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Abstract. This paper describes a method to implement fault-tolerant
services in distributed systems based on the idea of fused state machines.
The theory of fused state machines uses a combination of coding theory
and replication to ensure efficiency as well as savings in storage and mes-
sages during normal operations. Fused state machines may incur higher
overhead during recovery from crash or Byzantine faults, but that may
be acceptable if the probability of fault is low. Assuming n different
state machines, pure replication based schemes require n(f + 1) replicas
to tolerate f crash faults in a system and n(2f + 1) replicas to tolerate
f Byzantine faults. For crash faults, we give an algorithm that requires
the optimal f backup state machines for tolerating f faults in the sys-
tem of n machines. For Byzantine faults, we propose an algorithm that
requires only nf + f additional state machines, as opposed to 2nf state
machines. Our algorithm combines ideas from coding theory with repli-
cation to provide low overhead during normal operation while keeping
the number of copies required to tolerate f faults small.

1 Introduction

The replicated state machine approach is a general method for implementing a
fault-tolerant service by replicating servers and coordinating client interactions
with server replicas. This approach proposed by Lamport in [1, 2] and further
elaborated by Schneider in [3] is considered the standard solution to the problem
of fault-tolerance in distributed systems. Note that replication has been consid-
ered wasteful in the context of fault-tolerance of data (in communication and
storage) for many decades, but in the distributed systems replication continues
to be the dominant approach for fault-tolerance [4]. In this paper, we give an
alternate method for fault-tolerance that combines ideas from replication with
coding theory [5, 6] to get main advantages of both the approaches. We use
(sufficient) replication to guarantee low overhead during normal operations and
coding theory to reduce the number of copies to get space and message savings.
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We depart from the standard model of fault-tolerance in distributed systems
in which the problem is to tolerate faults in functioning of a single state machine.
We will be concerned with fault-tolerance in a set of state machines where the
size of the set will usually be greater than one. While this assumption makes the
problem different from the usual set-up, we argue that our set-up is practically
useful. Any large system is generally constructed as a set of state machines rather
than a single monolithic state machine. Even when the server is constructed as
a single state machine, it is quite natural to have multiple instances of the state
machines deployed for different departments of the organization.

In this paper, we show how services in a distributed system can be made
fault-tolerant using fusion. Given n different state machines running on different
servers, we focus on tolerating f faults. We focus on two types of faults: crash
faults and Byzantine faults. For crash faults, faulty state machines lose their
state. We assume that crash faults are detectable and the problem that remains
is to recover the lost state of state machines. For Byzantine faults [7], the state
machine may go to an incorrect state spontaneously and the algorithm must
continue to provide correct responses to the client in spite of these faults.

For crash faults, we give a technique to construct additional f state ma-
chines (called fused state machines) such that the system of n + f machines
can tolerate crash of any f machines in the system. We illustrate our technique
on the resource allocation service from [3], a causal ordering algorithm [8] and
a distributed mutual exclusion algorithm [9]. The fused state machines use a
combination of erasure coding and replication to ensure that during normal op-
erations, the message and computation overhead on primary state machines is
close to that for replicated state machines. The updates of fused state machines
are made efficient using linearity of erasure coding scheme employed and suffi-
cient replication.

For Byzantine faults, the problem of detection is harder from the perspec-
tive of computation and communication complexity. Here we use a hybrid of
replication and coding theory. In particular, we give an algorithm that keeps
the overhead of the replicated state machine approach during normal operations
but requires only nf + f additional state machines (as opposed to 2nf state
machines). Our algorithm is based on the following observation that if there are
f + 1 copies of a state machine, then at least one of them is correct. In case of a
fault, we only need to determine which of these copies is correct. The traditional
method of keeping 2f + 1 copies (and then using majority) is wasteful for the
task. We introduce the notion of efficient liar detection based on fused state
machines. This allows us to prove the following main result in this paper (in
Section 3). Let there be n primary state machines, each with O(m) data struc-
tures. There exists an algorithm with additional nf + f state machines that can
tolerate f Byzantine faults and has the same overhead as the Replicated State
Machine approach during the normal operation and additional O(mf + nt2)
overhead during recovery where t is the actual number of faults that occurred
in the system.
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In our earlier work, we have given algorithms for fusible data structures. In
particular, [10] gives algorithms for arrays, stacks, queues, linked lists etc. to han-
dle crash faults. This work has been generalized to tolerate multiple crash faults
in [11]. In contrast, the goal of the current work is to focus on the differences
between the replicated state machine approach and the fused state machine ap-
proach and also tackle Byzantine faults. Furthermore, we show that our approach
is applicable to many distributed algorithms including a causal ordering algo-
rithm [8], and Ricart and Agrawala’s mutual exclusion algorithm[9]. For both of
these algorithms, we get n-fold savings in space. We also get savings in messages
for Ricart and Agarwala’s algorithm because of aggregation that is possible in
fused state machines. In [12], an algorithm has been provided to generate fused
finite state machines. That algorithm assumes that the state space of the pri-
mary machines is finite. In this paper, techniques are suitable even for infinite
state space.

