
Observation of Software for DistributedSystems with RCL ?Alexander I. Tomlinson and Vijay K. Gargemail: falext,vijayg@pine.ece.utexas.eduhomepage: http://maple.ece.utexas.edu/Department of Electrical and Computer EngineeringThe University of Texas at Austin, Austin, Texas 78712Abstract. Program observation involves formulating a query about thebehavior of a program and then observing the program as it executesin order to determine the result of the query. Observation is used insoftware development to track down bugs and clarify understanding ofa program's behavior, and in software testing to ensure that a programbehaves as expected for a given input set. RCL is a recursive logic builtupon conjunctive global predicates. Computational structures of com-mon paradigms such as buttery synchronization and distributed con-sensus can be expressed easily in RCL. A nonintrusive decentralized al-gorithm for detecting RCL predicates is developed and proven correct.1 IntroductionPosets have a recursive structure that has not been exploited much in researchon observation predicates. This paper presents a poset predicate logic whichexploits this recursive structure. The result, RCL, is a logic which is simple yetpowerful. Recursive logics are intuitive because there are fewer constructs andrules to remember. They are powerful because the full power of the logic isavailable at each level of recursion. Boolean logic is an example of a recursivelogic: it is simple, elegant and powerful.RCL is based upon conjunctive global predicates (CGP). A CGP is de�nedto be a conjunction of local predicates. For example, let li be a predicate on thelocal state of process i. Then we can de�ne a CGP g to be l1^ l2^ l3. All CGPs,including g, are evaluated on global states. For example if c is a global statecontaining local states �1; �2; �3, then g is true in global state c if and only if liis true in local state li, for 1 � i � 3.An RCL formula takes a set of CGPs and speci�es a pattern in which theindividual CGPs must occur in a computation in order for the formula to be\true" in that computation. Some patterns which can be speci�ed with RCLinclude buttery synchronization, data collection, and distributed consensus.These examples are demonstrated in this paper.? Research supported in part by NSF Grant CCR 9110605, TRW faculty assistantshipaward, GM faculty fellowship, a grant from IBM, and an MCD University Fellowship.

We begin with a review of related work, and then continue with a descriptionof the computationmodel and notation. Then we de�ne the syntax and semanticsof RCL, and give examples of RCL formulas and how they can be applied inthe observation of distributed programs. We present a distributed algorithm foronline detection of RCL formulas and prove its correctness. The algorithm isbased on existing algorithms for detecting CGPs, which are not considered indetail in this paper. Due to space constraints, the complexity of the algorithmis not discussed in detail. See [19] for a complete analysis of the algorithm'scomplexity.2 Related WorkThere has been much work in observing unstable global states of distributedcomputations. Babao�glu and Marzullo [1] and Schwartz and Mattern [18] bothsurvey recent work on detecting consistent global states in a distributed system.Recently, Chase and Garg [2] have shown that global predicate detection is anNP-complete problem. In that paper they de�ne the property of linearity andshow that there exists a polynomial detection algorithm for any linear predicate.CGP (discussed later) is an example of a linear predicate.Cooper andMarzullo [4] present algorithms for online detection of three typesof global predicates. The �rst type is \global predicate g was possibly true atsome point in the past". The second type is \g was de�nitely true at some pointin the past", and the third type is \g is currently true". The third type mayrequire delaying certain processes of the execution.Observation of general global predicates is very expensive. As a result, re-searchers have devised classes of global predicates which can be e�ciently ob-served. One such class is relational global predicates as described by Tomlinsonand Garg [20].Another such class is conjunctive global predicates (CGP) as described byGarg and Waldecker [10]. Garg and Waldecker present strong and weak [11, 10,12] forms of CGP which correspond to possibly and de�nitely of Cooper andMarzullo [4]. The weak CGP is true in a computation if there exists a globalstate in the computation which satis�es the CGP. The strong CGP is true ina computation if all runs consistent with the computation must enter a globalstate in which the CGP is true.Some researchers have taken the idea of conjunctive global predicates (CGP)and extended them to form poset predicates. One can de�ne an ordering relationon global states and then de�ne a sequence of CGP. There have been severalapproaches to this that di�er primarily in their de�nition of the ordering onglobal states.Chiou and Korfage [3] de�ne event normal form predicates which are se-quences of CGP. In their sequencing relation, global state a precedes globalstate b if and only if each local state in a happens-before all local states in b.Haban and Weigel [13] gave an early attempt to de�ne poset predicates withrecursive structure. They used local events (essentially the same as local predi-

