

Democratic Elections in Faulty Distributed Systems

Himanshu Chauhan and Vijay K. Garg

Parallel and Distributed Systems Lab, Department of Electrical and Computer Engineering,

THE UNIVERSITY OF
TEXAS
_ AT AUSTIN -

Motivation - Leader Election

Conventional Problem

Node with the highest id should be the leader. All the nodes in the system should agree on the leader.

Motivation - Leader Election

Conventional Problem

Node with the highest id should be the leader. All the nodes in the system should agree on the leader.

- Philosophers of Ancient Athens would protest!

Democratic Leader Election

- Elect a leader
- Each node has individual preferences
- Conduct an election where every node votes

Democratic Leader Election

- Elect a leader
- Each node has individual preferences
- Conduct an election where every node votes

Use Case:

■ Job processing system

■ Leader distributes work in the system

Democratic Leader Election

- Elect a leader
- Each node has individual preferences
- Conduct an election where every node votes

Use Case:

■ Job processing system

- Leader distributes work in the system

■ Worker nodes vote, based upon:

- Latency of communication with prospective leader
- Individual work load

Democratic Leader Election

- Elect a leader
- Each node has individual preferences
- Conduct an election where every node votes

Use Case:

■ Job processing system

- Leader distributes work in the system

■ Worker nodes vote, based upon:

- Latency of communication with prospective leader
- Individual work load

■ Enter 'Byzantine' Voters!

Why Not Use Exisiting Approaches?

'Multivalued Byzantine Agreement', Turpin and Coan 1984, ' k-set Consensus', Prisco et al. 1999

- Every voter sends her top choice

■ Run Byzantine Agreement

- Agree on the choice with most votes

Why Not Use Exisiting Approaches?

'Multivalued Byzantine Agreement', Turpin and Coan 1984, ' k-set Consensus', Prisco et al. 1999

- Every voter sends her top choice

■ Run Byzantine Agreement

- Agree on the choice with most votes

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}
$1^{\text {st }}$ choice	b	b	b	c	c	c	a
$2^{\text {nd }}$ choice	a	a	a	a	a	a	b
$3^{\text {rd }}$ choice	c	c	c	b	b	b	c

Why Not Use Exisiting Approaches?

'Multivalued Byzantine Agreement', Turpin and Coan 1984, ' k-set Consensus', Prisco et al. 1999

- Every voter sends her top choice

■ Run Byzantine Agreement

- Agree on the choice with most votes

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}
$1^{\text {st }}$ choice	b	b	b	c	c	c	a
$2^{\text {nd }}$ choice	a	a	a	a	a	a	b
$3^{\text {rd }}$ choice	c	c	c	b	b	b	c

Elect choice with most votes (at top) : c or b

Why Not Use Exisiting Approaches?

'Multivalued Byzantine Agreement', Turpin and Coan 1984, ' k-set Consensus', Prisco et al. 1999

- Every voter sends her top choice

■ Run Byzantine Agreement

- Agree on the choice with most votes

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}
$1^{\text {st }}$ choice	b	b	b	c	c	c	a
$2^{\text {nd }}$ choice	a	a	a	a	a	a	b
$3^{\text {rd }}$ choice	c	c	c	b	b	b	c

Elect choice with most votes (at top) : c or b
But...

Why Not Use Exisiting Approaches?

'Multivalued Byzantine Agreement', Turpin and Coan 1984, ' k-set Consensus', Prisco et al. 1999

- Every voter sends her top choice

■ Run Byzantine Agreement

- Agree on the choice with most votes

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}
$1^{\text {st }}$ choice	b	b	b				a
$2^{\text {nd }}$ choice	a	a	a	a	a	a	b
$3^{r d}$ choice				b	b	b	

Elect choice with most votes (at top) : c or b
But...
$\#(a>b)=4, \quad \#(b>a)=3$

Why Not Use Exisiting Approaches?