In data storage and communication, coding theory is extensively used to
recover from faults. For example, RAID disks use disk striping and parity based
schemes (or erasure codes) to recover from the disk faults [13–15]. As another
example, network coding [16, 17] has been used for recovering from packet loss or
to reduce communication overhead for multicast. In these applications, the data
is viewed as a set of data entities such as disk blocks for storage applications
and packets for network applications. Coding theory techniques [6] are oblivious
to the structure of the data. The details of actual operations on the data are
ignored and the codes are simply recomputed after any write update. To tolerate
crash failures for servers, one can view the memory of the server as a set of pages
and apply coding theory to maintain code words. This approach, however, may
not be practical because a small change in data may require recomputation of
the backup for one or more pages. This results in a high computational and
communication overhead. We show in this paper that with data structure-aware
programming and partial state replication, backup machines can be designed so
that they provide fault-tolerance in an efficient manner.

2 Fusible State Machines

There are n deterministic primary state machines, P (i), where i ranges from 1
to n. Each state machine receives an input from the client (or environment). On
receiving the input, the state machine applies the state transition function to
change its state. The set of states and inputs may be infinite.

We require state machines to be deterministic just as required by the repli-
cated state machine approach. Given the state of a machine and the sequence
of inputs, the behavior of the state machine is required to be unique. This as-
sumption is crucial in both the replicated state machine (RSM) and the fused
state machine (fused-SM) approaches.

Throughout this paper we assume that channels are reliable and FIFO and
that there is a fixed upper bound for all message delivery. We also assume that
crashes of processes are reliably detected.
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2.1 Event Counter

To concretize our discussion, we start with n simple state machines, P (i)’s,
shown in Fig. 1. Each of these n machines accept two types of input: entry(v)
and exit(v). These state machines may, for example, be counting the number
of people of type i entering a room. Each state machine has a variable count
with domain as non-negative integers. When P (i) receives an event entry(v), it
increments its count if v is equal to i and decrements it when it receives a similar
exit(v) event.

P (i) :: i = 1..n
int counti = 0;
On event entry(v):

if (v == i) counti = counti + 1;
On event exit(v):

if (v == i) counti = counti − 1;

F (j) :: j = 1..f
int fCountj = 0;
On event entry(i), for any i

fCountj = fCountj + ij−1;
On event exit(i) for any i

fCountj = fCountj − ij−1;

Fig. 1. Fusion of Counter State Machines

To tolearte f faults, the Replicated State Machine (RSM) approach requires f
additional state machines for each of P (i) resulting in the total of nf additional
state machines. For fusion, we add just f additional machines, F (1)..F (f) as
shown in Fig. 1. F (j) increases its count by ij−1 for any event entry(i) and
decrements by the same amount for exit(i). It can be seen that the fused-SM F (1)
tracks the sum of all counts. It increments the variable fCount1 on entry(i) for
any i and decrements it for any exit(i). F (2) maintains fCount2 =

∑
i i∗counti.

More generally, fCountj =
∑

i i
j−1 ∗ counti for all j = 1..f.