cates) as primitives and build global events from them with a set of binary re-lations that include alternation, conjunction, happens-before, and concurrency.All events (global and local) have vector timestamps which are used to determineif two events are related according to one of the four relations. The new globalevent inherits a timestamp from one of the constituent events. For example,consider alternation: if e1 j e2 is a global event which is said to occur whenevereither e1 or e2 occurs. The event e1 j e2 inherits the vector time of whicheverevent actually occurred (i.e., either e1 or e2). Even though their de�nitions leadto ambiguities (resulting from timestamp inheritance) as demonstrated in [14],the work was noteworthy in that it was an early attempt to develop a recursiveposet predicate logic.The above systems are based on global predicates, but many systems havebeen designed around the local predicate too. One of the early works in this areawas Miller and Choi's sequence of local predicates [17]. These are an orderedlist of local predicates p1; : : : pk. This predicate is true in an execution if andonly if there exists a sequence of local states �1; : : :�k (sequenced by Lamport'shappens-before relation) such that local predicate pi is true in local state �i.Hur�n, Plouzeau and Raynal [15] extended the sequence of local predicatesto the atomic sequence of local predicates. In this class, occurrences of localpredicates can be forbidden between adjacent predicates in a sequence of localpredicates. The example given above for linked predicates could be expandedto include: \local predicate ri never occurs in between local predicates pi andpi+1". Each local predicate can belong to a di�erent process in the computation.Fromentin,Raynal, Garg and Tomlinson [6] developed regular patterns, whichare based upon regular expressions. A regular pattern is speci�ed by a regularexpression of local predicates. For example pq�r is true in a computation if thereexists a sequence of consecutive local states (s1; s2; : : : ; sn) such that p is truein s1, q is true in s2; : : : ; sn�1, and r is true in sn. Note that the states in thesequence need not belong to the same process { two states are consecutive if theyare adjacent in the same process or one sends a message and the other receivesit. In [9], the same authors extend regular patterns to allow patterns on directedacyclic graphs instead of just strings.3 Model and NotationWe use the following notation for quanti�ed expressions:(op free var list : range of free vars : expr)For example, (8i : 0 � i � 10 : i2 � 100) means that for all i such that0 � i � 10, we know that i2 � 100. The operator \op" need not be restrictedto universal or existential quanti�cation. It can be any commutative associativeoperator (e.g., min;[;+). For example, if Si is a �nite set, then (+u : u 2 Si : 1)equals the cardinality of Si.Any distributed computation can be modeled as a decomposed partially or-dered set (deposet) of process states [5]. A deposet is a partially ordered set(P;;) such that:

