
Algorithmi Combinatoris based on SliingPosetsVijay K. Garg?Department of Eletrial and Computer EngineeringThe University of Texas at AustinAustin, TX 78712-1084, USAandDepartment of Computer Siene & EngineeringIndian Institute of Tehnology,Kanpur, IndiaAbstrat. We show that some reent results in sliing of a distributedomputation an be applied to developing algorithms to solve problems inombinatoris. A ombinatorial problem usually requires enumerating,ounting or asertaining existene of strutures that satisfy a given prop-erty B. We ast the ombinatorial problem as a distributed omputationsuh that there is a bijetion between ombinatorial strutures satisfy-ing B and the global states that satisfy a property equivalent to B. Wethen apply results in sliing a omputation with respet to a prediate toobtain a small representation of only those global states that satisfy B.The sliing results are based on a generalization of Birkho�'s Theoremof representation of �nite distributive latties. This gives us an eÆient(polynomial time) algorithm to enumerate, ount or detet strutures thatsatisfy B when the total set of strutures is large but the set of struturessatisfying B is small. We illustrate our tehniques by analyzing problemsin integer partitions, set families, and set of permutations.1 IntrodutionConsider the following ombinatorial problems:(Q1) Count the number of subsets of the set [n℄ (the set f1 : : : ng) whih havesize m and do not ontain any onseutive numbers.(Q2) Enumerate all integer partitions less than (�1; �2; : : : ; �n) in whih the �rstpart is equal to the seond part.(Q3) Give the number of permutations of [n℄ in whih i � j implies that thenumber of inversions of i is atmost the number of inversions of j.Our goal in this paper is to show how suh problems an be solved me-hanially and eÆiently for any �xed values of the parameters n and m. It isimportant to note that someone trained in ombinatoris may be able to solve all? supported in part by the NSF Grants ECS-9907213, CCR-9988225, Texas EduationBoard Grant ARP-320, an Engineering Foundation Fellowship, and an IBM grant.garg�ee.utexas.edu



of these problems eÆiently. Our emphasis is on tehniques that an be appliedmehanially. On the other hand, for the �xed values of n and m, all the setsabove are �nite and therefore all the problems an be solved mehanially. Ouremphasis is on eÆieny. To be more preise, let L be a large set of ombinatorialstrutures (for example, all subsets of f1 : : : ng of size m, all permutations of [n℄et.) Eah ombinatorial problem requires enumerating, ounting, or searhingthe subset of strutures that satisfy a given property B. Call this set LB � L.For example, in the problem (Q1), L is the set of all subsets of [n℄ of size m andLB is the set of all subsets that do not ontain any onseutive numbers from [n℄.For any �xed set of parametersm and n, the size of L is large but �nite, enablingone to enumerate all possible strutures and then to hek eah one of them forthe property B. This approah results in an algorithm that requires time pro-portional to the set L whih is exponential in n (or m). This paper proposes atehnique that provides answers to some ombinatorial problems in polynomialtime and for others, suh as those involving enumeration, in time proportionalto the size of LB (and not L). Our tehnique is appliable whenever B satis�esa property alled regularity and we give several examples of regular B in thispaper.To explain our tehnique, we use the term small to mean polynomial in nand m, and large to mean exponential in n or m. Thus, the set L is large. We�rst build a small struture P suh that all elements of P an be generated byL. Seond, we ompute a slie of P with respet to B, denoted by PB , suh thatPB generates all elements of LB and when B is regular only those elements. PBis a small struture and an be eÆiently analyzed to answer questions aboutLB . For regular B, one ould simply enumerate all elements of LB from PB .Our approah is based on some reent results on sliing a distributed om-putation with respet to a prediate B [GM01,MG01℄. Informally, a slie of aomputation with respet to a prediate B is a subomputation with the leastnumber of global states that ontains all global states that satisfy B. Sliing,in turn, is based on Birkho�'s Theorem of representation of �nite distributivelatties [DP90℄. The small struture P is a direted graph representing a dis-tributed omputation on n proesses. The set of all (onsistent) global states ofthe omputation is the large struture L.Consider any prediate