
Implementable Failure Detectors in Asynchronous Systems

 Vijay K. Garg, J. Roger Mitchell

TR-PDS-1998-004 May 1998

Parallel & Distributed Systems group
Department of Electrical & Computer Engineering

University of Texas at Austin

Austin, Texas 78712

T
H
E
U
N
IV

ER
SITY

O
F
T
E
X
A
S

A
T
AUSTI

N

D
IS
C
I
P
L
I
N
A

P
R
AE
SIDIUM

C
I
V
I
T
A
T
I
S

Implementable Failure Detectors in Asynchronous SystemsVijay K. Garg� J. Roger MitchellyParallel and Distributed Systems LaboratoryElectrical and Computer Engineering DepartmentThe University of Texas at Austin,Austin, TX 78712email: garg@ece.utexas.eduFax: (512) 471-5907http://maple.ece.utexas.eduMay 18, 1998AbstractFailure detection is one of the most fundamental modules of any fault-tolerant distributedsystem. The failure detectors discussed in the literature so far are either impossible to implementin an asynchronous system, or their exact guarantees have not been discussed. We introducea failure detector called in�nitely often accurate failure detector which can be implemented inan asynchronous system. We provide one such implementation and show its application tothe fault-tolerant server maintenance problem. We also show that some natural timeout basedfailure detectors implemented on Unix are not su�cient to guarantee in�nitely often accuracy.1 IntroductionFailure detection is one of the most fundamental modules of any fault-tolerant distributed system.Typically, a fault-tolerant distributed system uses one of the two techniques - maintain replicasof a process (for example in [BE94]), or use primary-backup approach [BMST93]. Both of theseapproaches rely on detection of failures. While most commercial fault-tolerant systems use some sortof failure detection facility typically based on timeouts, we show that many of them are inadequatein providing accuracy guarantees in failure detection.The �rst systematic study of failure detection in asynchronous systems was done by [CHT92,CT96]. The weakest failure detector they studied, called 3 W , can be used to solve the consen-sus problem in asynchronous systems. It follows from [FLP85] that failure detectors in [CT96]are not implementable in asynchronous systems. The failure detector introduced in this paper,�supported in part by the NSF Grants ECS-9414780, CCR-9520540, a TRW faculty assistantship award, a GeneralMotors Fellowship, and an IBM grantysupported in part by a Virginia & Ernest Cockrell fellowship1

called In�nitely Often Accurate detector (IO detector for short), can be implemented e�ciently inasynchronous systems.An IO detector is required to satisfy even weaker accuracy than eventually weak accuracyproposed by Chandra and Toueg [CT96]. Intuitively, eventually weak accuracy requires that forall runs the detector eventually never suspects at least one correct process. It is precisely thisrequirement which makes it possible to solve the consensus problem by using, for example, therotating coordinator technique[CT96]. On the other hand, this is also the requirement which isimpossible to implement in an asynchronous system. An IO detector only requires that a correctprocess is not permanently suspected. By assuming that a channel delivers the messages in�nitelyoften, this requirement can be easily met. In fact, the algorithm is based on an earlier work byDwork et al. [DLS88]. However, as mentioned earlier the algorithm does not guarantee propertiesof 3W . Our contribution lies in formalizing the exact properties guaranteed by that algorithm andshowing its usefulness in asynchronous systems. We also show that some other natural \timeout"implementation of failure detectors for Unix [HK95] and other systems[Bec91] do not satisfy theproperties of an IO detector.Although no algorithm can solve the consensus problem in an asynchronous system for all runs,it is desirable that the processes reach agreement in �nite time for those runs which satisfy partialsynchrony condition. Following [DLS88], a run is de�ned as partially synchronous if there exists anon-failed process such that eventually all messages sent by that process reach their destinationsin bounded delay. We show that for these runs our failure detector will provide eventual weakaccuracy and hence processes using the approach in [CT96] will reach agreement in �nite time.Thus, our failure detector provides conditional eventual weak accuracy guarantee. In other words,whereas 3 W insists on eventual weak accuracy for all runs, we require eventual weak accuracyonly in partially synchronous runs and in�nitely often accuracy for all runs.While the IO detector cannot be used to solve the consensus problem, we show that it is usefulfor other applications. In particular, we give its application to a fault-tolerant server maintenanceproblem. This problem requires presence of at least one server during the computation. Oursolution works in spite of up to N � 1 failures in a system of N processes.This paper is organized as follows. Section 2 provides our model of an asynchronous system andfailures and describes the properties guaranteed by an IO detector. Section 3 compares IO detectorwith the 3 W failure detector. Section 4 describes applications of IO detector. Finally Section 5describes an IO detector which can be used when an upper bound on the number of processes thatmay fail is known.2 IO Failure DetectorsWe assume the usual model of an asynchronous system. The message delays are unbounded but�nite. A run of any algorithm in an asynchronous system results in a set of local states denoted byS. We use s; t and u to denote the local states of processes and symbols i; j and k to denote processindices. The notation s:v denotes the value of the variable v in the local state s. The relation s < tmeans that s and t are states at the same process and s occurred before t. The relation s � tmeans that s < t or s is equal to t. The relation, !, is used to order states in the same manner asLamport's happened before relation on events [Lam78]. Therefore, s! t is the smallest transitive2