'Multivalued Byzantine Agreement', Turpin and Coan 1984, ' k-set Consensus', Prisco et al. 1999

■ Every voter sends her top choice
■ Run Byzantine Agreement

- Agree on the choice with most votes

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}
$1^{\text {st }}$ choice				c	c	c	a
$2^{\text {nd }}$ choice	a	a	a	a	a	a	
$3^{\text {rd }}$ choice	c	c	c				c

Elect choice with most votes (at top) : c or b But...
$\#(a>b)=4, \quad \#(b>a)=3 \quad$ and $\#(a>c)=4, \quad \#(c>a)=3$

Model \& Constructs

System

- n processes (voters)
- f Byzantine processes (voters) : bad

■ Non-faulty processes (voters) : good

- $f<n / 3$

Model \& Constructs

System

- n processes (voters)
- f Byzantine processes (voters) : bad

■ Non-faulty processes (voters) : good

- $f<n / 3$

Jargon

\mathcal{A} : Set of candidates
Ranking: Total order over the set of candidates.
Vote: A voter's preference ranking over candidates.
Ballot: Collection of all votes.
Scheme : Mechanism that takes a ballot as input and outputs a winner.

Conducting Distributed Democratic Elections

- Use Interactive Consistency
- Agree on everyone's vote ${ }^{1}$
- Agree on the ballot

■ Use a scheme to decide the winner
${ }^{1}$ We use Gradecast based Byzantine Agreement by Ben-Or et al.

Byzantine Social Choice

Social Choice

Given a ballot, declare a candidate as the winner of the election.
Arrow 1950-51, Buchanan 1954, Graaff 1957

Byzantine Social Choice

Given a set of n processes of which at most f are faulty, and a set \mathcal{A} of k choices, design a protocol elects one candidate as the social choice, while meeting the 'protocol requirements'.

Byzantine Social Welfare

Social Welfare

Given a ballot, produce a total order over the set of candidate.
Arrow 1950-51, Buchanan 1954, Graaff 1957, Farquharson 1969

Byzantine Social Welfare

Given a set of n processes of which at most f are faulty, and a set \mathcal{A} of k choices, design a protocol that produces a total order over \mathcal{A}, while meeting the 'protocol requirements'.

Protocol Requirements

1 Agreement: All good processes decide on the same choice/ranking.

Protocol Requirements

1 Agreement: All good processes decide on the same choice/ranking.

2 Termination: The protocol terminates in a finite number of rounds.

Validity Condition

Validity: Requirement on the choice/ranking decided, based upon the votes of good processes.

Validity Condition

Validity: Requirement on the choice/ranking decided, based upon the votes of good processes.

■ S : If v is the top choice of all good voters, then v must be the winner.

- S^{\prime} : If v is the last choice of all good voters, then v must not be the winner.
- M^{\prime} : If v is last choice of majority of good voters, then v must not be the winner.

Validity Conditions

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}
$1^{\text {st }}$ choice	b	b	b	c	c	c	a
$2^{\text {nd }}$ choice	a	a	a	a	a	a	b
$3^{\text {rd }}$ choice	c	c	c	b	b	b	c

Table: Ballot of 7 votes $\left(P_{6}, P_{7}\right.$ Byzantine)

Validity Conditions

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}
$1^{\text {st }}$ choice	b	b	b	c	c	c	a
$2^{\text {nd }}$ choice	a	a	a	a	a	a	b
$3^{\text {rd }}$ choice	c	c	c	b	b	b	c

Table: Ballot of 7 votes $\left(P_{6}, P_{7}\right.$ Byzantine)
M (Elect majority of good voters) : elect b

Validity Conditions

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}
$1^{\text {st }}$ choice	b	b	b	c	c	c	a
$2^{\text {nd }}$ choice	a	a	a	a	a	a	b
$3^{r d}$ choice	c	c	c	b	b	b	c

Table: Ballot of 7 votes $\left(P_{6}, P_{7}\right.$ Byzantine)
M (Elect majority of good voters) : elect b
P (Do not elect a candidate that is not the top choice of any good voters) : do not elect a

Byzantine Social Choice - Impossibilities

$B S C(k, V)$

Byzantine Social Choice problem with k candidates, and validity condition/requirement V.
$B S C(2, M)$:

Byzantine Social Choice - Impossibilities

$B S C(k, V)$

Byzantine Social Choice problem with k candidates, and validity condition/requirement V.
$B S C(2, M)$:
■ M: elect top choice of majority of good votes

Byzantine Social Choice - Impossibilities

$B S C(k, V)$

Byzantine Social Choice problem with k candidates, and validity condition/requirement V.
$B S C(2, M)$:

- M: elect top choice of majority of good votes

■ Impossible to solve for $f \geq n / 4$

Byzantine Social Choice - Impossibilities

$B S C(k, V)$

Byzantine Social Choice problem with k candidates, and validity condition/requirement V.