1. P is partitioned into N sets Pi, 1 � i � N .2. Each set Pi is a total order under some relation �im.3. �im does not relate two elements which are in di�erent partitions.4. Let ! be the transitive closure of �im [;. Then (P;!) is an irreexivepartial order.An execution that consists of N processes can be modeled by a deposet wherePi is the set of local states at process i which are sequenced by �im the; relationrepresents the ordering induced by messages; and! is Lamport's happens beforerelation[16]. For convenience, we use Pi to represent two quantities: the set oflocal states at process i (as it was de�ned), and the process i itself. Similarly,we use P to denote both the set of all local states and the set of all processes.The concurrency relation on P is de�ned as ukv = (u 6! v) ^ (v 6! u). �denotes the reexive transitive closure of �im. For convenience, s:next = t andt:prev = s whenever s �im t.A global state is a subset c � P such that no two elements of c are orderedby !. We de�ne P to be the set of all global states in (P;!). We also use theterms \cut" and \antichain" to refer to an element of P . A \chain" is a set ofstates which are totally ordered by !. For example, each set Pi is a chain.All formulas in RCL are evaluated on closed posets. Evaluating a formulaon a poset which is not closed is not a de�ned operation. A poset P is closed ifand only if every state which is ordered in between two elements of P is also inP . Another way of saying this is that P is closed if and only if its pre�x-closureintersected with its su�x-closure equals P . Pre�x and su�x closure of a posetA are denoted by A and !A. A 4= fx j (9y : y 2 A : x! y _ x = y)g!A 4= fx j (9y : y 2 A : y ! x _ x = y)gclosed(A) 4= A = (A \ !A)We de�ne another closure operation which performs closure between anytwo subposets of a poset. For example, [A::B] is the poset which includes posetsA and B and all in between local states. Usually, A and B are cuts, but itis convenient to use the more general de�nition that they are subposets. Thisallows us to say, for example, that [c::P] is the set of all states in or after cut cbut still in poset P . We also de�ne (A::B) to be an open-ended version of [A::B].[A::B] 4= !A \ B(A::B) 4= !A \ B �(A [B)The cutset of a poset P and a formula f is the set of all cuts c of P suchthat [P::c] satis�es f . The expression 	 (P; f) refers to this set and is de�ned asfollows: 	 (P; f) 4= fc j c 2 P ^ [P::c] j= fg

Cutsets will be used to prove the correctness of the RCL detection algorithm.It turns out that cutsets are lattices. The correctness proof shows that, given acomputation P and a formula f , the detection algorithm returns the in�mum of	 (P; f), which is the unique �rst cut c of P such that [P::c] satis�es f .We also de�ne two ordering relations on subposets: weak and strong precedes.The ordering relations are usually used on cuts, but the more general relationsu�ces. Subposet A weakly precedes subposet B if and only if B is entirelycontained within the su�x closure of A and they have no elements in common.A � B 4= B �!A ^ A \B = ;Strong precedes requires not only that B must be contained in the su�x clo-sure of A, but also that each element in A must happen-before every element inB. Clearly, this implies that A weakly precedes B as well. Strong precedes cor-responds to barrier synchronization: there is a barrier synchronization betweenA and B if and only if A strongly precedes B. It is de�ned as follows:A �� B 4= (8a; b : a 2 A ^ b 2 B : a! b)4 Syntax and SemanticsA formula in RCL is evaluated on a poset. One can think of a formula as aboolean function whose argument is a poset. The rules for constructing wellformed formulas are given by the syntactic de�nitions shown below:f = S j f4fS = g j ghfiS j ghhfiiSThe basic component of a formula is a conjunctive global predicate (CGP),which is represented by the terminal symbol g. The symbol S is a sequence ofCGP formulas. The symbol f is a conjunction of these sequences, and the 4operator is similar to boolean and operator.When S is fully expanded, it has the form ghfighfig : : : ghfig. When such asequence is true on a poset, then each g corresponds to an antichain. The regionsin between these antichains are subposets upon which the f 's in the sequenceare evaluated. This is explained in more detail in the section on semantics.The symbol 'g' represents any global state based predicate which meets cer-tain requirements. Mathematically, g is a set containing exactly those antichainsupon which the predicate (that g represents) is true. One of these requirementsis that this set forms a lattice.Another requirement is that the antichains in g cannot contain any extra-neous local states. For example, if g represents a conjunctive global predicatewith components at process 1 and 2, then each antichain in g can only contain