relation on S satisfying 1) s < t implies s ! t, and 2) if s is the state immediately preceding thesend of a message and t is the state immediately following the receive of that message then s! t.A global state G is a set of local states, one from each process, such that no two of them arerelated by the happened-before relation. We use symbols G and H to denote global states andG[i] to denote the state of the process i in the global state G. We say that G � H (or H � G) i�8i : G[i] � H [i].A processor crashes by ceasing all its activities. We assume that once a process has failed (orcrashed) it stays failed throughout the run. The predicate failed(i) holds if the process i has failedin the given run. A process that has not failed is called a correct process. We denote the set of allprocesses and the set of correct processes by � and �c respectively. The set C � S denotes the setof states on the correct processes and the set Cj denotes the states for any correct process j.The predicate s:suspects[i] holds if the process i is suspected in the state s (by the processwhich contains s).A failure detector is responsible for maintaining the value of the predicate suspects[i] at allprocesses. The value of suspects[i] is true at Pk, if Pk suspects that Pi has failed. We would likeour failure detectors to satisfy certain completeness and accuracy properties of these suspicions.An IO failure detector (or IO detector, for short) is formally de�ned below.De�nition 1 An IO failure detector is a failure detector that satis�es strong completeness, in-�nitely often accuracy, conditional eventual weak accuracy and perfect local suspicions.These properties are described next.2.1 Strong Completeness PropertyLet the predicate permsusp(s; i) be de�ned aspermsusp(s; i) � 8t � s : t:suspects[i]The strong completeness property requires the failed process to be eventually suspected by allcorrect processes. Formally, for all runs,8i; j : hfailed(i)^ :failed(j)) 9s 2 Cj : permsusp(s; i)iThe weak completeness property requires that every failed process is eventually permanentlysuspected by some correct process. Thus, a detector is de�ned to be weak complete if for all runs,8i : hfailed(i)) 9s 2 C : permsusp(s; i)iAlthough the strong completeness property requires permanent suspicion by all correct pro-cesses and not just some correct process, it is easy to implement a detector that provides strongcompleteness given a detector that implements weak completeness while preserving accuracy. In-formally, this can be achieved by requiring processes to periodically broadcast their suspicion lists.More details of this approach can be found in [CT96]. Since strong completeness is quite useful indesign of distributed algorithms, and is easily achieved by simple timeout mechanisms, we requirethat IO detectors satisfy strong completeness. 3