$B S C(2, M)$:

- M: elect top choice of majority of good votes

■ Impossible to solve for $f \geq n / 4$

Reason:
$f \geq n / 4 \Rightarrow$ can not differentiate b / w good and bad votes
$B S C\left(2, M^{\prime}\right)$:

- M^{\prime} : do not elect the last choice of majority of good votes
- Impossible to solve for $f \geq n / 4$

Byzantine Social Choice - Possibilities

$B S C\left(k, S \wedge M^{\prime}\right)$:
■ S : if v is first choice of all good voters, elect v
■ M^{\prime} : if v^{\prime} is last choice of majority of good voters, do not elect v^{\prime}

Byzantine Social Choice - Possibilities

$B S C\left(k, S \wedge M^{\prime}\right)$:
■ S : if v is first choice of all good voters, elect v
■ M^{\prime} : if v^{\prime} is last choice of majority of good voters, do not elect v^{\prime}

- Solvable for $k \geq 3$

Byzantine Social Choice - Possibilities

$B S C\left(k, S \wedge M^{\prime}\right)$:
■ S : if v is first choice of all good voters, elect v
■ M^{\prime} : if v^{\prime} is last choice of majority of good voters, do not elect v^{\prime}

- Solvable for $k \geq 3$

Approach:

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}
$1^{\text {st }}$ choice	b	b	b	c	c	c	a
$2^{\text {nd }}$ choice	a	a	a	a	a	a	b
$3^{r d}$ choice	c	c	c	b	b	b	c

Byzantine Social Choice - Possibilities

$B S C\left(k, S \wedge M^{\prime}\right)$:
■ S : if v is first choice of all good voters, elect v

- M^{\prime} : if v^{\prime} is last choice of majority of good voters, do not elect v^{\prime}
- Solvable for $k \geq 3$

Approach:

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}
$1^{\text {st }}$ choice	b	b	b	c	c	c	a
$2^{\text {nd }}$ choice	a	a	a	a	a	a	b
$3^{\text {rd }}$ choice	c	c	c	b	b	b	c

■ Round 1: Agree on last choices of all voters

Byzantine Social Choice - Possibilities

$B S C\left(k, S \wedge M^{\prime}\right)$:
■ S : if v is first choice of all good voters, elect v
■ M^{\prime} : if v^{\prime} is last choice of majority of good voters, do not elect v^{\prime}

- Solvable for $k \geq 3$

Approach:

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}
$1^{\text {st }}$ choice	b	b	b	c	c	c	a
$2^{\text {nd }}$ choice	a	a	a	a	a	a	b
$3^{\text {rd }}$ choice	c	c	c	b	b	b	c

$$
n=7, \quad f=2, \quad\lfloor(n-f) / 2+1\rfloor=3
$$

- Round 1: Agree on last choices of all voters

■ Remove any candidates that appears $\lfloor(n-f) / 2+1\rfloor$ times or more

Byzantine Social Choice - Possibilities

$B S C\left(k, S \wedge M^{\prime}\right)$:
■ S : if v is first choice of all good voters, elect v

- M^{\prime} : if v^{\prime} is last choice of majority of good voters, do not elect v^{\prime}
- Solvable for $k \geq 3$

Approach:

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}
$1^{\text {st }}$ choice	b	b	b	c	c	c	a
$2^{\text {nd }}$ choice	a	a	a	a	a	a	b
$3^{\text {rd }}$ choice	c	c	c	b	b	b	c

$$
n=7, \quad f=2, \quad\lfloor(n-f) / 2+1\rfloor=3
$$

- Round 1: Agree on last choices of all voters

■ Remove any candidates that appears $\lfloor(n-f) / 2+1\rfloor$ times or more

- $f<n / 3 \wedge k \geq 3 \Rightarrow$ at least one candidate that would not be removed

