xed values of n and m, all the setsabove are �nite and therefore all the problems 
an be solved me
hani
ally. Ouremphasis is on eÆ
ien
y. To be more pre
ise, let L be a large set of 
ombinatorialstru
tures (for example, all subsets of f1 : : : ng of size m, all permutations of [n℄et
.) Ea
h 
ombinatorial problem requires enumerating, 
ounting, or sear
hingthe subset of stru
tures that satisfy a given property B. Call this set LB � L.For example, in the problem (Q1), L is the set of all subsets of [n℄ of size m andLB is the set of all subsets that do not 
ontain any 
onse
utive numbers from [n℄.For any �xed set of parametersm and n, the size of L is large but �nite, enablingone to enumerate all possible stru
tures and then to 
he
k ea
h one of them forthe property B. This approa
h results in an algorithm that requires time pro-portional to the set L whi
h is exponential in n (or m). This paper proposes ate
hnique that provides answers to some 
ombinatorial problems in polynomialtime and for others, su
h as those involving enumeration, in time proportionalto the size of LB (and not L). Our te
hnique is appli
able whenever B satis�esa property 
alled regularity and we give several examples of regular B in thispaper.To explain our te
hnique, we use the term small to mean polynomial in nand m, and large to mean exponential in n or m. Thus, the set L is large. We�rst build a small stru
ture P su
h that all elements of P 
an be generated byL. Se
ond, we 
ompute a sli
e of P with respe
t to B, denoted by PB , su
h thatPB generates all elements of LB and when B is regular only those elements. PBis a small stru
ture and 
an be eÆ
iently analyzed to answer questions aboutLB . For regular B, one 
ould simply enumerate all elements of LB from PB .Our approa
h is based on some re
ent results on sli
ing a distributed 
om-putation with respe
t to a predi
ate B [GM01,MG01℄. Informally, a sli
e of a
omputation with respe
t to a predi
ate B is a sub
omputation with the leastnumber of global states that 
ontains all global states that satisfy B. Sli
ing,in turn, is based on Birkho�'s Theorem of representation of �nite distributivelatti
es [DP90℄. The small stru
ture P is a dire
ted graph representing a dis-tributed 
omputation on n pro
esses. The set of all (
onsistent) global states ofthe 
omputation is the large stru
ture L.Consider any predi
ate B de�ned on L, or equivalently, the a subset LB ofL. B is 
alled regular if LB is a sublatti
e of L. From Birkho�'s theorem weknow that there exists a poset that generates LB . We show that every sublatti
eof L 
an be generated by a poset that 
an be obtained by adding edges to theposet P . Note that when edges are added to the graph of a poset 
y
les mayform. In this 
ase we simply 
onsider the poset of strongly 
onne
ted 
omponentsin the graph. We denote the small stru
ture obtained after adding edges to Pas PB . Now PB 
an be used to enumerate elements in LB , or to analyze thenumber of elements in LB . Many algorithms have been proposed to enumerateideals of a poset; for example by Steiner[Ste86℄ and Squire[Squ95℄. In distributed
omputing, the algorithms to explore the global state latti
e address the identi
alproblem (see [CM91,AV01,Gar02℄). Determining the 
ount of the elements in LB