2.2 In�nite Often AccuracyIn [CT96], four accuracy properties have been presented. The weakest of these properties is eventualweak accuracy. A detector satis�es eventual weak accuracy if for all runs eventually some correctprocess is never suspected by any correct process. Formally, for all runs9i 2 �c; 8j 2 �c; 9s 2 Cj; 8t � s : :t:suspects[i]However, as shown by [CT96] a failure detector which satis�es weak completeness and eventualweak accuracy, called eventually weak detector (3W) can be used to solve the consensus problemin an asynchronous system. This implies that 3W is impossible to implement in an asynchronoussystem. We now introduce a weaker accuracy property which we call in�nitely often accuracy. Adetector is in�nitely often accurate if no correct process permanently suspects an unfailed process.Formally,De�nition 1 A detector is in�nitely often accurate if for all runs8i : h:failed(i)) 8s 2 C : :permsusp(s; i)iNote that in�nitely often accuracy is simply the converse of the weak completeness requirement.By combining the two properties, we get the following pleasant property of an IO detector.8i : failed(i) � 9s 2 C : permsusp(s; i)Intuitively, this says that a failure of a process is equivalent to permanent suspicion by somecorrect process.2.3 Conditional Eventual Weak accuracyWe now introduce another useful property of failure detectors which is also implementable in anasynchronous environment. The property says that if we happen to be lucky in some asynchronousrun in the sense that eventually all messages sent by at least one process reach under some boundthen the failure detector will eventually be accurate with respect to that process in that run. Wecall this property conditional eventual weak accuracy. We �rst introduce the notion of a partiallysynchronous run. This notion is similar to that used in [DLP+86].De�nition 2 A run is partially synchronous if there exists a state s in a correct process Pi and abound � such that all messages sent by Pi after s take at most � units of time.In the above de�nition we do not require the knowledge of Pi, s, or �. This lets us de�ne:De�nition 3 A failure detector satis�es conditional eventual weak accuracy if for all partiallysynchronous runs it satis�es eventual weak accuracy.Observe that the conditional eventual weak accuracy is weaker than the eventual weak accuracy.The former requires that the failure detector satisfy eventual weak accuracy only when the run ispartially synchronous, while the latter requires it for all runs.4

2.4 Perfect local suspicionWe also require that a correct process should never suspect itself. This property is trivial to satisfy.A process never sets its own suspicion to true.3 Comparison of IO detector with 3WHow does IO detector compare to3W? First note that if a failure detector satis�es weak accuracy,then it does not necessarily satisfy in�nitely often accuracy. The detector may be accurate withrespect to one process but permanently suspect some other correct process. However, another wayto compare failure detectors is by using the notion of reduction between detectors as introduced by[CT96]. We show that an IO detector can be implemented using a 3W detector.Our implementation of an IO detector from a 3W detector is in two stages. In the �rst stagewe build a 3 S detector from 3W . A 3 S detector [CT96] is a failure detector that satis�es strongcompleteness and eventual weak accuracy. A 3 S detector can be easily built using 3W detectoras shown in [CT96]. So, we assume that a 3 S detector is available to us. Let IO:suspects andES:suspects be the set of processes suspected by the IO detector and 3 S detector respectively.The algorithm to implement IO detector using 3 S is given in Figure 1. The detector is basedon two activities. Each process sends a message \alive" to all other processes in�nitely often. Onreceiving such a message from Pi, a process Pj queries the 3 S suspector and removes the suspicionof Pi and Pj .Pj ::varIO:suspects: set of processes initially ES:suspects� fjg;(I1) send \alive" to all processes in�nitely often;(I2) On receiving \alive" from Pi;IO:suspects := ES:suspects� fi; jg;Figure 1: Implementation of an IO detector using a 3 S detectorWe now have the following Lemma.Lemma 2 The algorithm in Fig. 1 implements an IO detector.Proof: We �rst show the strong completeness property. Consider any process Pi that has failed.This implies that eventually Pi will be in ES:suspects for Pj , by the property of 3 S detector.Further, eventually Pj will stop receiving \alive" message from Pi. This implies that Pi will bepermanently in IO:suspects of Pj . 5