The recovery procedure for fusible SM is more complex than for replication.
It crucially depends on the fact that if any f machines crash, the rest of the ma-
chines are still available. F (1) is sufficient to recover from one crash fault. If P (c)
has failed, then its state countc can be recovered as fCount1 −

∑
i 6=c counti. In

general, we can recover states of any f failed state machines using the remaining
machines. For example, consider the case when f is two and the machines that
crashed are P (c) and P (d). Using fusion machine F (1) and remaining counts we
can get the value of countc + countd. Using fCount2, we can get the value of
c ∗ countc + d ∗ countd. We have two linearly independent equations in two vari-
ables which can be solved to get the values of countc and countd. More generally,
recovery from f faults reduces to solving f linearly independent equations in f
variables.

A reader well-versed in coding theory would realize that if (count1, count2, , countn)
is viewed as data, (count1,count2,..countn,fCount1, fCount2,..fCountf ) can be
viewed as a code word. The code word obtained is equivalent to one obtained
by multiplying data vector by the identity matrix adjoined with the transpose
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of the Vandermonde matrix[5]. The unique solvability of all the counts is easy
to show; the proof is given in [18] for completeness sake.

Theorem 1. Suppose x = (count1, count2, , countn) is the state of the primary
state machines. Assume fCountj =

∑
i i

j−1 ∗counti for all j = 1..f. Given any
n values out of y = (count1, count2, ..countn,fCount1, fCount2, ..fCountf ) the
remaining values in x can be uniquely determined.

It is important to note the distinction between a server and a state machine.
In the event counter example, to tolerate f crash faults among n state machines,
the RSM approach need not run all nf on distinct servers. We could, for example,
run one copy of each of the state machines for all P (1)..P (n), on one server. Thus,
the number of servers required to tolerate f crash faults can still be considered to
be f for the RSM approach. However, the fused state machine approach provides
upto n-fold savings in the space required for keeping backups. We now show that
the fused-SM approach also yields benefits in computation and communication
when events are shared between primary state machines. Suppose that each P (i)
has an additional event called incr which increases counti by 1. When the event
incr happens, all Pi increment their counts. In the RSM approach the event incr
would be communicated to nf state machines, and will be executed nf times.
In the Fused-SM approach, we require F (j) to execute incr as
fCountj = fCountj +

∑i=n
i=1 i

j−1. The total number of events that are executed
is exactly f , one for each fused-SM. Thus, when events are shared across primary
state machines, we get the advantage of aggregation thereby reducing the message
and computation complexity for backup.

Note that we do not require the fused-SMs to be synchronized with primary
state machines. The only requirement is that all updates from primary state
machines are applied in the same order at all the fused-SMs. The messages at
fused-SMs may be buffered because the primary state machines never wait for
fused-SMs to finish their updates. In case of a failure of a primary machine, all
the pending updates at the fused-SMs must be applied before the recovery.

So far we had assumed that by adding numbers we do not get overflow. If
overflow is possible, there are two approaches to tackle it. The first approach is to
do all the arithmetic, i.e. addition (subtraction), and multiplication (division) in
finite Galois field as typically done in coding theory [5]. In that case the matrix
G can either be chosen as a Cauchy Matrix or a Vandermonde matrix reduced
using elementary transformations so that the first n rows form an identity matrix
[19]. The other possibility is to guarantee that there is never any overflow in any
computation. This can be done, for example, by using BigInteger package in
Java.

2.2 Causal Ordering

We now generalize the Event Counter example to primary state machines that
contain not one variable but a set of data structures. Whenever a primary state
machine receives an event from a client and updates it data structures, it also
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sends a message to the fused state machines with the list of variables and the in-
cremental change in their values. We illustrate this method for a causal ordering
algorithm [20] in a group of n processes.

Consider the version described by Raynal, Schiper, and Toueg [8]. Each pro-
cess maintains a matrix M of integers. The entry M [q, r] at P (i) records the
number of messages sent by process P (q) to process P (r) as known by process
P (i). Whenever a message is sent from P (i) to P (r), the matrix M is piggy-
backed with the message. A message is eligible to be received when the number
of messages sent from any process P (q) to P (i), as indicated by the matrix W
received in the message, is less than or equal to the number recorded in the
matrix M .