given PB is #P-
omplete for general posets [PB83℄ but 
an be done eÆ
ientlyfor 2-dimensional posets[Ste84℄.We apply these ideas to many traditional problems in 
ombinatori
s. Due tothe la
k of spa
e, all proofs in this paper are omitted and the interested reader
an 
onsult the te
hni
al report available at the author's website.2 Notation and De�nitionsA pair (X;P ) is 
alled a partially ordered set or poset if X is a set and P is are
exive, antisymmetri
, and transitive binary relation on X . We simply write Pas a poset when X is 
lear from the 
ontext. We say e � f in P when (e; f) 2 Pand that f 
overs e if e < f and there is no g su
h that e < g < f . Let e; f 2 Xwith e 6= f . If either e < f or f < e, e and f are 
omparable. On the other hand,if neither e < f nor f < e, then e and f are in
omparable. A poset (X;P ) is
alled 
hain if every distin
t pair of points from X is 
omparable in P . Similarly,a poset is an anti
hain if every distin
t pair of points from X is in
omparablein P .(X;P ) and (Y;Q) are isomorphi
, if there exists a 1 � 1 and onto map F :X �! Y su
h that 
 � d in P if and only if F (
) � F (d) in Q. A poset (X;Q) isan extension of (X;P ) if for all e; f 2 X , e < f in P implies e < f in Q. (X;Q)is a linear extension if it is an extension of (X;P ) and is a 
hain.A latti
e is a poset L su
h that for all x; y 2 L, the least upper bound ofx and y exists, 
alled the join of x and y (denoted by x t y); and the greatestlower bound of x and y exists, 
alled the meet of x and y (denoted by x u y).A sublatti
e is a subset of L 
losed under join and meet. A sublatti
e for whi
hthere exists two elements 
 and d su
h that it in
ludes all x whi
h lie between 
and d (i.e. 
 � x � d) is 
alled an interval latti
e and denoted by [
; d℄. A latti
eL is distributive if for all x; y; z 2 X : x u (y t z) = (x u y) t (x u z).Let (X;P ) be a poset and let G � X . G is 
alled an order ideal in (X;P )if e 2 G whenever f 2 G and e � f in P . Consider the poset in Fig. 1(a). Theset fb; dg is an order ideal. The set fa; 
g is not be
ause it in
ludes 
 but doesnot in
lude b whi
h is smaller than 
. We simply use ideal for order ideal in thispaper. Let L denote the family of all ideals of P . De�ne a partial order on Lby G � H in L if and only if G � H . It is well known that the set of idealsforms a distributive latti
e and 
onversely every �nite distributive latti
e 
anbe 
onstru
ted in this manner. Fig. 1(a) shows a poset and Fig. 1(b) its latti
eof ideals. Given a �nite distributive latti
e L, one 
an determine the poset thatgenerates L as follows. An element e 2 L is join-irredu
ible if it 
annot be writtenas joins of two elements di�erent from e (i.e., there is exa
tly one edge 
ominginto the element, see Fig. 1(b)). For any e 2 P , let J(e) denote the least ideal inL that 
ontains e. It is easy to show that J(e) is join-irredu
ible. Let J(L) denotethe set of all join-irredu
ible elements in L. Birkho�'s theorem states that any�nite distributive latti
e L is isomorphi
 to the set of ideals of the poset J(L)(and dually, any �nite poset P is isomorphi
 to join-irredu
ible elements of theset of ideals of P ). Meet-irredu
ible elements of L 
an be de�ned in an analogous
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Fig. 1. (a) a partial order (b) the latti
e of ideals (
) A sli
e (d) ideals of the sli
e.manner. M(f), the greatest ideal that does not 
ontain f , is meet-irredu
ible.The set of all meet-irredu
ible elements of L are denoted byM(L) and Birkho�'stheorem 
an also be stated using M(L).In this paper, P and posets derived from P will serve as the small stru
tures,and L and sublatti
es of L will serve as the large stru
tures. We are usuallyinterested in LB � L, 
ontaining ideals of L that satisfy a given predi
ate B.Instead of enumerating L and 
he
king for predi
ate B, we use P and B to derivea stru
ture PB that generates LB .For 
ounting the number of elements in L and its sublatti
es, we use N(P )to denote the number of ideals of the poset P . Sin
e our interest is in eÆ
ient
al
ulation of N(P ), we will restri
t the dimension of the partial order gener-ating the latti
e. The dimension of a poset (X;P ), denoted by dim(X;P ), isthe least positive integer t for whi
h there exists a family fC1; C2; : : : ; Ctg oflinear extensions of P (total orders 
ompatible with P ) su
h that P = \ti=1Ci.Determining whether a poset P with n points is 2-dimensional and isomorphismtesting for 2-dimensional orders 
an be done in O(n2) time [Spi85℄. All the posetsused in this paper are 2-dimensional. The reader is referred to [Tro92℄ for di-mension theory of posets. The following lemma shows that the number of idealsof a poset 
an be 
al
ulated eÆ
iently for series-parallel posets (a spe
ial 
aseof 2-dimensional posets) [FLST86℄. For generalization to 
ounting ideals of twodimensional posets see [Ste84℄.Lemma 1 (Counting Lemma). (1) If Q is an extension of P then N(Q) �N(P ). (2) Let P + Q be the disjoint union (or dire
t sum) of posets P and Q(see [DP90℄). Then, N(P +Q) = N(P )N(Q). (3) Let P �Q be the ordinal sumof posets P and Q[DP90℄. Then, N(P � Q) = N(P ) +N(Q) � 1. (4) Assumethat P 
an be de
omposed into the least number of 
hains C1; C2; : : : Cn. ThenN(P ) � Qni=1(jCij + 1): When ea
h 
hain is at most m in length, we get thatN(P ) � (m+ 1)n.