We now show in�nitely often accuracy property. Consider any process Pi that has not failed.This implies that any correct process will receive \alive" message from Pi in�nitely often. Therefore,Pi will be not be in IO:suspects in�nitely often.We show that the algorithm satis�es eventual weak accuracy and therefore conditional eventualweak accuracy. The detector only removes suspicion from the set ES:suspects. Since 3 S satis�eseventual weak accuracy it follows that the IO detector built from 3 S also satis�es this property.Finally, it satis�es perfect local suspicion since j is never in the suspicion list of Pj .We now consider the converse question. Is there an asynchronous algorithm that implements3 W using IO-detector? We answer this question in negative by giving an implementation of anIO-detector. A possible implementation is shown in Fig. 2. This implementation is similar to thatproposed by [DLS88]. The algorithm maintains a timeout period for each process. The variablewatch[i] is the timer for the process Pi. When the timer expires, the process is suspected. On theother hand when a message is received while a process is suspected, the timeout period for thatprocess is increased.Pj ::var IO:suspects : set of processes initially ;;timeout: array[1..N] of integer initially t;watch: timer initially set to timeout;(A1) send \alive" to all processes after every t units;(A2) On receiving \alive" from Pi;if i 2 IO:suspects thenIO:suspects := IO:suspects� fig;timeout[i]++;endif;Set watch[i] timer for timeout[i];(A3) on expiry of watch[i]IO:suspects := IO:suspects [fig;Figure 2: Implementation of an IO detectorTheorem 1 The algorithm in Fig.2 implements an IO detector.Proof: First we show the strong completeness property. If a process Pi has failed then it will stopsending messages. All the messages sent by it will eventually be received. After that point, none6

of the other processes will hear from this process and therefore will start suspecting Pi using rule(A3). Since they will never hear from it again, it will then be permanently in IO:suspects.The property of in�nitely often accuracy follows from the proof of Lemma 2.The algorithm also satis�es conditional eventual weak accuracy. Consider any partially syn-chronous run. Let Pi be the correct process in that run for which messages obey the partialsynchrony condition after some state s. Since messages sent after that state are received in lessthan � units of time, there can only be a bounded number of false suspicions of Pi by any process(because the timeout period is increased by 1 after every false suspicion). Thus, eventually thereis a time after which Pi is never suspected by any process.Finally, a process never suspects itself and therefore perfect local suspicion is true.Observe that one needs to be careful with designing algorithms for failure detectors. Somenatural approaches do not satisfy the IO-property. For example, consider the following approachtaken from [Bec91].This crash detection manager is responsible to multicast polling messages periodicallyto all other processes under surveillance. The other processes are expected to reply tothese polling requests with \I am alive" messages immediately. If the answer is missingfor three times consecutively, the crash manager assumes that this process has crashed.Pj ::var watchd.suspects: set of processes initially ;;(B1) in�nitely often broadcast a query message to all processes(B2) After broadcast wait for timeout[i] time units (timeout period)watchd.suspects := f PijPi did not respond to the query in the timeout period g(B3) On receiving a query from Pisend \I am alive" to PiFigure 3: A Detector that does not satisfy IO accuracyThe crash detection manager in [Bec91] does not satisfy in�nitely often accuracy since it maypermanently suspect a correct process. As another example, consider the algorithm in Fig. 3 whichis similar to the watchd process implemented on Unix and reported in [HK95]. It is tempting toimplement failure detectors using the algorithm in Fig. 3 since it only requires the failure detectorto listen for incoming messages during the timeout interval. This algorithm, however, does not7