Suppose, we would like the system to be able to tolerate f crash faults, i.e.,
recover matrices for processes that have crashed. We require P (i)’s to send an
”M-Update” message with incremental changes in entries of the matrix to the
fused processes F (j). Instead of maintaining f copies of the matrix for each pri-
mary process, the fused-SM algorithm requires a single (fused) matrix for every
fault. Thus, the storage requirement for fused processes is O(fn2) as opposed to
O(fn3) required by a replication based algorithm. A similar algorithm can be
used to recover vector clocks of faulty processes in distributed systems.

2.3 Resource Allocator

The technique outlined in previous section may not be practical when a simple
change in data structure results in a significant change in the state. We show
that by analysis of the data structure, and by selective replication the size of the
messages from primary messages to fusion processes can be reduced significantly.

To illustrate this point, we apply the method of fusion to the resource alloca-
tor state machine in [3]. Assume that there are n different type of resources that
can only be used in mutually exclusive fashion. The state machine P (i) shown
in Fig. 2 handles clients requesting resource i. It maintains two variables: user,
an integer which records the current user of the resource if any, and waiting, a
queue of integers which stores the id’s of clients waiting for the resource.

user: int initially 0;// resource idle
waiting: queue of int initially null;

On receiving acquire from client pid
if (user == 0) {

send(OK) to client pid; user = pid;}
else waiting.append(pid);

On receiving release
if (waiting.isEmpty())

user = 0;
else { user = waiting.head();

send(OK) to user;
waiting.removeHead(); }

Fig. 2. Resource Allocator State Machine from [3] P (i) :: i = 1..n

Suppose that we want to tolerate one fault in any of these n machines. When-
ever, the variable user changes we can send the incremental change to fusion
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processes. But, what should we do about the waiting list? If we view the bit
representation of waiting list as an integer (a big integer), then computing the
code at fusion processes after every change would be very inefficient. We use
the technique from fusible data structures[10]. Instead of sending the change in
state, we send the event that allows the fused structure to be maintained ef-
ficiently. The primary state machine that uses fused-SM approach is shown in
Fig. 3. Whenever any data structure changes, it sends to the fused machines the
change that needs to be made in the data structure in a manner that is tailored
to the data structure. Note that the primary machine does not send the changed
queue or even the incremental difference from the old queue and the new queue.
It only sends enough information so that the fused queues can carry out the
state change.

P (i) :: i = 1..n
On receiving acquire from client pid
if (user == 0){send(OK) to client pid;

user = pid;
send(USER, i, user) to F (j)’s;}

else { waiting.append(pid);
send(ADD-WAITING,i, pid) to F (j)’s;}

On receiving release
if (waiting.isEmpty()){olduser = user;

user = 0;
send(USER, i, user−olduser) to F (j) }

else { olduser = user;
user = waiting.head();
send(OK) to waiting.head();
waiting.removeHead();
send(USER, i, user− olduser) to F (j)’s
send(DEL-WAITING, i, user) to F (j)’s

}

F (j) :: j = 1..f
fuser:int initially 0;
fwaiting:fused queue initially

0;

On receiving (USER, i, val)
fuser = fuser + ij−1 ∗ val;

On receiving (ADD-WAITING, i,
pid)
fwaiting.append(i, pid);

On receiving (DEL-WAITING, i,
user)
fwaiting.deleteHead(i, user);

Fig. 3. Algorithm A: Fused State Machine for Resource Allocation

The code for the fused-SM is shown in Fig. 3. In F (j) we have used fwaiting
as a fused queue. For simplicity, we use a circular array based implementation
(a linked list based implementation is in [10]).

The above method has reduced the number of backup state machines nf to
f and yet it can tolerate any f faults from P (1)..P (n). The recovery process is
more complex than replication but the significant savings (n-fold) in the reduced
number of active state machines may justify this added complexity especially
when the probability of faults is small.

Remark: So far we had assumed that the clients interact only with the pri-
mary machines which, in turn, interacted with fusion machines to keep them
up-to-date. In many examples, an alternate design is possible in which the com-
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fQueue: array[0..M − 1] of int initially 0;
head, tail, size:array[1..n] of int init 0;

append(i, v):
if (size[i] == M)

throw Exception(”Full Queue”);
fQueue[tail[i]] = fQueue[tail[i]]+ij−1∗v;
tail[i] = (tail[i] + 1)%M ;
size[i] = size[i] + 1;

deleteHead(i, v):
if (size[i] == 0)

throw Exception(”Empty Queue”);
fQueue[head[i]] = fQueue[head[i]] −
ij−1 ∗ v;
head[i] = (head[i] + 1)%M ;
size[i] = size[i]− 1;

isEmpty(i):
return (size[i] == 0);

Fig. 4. Fused Queue Implementation at F (j)

mands to the primary state machines are also issued to the fused-SMs. The
pseudo-code for such a design is shown in [18].