Byzantine Social Choice - Possibilities

$B S C\left(k, S \wedge M^{\prime}\right)$:
■ S : if v is first choice of all good voters, elect v
■ M^{\prime} : if v^{\prime} is last choice of majority of good voters, do not elect v^{\prime}
■ Solvable for $k \geq 3$
Approach:

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}
$1^{\text {st }}$ choice	b	b	b	c	c	c	a
$2^{\text {nd }}$ choice	a	a	a	a	a	a	b
$3^{r d}$ choice	c	c	c	b	b	b	c

$$
n=7, \quad f=2, \quad\lfloor(n-f) / 2+1\rfloor=3
$$

■ Round 1: Agree on last choices of all voters

- Remove any candidates that appears $\lfloor(n-f) / 2+1\rfloor$ times or more
- $f<n / 3 \wedge k \geq 3 \Rightarrow$ at least one candidate that would not be removed
- Round 2 : Use top choices from remaining candidates, agree and decide

$B S C(k, V)$ Results - Summarized

Requirement	Unsolvable	Solvable
S	-	$k \geq 2$
S^{\prime}	-	$k \geq 2$
M	$f \geq n / 4 \wedge k \geq 2$	-
M^{\prime}	$f \geq n / 4 \wedge k=2$	$k \geq 3$
P	$f \geq 1 \wedge k \geq n$	$f<\min (n / k, n / 3)$
		$\wedge 2 \leq k<n$

Table: Impossibilities \& Possibilities for $B S C(k, V)$

Byzantine Social Welfare - Schemes

Given a ballot, produce a total order over the set of candidates

Byzantine Social Welfare - Schemes

Given a ballot, produce a total order over the set of candidates

Place-Plurality Scheme:

Byzantine Social Welfare - Schemes

Given a ballot, produce a total order over the set of candidates

Place-Plurality Scheme:

k candidates

Byzantine Social Welfare - Schemes

Given a ballot, produce a total order over the set of candidates

Place-Plurality Scheme:

k candidates

```
for \(1 \leq i \leq k\)
    \(c_{i}=\) candidate with most votes at position \(i\) in ballot
    \(\operatorname{result}[i]=c_{i}\)
done
```


Byzantine Social Welfare - Schemes

Given a ballot, produce a total order over the set of candidates

Place-Plurality Scheme:

k candidates
for $1 \leq i \leq k$
$c_{i}=$ candidate with most votes at position i in ballot $\operatorname{result}[i]=c_{i}$
done

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}
$1^{\text {st }}$ choice	b	b	b	c	c	c	a
$2^{\text {nd }}$ choice	a	a	a	a	a	a	b
$3^{\text {rd }}$ choice	c	c	c	b	b	b	c

Result : $b \succ a \succ c$

Median of a Ballot

Distance (d) between rankings: \# of pair-orderings on which rankings differ
Pairwise Comparison, Condorcet, circa 1785

Median of a Ballot

Distance (d) between rankings: \# of pair-orderings on which rankings differ
Pairwise Comparison, Condorcet, circa 1785

r	r^{\prime}	d
a	b	1
b	a	- differ on
c	c	(a, b)

Median of a Ballot

Distance (d) between rankings: \# of pair-orderings on which rankings differ
Pairwise Comparison, Condorcet, circa 1785

r	r^{\prime}	d
a	c	2
b	b	-differ on
c	a	(a, b) and (b, c)

Median of a Ballot

Distance (d) between rankings: \# of pair-orderings on which rankings differ
Pairwise Comparison, Condorcet, circa 1785

r	r^{\prime}	d
a	c	2
b	b	- differ on
c	a	(a, b) and (b, c)

Median (m) of ballot: Ranking that has least distance from overall pair-wise comparisons in the ballot

Kemeny-Young Scheme

(1) J. Kemeny, 1959, (2) H. Young, 1995

Goal: Get as close to the median as possible.