satisfy IO accuracy. It may suspect some process Pi at all times even when Pi is alive and justslow.4 Applications of IO failure detectorsSince IO detectors are implementable, it is clear that they cannot be used for solving the consensusproblem in an asynchronous system. What good are they then? We now discuss a practical problemthat can be solved using IO detectors. Consider a service that is required in a distributed systemconsisting of N processes. We require that at least one process always act as the provider of thatservice. As a simple example, assume that the servers are stateless and any request from the clientis broadcast to all servers. The problem requires that at least one (preferably exactly one) serverrespond to the request. We abstract this requirement using the concept of a token. Any processthat has a token considers itself as the provider of the service. Since the process holding a tokenmay fail, we clearly need a mechanism to regenerate a token to avoid interruption of the service.To avoid triviality, we only consider those runs in which at most N�1 out of N processes fail. Thefollowing predicates and functions are used for specifying the requirements.� G[i]:token: This predicate is true if process Pi has a token in the global state G.� hastoken(G): This predicate is true if the global state G has a token. It may have multipletokens. hastoken(G) � 9i : G[i]:token� noduplicate(G): This predicate is true if the global state G has at most one token. It mayhave none. noduplicate(G) � 8i; j : i 6= j : :G[i]:token _ :G[j]:token� boundedafter(G; i): This predicate is true if there exists a bound � such that all messages sentby Pi after G take at most � units of time.Ideally, we would like that all global states to have exactly one token. However, even theweaker requirement that eventually there exists exactly one token is impossible to implement in anasynchronous system. Therefore, we consider a weaker set of requirements given below.1. Availability: There exists a global state such that all later global states have at least onetoken. Formally, 9G; 8H � G : hastoken(H)2. E�ciency: For every global state G in which two di�erent processes have tokens, there existsa later global state in which the token from at least one of the processes is removed. Formally,8G; i; j : h(i 6= j) ^G[i]:token ^ G[j]:token) 9H � G : :H [i]:token _ :H [j]:tokeni3. Eventually exactly one token under partial synchrony: If after any global state G all messagessent by some correct process Pi arrive in less than a pre-determined bounded delay, then8

there exists a later global state H such that all global states after H have exactly one token.Formally,8G : boundedafter(G; i)) 9H; 8H 0 � H : hastoken(H 0) ^ noduplicate(H 0)In practice, for most cases the partial synchrony condition would be true and therefore eventuallywe will have exactly one token. However, when the partial synchrony is not met we would stillhave properties of availability and e�ciency. This illustrates the methodology that we propose forasynchronous algorithms. They provide useful guarantees even when the run is not well behavedand provide more desirable guarantees when the run is well behaved (i.e. partially synchronous).We will present our solution in stages. The algorithm which satis�es availability and e�ciencyis given by the following rule. In a state s, process Pi is assumed to have a token if all processeswith smaller indices than i are suspected and Pi is not suspected. Formally,s:token(i) � 8j : j < i : s:suspects[j] ^ :s:suspects[i]:To see that the algorithm satis�es availability, consider in any run the global state G after whichthere are no failures. By our assumption, at least one process is alive in the run. Let Pk be thesmallest such process. By strong completeness of the IO failure detector, eventually Pk will suspectall smaller processes. In that global state Pk will generate a token.To see that the algorithm satis�es e�ciency, consider the global state G in which two processesPi and Pj (i < j) have tokens. For any continuation of run after G, in which Pi or Pj fails we havea global state H in which :H [i]:token _ :H [j]:token. Otherwise, by the IO accuracy property ofIO detector, Pj will remove the suspicion of Pi eventually. In that global state H , :H [j]:tokenholds.The algorithm does not satisfy the property of exactly one token under partial synchrony.For example, in a system with two processes P1 and P2 in which partial synchrony is true onlyfor process P2, both processes will have a token in�nitely often. Note that in this algorithm ifthe partial synchrony condition is satis�ed with respect to the smallest correct process, then thesystem works in the desirable manner. There is exactly one token eventually. To see this considerany global state G such that boundedafter(G; i) holds for the smallest correct process. This impliesthat IO detector for any process Pj that does not fail will eventually never suspect Pi. Therefore,Pj will never get the token.We now present a solution which meets all our requirements. Intuitively, the idea behind thealgorithm is as follows. In addition to the suspicion list maintained by the failure detector, eachprocess maintains a timestamp for each process called ticket time. The ticket time of a process Pkis the logical time when it was suspected by some process Pi such that according to Pi, Pk had atoken before the suspicion and Pi has the token after the suspicion. When Pi suspects a processPk which it thinks has the token, it records the logical time of this event. This is the ticket time ofprocess Pk . Pi will then send out a message to all processes informing them of the suspicion alongwith this ticket time.Process Pi has a token if all processes that are currently not suspected by Pi have ticket timesthat are greater than that of Pi. If a process with a token is suspected its ticket time will becomegreater than all other ticket times. This way the token is moved from a slow process to the next9

