Algorithmic Combinatorics based on Slicing
Posets

Vijay K. Garg*

Department of Electrical and Computer Engineering
The University of Texas at Austin
Austin, TX 78712-1084, USA
and
Department of Computer Science & Engineering
Indian Institute of Technology,
Kanpur, India

Abstract. We show that some recent results in slicing of a distributed
computation can be applied to developing algorithms to solve problems in
combinatorics. A combinatorial problem usually requires enumerating,
counting or ascertaining existence of structures that satisfy a given prop-
erty B. We cast the combinatorial problem as a distributed computation
such that there is a bijection between combinatorial structures satisfy-
ing B and the global states that satisfy a property equivalent to B. We
then apply results in slicing a computation with respect to a predicate to
obtain a small representation of only those global states that satisfy B.
The slicing results are based on a generalization of Birkhoff’s Theorem
of representation of finite distributive lattices. This gives us an efficient
(polynomial time) algorithm to enumerate, count or detect structures that
satisfy B when the total set of structures is large but the set of structures
satisfying B is small. We illustrate our techniques by analyzing problems
in integer partitions, set families, and set of permutations.

1 Introduction

Consider the following combinatorial problems:
(Q1) Count the number of subsets of the set [n] (the set {1...n}) which have
size m and do not contain any consecutive numbers.
(Q2) Enumerate all integer partitions less than (A1, Ag, ..., A,) in which the first
part is equal to the second part.
(Q3) Give the number of permutations of [n] in which i < j implies that the
number of inversions of i is atmost the number of inversions of j.

Our goal in this paper is to show how such problems can be solved me-
chanically and efficiently for any fixed values of the parameters n and m. It is
important to note that someone trained in combinatorics may be able to solve all

* supported in part by the NSF Grants ECS-9907213, CCR-9988225, Texas Education
Board Grant ARP-320, an Engineering Foundation Fellowship, and an IBM grant.
garg@ece.utexas.edu

of these problems efficiently. Our emphasis is on techniques that can be applied
mechanically. On the other hand, for the fixed values of n and m, all the sets
above are finite and therefore all the problems can be solved mechanically. Our
emphasis is on efficiency. To be more precise, let L be a large set of combinatorial
structures (for example, all subsets of {1...n} of size m, all permutations of [n]
etc.) Each combinatorial problem requires enumerating, counting, or searching
the subset of structures that satisfy a given property B. Call this set Lg C L.
For example, in the problem (Q1), L is the set of all subsets of [n] of size m and
Lp is the set of all subsets that do not contain any consecutive numbers from [n].
For any fixed set of parameters m and n, the size of L is large but finite, enabling
one to enumerate all possible structures and then to check each one of them for
the property B. This approach results in an algorithm that requires time pro-
portional to the set L which is exponential in n (or m). This paper proposes a
technique that provides answers to some combinatorial problems in polynomial
time and for others, such as those involving enumeration, in time proportional
to the size of Lp (and not L). Our technique is applicable whenever B satisfies
a property called regularity and we give several examples of regular B in this
paper.

To explain our technique, we use the term small to mean polynomial in n
and m, and large to mean exponential in n or m. Thus, the set L is large. We
first build a small structure P such that all elements of P can be generated by
L. Second, we compute a slice of P with respect to B, denoted by Pp, such that
Pp generates all elements of Lg and when B is regular only those elements. Pg
is a small structure and can be efficiently analyzed to answer questions about
Lp. For regular B, one could simply enumerate all elements of Ly from Pg.

Our approach is based on some recent results on slicing a distributed com-
putation with respect to a predicate B [GM01,MGO1]. Informally, a slice of a
computation with respect to a predicate B is a subcomputation with the least
number of global states that contains all global states that satisfy B. Slicing,
in turn, is based on Birkhoff’s Theorem of representation of finite distributive
lattices [DP90]. The small structure P is a directed graph representing a dis-
tributed computation on n processes. The set of all (consistent) global states of
the computation is the large structure L.