For some examples, instead of enumerating all ideals of a poset we may beinterested in enumerating or 
ounting ideals in a 
ertain level set. To de�nelevel sets, �rst de�ne a poset to be ranked if for ea
h element x 2 P , one 
anassign a non-negative integer, rank(x), su
h that if y 
overs x, then rank(y) =rank(x) + 1. The set of all elements in P with rank i are 
alled it level set withrank i. Every distributive latti
e is a ranked poset [Sta86℄.3 Our ModelTraditionally the duality is expressed between �nite posets and �nite distributivelatti
es. In this paper, we are interested in produ
ing stru
tures that generatesubsets of the �nite distributive latti
e. It is more 
onvenient to use dire
tedgraphs instead of posets for this purpose be
ause, as shown later, we 
an getsublatti
es by simply adding edges to the original dire
ted graph.The notion of ideals 
an be extended to graphs in a straightforward manner.A subset of verti
es of a dire
ted graph is an ideal i� the subset 
ontains avertex only if it 
ontains all its in
oming neighbors. Observe that an ideal either
ontains all verti
es in a strongly 
onne
ted 
omponent or none of them. LetI(P ) denote the set of ideals of a dire
ted graph P . Observe that the emptyset ; and the set of all verti
es trivially belong to I(P ). We 
all them trivialideals. It is shown in [MG01℄ that given a dire
ted graph P , hI(P );�i forms adistributive latti
e.Now assume that we are interested in the set of ideals that satisfy a predi
ateB. We will be interested in deriving a graph su
h that its ideals 
apture this set.A small diÆ
ulty is that every graph has at least two trivial ideals and thereforewe 
annot 
apture the 
ase when the set of ideals satisfying B is empty. Toaddress this problem, we add to the graph two additional verti
es ? and > su
hthat ? is the smallest vertex and > is the largest vertex. This ensures that anynontrivial ideal will 
ontain ? and will not 
ontain >. As a result, every ideal ofa 
omputation in the traditional model is a nontrivial ideal of the 
omputationin our model and vi
e versa. We will deal with only nontrivial ideals from nowon. Fig. 1(
) shows the dire
ted graph and its nontrivial ideals. The dire
tedgraph in Fig. 1(
) is derived from Fig. 1(a) by adding an edge from 
 to b andadding two additional verti
es ? and >. The resulting set of nontrivial ideals is asublatti
e of Fig. 1(d). In the �gure, we have not shown ? in the ideals be
auseit is impli
itly in
luded in every nontrivial ideal. This example illustrates themain steps in our te
hnique. Fig. 1(a) is a small stru
ture that generates thelarge stru
ture Fig. 1(b). We are interested in enumerating or 
ounting the setof ideals that satisfy the property \the ideal 
ontains b whenever it 
ontains
." To generate su
h ideals it is suÆ
ient to add an edge from 
 to b. Fig. 1(
)shows the small stru
ture that generates all the ideals of interest to us. Fig. 1(
)will be 
alled the sli
e of Fig. 1(a) with respe
t to the predi
ate B. The formalde�nition of a sli
e is given in the next se
tion.