process which is alive. The formal description of the algorithm is given in Fig. 4. The algorithmassumes that all channels are FIFO.Pi:var ticket:array[1..N] of (integer,integer) initially 8i : ticket[i] = (0; i)suspected: array[1..N] of boolean; /* set by the failure detector */token(k) � (8j 6= k : suspected[j] _ (ticket[j] > ticket[k]))^ :suspected[k](R1) Upon change from unsuspicion to suspicion of Pk with token(k)if token(i) thenticket[k] := Lamport0s logical clock;send \slow", k, ticket[k] to all processes(R2) Upon receiving \slow",k,tticket[k] := max(ticket[k]; t);Figure 4: Algorithm for Alive Token ProblemLemma 38G; i : 9j : G[i]:token(j)Proof: Since a process never suspects itself, the set of unsuspected processes at G[i] is non-empty.The unsuspected process with the smallest ticket number will then have the token according to Pi.Note than in the context of implementing fault-tolerant server, a server Pi will respond to theclient in the global state G if G[i]:token(i)holds. We say that Pi has a token if this condition is true. Note that Lemma 3 only says thateach process always thinks that there is at least one process which has the token. However, thiscondition does not imply that there exists a process which thinks that it has the token. In a faultyalgorithm, it is quite possible that each process thinks that somebody else has the token.Theorem 2 The algorithm in Fig. 4 satis�es all three required properties.Proof:� Availability: First consider the global state G after which no failures occur. We show that ifthere is a process with a token in G, then some process will always have a token. Since there10

is perfect local suspicion, a process with a token can lose it only if its own ticket time increasesor somebody else's ticket time decreases. Since the ticket time for any component can onlyincrease, it follows that a process can lose the token only if its own ticket time increases.However, this can happen only when a process with a token (after the suspicion) sends it a\slow" message. Thus, in this case some other process has a token.Now, consider the scenario when failures occur. If a process that does not have a token failsthen no harm is done. Our obligation is to show that if a process with a token fails and thereare no more tokens in the system then a token is regenerated. Of all the processes that arecorrect consider the process with the smallest ticket. By strong completeness, this processwill eventually suspect all the failed processes. At that point, it will have a token.� E�ciency: Consider the global state G in which two processes Pi and Pj have tokens. Sincethere is a total order on all tickets, and due to Lemma 3, this can only happen when theprocess with the smaller ticket number, say Pi is suspected by the other process, Pj . For anycontinuation of run after G, in which Pi or Pj fails we have a global state state H in which:H [i]:token _ :H [j]:token. Otherwise, by the IO accuracy property of IO detector, Pj willeventually remove the suspicion of Pi. In that global state H , :H [j]:token holds.� Eventually exactly one token under partial synchrony: Consider any global state G such thatboundedafter(G; i) holds. This implies that IO detector for any process Pj will eventuallynever suspect Pi. If there are multiple values of i such that boundedafter(G; i) holds, thenwe choose the process with the smallest ticket number in G. This process is never suspectedby anybody else after G and therefore no other process will ever have a token. Further, thisprocess will never lose the token since no process which is unsuspected can have a smallerticket number.Remark: If suspicions are perfect, that is, a process is suspected only when it is failed, thealgorithm ensures that there is at most one token. Thus, the algorithm can also be seen as afault-tolerant mutual exclusion algorithm with perfect failure detectors.5 Failure detectors with small suspicion listSo far we had assumed that up to N � 1 out of N processes may fail. If we assume that at mostf processes may fail, then we can build a failure detector which will never suspect more than fprocesses and yet provide strong completeness, in�nitely often accuracy, and conditional eventualweak accuracy. An implementation of this detector, called f -IO detector, is shown in Fig. 5. Thef -IO detector assumes an implementation of an IO detector. Note that when f equals N � 1, it isequivalent to IO detector (because a process never suspects itself).The algorithm for f -IO detector maintains a queue of slow processes in addition to the list ofsuspected processes. When a process is suspected it is added to the list only if the size of the list isless than f ; otherwise, it is inserted in the queue of slow processes. When a process is unsuspectedif the slow queue was non-empty, the process at the head is removed from the queue and insertedin the suspect list. 11