Consider any predicate B defined on L, or equivalently, the a subset Lg of
L. B is called regular if Lp is a sublattice of L. From Birkhoff’s theorem we
know that there exists a poset that generates L. We show that every sublattice
of L can be generated by a poset that can be obtained by adding edges to the
poset P. Note that when edges are added to the graph of a poset cycles may
form. In this case we simply consider the poset of strongly connected components
in the graph. We denote the small structure obtained after adding edges to P
as Pg. Now Pp can be used to enumerate elements in Lg, or to analyze the
number of elements in Lg. Many algorithms have been proposed to enumerate
ideals of a poset; for example by Steiner[Ste86] and Squire[Squ95]. In distributed
computing, the algorithms to explore the global state lattice address the identical
problem (see [CM91,AV01,Gar02]). Determining the count of the elements in Lp

given Pp is #P-complete for general posets [PB83] but can be done efficiently
for 2-dimensional posets[Ste84].

We apply these ideas to many traditional problems in combinatorics. Due to
the lack of space, all proofs in this paper are omitted and the interested reader
can consult the technical report available at the author’s website.

2 Notation and Definitions

A pair (X, P) is called a partially ordered set or poset if X is a set and P is a
reflexive, antisymmetric, and transitive binary relation on X. We simply write P
as a poset when X is clear from the context. We say e < f in P when (e, f) € P
and that f covers e if e < f and there is no g such that e < g < f. Let e, f € X
with e # f. If either e < f or f < e, e and f are comparable. On the other hand,
if neither e < f nor f < e, then e and f are incomparable. A poset (X, P) is
called chain if every distinct pair of points from X is comparable in P. Similarly,
a poset is an antichain if every distinct pair of points from X is incomparable
in P.

(X, P) and (Y, Q) are isomorphic, if there exists a 1 — 1 and onto map F :
X — Y such that ¢ < d in P if and only if F(¢) < F(d) in Q. A poset (X, Q) is
an extension of (X, P) if foralle,f € X, e < fin P implies e < f in Q. (X, Q)
is a linear extension if it is an extension of (X, P) and is a chain.

A lattice is a poset L such that for all z,y € L, the least upper bound of
x and y exists, called the join of xz and y (denoted by z Ul y); and the greatest
lower bound of z and y exists, called the meet of and y (denoted by z M y).
A sublattice is a subset of L closed under join and meet. A sublattice for which
there exists two elements ¢ and d such that it includes all which lie between ¢
and d (i.e. ¢ <z < d) is called an interval lattice and denoted by [c,d]. A lattice
L is distributive if for all x,y,z € X: 2N (yUz) = (zNy)U (zNz).

Let (X, P) be a poset and let G C X. G is called an order ideal in (X, P)
if e € G whenever f € G and e < f in P. Consider the poset in Fig. 1(a). The
set {b,d} is an order ideal. The set {a,c} is not because it includes ¢ but does
not include b which is smaller than ¢. We simply use ideal for order ideal in this
paper. Let L denote the family of all ideals of P. Define a partial order on L
by G < H in L if and only if G C H. It is well known that the set of ideals
forms a distributive lattice and conversely every finite distributive lattice can
be constructed in this manner. Fig. 1(a) shows a poset and Fig. 1(b) its lattice
of ideals. Given a finite distributive lattice L, one can determine the poset that
generates L as follows. An element e € L is join-irreducible if it cannot be written
as joins of two elements different from e (i.e., there is exactly one edge coming
into the element, see Fig. 1(b)). For any e € P, let .J(e) denote the least ideal in
L that contains e. It is easy to show that J(e) is join-irreducible. Let J(L) denote
the set of all join-irreducible elements in L. Birkhoff’s theorem states that any
finite distributive lattice L is isomorphic to the set of ideals of the poset J(L)
(and dually, any finite poset P is isomorphic to join-irreducible elements of the
set of ideals of P). Meet-irreducible elements of L can be defined in an analogous

a c {ab,c,d}
{ab,c,d}

{abc}

(d)

@ : join-irreducible element

O 0
(b)

Fig. 1. (a) a partial order (b) the lattice of ideals (c) A slice (d) ideals of the slice.

manner. M (f), the greatest ideal that does not contain f, is meet-irreducible.
The set of all meet-irreducible elements of L are denoted by M (L) and Birkhoff’s
theorem can also be stated using M (L).

In this paper, P and posets derived from P will serve as the small structures,
and L and sublattices of L will serve as the large structures. We are usually
interested in Lg C L, containing ideals of L that satisfy a given predicate B.
Instead of enumerating L and checking for predicate B, we use P and B to derive
a structure Pp that generates Lp.