B de�ned on L, or equivalently, the a subset LB ofL. B is alled regular if LB is a sublattie of L. From Birkho�'s theorem weknow that there exists a poset that generates LB . We show that every sublattieof L an be generated by a poset that an be obtained by adding edges to theposet P . Note that when edges are added to the graph of a poset yles mayform. In this ase we simply onsider the poset of strongly onneted omponentsin the graph. We denote the small struture obtained after adding edges to Pas PB . Now PB an be used to enumerate elements in LB , or to analyze thenumber of elements in LB . Many algorithms have been proposed to enumerateideals of a poset; for example by Steiner[Ste86℄ and Squire[Squ95℄. In distributedomputing, the algorithms to explore the global state lattie address the identialproblem (see [CM91,AV01,Gar02℄). Determining the ount of the elements in LB



given PB is #P-omplete for general posets [PB83℄ but an be done eÆientlyfor 2-dimensional posets[Ste84℄.We apply these ideas to many traditional problems in ombinatoris. Due tothe lak of spae, all proofs in this paper are omitted and the interested readeran onsult the tehnial report available at the author's website.2 Notation and De�nitionsA pair (X;P ) is alled a partially ordered set or poset if X is a set and P is areexive, antisymmetri, and transitive binary relation on X . We simply write Pas a poset when X is lear from the ontext. We say e � f in P when (e; f) 2 Pand that f overs e if e < f and there is no g suh that e < g < f . Let e; f 2 Xwith e 6= f . If either e < f or f < e, e and f are omparable. On the other hand,if neither e < f nor f < e, then e and f are inomparable. A poset (X;P ) isalled hain if every distint pair of points from X is omparable in P . Similarly,a poset is an antihain if every distint pair of points from X is inomparablein P .(X;P ) and (Y;Q) are isomorphi, if there exists a 1 � 1 and onto map F :X �! Y suh that  � d in P if and only if F () � F (d) in Q. A poset (X;Q) isan extension of (X;P ) if for all e; f 2 X , e < f in P implies e < f in Q. (X;Q)is a linear extension if it is an extension of (X;P ) and is a hain.A lattie is a poset L suh that for all x; y 2 L, the least upper bound ofx and y exists, alled the join of x and y (denoted by x t y); and the greatestlower bound of x and y exists, alled the meet of x and y (denoted by x u y).A sublattie is a subset of L losed under join and meet. A sublattie for whihthere exists two elements  and d suh that it inludes all x whih lie between and d (i.e.  � x � d) is alled an interval lattie and denoted by [; d℄. A lattieL is distributive if for all x; y; z 2 X : x u (y t z) = (x u y) t (x u z).Let (X;P ) be a poset and let G � X . G is alled an order ideal in (X;P )if e 2 G whenever f 2 G and e � f in P . Consider the poset in Fig. 1(a). Theset fb; dg is an order ideal. The set fa; g is not beause it inludes  but doesnot inlude b whih is smaller than . We simply use ideal for order ideal in thispaper. Let L denote the family of all ideals of P . De�ne a partial order on Lby G � H in L if and only if G � H . It is well known that the set of idealsforms a distributive lattie and onversely every �nite distributive lattie anbe onstruted in this manner. Fig. 1(a) shows a poset and Fig. 1(b) its lattieof ideals. Given a �nite distributive lattie L, one an determine the poset thatgenerates L as follows. An element e 2 L is join-irreduible if it annot be writtenas joins of two elements di�erent from e (i.e., there is exatly one edge ominginto the element, see Fig. 1(b)). For any e 2 P , let J(e) denote the least ideal inL that ontains e. It is easy to show that J(e) is join-irreduible. Let J(L) denotethe set of all join-irreduible elements in L. Birkho�'s theorem states that any�nite distributive lattie L is isomorphi to the set of ideals of the poset J(L)(and dually, any �nite poset P is isomorphi to join-irreduible elements of theset of ideals of P ). Meet-irreduible elements of L an be de�ned in an analogous