Kemeny-Young Scheme

(1) J. Kemeny, 1959, (2) H. Young, 1995

Goal: Get as close to the median as possible.
For ranking r, let $P_{r}:=$ ordered pairs from r.

Kemeny-Young Scheme

(1) J. Kemeny, 1959, (2) H. Young, 1995

Goal: Get as close to the median as possible.
For ranking r, let $P_{r}:=$ ordered pairs from r. Example: $r=a \succ b \succ c$ then, $P_{r}=\{(a, b) \quad(b, c) \quad(a, c)\}$

Kemeny-Young Scheme

(1) J. Kemeny, 1959, (2) H. Young, 1995

Goal: Get as close to the median as possible.
For ranking r, let $P_{r}:=$ ordered pairs from r.
Example: $r=a \succ b \succ c$ then, $P_{r}=\{(a, b) \quad(b, c) \quad(a, c)\}$
For a given ballot B :

$$
\operatorname{score}(r, B)=\Sigma(\text { frequency of } p \text { in } B)
$$

S_{k} : set of all permutations of k candidates (k ! permutations)
foreach ranking $r \in S_{k}$ do

$$
\operatorname{compute}^{\operatorname{score}}{ }_{r}=\operatorname{score}(r, B)
$$

done

Kemeny-Young Scheme

(1) J. Kemeny, 1959, (2) H. Young, 1995

Goal: Get as close to the median as possible.
For ranking r, let $P_{r}:=$ ordered pairs from r.
Example: $r=a \succ b \succ c$ then, $P_{r}=\{(a, b) \quad(b, c) \quad(a, c)\}$
For a given ballot B :

$$
\operatorname{score}(r, B)=\Sigma(\text { frequency of } p \text { in } B)
$$

S_{k} : set of all permutations of k candidates (k ! permutations)
foreach ranking $r \in S_{k}$ do
compute $_{\text {score }}^{r} \boldsymbol{}=\operatorname{score}(r, B)$
done
select ranking with maximum score $_{r}$ value as the outcome

Kemeny-Young Scheme - Example

Candidates: $\{a, b, c\}$

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}
$1^{\text {st }}$ choice	b	b	b	c	c	c	a
$2^{\text {nd }}$ choice	a	a	a	a	a	a	b
$3^{r d}$ choice	c	c	c	b	b	b	c
$\#(a \succ b)=4$,	$\#(b \succ a)=3$,	$\#(a \succ c)=4$,					
$\#(c \succ a)=3, \quad \#(b \succ c)=4, \quad \#(c \succ b)=3$							

Kemeny-Young Scheme - Example

Candidates: $\{a, b, c\}$

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}
$1^{\text {st }}$ choice	b	b	b	c	c	c	a
$2^{\text {nd }}$ choice	a	a	a	a	a	a	b
$3^{r d}$ choice	c	c	c	b	b	b	c
$\#(a \succ b)=4$,	$\#(b \succ a)=3$,	$\#(a \succ c)=4$,					
$\#(c \succ a)=3, \quad \#(b \succ c)=4, \quad \#(c \succ b)=3$							

Permutations:

a	a	b	b	c	c
b	c	a	c	a	b
c	b	c	a	b	a

Kemeny-Young Scheme - Example

Candidates: $\{a, b, c\}$

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}
$1^{s t}$ choice	b	b	b	c	c	c	a
$2^{n d}$ choice	a	a	a	a	a	a	b
$3^{r d}$ choice	c	c	c	b	b	b	c

$\#(a \succ b)=4, \quad \#(b \succ a)=3, \quad \#(a \succ c)=4$,
$\#(c \succ a)=3, \quad \#(b \succ c)=4, \quad \#(c \succ b)=3$

Permutations:

a	a
b	c
c	b

b	b
a	c
c	a

c	c
a	b
b	a

pairs: $\{(a, b) \quad(b, c) \quad(a, c)\}$

Kemeny-Young Scheme - Example

Candidates: $\{a, b, c\}$

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}
$1^{\text {st }}$ choice	b	b	b	c	c	c	a
$2^{\text {nd }}$ choice	a	a	a	a	a	a	b
$3^{r d}$ choice	c	c	c	b	b	b	c
$\#(a \succ b)=4$,	$\#(b \succ a)=3$,	$\#(a \succ c)=4$,					
$\#(c \succ a)=3, \quad \#(b \succ c)=4, \quad \#(c \succ b)=3$							