We now do overhead analysis for both RSM and the fused-SM approach.
Overhead Under Normal Operation: For replication, we require additional nf

state machines, f replicas for each of the primary state machine. Each operation
requires a message to the primary state machine and f replicas. For fused-SM
approach, we require additional f machines. Each operation still requires f + 1
messages, one to the primary state machine and f messages from the primary
to fused-SMs. The message to the primary state machine is same as for the
RSM approach, however messages to the fused-SMs may contain additional state
information so that fused machines can execute the event despite availability only
of fused data structures.

Assume that the waiting list can have size at most O(m). The RSM approach
requires O(nfm) space to tolerate f faults among n machines. The fused-SM
approach requires O(fm+nf) space. The component O(nf) is required because
we allow O(1) state information for each of the n state machines at the fused-
SMs. In the example, we kept head[i], tail[i] and size[i] for each state machine.

The number of events and messages required to be processed at the fused-SM
is n times more than the number of events processed by a replica. Thus, if n is
large the fused-SMs may become bottleneck. In these cases, one could easily use
a hybrid of replicated and fused-SM approach.

Complexity for Recovery after Failure: The RSM approach has minimal over-
head for recovery after failure. As soon as a primary machine is detected to be
crashed, the replica with the highest id that survives can take over and start
functioning as primary.

The recovery overhead in the fused-SM approach is crucially dependent on
the number of actual faults t. Let the state of any primary state machine be
O(m). First consider the case when t equals 1. The recovery algorithm will
require O(n) messages, one from each of the surviving machines of size O(m). It
will takeO(nm) time to recover the state of the crashed machine. For t > 1 faults,
we would be required to solve t linearly independent equations. Equivalently, it
can be viewed as multiplying the fusion vector with the inverse of the equation



Implementing Fault-Tolerant Services: Beyond Replication 9

matrix. Since m is large compared to t, we ignore the one time cost of computing
the inverse. Thus, we get the overall cost as O(m(nt+ t2)).

2.4 Application to Ricart and Agrawala’s Algorithm

The state machine for the resource allocator example was based on a central-
ized algorithm for mutual exclusion. We now show that the technique is also
applicable to distributed algorithms such as Ricart and Agarwala’s algorithm[9].
Suppose that there are n primary processes P (1)..P (n) that are coordinating
access to a single critical section. For the RSM based approach, each Pi would
need f backups and will result in nf additional state machines (even if they
are run on only f additional servers). Since each state machine requires O(n)
space to keep track of pending requests, the total space requirement is O(fn2).
The code for the fused-SM based Ricart and Agrawals’s algorithm is presented in
[18]. With the fused-SM approach, we use f additional state machines with total
of O(fn) space. Any request message is also sent to the fused processes which
update the fused data structures on behalf of all the processes in the system.
Similarly, okay messages are also sent to the fused processes.

The non fault-tolerant algorithm requires 2n messages per CS invocation.
With the RSM approach, every message needs to be sent to f backup processes
resulting in 2n(f + 1) messages. The Fused-SM approach requires an additional
request message and n− 1 okays to be sent to any fused process. Thus, the total
message requirement is only 2n+ nf , which results in savings of nf messages.

3 Byzantine Faults

So far we had assumed crash faults. We now discuss Byzantine faults where any
state machine may change its state arbitrarily. The RSM approach requires that
there be 2f backup replicas for each primary state machine. Since there are 2f+1
values available, even if f of them are faulty, the majority will always be correct.
When this approach is applied to n different servers, the RSM approach requires
additional 2nf replicas. For data coding, it is well known that by appending 2f
parity check symbols, one can recover from f unknown data errors [6]. Can the
same ideas be applied to fault-tolerance of state machines?