4 Sli
es and Regular Predi
atesWe denote the sli
e of a dire
ted graph P with respe
t to a predi
ate B bysli
e(P;B). The sli
e(P;B) is a graph derived from P su
h that all the idealsin I(P ) that satisfy B are in
luded in I(sli
e(P;B)). Note that the sli
e mayin
lude some additional ideals whi
h do not satisfy the predi
ate. Formally,De�nition 1 (Sli
e [MG01℄). A sli
e of a graph P with respe
t to a predi
ateB is the dire
ted graph obtained from P by adding edges su
h that (1) it 
ontainsall the ideals of P that satisfy B and (2) of all the graphs that satisfy (1), it hasthe least number of ideals.It is shown in [MG01℄ that the sli
e exists and is unique for every predi
ate.Computing sli
es for predi
ates in general is NP-hard but one 
an eÆ
iently
ompute sli
es for regular predi
ates.De�nition 2 (Regular Predi
ates [GM01℄). A predi
ate is regular if the setof ideals that satisfy the predi
ate forms a sublatti
e of the latti
e of ideals.Equivalently, a predi
ate B is regular with respe
t to P if it is 
losed under tand u.We now show that regular predi
ates 
an be de
omposed into simpler stru
-tures 
alled simple predi
ates. Our motivation is that 
omputing sli
es for simplepredi
ates is easy.De�nition 3 (Simple Predi
ates). A predi
ate B is simple if there existse; f 2 P su
h that 8G 2 I(P ) : B(G) � ((f 2 G)) (e 2 G))Denote this predi
ate by S(e; f). Thus, a simple predi
ate is of the form: Gsatis�es B i� whenever it in
ludes f it in
ludes e. We �rst show a useful propertyof simple predi
ates.Lemma 2. A simple predi
ate S(e; f) partitions the latti
e of ideals into twosublatti
es. Moreover, :S(e; f) is equivalent to the interval latti
e [J(f);M(e)℄.In Fig. 1(
), our predi
ate is S(
; b). The sublatti
e for S(
; b) is shown in Fig.1(d). Its 
omplement, the set of ideals [ fbg; fa; bg; fb; dg; fa; b; dg ℄ is also asublatti
e. We now show an easy test that indi
ates whether a regular predi
ateB is stronger than S(e; f). Let JB(e) denote the least ideal that in
ludes e andsatis�es B. Sin
e the predi
ate B is regular and the predi
ate \the ideal in
ludese" is also regular, it follows that JB(e) is well de�ned.Lemma 3. For regular B and any e,fe 2 JB(f) � JB(e) � JB(f) � B ) S(e; f)We now turn our attention to 
hara
terizing the set of ideals that satisfy B.Lemma 4. An ideal G satis�es a regular predi
ate B i� 8f 2 G : JB(f) � G.We now provide a de
omposition theorem for regular predi
ates.Theorem 1. For any regular predi
ate B, let EB = f(e; f)jB ) S(e; f)g. Then,B = V(e;f)2EB S(e; f).