local states from these two processes. No others are needed to evaluate the pred-icate g. The reason for this requirement is to ensure the proper interpretation ofsequences of g's { the ordering should be based on the necessary states only.It is clear from the syntax that g is a valid RCL formula. The truth of sucha formula is determined by the following rule:P j= g 4= closed(P)^(g \ P 6= ;)This rule states that g is true in P if and only if P is closed and some antichainin g is also in P . This is similar to saying that there exists a global state in Pin which the global predicate g is true.The 4 operator is essentially the same as the boolean and operator. Weuse 4 in order to avoid confusion with its boolean counterpart. This is espe-cially useful in proofs where the two operators frequently appear in the sameexpression. P j= f14f2 4= (P j= f1) ^ (P j= f2)The last two rules are the heart of RCL. They show how to evaluate a re-cursive formula. The only di�erence between them is the ordering between thecuts. P j= ghfiS 4= (9a; b : a; b 2 P : a � b ^ a j= g ^ (a::b) j= f ^ [b::P] j= S)The strong-precedes counter part to the above formula is:P j= ghhfiiS 4= (9a; b : a; b 2 P : a �� b ^ a j= g ^ (a::b) j= f ^ [b::P] j= S)Now consider the following formula:g1hf2ig2hf3ig3 : : : hfnignThis formula holds on a poset P if and only if there exist cuts ai in P such thatai�1 � ai and ai j= gi and (ai�1::ai) j= fi. Figures 1 and 2 show some examples.
[b..P]

a (a..b)

bFig. 1. Example of a poset structure which could satisfy ghfig. The cuts a and b dividethe poset into regions as indicated by the shading. Notice that each region is closed.

f 2

f 3

g3

g2

g1Fig. 2. Example of a structure which might satisfy g1hf2ig3hf4ig5. The CGPs, gi, neednot be full width antichains, which is why they are shown in a \free-form" manner.Each fi is another RCL formula. Two levels of recursion are shown for f2, where f2has the structure ghfighghfigig.5 ExamplesThis section gives examples of some useful RCL formulas. The �rst three ex-amples show previous debugging logics which are special cases of RCL. In eachexample, pi is a predicate on the state of a single process.Sequence of local predicates: Consider the sequence of local predicates as de-�ned in [17]: (p1; p2; : : : pn). Each local predicate pi is a special case of CGP.Therefore, this sequence of local predicates is equivalent to the RCL formulap1htrueip2:::htrueipn.Event Normal From (ENF): Chiou and Korfage [3] de�ne event normal formpredicates which are sequences of CGP. In their sequencing relation, global statea precedes global state b if and only if each local state in a happens-before alllocal states in b. This ordering is equivalent to the �� ordering on cuts. Thus,an ENF formula which consists of a sequence of CGP could be represented inRCL as follows: g1hhtrueiig2hhtrueiig3:::hhtrueiign.Barrier Synchronization: The strong precedes relation is equivalent to barriersynchronization: a barrier synchronization exists between two cuts if and onlyif they are related by ��. Suppose two global states could be characterized bythe predicates g1 and g2. The RCL formula g1hhtrueiig2 is true if and only if abarrier synchronization takes place between two cuts which satisfy g1 and g2.Buttery Synchronization: Buttery synchronization is an implementation ofbarrier synchronization. Its structure can be de�ned recursively. Let X denote aset of process identi�ers and let Xl and Xh be a partition of this set into upperand lower halves. BF (X) will be de�ned to be an RCL formula which is truewhen there exists a buttery synchronization between the processes named inX.

BF (X) is the formula true if the size of X equals 1. Otherwise, BF (X)equals the formula gXhhBF (Xl)4BF (Xh)iigX . Figure 3 shows an example.
P1