For counting the number of elements in L and its sublattices, we use N(P)
to denote the number of ideals of the poset P. Since our interest is in efficient
calculation of N(P), we will restrict the dimension of the partial order gener-
ating the lattice. The dimension of a poset (X, P), denoted by dim(X, P), is
the least positive integer ¢ for which there exists a family {Cy,Cs,...,C:} of
linear extensions of P (total orders compatible with P) such that P = n{_,C;.
Determining whether a poset P with n points is 2-dimensional and isomorphism
testing for 2-dimensional orders can be done in O(n?) time [Spi85]. All the posets
used in this paper are 2-dimensional. The reader is referred to [Tro92] for di-
mension theory of posets. The following lemma shows that the number of ideals
of a poset can be calculated efficiently for series-parallel posets (a special case
of 2-dimensional posets) [FLST86]. For generalization to counting ideals of two
dimensional posets see [Ste84].

Lemma 1 (Counting Lemma). (1) If Q is an extension of P then N(Q) <
N(P). (2) Let P + @ be the disjoint union (or direct sum) of posets P and Q
(see [DP90]). Then, N(P+ Q) = N(P)N(Q). (3) Let P& Q be the ordinal sum
of posets P and Q[DP90]. Then, N(P & Q) = N(P) + N(Q) — 1. (4) Assume
that P can be decomposed into the least number of chains Cy,Cs,...Cy. Then
N(P) <[, (/C;| + 1). When each chain is at most m in length, we get that
N(P) < (m+1)".

{}

For some examples, instead of enumerating all ideals of a poset we may be
interested in enumerating or counting ideals in a certain level set. To define
level sets, first define a poset to be ranked if for each element 2 € P, one can
assign a non-negative integer, rank(x), such that if y covers z, then rank(y) =
rank(z) + 1. The set of all elements in P with rank 4 are called it level set with
rank i. Every distributive lattice is a ranked poset [Sta86].

3 Our Model

Traditionally the duality is expressed between finite posets and finite distributive
lattices. In this paper, we are interested in producing structures that generate
subsets of the finite distributive lattice. It is more convenient to use directed
graphs instead of posets for this purpose because, as shown later, we can get
sublattices by simply adding edges to the original directed graph.

The notion of ideals can be extended to graphs in a straightforward manner.
A subset of vertices of a directed graph is an ideal iff the subset contains a
vertex only if it contains all its incoming neighbors. Observe that an ideal either
contains all vertices in a strongly connected component or none of them. Let
Z(P) denote the set of ideals of a directed graph P. Observe that the empty
set @ and the set of all vertices trivially belong to Z(P). We call them trivial
ideals. It is shown in [MGO1] that given a directed graph P, (Z(P);C) forms a
distributive lattice.

Now assume that we are interested in the set of ideals that satisfy a predicate
B. We will be interested in deriving a graph such that its ideals capture this set.
A small difficulty is that every graph has at least two trivial ideals and therefore
we cannot capture the case when the set of ideals satisfying B is empty. To
address this problem, we add to the graph two additional vertices L and T such
that L is the smallest vertex and T is the largest vertex. This ensures that any
nontrivial ideal will contain | and will not contain T. As a result, every ideal of
a computation in the traditional model is a nontrivial ideal of the computation
in our model and vice versa. We will deal with only nontrivial ideals from now
on.

Fig. 1(c) shows the directed graph and its nontrivial ideals. The directed
graph in Fig. 1(c) is derived from Fig. 1(a) by adding an edge from ¢ to b and
adding two additional vertices L and T. The resulting set of nontrivial ideals is a
sublattice of Fig. 1(d). In the figure, we have not shown L in the ideals because
it is implicitly included in every nontrivial ideal. This example illustrates the
main steps in our technique. Fig. 1(a) is a small structure that generates the
large structure Fig. 1(b). We are interested in enumerating or counting the set
of ideals that satisfy the property “the ideal contains b whenever it contains
¢.” To generate such ideals it is sufficient to add an edge from ¢ to b. Fig. 1(c)
shows the small structure that generates all the ideals of interest to us. Fig. 1(c)
will be called the slice of Fig. 1(a) with respect to the predicate B. The formal
definition of a slice is given in the next section.