From the de
omposition theorem and properties of simple predi
ates we getthat B is a regular predi
ate i� it 
an be expressed as a 
onjun
tion of simplepredi
ates. As a 
orollary (by applying De Morgan's and using the result about
omplement of simple predi
ates), we also get the following Rival's theorem[Riv73℄.Corollary 1. A 
omplement of a sublatti
e 
an be expressed as a union of in-terval latti
es of the form [
; d℄ where 
 is a join-irredu
ible element and d is ameet-irredu
ible element.This also implies that there are O(2n2) distributive latti
es on n points.Every distributive latti
e is a sublatti
e of the boolean latti
e on n elementsand therefore equivalent to a regular predi
ate. By the de
omposition theorem,a regular predi
ate is a 
onjun
tion of at most O(n2) simple predi
ates. Notethat there 
an be as many as O(22n) subsets of the boolean latti
e but only veryfew of them are sublatti
es.Now obtaining sli
es for a regular predi
ate B is an easy task. We simplyadd edge (e; f) to the graph of P for every simple predi
ate S(e; f) su
h thatB ) S(e; f). Therefore, we haveTheorem 2. Let P be a dire
ted graph. Let Q be a dire
ted graph obtainedby adding edges to P . Then, I(Q) is a sublatti
e of I(P ). Conversely, everysublatti
e of I(P ) is generated by some dire
ted graph Q obtained from P byadding edges.Suppose that the poset P has n 
hains ea
h of size at most m. Observationthat if f � g in poset P , then for any e, S(e; f) implies S(e; g). Therefore, forany event e there are at most n simple predi
ates (at most one for every 
hain)as part of a regular predi
ate. We 
on
lude that every regular predi
ate 
an beexpressed as 
onjun
tion of at most n2m simple predi
ates.5 Appli
ation to Combinatori
sIn this se
tion we give several examples of sli
ing posets.1. Boolean Algebra and Set FamiliesLet X be a ground set on n elements. By using � as the order relation onthe power set of X , we 
an view it as a distributive latti
e L. This latti
e (
alledboolean latti
e) has n + 1 levels and ea
h level set of rank k in the booleanlatti
e 
orresponds to �nk� sets of size k. L is generated by the dire
ted graph inFig. 2(a) whi
h 
an also be interpreted as a distributed 
omputation n pro
essesfP1; : : : Png. Ea
h pro
ess Pi exe
utes a single event ei. It is easy to verify thatthere is a bije
tion between every nontrivial global state of the 
omputation anda subset of X .Now 
onsider all subsets of X su
h that if they in
lude ei then they alsoin
lude ej . To obtain the sli
e with respe
t to this predi
ate we just need to addan edge from ej to ei. Fig. 2(b) shows the sli
e with respe
t to the predi
ate thatif e3 is in
luded then so is e2. To ensure the 
ondition that ei is always in
luded,
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(a) (b) (c)Fig. 2. Graphs and sli
es for generating subsets of Xwe simply add an edge from ei to ? and to ensure that ei is never in
luded inany subset, we add an edge from > to ei. Fig. 2(
) shows the sli
e whi
h gives allsubsets that always 
ontain e1, never 
ontain e4 and 
ontain e2 whenever they
ontain e3.As an appli
ation, we now solve some 
ombinatorial problems. Let n be even.We are required to 
al
ulate the total number of subsets of [n℄ whi
h satisfy theproperty that if they 
ontain any odd integer i, then they also 
ontain i + 1(or equivalently, 
ompute the number of ways to sele
t groups from n=2 
ouplessu
h that a wife is always a

ompanied by her husband in the group althougha husband may not be a

ompanied by his wife). Although this problem 
an besolved dire
tly by a 
ombinatorial argument, we show how our method 
an beapplied. First 
onstru
t the poset whi
h generates all the subsets of [n℄. It isFig. 2(a) in this 
ase. Now de�ne the subset of interest by a predi
ate B. Forany subset G of [n℄, Let B(G) to be true if G 
ontain i+1 whenever it 
ontainsany odd integer i. From our dis
ussion of regular predi
ates, it is 
lear that B isregular and equivalent to S(e2; e1) ^ S(e4; e3) : : : ^ S(en; en�1): To 
ompute thesli
e, it is suÆ
ient to add an edge from ei+1 to ei for odd i. The sli
e 
onsistsof n=2 
hains ea
h with exa
tly 2 events (ignoring ? and >). From the 
ountinglemma (Lemma 1), it follows that the total number of ideals is (2+1)n=2 = 3n=2.The reader should note that for any �xed value of n, the problem 
an be solvedby a 
omputer automati
ally and eÆ
iently (be
ause the sli
e results in a series-parallel poset).2. Set families of Size k
P
1

P
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P
k

e
1,n−k

e
k,n−k
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(a) (b)Fig. 3. (a) Graphs for subsets of X of size k (b) Example when n = 6 and k = 3It is important to note that regularity of B is dependent upon the latti
estru
ture of L. For example, in many appli
ations of set families, we are inter-ested in sets of a �xed size k. The predi
ate B that the ideal is of size k is notregular. However, by 
onsidering alternative posets, this set family 
an still be