P2

P3

P4

P5

P6

P7

P8Fig. 3. Buttery synchronization example. See section 5.Distributed Consensus: Consider a �xed connection network. A phase consistsof a message exchange on each edge. After phase i, each node has data from allnodes within distance i.Let gf1;2g denote a CGP which is true on all antichains which contain ex-actly one state from each of process 1 and 2. Consider the example shown in�gure 4. The communication structure of distributed consensus on the edge be-tween nodes 1 and 2 that network can be captured by the following RCL formula:gf1;2;3;4;5ghhgf1;2;3ghhgf1;2ghhtrueiigf1giigf1giigf1gThe innermost form, gf1;2ghhtrueiigf1g, is true after phase 1. The form that sur-rounds that becomes true after phase 2. The entire formula becomes true afterphase 3 at which time consensus is complete since number of phases equalsmaximum distance between any two nodes.Data Collection: It is common practice in distributed computing to scatter dataamong a set of computers, have each computer perform some operation on thedata, and then collect the results. The collection phase of this operation can char-acterized with an RCL formula. Using the notation de�ned above, the formulais shown below.gf1;2;3;4;5;6;7;8ghhtrueiigf2;4;6;8ghhtrueiigf4;8ghhtrueiigf8g

1

4

3

2

5

P1

P2

P3

P4

P5

phase 1 phase 2 phase 3Fig. 4. Distributed consensus example. See section 5.6 AlgorithmThe algorithm is implemented by the function fc(). Given a cut a, and a formulaf , the function fc(a; f) �nds the �rst cut b such that [a::b] satis�es f . If there isno such cut, then fc(a; f) returns >.The function fc(a; f) calls three subroutines (findCGP , advance, and sup)as it parses an RCL formula. The pattern of subroutine calls depends on thesyntactic structure of the formula.Function findCGP : Function findCGP �nds the �rst cut in a poset that sat-is�es a given conjunctive global predicate (CGP). An e�cient, decentralized,token-based algorithmfor detecting CGP appears in [8]. The subroutine findCGPis assumed to be a procedural interface to this algorithm. Thus, any process cancall findCGP to spawn the distributed token based algorithm described in [8].The calling process is blocked until the underlying distributed algorithm com-pletes at which point the result is returned by findCGP . Note that the blockedprocess is part of the RCL detection algorithm, not the underlying computation.In [8], it is shown that findCGP has O(NM) message, time and space complex-ity, where N is the number of processes, and M is the number of applicationmessages.Function sup: Function sup is takes one or more cuts as input and returns thesupremum of those cuts. Cuts are represented as vector clock values, and the supfunction takes the component-wise maximumof the vector clock values. The supfunction can be implemented with computational complexity O(NB), where Bis the number of cuts input to sup, and N is the number of processes.Function advance(a; b): Function advance(a; b) advances cut b until cut a stronglyprecedes it. It then returns the advanced cut. The advance function can be im-plemented with O(N2) computational complexity.

The function fc(a; f) takes a cut a and a formula f and returns the �rst cutb such that [a::b] satis�es f . If there is no such cut, then fc(a; f) returns >. Fourde�nitions of 	 (a; f) are shown below, one for each syntactic form of f .fc(a; ghfiS)a1 = fc(a; g);a2 = fc(a1; f);a3 = fc(a2; S);return a3; fc(a; ghhfiiS)a1 = fc(a; g);a2 = fc(a1; f);a3 = advance(a1; a2);a4 = fc(a3; S);return a4;fc(a; g)return findCGP (a; g); fc(P; f14f2)return sup(fc(P; f1); fc(P; f2));The algorithm is recursive and it mirrors the syntax structure of RCL. Therecursion always bottoms out in the fc(a; g) function. The poset which is beingsearched is a global read only structure and is not shown in the above descrip-tions. Only the subroutines findCGP and advance need access to the posetstructure.The correctness proof consists of showing that fc(a; f) = inf 	 (P; f), wherea = inf P . There are several properties of RCL which enable us to prove this. Forexample, RCL is monotonic with respect to set inclusion. Using this propertyof monotonicity, it can be shown that a cutset is a lattice. The lattice propertyallows us to implement fc(a; ghfiS) in a greedy fashion: �rst �nding g, then fand �nally S.7 RCL Properties and Algorithm ProofThe logic is monotonic with respect to set inclusion over closed posets. If P � R,R is closed, and P satis�es some formula, then R also satis�es that formula.This de�nition of monotonicity is more encompassing than other commonly usedde�nitions which use the \advancement of time" as the ordering relation insteadof set inclusion. Using set inclusion has the bene�t that if a formula is true fora given subcomputation, then it remains true not only when (local) states areadded to the end of the subcomputation, but also when states are included frombefore the computation or even concurrent with it. That is, the poset whichrepresents the computation can \grow" in any direction (as long as it remainsclosed). Lemma 1 proves that RCL is monotonic.Lemma1. Monotonicity: P � R ^ closed(R)^P j= f) R j= fProof: Appears in [19].Given any poset P and formula f , the cutset of (P; f) forms a lattice. Cuts canbe represented with vector clocks, and the in�mum of two cuts is the component-wise minimumof their vector clocks. The supremum is the component-wise max-imum. The same operators are used in cutset lattices.