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Fig. 1. (a) a partial order (b) the lattie of ideals () A slie (d) ideals of the slie.manner. M(f), the greatest ideal that does not ontain f , is meet-irreduible.The set of all meet-irreduible elements of L are denoted byM(L) and Birkho�'stheorem an also be stated using M(L).In this paper, P and posets derived from P will serve as the small strutures,and L and sublatties of L will serve as the large strutures. We are usuallyinterested in LB � L, ontaining ideals of L that satisfy a given prediate B.Instead of enumerating L and heking for prediate B, we use P and B to derivea struture PB that generates LB .For ounting the number of elements in L and its sublatties, we use N(P )to denote the number of ideals of the poset P . Sine our interest is in eÆientalulation of N(P ), we will restrit the dimension of the partial order gener-ating the lattie. The dimension of a poset (X;P ), denoted by dim(X;P ), isthe least positive integer t for whih there exists a family fC1; C2; : : : ; Ctg oflinear extensions of P (total orders ompatible with P ) suh that P = \ti=1Ci.Determining whether a poset P with n points is 2-dimensional and isomorphismtesting for 2-dimensional orders an be done in O(n2) time [Spi85℄. All the posetsused in this paper are 2-dimensional. The reader is referred to [Tro92℄ for di-mension theory of posets. The following lemma shows that the number of idealsof a poset an be alulated eÆiently for series-parallel posets (a speial aseof 2-dimensional posets) [FLST86℄. For generalization to ounting ideals of twodimensional posets see [Ste84℄.Lemma 1 (Counting Lemma). (1) If Q is an extension of P then N(Q) �N(P ). (2) Let P + Q be the disjoint union (or diret sum) of posets P and Q(see [DP90℄). Then, N(P +Q) = N(P )N(Q). (3) Let P �Q be the ordinal sumof posets P and Q[DP90℄. Then, N(P � Q) = N(P ) +N(Q) � 1. (4) Assumethat P an be deomposed into the least number of hains C1; C2; : : : Cn. ThenN(P ) � Qni=1(jCij + 1): When eah hain is at most m in length, we get thatN(P ) � (m+ 1)n.



For some examples, instead of enumerating all ideals of a poset we may beinterested in enumerating or ounting ideals in a ertain level set. To de�nelevel sets, �rst de�ne a poset to be ranked if for eah element x 2 P , one anassign a non-negative integer, rank(x), suh that if y overs x, then rank(y) =rank(x) + 1. The set of all elements in P with rank i are alled it level set withrank i. Every distributive lattie is a ranked poset [Sta86℄.3 Our ModelTraditionally the duality is expressed between �nite posets and �nite distributivelatties. In this paper, we are interested in produing strutures that generatesubsets of the �nite distributive lattie. It is more onvenient to use diretedgraphs instead of posets for this purpose beause, as shown later, we an getsublatties by simply adding edges to the original direted graph.The notion of ideals an be extended to graphs in a straightforward manner.A subset of verties of a direted graph is an ideal i� the subset ontains avertex only if it ontains all its inoming neighbors. Observe that an ideal eitherontains all verties in a strongly onneted omponent or none of them. LetI(P ) denote the set of ideals of a direted graph P . Observe that the emptyset ; and the set of all verties trivially belong to I(P ). We all them trivialideals. It is shown in [MG01℄ that given a direted graph P , hI(P );�i forms adistributive lattie.Now assume that we are interested in the set of ideals that satisfy a prediateB. We will be interested in deriving a graph suh that its ideals apture this set.A small diÆulty is that every graph has at least two trivial ideals and thereforewe annot apture the ase when the set of ideals satisfying B is empty. Toaddress this problem, we add to the graph two additional verties ? and > suhthat ? is the smallest vertex and > is the largest vertex. This ensures that anynontrivial ideal will ontain ? and will not ontain >. As a result, every ideal ofa omputation in the traditional model is a nontrivial ideal of the omputationin our model and vie versa. We will deal with only nontrivial ideals from nowon. Fig. 1() shows the direted graph and its nontrivial ideals. The diretedgraph in Fig. 1() is derived from Fig. 1(a) by adding an edge from  to b andadding two additional verties ? and >. The resulting set of nontrivial ideals is asublattie of Fig. 1(d). In the �gure, we have not shown ? in the ideals beauseit is impliitly inluded in every nontrivial ideal. This example illustrates themain steps in our tehnique. Fig. 1(a) is a small struture that generates thelarge struture Fig. 1(b). We are interested in enumerating or ounting the setof ideals that satisfy the property \the ideal ontains b whenever it ontains." To generate suh ideals it is suÆient to add an edge from  to b. Fig. 1()shows the small struture that generates all the ideals of interest to us. Fig. 1()will be alled the slie of Fig. 1(a) with respet to the prediate B. The formalde�nition of a slie is given in the next setion.