The additional constraint we have for tolerating Byzantine faults in state
machines is that during normal (fault-free) operation, we would like to have as
little overhead as possible. Specifically, we would like to avoid the overhead of
decoding the state during normal operations. To achieve this goal, we give an
algorithm that combines replication with coding theory. We first consider the
case of a single Byzantine fault. Next we generalize the algorithm to tolerate f
Byzantine faults but assume that each state machine has O(1) state. Finally,
we give the algorithm that tolerates f Byzantine faults and each primary state
machine may have O(m) state.
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3.1 Tolerating Single Byzantine Fault

We start with the case of detecting and tolerating a single Byzantine fault among
n primary state machines. The pure RSM approach requires two replicas for
every primary machine resulting in 3n state machines in all. The pure Fused-SM
approach would require n + 2 machines in all. However, in the pure Fused-SM
approach, even the normal operations may be inefficient. For crash faults, the
decoding was required only when there was a failure, a low probability event.
For Byzantine faults, a pure Fused-SM approach would require decoding even
during normal operations just to detect if one of the primary machines is faulty.
We now show a hybrid approach that is efficient during normal operation and
still requires less number of processes than the RSM approach.

Our algorithm is based on two observations. First, if we have two copies of a
primary state machine P (i), then one of these copies is guaranteed to be correct.
The RSM approach relies on keeping an additional copy so that majority can
be used to determine which is correct. In our approach, we use the concept of
liar detection. We use the fused-SMs to determine which of the two copies is
faulty. The liar detection approach is more efficient in terms of the total number
of copies required. The second observation we use is that if two copies of P (i)
agree on some value, then that value is guaranteed to be correct (because, there
can be at most one Byzantine fault).

Theorem 2. Let there be n primary state machines, each with O(m) data struc-
tures. There exists an algorithm with additional n + 1 state machines that can
tolerate a single Byzantine fault and has the same overhead as the RSM approach
during normal operation and additional O(m+ n) overhead during recovery.

Proof. We keep one replica Q(i) for every primary state machine P (i) and a
fused-SM F (1) for the entire system. Thus, we keep 2n+ 1 state machines in all.
During normal operation (when there is no fault), the value of any output at
P (i) and Q(i) must be identical. In this case, we do not decode the value from
F (1). As soon as P (i) and Q(i) differ for any i, we have detected Byzantine
fault in the system. Note that we do not observe the state of P (i) and Q(i)
at all events. We only look at the response of P (i) and Q(i) for input events
and take action when the response (output) at P (i) differs from Q(i). At this
point, we know that either P (i) is correct or Q(i) is correct, but do not know the
identity of the liar yet. We now invoke the liar detection algorithm as follows.
Given the state of P (i) and Q(i), in O(m) time we can locate the first data of
size O(1) that is different in them. We use the fused process F (1) to determine
which of these values is correct. This step will require messages of size O(1)
from other n−1 primary processes. It also requires that the system ensures that
all operations that have been performed on the primary state machines have
been applied to F (1). Now, in O(n) time the correct value of the data can be
determined; therefore, we have the identity and the state of the correct process.
The liar process can be killed and a new copy of the correct process can be
started.
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Observe that in the above algorithm we never decode the data structure at the
fused-SM. During normal operations, we only do the encoding. Whenever there
is Byzantine fault detected, we use F (1) only to determine which of the copies is
correct. We can encode O(1) crucial information to determine whether P (i) or
Q(i) is a liar. Also observe that if the fault occurs in the fused machine, it does
not affect the overall operation of the system and it is not even detected. If early
detection of fault in the fused machine is important for some application, then
periodically (or during off-peak period) one could simply reset and recompute
the fused process data. Thus, decoding of the fused-SM is not required.

3.2 Tolerating f Byzantine faults in State Machines with O(1)
State

To generalize the above algorithm for f faults, we maintain the invariant that
there is at least one correct copy in spite of f faults. Therefore, we keep f copies
of each of the primary server and f fused copies. Thus, we have total of n∗f +f
state machines in addition to n primary machines. The only requirement on
the fused copies {H(j), j = 1..f}is that if H(j) is not faulty and if we have
n − 1 correct values of the primary machines, then the remaining one can be
determined using H(j). Thus, a simple xor or sum based fused-SM is sufficient.
Even though we are tolerating f faults, the requirement on the fused copy is
only for a single fault (because we are also using replication).