Lemma2. Lattice: a; b 2 	 (P; f)) inf (a; b) 2 	 (P; f) ^ sup(a; b) 2 	 (P; f)Proof: Appears in [19].The following is a statement that the algorithm is correct:c = inf P) fc(c; f) = inf 	 (P; f)This statement is proven by structural induction on f . First we show that it iscorrect for g, then we show that if it is correct for f1 and f2, then it is correct forf14f2, and �nally we show that if it is correct for g, f and S, then it is correctfor ghfiS and ghhfiiS.Lemma3. fc(c; g) = inf 	 (P; g), where c = inf PProof: Proof of a token based algorithm for the case when g is de�ned to be aCGP appears in [7].Lemma4. fc(c; f14f2) = inf 	 (P; f14f2), where c = inf PProof:fc(c; f14f2)= f from the algorithm gsupffc(c; f1); fc(c; f2)g= f by induction, and since c = inf P gsupfinf 	 (P; f1); inf 	 (P; f2)g= (the sup of the �rst cut to satisfy f1 and the �rst cut tosatisfy f2 is equal to the �rst cut which satis�es both f1and f2.)inf fa j a 2 P ^ [P::a] j= f1 ^ [P::a] j= f2g= f semantics ginf fa j a 2 P ^ [P::a] j= f14f2g= f defn 	 () ginf 	 (P; f14f2)The next lemma is used in the proof of fc(P; ghfiS) several times. Presentingit here greatly simpli�es the presentation of the proof for fc(P; ghfiS). Figure 5shows the structure of the posets in this lemma.Lemma5. Z(a1; a2; b1; b2; f; P), which is de�ned as:a1; a2; b1; b2 2 P ^ a1 � b1 ^ [b1::b2] j= f ^ a2 = inf 	 ([a1::P]; f))a2 � b2 ^ [a1::a2] j= fProof:The following are assumed:a1; a2; b1; b2 2 Pa1 � b1

[b1..b2] f

P

[a1..a2] f

b1

a1 a2

b1 b2

P

b2

a1

Fig. 5. Structure of posets in lemma 5.[b1::b2] j= fa2 = inf 	 ([a1::P]; f)Note that [b1::b2] j= f implies that b1 � b2, which in turn implies that[b1::b2] � [a1::b2]. Thus, by monotonicity, [a1::b2] j= f . This implies that b2 2	 ([a1::P]; f). And since a2 = inf 	 ([a1::P]; f), then a2 � b2.Lemma6. fc(c; ghfiS) = inf 	 (P; ghfiS), where c = inf PProof: From the algorithm, it is clear that fc(c; ghfiS) = a3, where:a1 = fc(c; g)a2 = fc(a1; f)a3 = fc(a2; S)By structural induction, we also know that:a1 = inf 	([c::P];g)a2 = inf 	([a1::P]; f)a3 = inf 	([a2::P];S)We must show that a3 = inf 	(P;ghfiS). The proof is divided into two cases:Case 1: P j= ghfiSCase 2: P 6j= ghfiSCase 1: P j= ghfiSIn order to show a3 = inf 	(P; ghfiS), it su�ces to show:

Claim 1.1: a3 2 	(P;ghfiS), andClaim 1.2: x 2 	(P;ghfiS)) a3 � x.P j= ghfiS� Let x be any element in 	(P;ghfiS).It exists since P j= ghfiS. �x 2 	(P; ghfiS)f By de�nition of cutsets: gx 2 P ^ [P::x] j= ghfisf Semantics tell us b1 and b2 exist such that: gb1; b2 2 [P::x] ^ b1 � b2 ^ b1 j= g ^ (b1::b2) j= f ^ [b2::x] j= Sf The preconditions of Z(?; a1;?; b1; g; P) are satis�ed: ga1 = inf 	(P; g) ^ [?::b1] j= g ^ ? � ?f The consequents are: ga1 � b1 ^ [?::a1] j= gn Now we do the same thing with Z(a1; a2; b1; b2; f; [a1::P]).The preconditions are: oa2 = inf 	([a1::P]; f) ^ (b1::b2) j= f ^ a1 � b1f The consequents are: ga2 � b2 ^ (a1::a2) j= fn One more time with Z(a2; a3; b2; x; S; [a2::P]).The preconditions are: oa2 � b2 ^ a3 = inf 	([a2::P];S) ^ [b2::x] j= Sf The consequents, one of which proves claim 1.2, are: ga3 � x ^ [a2::a3] j= Sf We have collected the following true statements: ga1 � a2 ^ a1 j= g ^ (a1::a2) j= f ^ [a2::a3] j= Sf And by semantics: ga3 2 P ^ [P::a3] j= ghfiSf Which leads us to claim 1.1: ga3 2 	(P; ghfiS)Case 2: P 6j= ghfiSP 6j= ghfiSf semantics g:(9c1; c2 :: c1; c2 2 P ^ c1 � c2 ^ c1 j= g ^ (c1::c2) j= f ^ [c2::P] j= S)f Instantiate c1; c2 with a1; a2 and apply de Morgan's law: ga1 62 P _ a2 62 P _ a1 6� a2 _ a1 6j= g _ (a1::a2) 6j= f _ [a2::P] 6j= S� Since (a1 62 P) a1 6j= g) and (a1 6� a2) (a1::a2) 6j= f) and(a2 62 P) [a2::P] 6j= S), then: �a1 6j= g _ (a1::a2) 6j= f _ [a2::P] 6j= Sf By de�nition of a1, a2 and a3: ga1 = > _ a2 = > _ a3 = >f By de�nition of a3: ga3 = >Lemma7. fc(c; ghhfiiS) = inf 	 (P; ghhfiiS), where c = inf PProof: Similar to the proof for weak sequences: ghfiS

8 ConclusionsAn RCL formula is essentially a speci�cation of a pattern of CGPs. If each CGPoccurs in a computation, and they occur in the correct pattern, then the RCLformula is true in that computation.RCL is a recursive logic, which means that the patterns can be recursive.logics are intuitive because there are fewer constructs and rules to remember.They are also powerful because the full power of the logic is available at eachlevel of recursion. As a result of these properties of recursive logics, RCL is simpleyet powerful. Computational structures of common paradigms such as butterysynchronization and distributed consensus can be expressed easily in RCL.A high level algorithm for detecting whether or not a computation satis�esa given RCL formula was presented. The complexity of the algorithm was notanalyzed due to space constraints, but it is shown in [19] to be quite e�cient {about the same as the complexity of detecting a single CGP.9 AcknowledgmentsWe are grateful to Don Pazel at IBM for many fruitful discussions on the topicof breakpoint logic.References1. �O. Babao�glu and K. Marzullo. Consistent global states of distributed systems:fundamental concepts and mechanisms, in Distributed Systems, chapter 4. ACMPress, Frontier Series. (S. J. Mullender Ed.), 1993.2. C. Chase and V. K. Garg. On techniques and their limitations for the globalpredicate detection problem. In Proc. of the Workshop on Distributed Algorithms,France, September 1995.3. H. K. Chiou and W. Korfhage. Enf event predicate detection in distributed sys-tems. In Proc. of the Principles of Distributed Computing, pages 91{100, LosAngeles, CA, 1994. ACM.4. R. Cooper and K. Marzullo. Consistent detection of global predicates. In Proc. ofthe Workshop on Parallel and Distributed Debugging, pages 163{173, Santa Cruz,CA, May 1991. ACM/ONR.5. C. J. Fidge. Partial orders for parallel debugging. Proceedings of the ACM SIG-PLAN/SIGOPS Workshop on Parallel and Distributed Debugging, published inACM SIGPLAN Notices, 24(1):183{194, January 1989.6. E. Fromentin, M. Raynal, V. K. Garg, and A. I. Tomlinson. On the y testing ofregular patterns in distributed computations. In Proc. of the 23rd Intl. Conf. onParallel Processing, St. Charles, IL, August 1994.7. V. K. Garg and C. Chase. Distributed algorithms for detecting conjunctive pred-icates. In Proc. of the IEEE International Conference on Distributed ComputingSystems, pages 423{430, Vancouver, Canada, June 1995.8. V. K. Garg, C. Chase, J. R. Mitchell, and R. Kilgore. Detecting conjunctive chan-nel predicates in a distributed programming environment. In Proc. of the 28th