4 Slies and Regular PrediatesWe denote the slie of a direted graph P with respet to a prediate B byslie(P;B). The slie(P;B) is a graph derived from P suh that all the idealsin I(P ) that satisfy B are inluded in I(slie(P;B)). Note that the slie mayinlude some additional ideals whih do not satisfy the prediate. Formally,De�nition 1 (Slie [MG01℄). A slie of a graph P with respet to a prediateB is the direted graph obtained from P by adding edges suh that (1) it ontainsall the ideals of P that satisfy B and (2) of all the graphs that satisfy (1), it hasthe least number of ideals.It is shown in [MG01℄ that the slie exists and is unique for every prediate.Computing slies for prediates in general is NP-hard but one an eÆientlyompute slies for regular prediates.De�nition 2 (Regular Prediates [GM01℄). A prediate is regular if the setof ideals that satisfy the prediate forms a sublattie of the lattie of ideals.Equivalently, a prediate B is regular with respet to P if it is losed under tand u.We now show that regular prediates an be deomposed into simpler stru-tures alled simple prediates. Our motivation is that omputing slies for simpleprediates is easy.De�nition 3 (Simple Prediates). A prediate B is simple if there existse; f 2 P suh that 8G 2 I(P ) : B(G) � ((f 2 G)) (e 2 G))Denote this prediate by S(e; f). Thus, a simple prediate is of the form: Gsatis�es B i� whenever it inludes f it inludes e. We �rst show a useful propertyof simple prediates.Lemma 2. A simple prediate S(e; f) partitions the lattie of ideals into twosublatties. Moreover, :S(e; f) is equivalent to the interval lattie [J(f);M(e)℄.In Fig. 1(), our prediate is S(; b). The sublattie for S(; b) is shown in Fig.1(d). Its omplement, the set of ideals [ fbg; fa; bg; fb; dg; fa; b; dg ℄ is also asublattie. We now show an easy test that indiates whether a regular prediateB is stronger than S(e; f). Let JB(e) denote the least ideal that inludes e andsatis�es B. Sine the prediate B is regular and the prediate \the ideal inludese" is also regular, it follows that JB(e) is well de�ned.Lemma 3. For regular B and any e,fe 2 JB(f) � JB(e) � JB(f) � B ) S(e; f)We now turn our attention to haraterizing the set of ideals that satisfy B.Lemma 4. An ideal G satis�es a regular prediate B i� 8f 2 G : JB(f) � G.We now provide a deomposition theorem for regular prediates.Theorem 1. For any regular prediate B, let EB = f(e; f)jB ) S(e; f)g. Then,B = V(e;f)2EB S(e; f).