The primary copy together with its f replicas are called unfused copies. If
any of f + 1 unfused copies differ, we call the primary server mismatched. Let
the value of one of the copies be v. The number of unfused copies with value v
is called the multiplicity of that copy.

We now generalize Theorem 2 for f ≥ 1 faults. At first, we will assume that
the state space of each of the state machines is small. Later, we generalize it to
the case when each of the state machine has O(m) state.

Theorem 3. There exists an algorithm with fn+ f backup state machines that
can tolerate f Byzantine faults and has the same overhead as the RSM approach
during normal operation and additional O(nf) overhead during recovery.

Proof. We keep f copies for each primary state machine and f overall fused
machines. This results in additional nf + f state machines in the system. If
there are no faults among unfused copies, all f + 1 copies will result in the same
output and therefore the system will incur same overhead as the RSM approach.

Our algorithm first checks the number of primary state machines that are
mismatched. First consider the case when there is a mismatch between a primary
state machine P (i) and its replica for at most one value of i = 1..n. Let that
primary machine be P (c). Since there are at most f faults, we can conclude
that we have the correct state of all other primary state machines P (i), i 6= c.
Now given the correct state of all other primary machines, we can successively
retrieve the state of P (c) from fused machines H(j), j = 1..f till we find one of
the unfused machine that has f + 1 multiplicity. We have to decode at most f
fused machines each at cost of O(n).
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Now consider the case when there is a mismatch for at least two primary
state machines, say P (c) and P (d). Let α(c) and α(d) be the largest multiplicity
among unfused copies of P (c) and P (d) respectively. Without loss of generality,
assume that α(c) ≥ α(d). We show that the copy with multiplicity α(c) is correct.

If this copy is not correct, then there are at least α(c) liars among unfused
copies of P (c). We now claim that there are at least f + 1 − α(d) liars among
unfused copies of P (d) which gives us the total number of liars as α(c) + f +
1−α(d) ≥ f +1 contradicting the assumption on the maximum number of liars.
Consider the copy among unfused copies of P (d) with multiplicity α(d). If this
copy is correct we have f + 1−α(d) liars. If this value is false, we know that the
correct value has multiplicity less than or equal to α(d) and therefore there are
at least f + 1− α(d) liars among unfused copies of P (d).

By identifying the correct value, we have reduced the number of mismatched
primary state machines by 1. By repeating this argument, we get to the case
when there is exactly one mismatched primary machine.

Based on the proof of Theorem 3, we get the Algorithm C shown in Figure
5, to tolerate f Byzantine faults with nf replicated and f fused-SMs.

Unfused Copies:
On receiving any message from client
Update local copy;
send state update to fused processes;
send response to the client;

Client:
send event to all unfused f + 1 copies;
if (all f + 1 responses identical)

use the response;
else invoke recovery algorithm;

Fused Copies:
On receiving update from unfused copy
if (all f + 1 updates identical)

carry out the update
else invoke recovery algorithm;

Recovery Algorithm:
Let t be the number of mismatched
SMs;
while t > 1 do

choose the copy with largest multi-
plicity;

kill all incorrect unfused copies;
restart them with the chosen copy;
t = t− 1;

// Can assume that t equals one.
// Let P (c) be the mismatched SM
for (j = 1; j ≤ f ; j + +)

create a new copy using H(j) and
P (i), i 6= c;

if (any copy has multiplicity f + 1)
recover to that copy and return;

Fig. 5. Algorithm C: Tolerating f Byzantine faults

In Algorithm C, we had to decode the fused-SMs during the recovery algo-
rithm. The algorithm requires at most f fusion processes to be decoded in the
worst case. If there are t ≤ f faults, we are guaranteed that after decoding t
fused-SMs we will have f + 1 + t unfused copies. At least one of these copies will
have multiplicity of f + 1 or more. Alternatively, we can try out all the values of
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unfused copies of P (c) and {P (i), i 6= c} to compute H and thereby determine
multiplicity of various copies.