4 Slices and Regular Predicates

We denote the slice of a directed graph P with respect to a predicate B by
slice(P, B). The slice(P, B) is a graph derived from P such that all the ideals
in Z(P) that satisfy B are included in Z(slice(P, B)). Note that the slice may
include some additional ideals which do not satisfy the predicate. Formally,

Definition 1 (Slice [MGO1]). A slice of a graph P with respect to a predicate
B is the directed graph obtained from P by adding edges such that (1) it contains
all the ideals of P that satisfy B and (2) of all the graphs that satisfy (1), it has
the least number of ideals.

It is shown in [MGO1] that the slice exists and is unique for every predicate.
Computing slices for predicates in general is NP-hard but one can efficiently
compute slices for reqular predicates.

Definition 2 (Regular Predicates [GMO1]). A predicate is reqular if the set
of ideals that satisfy the predicate forms a sublattice of the lattice of ideals.

Equivalently, a predicate B is regular with respect to P if it is closed under L
and M.

We now show that regular predicates can be decomposed into simpler struc-
tures called simple predicates. Our motivation is that computing slices for simple
predicates is easy.

Definition 3 (Simple Predicates). A predicate B is simple if there exists
e,f € P such that VG € Z(P): B(G)=((f € G) = (e € G))

Denote this predicate by S(e, f). Thus, a simple predicate is of the form: G
satisfies B iff whenever it includes f it includes e. We first show a useful property
of simple predicates.

Lemma 2. A simple predicate S(e, f) partitions the lattice of ideals into two
sublattices. Moreover, =S (e, f) is equivalent to the interval lattice [J(f), M (e)].

In Fig. 1(c), our predicate is S(c,b). The sublattice for S(c, b) is shown in Fig.
1(d). Its complement, the set of ideals [{b}, {a,b}, {b,d},{a,b,d}] is also a
sublattice. We now show an easy test that indicates whether a regular predicate
B is stronger than S(e, f). Let Jp(e) denote the least ideal that includes e and

satisfies B. Since the predicate B is regular and the predicate “the ideal includes

e” is also regular, it follows that Jg(e) is well defined.

Lemma 3. For reqular B and any e, f

eeJp(f) = Jple)CJp(f) = B=S(ef)
We now turn our attention to characterizing the set of ideals that satisfy B.
Lemma 4. An ideal G satisfies a regqular predicate B iff Vf € G : Jg(f) C G.
We now provide a decomposition theorem for regular predicates.

Theorem 1. For any regular predicate B, let Eg = {(e, f)|B = S(e, f)}. Then,
B = /\(e,f)GEB S(e, f).

From the decomposition theorem and properties of simple predicates we get
that B is a regular predicate iff it can be expressed as a conjunction of simple
predicates. As a corollary (by applying De Morgan’s and using the result about
complement of simple predicates), we also get the following Rival’s theorem
[Riv73].

Corollary 1. A complement of a sublattice can be expressed as a union of in-
terval lattices of the form [c,d] where ¢ is a join-irreducible element and d is a
meet-irreducible element.

This also implies that there are 0(2”2) distributive lattices on n points.
Every distributive lattice is a sublattice of the boolean lattice on n elements
and therefore equivalent to a regular predicate. By the decomposition theorem,
a regular predicate is a conjunction of at most O(n?) simple predicates. Note
that there can be as many as O(22") subsets of the boolean lattice but only very
few of them are sublattices.

Now obtaining slices for a regular predicate B is an easy task. We simply
add edge (e, f) to the graph of P for every simple predicate S(e, f) such that
B = S(e, f). Therefore, we have

Theorem 2. Let P be a directed graph. Let @ be a directed graph obtained
by adding edges to P. Then, T(Q) is a sublattice of T(P). Conversely, every
sublattice of T(P) is generated by some directed graph @ obtained from P by
adding edges.

Suppose that the poset P has n chains each of size at most m. Observation
that if f < g in poset P, then for any e, S(e, f) implies S(e, g). Therefore, for
any event e there are at most n simple predicates (at most one for every chain)
as part of a regular predicate. We conclude that every regular predicate can be
expressed as conjunction of at most n?m simple predicates.