Pj ::var f -IO.suspects : set of processes initially ;;slow : FIFO queue of processes initially empty;(A1) On change of IO.suspects[k] from false to true and not inqueue(slow,k)if jf -IO.suspects j < f thenf -IO.suspects[k]:= true;else insert(slow,k);(A2) On change of IO.suspects[k] from true to falseif f -IO.suspects[k] thenf -IO.suspects[k] := false;if not empty(slow)j := deletehead(slow);f -IO.suspects[j] := true;else delete(slow,k);Figure 5: An IO Detector with small suspicion listTheorem 4 The algorithm provides all properties of IO detector assuming there are no more thanf failures. Further, it does not suspect more than f processes at any time.Proof:Strong completeness: If a process has failed it will eventually be permanently suspected by IO.suspects.If it is put in the suspicion list, it will never be removed. If it is kept in the slow queue, then weshow that the number of processes ahead in the slow queue will decrease by 1. By our assumptionthat at most f processes fail, and there are f suspected processes, there is at least one processwhich is suspected incorrectly. This is because one of the failed process is in the slow queue. ByIO accuracy the process that is incorrectly suspected will eventually be unsuspected. At that pointthe head of the slow queue will be removed.IO-accuracy of f -IO detector: Follows from IO-accuracy of IO detector.Conditional eventual weak accuracy: Again follows from conditional eventual weak accuracy of IOdetector.Remark: When f is 1, the f -IO detector gives us the following property which is stronger thanin�nitely often accuracy 12

(GIO) In�nitely often there exists a correct process which is not suspected by any correctprocess.The property GIO can be shown as follows. Since each process is allowed to suspect at most oneprocess, the only con�guration in which there is no common unsuspected process is when suspicionof all processes are di�erent. This con�guration cannot hold permanently because of in�nitely oftenaccuracy.References[BE94] Kenneth Birman and Robbert Van Renesse (Editors). Reliable Distributed Computingwith the Isis Toolkit. IEEE Computer Society Press, 1994.[Bec91] Thomas Becker. Keeping processes under surveillance. In Symposium on Reilable Dis-tributed Systems, pages 198 { 205. IEEE, 1991.[BMST93] Navin Budhiraja, Keith Marzullo, Fred Scneider, and Sam Toueg. The Primary-BackupApproach, chapter 8. ACM Press, Frontier Series. (S.J. Mullender Ed.), 1993.[CHT92] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure de-tector for solving consensus. In Proc. of the 11th ACM Symposium on Principles ofDistributed Computing, pages 147{158, August 1992.[CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable dis-tributed systems. Journal of the ACM, 43(2):225{267, March 1996.[DLP+86] Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and William E.Weihl. Reaching approximate agreement in the presence of faults. Journal of the ACM,33(3):499{516, July 1986.[DLS88] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence ofpartial synchrony. Journal of the ACM, 35(2):288{323, April 1988.[FLP85] M. J. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus withone faulty process. Journal of the ACM, 32(2), April 1985.[HK95] Y. Huang and C. Kintala. Software fault tolerance in the application layer. In MichaelLyu, editor, Software Fault Tolerance, pages 249{278. Wiley, Trends in Software, 1995.[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commu-nications of the ACM, 21(7):558{565, July 1978.
13