analyzed. Fig. 3 shows a 
omputation su
h that all the subsets of X of size kare its ideals. For 
larity, we have not drawn > and ? in the �gure.There are k pro
esses in this 
omputation and ea
h pro
ess exe
utes n � kevents. By the stru
ture of the 
omputation, if in a global state Pi has exe
uted jevents, then Pi+1 must have also exe
uted at least j events. The 
orresponden
ebetween subsets of X and global states 
an be understood as follows. If pro
essPi has exe
uted t events in the global state, then the element t+ i is in the setY . Thus pro
ess P1 
hooses a number from 1 : : : n � k + 1 (be
ause there aren� k events); pro
ess P2 
hooses the next larger number and so on. It 
an alsobe easily veri�ed that the poset in Fig. 3(a) is a 2-dimensional poset and thatthere are �nk� ideals of this poset. Fig. 3 gives an example of the 
omputation forsubsets of size 3 of the set [6℄. The global state, or the ideal, shown 
orrespondsto the subset f1; 3; 4g.Now let us apply our theory to the �rst 
ombinatorial problem (Q1) men-tioned in the introdu
tion. Assume that we are interested in 
ounting all subsetsof n of size k whi
h do not have any 
onse
utive numbers. In this example, Gsatis�es B if whenever Pi has t events in G, Pi+1 has at least t+1 events in G.This 
ondition is regular and we 
an use Lemma 3 and Theorem 1 to 
omputethe sli
e. (for every event f , we only need to determine whether e 2 JB(f)).Fig. 4 shows the sli
e whi
h in
ludes pre
isely su
h subsets. By 
ollapsing allstrongly 
onne
ted 
omponents and by removing the transitively implied edgeswe get a graph whi
h is isomorphi
 to the 
ase when there are k pro
esses andea
h pro
ess exe
utes n�k� (k�1) events. Therefore, the total number of su
hsets is �n�k+1k �. Again one 
an 
ome up with a 
ombinatorial argument to solvethe problem (for example, see Theorem 13.1 and Example 13.1 in [vLW92℄), butthe sli
ing approa
h is 
ompletely me
hani
al.
P
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P
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e
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e
1,n−kFig. 4. Sli
e for the predi
ate \does not 
ontain 
onse
utive numbers"The above 
onstru
tion 
an be generalized to multidimensional grids to ob-tain results on multinomials instead of binomials.3. Integer Partitions and Young's latti
eA k-tuple of positive integers � = (�1; : : : ; �k) is an integer partition of N if�1 + : : : + �k = N and for all i, �i � �i+1. The number of parts of � is k. Anexample of partition of 10 into 3 parts is (4; 3; 3). An integer partition 
an bevisualized as a Ferrers diagram or an array of squares in de
reasing order with�i squares in row i. The Ferrers diagram of the partition (4; 3; 3) of 10 is shownin Fig. 5(a). A partition � is 
ontained in another partition Æ if the number ofparts of � is at most that of Æ and �i is less than or equal to Æi for any i between1 and the number of parts of �. For example, (3; 3; 1) is less than (4; 3; 3). Fix



any partition �. The set of all partitions that are less than or equal to � formthe Young's latti
e denoted by Y�.
P
1