5 Application to Combinatorics

In this section we give several examples of slicing posets.
1. Boolean Algebra and Set Families

Let X be a ground set on n elements. By using C as the order relation on
the power set of X, we can view it as a distributive lattice L. This lattice (called
boolean lattice) has n + 1 levels and each level set of rank k& in the boolean
lattice corresponds to (Z) sets of size k. L is generated by the directed graph in
Fig. 2(a) which can also be interpreted as a distributed computation n processes
{P,...P,}. Each process P; executes a single event e;. It is easy to verify that
there is a bijection between every nontrivial global state of the computation and
a subset of X.

Now consider all subsets of X such that if they include e; then they also
include e;. To obtain the slice with respect to this predicate we just need to add
an edge from e; to e;. Fig. 2(b) shows the slice with respect to the predicate that
if ez is included then so is es. To ensure the condition that e; is always included,

o -

@ (b) (©
Fig. 2. Graphs and slices for generating subsets of X

we simply add an edge from e; to L and to ensure that e; is never included in
any subset, we add an edge from T to e;. Fig. 2(c) shows the slice which gives all
subsets that always contain e;, never contain e4 and contain e; whenever they
contain es.

As an application, we now solve some combinatorial problems. Let n be even.
We are required to calculate the total number of subsets of [n] which satisfy the
property that if they contain any odd integer i, then they also contain i + 1
(or equivalently, compute the number of ways to select groups from n/2 couples
such that a wife is always accompanied by her husband in the group although
a husband may not be accompanied by his wife). Although this problem can be
solved directly by a combinatorial argument, we show how our method can be
applied. First construct the poset which generates all the subsets of [n]. It is
Fig. 2(a) in this case. Now define the subset of interest by a predicate B. For
any subset G of [n], Let B(G) to be true if G contain i + 1 whenever it contains
any odd integer i. From our discussion of regular predicates, it is clear that B is
regular and equivalent to S(es,e1) A S(eq,e3)... A S(en,en—1). To compute the
slice, it is sufficient to add an edge from e;; 1 to e; for odd i. The slice consists
of n/2 chains each with exactly 2 events (ignoring L and T). From the counting
lemma (Lemma 1), it follows that the total number of ideals is (24 1)%/? = 3/2,
The reader should note that for any fixed value of n, the problem can be solved
by a computer automatically and efficiently (because the slice results in a series-
parallel poset).

2. Set families of Size k

5
R — Gk I S
5
P—l ———
l/ .
e -0~ @-,, | '2 : @

@ (b)
Fig. 3. (a) Graphs for subsets of X of size k (b) Example when n = 6 and k = 3

It is important to note that regularity of B is dependent upon the lattice
structure of L. For example, in many applications of set families, we are inter-
ested in sets of a fixed size k. The predicate B that the ideal is of size k is not
regular. However, by considering alternative posets, this set family can still be

analyzed. Fig. 3 shows a computation such that all the subsets of X of size k
are its ideals. For clarity, we have not drawn T and L in the figure.

There are k processes in this computation and each process executes n — k
events. By the structure of the computation, if in a global state P; has executed j
events, then P;; must have also executed at least j events. The correspondence
between subsets of X and global states can be understood as follows. If process
P; has executed ¢ events in the global state, then the element ¢ + ¢ is in the set
Y. Thus process P; chooses a number from 1...n — k 4+ 1 (because there are
n — k events); process P» chooses the next larger number and so on. It can also
be easily verified that the poset in Fig. 3(a) is a 2-dimensional poset and that
there are (Z) ideals of this poset. Fig. 3 gives an example of the computation for
subsets of size 3 of the set [6]. The global state, or the ideal, shown corresponds
to the subset {1,3,4}.

Now let us apply our theory to the first combinatorial problem (Q1) men-
tioned in the introduction. Assume that we are interested in counting all subsets
of n of size k which do not have any consecutive numbers. In this example, G
satisfies B if whenever P; has ¢ events in G, P;11 has at least ¢t + 1 events in G.
This condition is regular and we can use Lemma 3 and Theorem 1 to compute
the slice. (for every event f, we only need to determine whether e € Jp(f)).
Fig. 4 shows the slice which includes precisely such subsets. By collapsing all
strongly connected components and by removing the transitively implied edges
we get a graph which is isomorphic to the case when there are k processes and
each process executes n — k — (k — 1) events. Therefore, the total number of such
sets is (”j’j“). Again one can come up with a combinatorial argument to solve
the problem (for example, see Theorem 13.1 and Example 13.1 in [vLW92]), but
the slicing approach is completely mechanical.