From the deomposition theorem and properties of simple prediates we getthat B is a regular prediate i� it an be expressed as a onjuntion of simpleprediates. As a orollary (by applying De Morgan's and using the result aboutomplement of simple prediates), we also get the following Rival's theorem[Riv73℄.Corollary 1. A omplement of a sublattie an be expressed as a union of in-terval latties of the form [; d℄ where  is a join-irreduible element and d is ameet-irreduible element.This also implies that there are O(2n2) distributive latties on n points.Every distributive lattie is a sublattie of the boolean lattie on n elementsand therefore equivalent to a regular prediate. By the deomposition theorem,a regular prediate is a onjuntion of at most O(n2) simple prediates. Notethat there an be as many as O(22n) subsets of the boolean lattie but only veryfew of them are sublatties.Now obtaining slies for a regular prediate B is an easy task. We simplyadd edge (e; f) to the graph of P for every simple prediate S(e; f) suh thatB ) S(e; f). Therefore, we haveTheorem 2. Let P be a direted graph. Let Q be a direted graph obtainedby adding edges to P . Then, I(Q) is a sublattie of I(P ). Conversely, everysublattie of I(P ) is generated by some direted graph Q obtained from P byadding edges.Suppose that the poset P has n hains eah of size at most m. Observationthat if f � g in poset P , then for any e, S(e; f) implies S(e; g). Therefore, forany event e there are at most n simple prediates (at most one for every hain)as part of a regular prediate. We onlude that every regular prediate an beexpressed as onjuntion of at most n2m simple prediates.5 Appliation to CombinatorisIn this setion we give several examples of sliing posets.1. Boolean Algebra and Set FamiliesLet X be a ground set on n elements. By using � as the order relation onthe power set of X , we an view it as a distributive lattie L. This lattie (alledboolean lattie) has n + 1 levels and eah level set of rank k in the booleanlattie orresponds to �nk� sets of size k. L is generated by the direted graph inFig. 2(a) whih an also be interpreted as a distributed omputation n proessesfP1; : : : Png. Eah proess Pi exeutes a single event ei. It is easy to verify thatthere is a bijetion between every nontrivial global state of the omputation anda subset of X .Now onsider all subsets of X suh that if they inlude ei then they alsoinlude ej . To obtain the slie with respet to this prediate we just need to addan edge from ej to ei. Fig. 2(b) shows the slie with respet to the prediate thatif e3 is inluded then so is e2. To ensure the ondition that ei is always inluded,
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(a) (b) (c)Fig. 2. Graphs and slies for generating subsets of Xwe simply add an edge from ei to ? and to ensure that ei is never inluded inany subset, we add an edge from > to ei. Fig. 2() shows the slie whih gives allsubsets that always ontain e1, never ontain e4 and ontain e2 whenever theyontain e3.As an appliation, we now solve some ombinatorial problems. Let n be even.We are required to alulate the total number of subsets of [n℄ whih satisfy theproperty that if they ontain any odd integer i, then they also ontain i + 1(or equivalently, ompute the number of ways to selet groups from n=2 ouplessuh that a wife is always aompanied by her husband in the group althougha husband may not be aompanied by his wife). Although this problem an besolved diretly by a ombinatorial argument, we show how our method an beapplied. First onstrut the poset whih generates all the subsets of [n℄. It isFig. 2(a) in this ase. Now de�ne the subset of interest by a prediate B. Forany subset G of [n℄, Let B(G) to be true if G ontain i+1 whenever it ontainsany odd integer i. From our disussion of regular prediates, it is lear that B isregular and equivalent to S(e2; e1) ^ S(e4; e3) : : : ^ S(en; en�1): To ompute theslie, it is suÆient to add an edge from ei+1 to ei for odd i. The slie onsistsof n=2 hains eah with exatly 2 events (ignoring ? and >). From the ountinglemma (Lemma 1), it follows that the total number of ideals is (2+1)n=2 = 3n=2.The reader should note that for any �xed value of n, the problem an be solvedby a omputer automatially and eÆiently (beause the slie results in a series-parallel poset).2. Set families of Size k