P
3

P
2

(b)(a)Fig. 5. (a) A Ferrer diagram (b) A graph for generating Young's latti
eWe now apply our approa
h to Y�. Let the number of parts and the largestpart in the partition � be m and n respe
tively. Then we have a distributed
omputation of n pro
esses with at most m events per pro
ess as shown in Fig.5(b). Pi exe
utes as many events as �i. It is 
lear that for any global state,the number of events exe
uted by Pi is at least as many as exe
uted by Pi+1.Clearly, the set of global states of the 
omputation as in Fig. 5(b) is isomorphi
to Young's latti
e for the 
orresponding partition.It follows that Young's latti
e is distributive. One 
an see that the latti
eof subsets of size k from the set of size n is a spe
ial 
ase of Youngs's latti
ewhen all �i's are equal. Therefore, the number of integer partitions whose Ferrersdiagrams �t in a box of size k by n � k is equal to �nk� (providing an alternateproof of Theorem 3.2 in [SW86℄). Let q(N; k;m) denote the number of partitionsof N whose Ferrer's diagram �t in a box of size k by m. By summing up thesizes of all level sets, we get �nk� = Pk(n�k)l=0 q(l; k; n � k): Sin
e the poset thatgenerates 
orresponding Young's latti
e is symmetri
 with respe
t to k and m,we get that q(N; k;m) equals q(N;m; k); and sin
e the poset is dual of itself (i.e.we get ba
k the same poset when all ar
s are reversed) we also get that q(N; k;m)equals q(mk �N; k;m). All these results are well known and generally derivedusing Gaussian polynomials (see [vLW92℄).Now assume that we are interested in all those partitions su
h that theirse
ond 
omponent is some �xed value say b. It is easy to verify that partitionsÆ 2 Y� su
h that Æ
 = b form a sublatti
e and therefore the 
ondition Æ
 = b isa regular predi
ate. Fig. 6(a) gives the sli
e of partitions in whi
h Æ2 = 2. Sin
ethe se
ond part must be 2, we add edges to ensure that P2 exe
utes exa
tly 2events. On 
ollapsing the strongly 
onne
ted 
omponents, transitively redu
ingthe graph and applying 
ounting lemma, we get that there are (2+1)(2+1) = 9su
h partitions.
(a) 

(b)Fig. 6. (a)Sli
e for Æ2 = 2 (b) Sli
e for \distin
t parts"



As another example assume that we are interested in all partitions less than� whi
h have distin
t parts. Fig. 6(b) gives the sli
e. The graph is equivalentto that of subsets of size 3 from [5℄. Hen
e, there are �53� su
h partitions. Someother subsets of partitions dis
ussed in the literature are \partitions with oddnumber of parts", \partitions with distin
t odd parts," \partitions with evennumber of parts" et
. These are also regular predi
ates.Now the reader may also see the solution for the se
ond problem (Q2) men-tioned in the introdu
tion|enumerating all partitions in the Young's latti
e Y�with �rst part equal to the se
ond part. We simply de�ne the predi
ate B on apartition Æ to be true when Æ1 equals Æ2. It is 
lear that the predi
ate is 
losedunder joins and meets and is therefore a regular predi
ate. One 
an draw thesli
e and 
on
lude that the number of partitions Æ in Y� satisfying Æ1 = Æ2 isequal to the number of partitions in YÆ where Æ = (�2; �3; : : : ; �k).Note that the level set of rank N of Y� (where � = (�1; �2 : : : ; �t)) 
orre-sponds to all partitions of N with at most t parts and the largest part at most�1. It follows that all partitions of N 
an be enumerated as the elements in levelset of rank N of Y(N;N;::N).4. PermutationsWe �rst show a small 
omputation that generates all permutations of n sym-bols. The 
omputation 
onsists of n�1 pro
esses. Pro
ess Pi exe
utes i�1 events.We use the notion of the inversion table[Knu98℄ to interpret the 
hoi
es madeby pro
esses. The number of inversions of i in a permutation � is the number ofsymbols less than i that appear to the right of i in �. The way a permutation isgenerated from a global state is as follows. We begin the permutation by writing1. P1 de
ides where to insert the symbol 2. There are two 
hoi
es. If we pla
e 2after 1, then we introdu
e zero inversions; otherwise we introdu
e one inversion.Pro
eeding in this manner we get that there is a bije
tion between the set ofpermutations and the global states.It is easy to show thatLemma 5. All the following properties of permutations are regular. (1) Thesymbol m < n has at most j inversions (for j < m). The total number of su
hpermutations is n!(j+1)m . (2) i � j implies that i has at most as many inversionsas j. The total number of su
h permutations is same as the number of integerpartitions less than (n� 1; n� 2; :::; 1).Further by 
omputing the sli
e, we 
an also 
al
ulate the number of permu-tations satisfying B. The level set at rank k of the permutation latti
e 
onsistsof all permutations with total number of inversions equal to k and therefore su
hpermutations 
an be eÆ
iently enumerated [Knu98,ER02℄.Referen
es[AV01℄ S. Alagar and S. Venkatesan. Te
hniques to ta
kle state explosion in globalpredi
ate dete
tion. IEEE Transa
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