Hawaii International Conference on System Sciences, pages 232{241, Vol II, Jan-uary 1995.9. V. K. Garg, A. I. Tomlinson, E. Fromentin, and M. Raynal. Expressing and de-tecting general control ow properties of distributed computations. In Proc. of the7th IEEE Symposium on Parallel and Distributed Processing, San Antonio, TX,October 1995.10. V. K. Garg and B. Waldecker. Detection of unstable predicates in distributedprograms. In Proc. of 12th Conference on the Foundations of Software Technology& Theoretical Computer Science, pages 253{264. Springer Verlag, December 1992.Lecture Notes in Computer Science 652.11. V. K. Garg and B. Waldecker. Detection of weak unstable predicates in distributedprograms. IEEE Transactions on Parallel and Distributed Systems, 5(3):299{307,March 1994.12. V. K. Garg and B. Waldecker. Detection of strong unstable predicates in dis-tributed programs. IEEE Transactions on Parallel and Distributed Systems, Sub-mitted.13. D. Haban and W. Weigel. Global events and global breakpoints in distributed sys-tems. In Proc. of the 21st International Conference on System Sciences, volume 2,pages 166{175, January 1988.14. G. Hoagland. A debugger for distributed programs. Master's thesis, Universityof Texas at Austin, Dept. of Electrical and Computer Engineering, Austin, TX,August 1991.15. M. Hur�n, N. Plouzeau, and M. Raynal. Detecting atomic sequences of predicatesin distributed computations. In Proc. of the Workshop on Parallel and DistributedDebugging, pages 32{42, San Diego, CA, May 1993. ACM/ONR. (Reprinted inSIGPLAN Notices, Dec. 1993).16. L. Lamport. Time, clocks, and the ordering of events in a distributed system.Communications of the ACM, 21(7):558{565, July 1978.17. B. P. Miller and J. Choi. Breakpoints and halting in distributed programs. InProc. of the 8th International Conference on Distributed Computing Systems, pages316{323, San Jose, CA, July 1988. IEEE.18. R. Schwarz and F. Mattern. Detecting causal relationships in distributed compu-tations: In search of the holy grail. Distributed Computing, 7(3):149{174, 1994.19. A. I. Tomlinson. Observation and Veri�cation of Software for Distributed Systems.PhD thesis, University of Texas at Austin, Dept. of Electrical and Computer En-gineering, Austin, TX, August 1995.20. A. I. Tomlinson and V. K. Garg. Detecting relational global predicates in dis-tributed systems. In Proc. of the Workshop on Parallel and Distributed Debugging,pages 21{31, San Diego, CA, May 1993. (Reprinted in SIGPLAN Notices, Dec.1993).This article was processed using the LaTEX macro package with LLNCS style