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(a) (b)Fig. 3. (a) Graphs for subsets of X of size k (b) Example when n = 6 and k = 3It is important to note that regularity of B is dependent upon the lattiestruture of L. For example, in many appliations of set families, we are inter-ested in sets of a �xed size k. The prediate B that the ideal is of size k is notregular. However, by onsidering alternative posets, this set family an still be



analyzed. Fig. 3 shows a omputation suh that all the subsets of X of size kare its ideals. For larity, we have not drawn > and ? in the �gure.There are k proesses in this omputation and eah proess exeutes n � kevents. By the struture of the omputation, if in a global state Pi has exeuted jevents, then Pi+1 must have also exeuted at least j events. The orrespondenebetween subsets of X and global states an be understood as follows. If proessPi has exeuted t events in the global state, then the element t+ i is in the setY . Thus proess P1 hooses a number from 1 : : : n � k + 1 (beause there aren� k events); proess P2 hooses the next larger number and so on. It an alsobe easily veri�ed that the poset in Fig. 3(a) is a 2-dimensional poset and thatthere are �nk� ideals of this poset. Fig. 3 gives an example of the omputation forsubsets of size 3 of the set [6℄. The global state, or the ideal, shown orrespondsto the subset f1; 3; 4g.Now let us apply our theory to the �rst ombinatorial problem (Q1) men-tioned in the introdution. Assume that we are interested in ounting all subsetsof n of size k whih do not have any onseutive numbers. In this example, Gsatis�es B if whenever Pi has t events in G, Pi+1 has at least t+1 events in G.This ondition is regular and we an use Lemma 3 and Theorem 1 to omputethe slie. (for every event f , we only need to determine whether e 2 JB(f)).Fig. 4 shows the slie whih inludes preisely suh subsets. By ollapsing allstrongly onneted omponents and by removing the transitively implied edgeswe get a graph whih is isomorphi to the ase when there are k proesses andeah proess exeutes n�k� (k�1) events. Therefore, the total number of suhsets is �n�k+1k �. Again one an ome up with a ombinatorial argument to solvethe problem (for example, see Theorem 13.1 and Example 13.1 in [vLW92℄), butthe sliing approah is ompletely mehanial.
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1,n−kFig. 4. Slie for the prediate \does not ontain onseutive numbers"The above onstrution an be generalized to multidimensional grids to ob-tain results on multinomials instead of binomials.3. Integer Partitions and Young's lattieA k-tuple of positive integers � = (�1; : : : ; �k) is an integer partition of N if�1 + : : : + �k = N and for all i, �i � �i+1. The number of parts of � is k. Anexample of partition of 10 into 3 parts is (4; 3; 3). An integer partition an bevisualized as a Ferrers diagram or an array of squares in dereasing order with�i squares in row i. The Ferrers diagram of the partition (4; 3; 3) of 10 is shownin Fig. 5(a). A partition � is ontained in another partition Æ if the number ofparts of � is at most that of Æ and �i is less than or equal to Æi for any i between1 and the number of parts of �. For example, (3; 3; 1) is less than (4; 3; 3). Fix



any partition �. The set of all partitions that are less than or equal to � formthe Young's lattie denoted by Y�.