Fig. 4. Slice for the predicate “does not contain consecutive numbers”

The above construction can be generalized to multidimensional grids to ob-
tain results on multinomials instead of binomials.
3. Integer Partitions and Young’s lattice

A E-tuple of positive integers A = (A1,...,Ax) is an integer partition of N if
A1+ ...+ X = N and for all i, A\; > A;y1. The number of parts of X is k. An
example of partition of 10 into 3 parts is (4,3,3). An integer partition can be
visualized as a Ferrers diagram or an array of squares in decreasing order with
A; squares in row i. The Ferrers diagram of the partition (4, 3,3) of 10 is shown
in Fig. 5(a). A partition A is contained in another partition § if the number of
parts of X is at most that of 4 and \; is less than or equal to §; for any i between
1 and the number of parts of \. For example, (3,3,1) is less than (4, 3,3). Fix

any partition A. The set of all partitions that are less than or equal to A form
the Young’s lattice denoted by Y.
P ? [

P, - - .i
F &—@

@ (o)
Fig. 5. (a) A Ferrer diagram (b) A graph for generating Young’s lattice

We now apply our approach to Y. Let the number of parts and the largest
part in the partition A be m and n respectively. Then we have a distributed
computation of n processes with at most m events per process as shown in Fig.
5(b). P; executes as many events as A;. It is clear that for any global state,
the number of events executed by P; is at least as many as executed by Pj;1.
Clearly, the set of global states of the computation as in Fig. 5(b) is isomorphic
to Young’s lattice for the corresponding partition.

It follows that Young’s lattice is distributive. One can see that the lattice
of subsets of size k from the set of size n is a special case of Youngs’s lattice
when all A;’s are equal. Therefore, the number of integer partitions whose Ferrers
diagrams fit in a box of size k by n — k is equal to (}) (providing an alternate
proof of Theorem 3.2 in [SW86]). Let ¢(N, k, m) denote the number of partitions
of N whose Ferrer’s diagram fit in a box of size k¥ by m. By summing up the
sizes of all level sets, we get (:) = lkfé_k) q(l,k,n — k). Since the poset that
generates corresponding Young’s lattice is symmetric with respect to & and m,
we get that q(N, k, m) equals (N, m, k); and since the poset is dual of itself (i.e.
we get back the same poset when all arcs are reversed) we also get that q(N, k, m)
equals g(mk — N, k,m). All these results are well known and generally derived

using Gaussian polynomials (see [vLW92]).

Now assume that we are interested in all those partitions such that their
second component is some fixed value say b. It is easy to verify that partitions
6 € Y, such that §. = b form a sublattice and therefore the condition é. = b is
a regular predicate. Fig. 6(a) gives the slice of partitions in which d, = 2. Since
the second part must be 2, we add edges to ensure that P, executes exactly 2
events. On collapsing the strongly connected components, transitively reducing
the graph and applying counting lemma, we get that there are (2+1)(2+1) =9

such partitions.
T - / / IA/

o -0

L -

@
Fig. 6. (a)Slice for > = 2 (b) Slice for “distinct parts”

B -

L

-

As another example assume that we are interested in all partitions less than
A which have distinct parts. Fig. 6(b) gives the slice. The graph is equivalent
to that of subsets of size 3 from [5]. Hence, there are (3) such partitions. Some
other subsets of partitions discussed in the literature are “partitions with odd
number of parts”, “partitions with distinct odd parts,” “partitions with even
number of parts” etc. These are also regular predicates.

Now the reader may also see the solution for the second problem (Q2) men-
tioned in the introduction—enumerating all partitions in the Young’s lattice Y
with first part equal to the second part. We simply define the predicate B on a
partition § to be true when §; equals d>. It is clear that the predicate is closed
under joins and meets and is therefore a regular predicate. One can draw the
slice and conclude that the number of partitions ¢ in Y) satisfying §; = 4z is
equal to the number of partitions in Y5 where § = (Ao, A3, ..., Ag).