3.3 Tolerating f Byzantine faults for State Machines with O(m)
state

We now extend the algorithm to the case when each of the primary state machine
has O(m) state. We would like to avoid decoding or encoding the entire fused
process. As observed earlier, one of the f + 1 unfused copies is guaranteed to
be correct and it is sufficient to locate this copy using fused copies. We give an
algorithm with O(mf +nt2) time complexity to locate the correct copy. Assume
that we are trying to locate the correct copy among unfused copies of P (c).

Z:set of copies initially {1..f + 1};
while (all unfused copies in Z not identical)

w = min{r : ∃p, q ∈ Z : statep[r] 6= stateq[r]};
j = 1;
while (no copy with multiplicity f + 1)

create state[w] using H(j) and P (i), i 6= c;
j = j + 1;

endwhile;
delete other copies from Z;

endwhile;
return any copy from Z;

Fig. 6. Locating a Correct Unfused Copy for mismatched P (c): locate(int c)

In the algorithm shown in Fig. 6, the set Z maintains the invariant that it
includes all the correct unfused copies (and may include incorrect copies as well).
The invariant is initially true because all indices from 1..f + 1 are in Z. Since
the set has f + 1 indices and there are at most f faults, we know that the set Z
always contains at least one correct copy.

The outer while loop iterates until all copies are identical. If all copies in Z
are identical, from the invariant it follows that all of them must be correct and
we can simply return any of the copies in Z. Otherwise, there exist at least two
different copies in Z, say p and q. Let w be the first index in which states of
copies p and q differ 1. Either copy p or the copy q (or both) are liars. We now
use the fused machines to recreate copies of state[w]. Since we have the correct
copies of all other primary machines P (i), i 6= c, we can use them with the fused
copies H(j), j = 1..f . Note that the fused copies may themselves be wrong so it
is necessary to get enough multiplicity for any value to determine if some copy
is faulty. Suppose that for some v, we get multiplicity of f + 1. This implies that

1 For simplicity, we view the state of machines as an O(m) array (though in practice
it could be any structure with size O(m)).
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any copy with state[w] 6= v must be faulty and therefore can safely be deleted
from Z. We are guaranteed to get a value with multiplicity f + 1 out of total
2f + 1 copies. Further, since copies p and q differ in state[w], we are guaranteed
to delete at least one of them in each iteration of while. Eventually, the set Z
would either be singleton or will contain only identical copies. In either case, the
while loop terminates and we have located a correct copy.

We now analyze the time complexity of the procedure locate. Assume that
there are t ≤ f actual faults that occurred. We delete at least one index in
each iteration of the outer while loop and there are at most t faulty processes
giving us the bound of t for the number of iterations of the while loop. In each
iteration, creating state[w] requires at most O(1) state to be decoded for each
fusion process at the cost of O(n). The maximum number of fused processes
that would be required is t. Thus, O(nt) work is required for a single iteration
before a copy is deleted from Z. To determine w in incremental fashion requires
O(mf) work cumulative over all iterations. Combining these costs we get the
complexity of the algorithm to be O(mf + nt2).

By using the method locate, in the recovery algorithm we get the following
result – the main result of the paper.

Theorem 4. Let there be n primary state machines, each with O(m) data struc-
tures. There exists an algorithm with additional nf + f state machines that can
tolerate f Byzantine faults and has the same overhead as the RSM approach dur-
ing the normal operation and additional O(mf + nt2) overhead during recovery
where t is the actual number of faults that occurred in the system.

Theorem 4 combines advantages of replication and coding theory. We have
enough replication to guarantee that there is at least one correct copy at all
times and therefore we do not need to decode the entire state machine but only
locate the correct copy. We have also taken advantage of coding theory to reduce
the number of copies from 2f to f .

It can be seen that our algorithm is optimal in the number of unfused and
fused copies it maintains to guarantee that there is at least one correct unfused
copy and that faults of any f machines can be tolerated. The first requirement
dictates that there be at least f+1 unfused copies and the recovery from Byzan-
tine fault requires that there be at least 2f + 1 fused or unfused copies in all.

4 Conclusions

We have presented efficient distributed algorithms to tolerate crash and Byzan-
tine faults of state machines in distributed systems. Our algorithms use a com-
bination of replication and coding theory to achieve efficiency in detection and
correction of faults. Our algorithms use fewer backup state machines (and there-
fore smaller space, and fewer messages in many cases) while providing the same
level of fault-tolerance.
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