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(b)(a)Fig. 5. (a) A Ferrer diagram (b) A graph for generating Young's lattieWe now apply our approah to Y�. Let the number of parts and the largestpart in the partition � be m and n respetively. Then we have a distributedomputation of n proesses with at most m events per proess as shown in Fig.5(b). Pi exeutes as many events as �i. It is lear that for any global state,the number of events exeuted by Pi is at least as many as exeuted by Pi+1.Clearly, the set of global states of the omputation as in Fig. 5(b) is isomorphito Young's lattie for the orresponding partition.It follows that Young's lattie is distributive. One an see that the lattieof subsets of size k from the set of size n is a speial ase of Youngs's lattiewhen all �i's are equal. Therefore, the number of integer partitions whose Ferrersdiagrams �t in a box of size k by n � k is equal to �nk� (providing an alternateproof of Theorem 3.2 in [SW86℄). Let q(N; k;m) denote the number of partitionsof N whose Ferrer's diagram �t in a box of size k by m. By summing up thesizes of all level sets, we get �nk� = Pk(n�k)l=0 q(l; k; n � k): Sine the poset thatgenerates orresponding Young's lattie is symmetri with respet to k and m,we get that q(N; k;m) equals q(N;m; k); and sine the poset is dual of itself (i.e.we get bak the same poset when all ars are reversed) we also get that q(N; k;m)equals q(mk �N; k;m). All these results are well known and generally derivedusing Gaussian polynomials (see [vLW92℄).Now assume that we are interested in all those partitions suh that theirseond omponent is some �xed value say b. It is easy to verify that partitionsÆ 2 Y� suh that Æ = b form a sublattie and therefore the ondition Æ = b isa regular prediate. Fig. 6(a) gives the slie of partitions in whih Æ2 = 2. Sinethe seond part must be 2, we add edges to ensure that P2 exeutes exatly 2events. On ollapsing the strongly onneted omponents, transitively reduingthe graph and applying ounting lemma, we get that there are (2+1)(2+1) = 9suh partitions.
(a) 

(b)Fig. 6. (a)Slie for Æ2 = 2 (b) Slie for \distint parts"



As another example assume that we are interested in all partitions less than� whih have distint parts. Fig. 6(b) gives the slie. The graph is equivalentto that of subsets of size 3 from [5℄. Hene, there are �53� suh partitions. Someother subsets of partitions disussed in the literature are \partitions with oddnumber of parts", \partitions with distint odd parts," \partitions with evennumber of parts" et. These are also regular prediates.Now the reader may also see the solution for the seond problem (Q2) men-tioned in the introdution|enumerating all partitions in the Young's lattie Y�with �rst part equal to the seond part. We simply de�ne the prediate B on apartition Æ to be true when Æ1 equals Æ2. It is lear that the prediate is losedunder joins and meets and is therefore a regular prediate. One an draw theslie and onlude that the number of partitions Æ in Y� satisfying Æ1 = Æ2 isequal to the number of partitions in YÆ where Æ = (�2; �3; : : : ; �k).Note that the level set of rank N of Y� (where � = (�1; �2 : : : ; �t)) orre-sponds to all partitions of N with at most t parts and the largest part at most�1. It follows that all partitions of N an be enumerated as the elements in levelset of rank N of Y(N;N;::N).4. PermutationsWe �rst show a small omputation that generates all permutations of n sym-bols. The omputation onsists of n�1 proesses. Proess Pi exeutes i�1 events.We use the notion of the inversion table[Knu98℄ to interpret the hoies madeby proesses. The number of inversions of i in a permutation � is the number ofsymbols less than i that appear to the right of i in �. The way a permutation isgenerated from a global state is as follows. We begin the permutation by writing1. P1 deides where to insert the symbol 2. There are two hoies. If we plae 2after 1, then we introdue zero inversions; otherwise we introdue one inversion.Proeeding in this manner we get that there is a bijetion between the set ofpermutations and the global states.It is easy to show thatLemma 5. All the following properties of permutations are regular. (1) Thesymbol m < n has at most j inversions (for j < m). The total number of suhpermutations is n!(j+1)m . (2) i � j implies that i has at most as many inversionsas j. The total number of suh permutations is same as the number of integerpartitions less than (n� 1; n� 2; :::; 1).Further by omputing the slie, we an also alulate the number of permu-tations satisfying B. The level set at rank k of the permutation lattie onsistsof all permutations with total number of inversions equal to k and therefore suhpermutations an be eÆiently enumerated [Knu98,ER02℄.Referenes[AV01℄ S. Alagar and S. Venkatesan. Tehniques to takle state explosion in globalprediate detetion. IEEE Transations on Software Engineering, 27(8):704{ 714, August 2001.
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