Note that the level set of rank N of Yy (where A = (A1, A2...,\)) corre-
sponds to all partitions of N with at most ¢ parts and the largest part at most
A1. It follows that all partitions of N can be enumerated as the elements in level
set of rank N of Y n . n)-

4. Permutations

We first show a small computation that generates all permutations of n sym-
bols. The computation consists of n—1 processes. Process P; executes i—1 events.
We use the notion of the inversion table[Knu98] to interpret the choices made
by processes. The number of inversions of ¢ in a permutation 7 is the number of
symbols less than ¢ that appear to the right of ¢ in 7. The way a permutation is
generated from a global state is as follows. We begin the permutation by writing
1. P; decides where to insert the symbol 2. There are two choices. If we place 2
after 1, then we introduce zero inversions; otherwise we introduce one inversion.
Proceeding in this manner we get that there is a bijection between the set of
permutations and the global states.

It is easy to show that

Lemma 5. All the following properties of permutations are regular. (1) The
symbol m < n has at most j inversions (for j < m). The total number of such
permutations is % (2) i < j implies that i has at most as many inversions
as j. The total number of such permutations is same as the number of integer

partitions less than (n — 1,n — 2,...,1).

Further by computing the slice, we can also calculate the number of permu-
tations satisfying B. The level set at rank k of the permutation lattice consists
of all permutations with total number of inversions equal to & and therefore such
permutations can be efficiently enumerated [Knu98,ER02].

References

[AV01] S. Alagar and S. Venkatesan. Techniques to tackle state explosion in global
predicate detection. IEEE Transactions on Software Engineering, 27(8):704
— 714, August 2001.

[CMY1]

[DP90]

[ER02]

R. Cooper and K. Marzullo. Consistent detection of global predicates. In
Proc. of the Workshop on Parallel and Distributed Debugging, pages 163-173,
Santa Cruz, CA, May 1991. ACM/ONR.

B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cam-
bridge University Press, Cambridge, UK, 1990.

S. Effler and F. Ruskey. A CAT algorithm for listing permutations with a
given number of inversions. Information Processing Letters, 2002.

[FLST86] U. Faigle, L. Lovész, R. Schrader, and Gy. Turdn. Searching in trees, series-

[Gar02]

[GMO1]

[Knu98]

[MG01]

[PBS3]

[Riv73]
[Spi85]

[Squ95]

[Sta86]
[Stes4]
[Steg6]
[SWS6]
[Tro92]

[VLW92]

parallel and interval orders. SIAM Journal on Computing, 15(4):1075-1084,
1986.

V. K. Garg. Detecting global predicates in distributed computations. Tech-
nical report, Parallel and Distributed Systems Laboratory, ECE Dept. Uni-
versity of Texas at Austin, September 2002. available at www.ece.utexas.
edu/"“garg/pubs.html.

V. K. Garg and N. Mittal. On slicing a distributed computation. In 21st
International Conference on Distributed Computing Systems (ICDCS’ 01),
pages 322-329, Washington - Brussels - Tokyo, April 2001. IEEE.

Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Computer
Programming. Addison-Wesley, Reading, MA, USA| second edition, 1998.
N. Mittal and V. K. Garg. Slicing a distributed computation: Techniques
and theory. In 5th International Symposium on DIStributed Computing
(DISC’01), pages 78 — 92, October 2001.

J.S. Provan and M. O. Ball. The complexity of counting cuts and of comput-
ing the probability that a graph is connected. SIAM Journal on Computing,
12:777-788, 1983.

I. Rival. Maximal sublattices of finite distributive lattices. Proc. Amer.
Math. Soc., pages 417-420, 1973.

Jeremy Spinrad. On comparability and permutation graphs. SIAM Journal
on Computing, 14(3):658-670, 1985.

M. Squire. Gray Codes and Efficient Generation of Combinatorial Structures.
PhD Dissertation, Department of Computer Science, North Carolina State
University, 1995.

R. Stanley. Enumerative Combinatorics Volume 1. Wadsworth and
Brookes/Cole, Monterey, California, 1986.

G. Steiner. Single machine scheduling with precedence constraints of dimen-
sion 2. Math. Operations Research, 9:248 — 259, 1984.

G. Steiner. An algorithm to generate the ideals of a partial order. Operations
Research Letters, 5(6):317 — 320, 1986.

D. Stanton and D. White. Constructive Combinatorics. Springer-Verlag,
1986.

W.T. Trotter. Combinatorics and Partially Ordered Sets: Dimension Theory.
The Johns Hopkins University Press, 1992.

J.H. van Lint and R. M. Wilson. A Course in Combinatorics. Cambridge
University Press, 1992.