Permutations:

a	a	b	b	c	c
b	c	a	c	a	b
c	b	c	a	b	a
12					

$$
\text { pairs: }\{(a, b) \quad(b, c) \quad(a, c)\}
$$

Kemeny-Young Scheme - Example

Candidates: $\{a, b, c\}$

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}
$1^{\text {st }}$ choice	b	b	b	c	c	c	a
$2^{\text {nd }}$ choice	a	a	a	a	a	a	b
$3^{r d}$ choice	c	c	c	b	b	b	c
$\#(a \succ b)=4$,	$\#(b \succ a)=3$,	$\#(a \succ c)=4$,					
$\#(c \succ a)=3, \quad \#(b \succ c)=4, \quad \#(c \succ b)=3$							

Permutations:

a	a	b	b	c	c
b	c	a	c	a	b
c	b	c	a	b	a
12	11	11	10	10	9

Kemeny-Young Scheme - Example

Candidates: $\{a, b, c\}$

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}
$1^{s t}$ choice	b	b	b	c	c	c	a
$2^{n d}$ choice	a	a	a	a	a	a	b
$3^{r d}$ choice	c	c	c	b	b	b	c
$\#(a \succ b)=4$,	$\#(b \succ a)=3$,	$\#(a \succ c)=4$,					
$\#(c \succ a)=3, \quad \#(b \succ c)=4, \quad \#(c \succ b)=3$							

Permutations:

a	a	b	b	c	c
b	c	a	c	a	b
c	b	c	a	b	a
12	11	11	10	10	9

Kemeny-Young Scheme Result: $a \succ b \succ c$

Pruned-Kemeny-Young Scheme (this paper)

Objective: Minimize the influence of bad voters on the outcome

Pruned-Kemeny-Young Scheme (this paper)

Objective: Minimize the influence of bad voters on the outcome
f bad voters $(f<n / 3)$
B : Agreed upon ballot; S_{k} : set of all permutations of k candidates

Pruned-Kemeny-Young Scheme (this paper)

Objective: Minimize the influence of bad voters on the outcome
f bad voters $(f<n / 3)$
B : Agreed upon ballot; S_{k} : set of all permutations of k candidates
foreach ranking $r \in S_{k}$ do
$F=f$ most distant rankings from r in B
define $B^{\prime}=B \backslash F$
compute score $_{r}=\operatorname{score}\left(r, B^{\prime}\right)$

done

Pruned-Kemeny-Young Scheme (this paper)

Objective: Minimize the influence of bad voters on the outcome
f bad voters $(f<n / 3)$
B : Agreed upon ballot; S_{k} : set of all permutations of k candidates
foreach ranking $r \in S_{k}$ do
$F=f$ most distant rankings from r in B
define $B^{\prime}=B \backslash F$
compute $\operatorname{score}_{r}=\operatorname{score}\left(r, B^{\prime}\right)$

done

select ranking with maximum score $_{r}$ value as the outcome

Pruned-Kemeny-Young - Example

$$
n=7, \quad f=2
$$

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}
$1^{\text {st }}$ choice	b	b	b	c	c	c	a
$2^{\text {nd }}$ choice	a	a	a	a	a	a	b
$3^{r d}$ choice	c	c	c	b	b	b	c

Pruned-Kemeny-Young - Example

$$
n=7, \quad f=2
$$

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}
$1^{\text {st }}$ choice	b	b	b	c	c	c	a
$2^{\text {nd }}$ choice	a	a	a	a	a	a	b
$3^{r d}$ choice	c	c	c	b	b	b	c

a	a	b	b	c	c
b	c	a	c	a	b
c	b	c	a	b	a

Pruned-Kemeny-Young - Example

$$
n=7, \quad f=2
$$

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}
$1^{\text {st }}$ choice	b	b	b	c	c	c	a
$2^{\text {nd }}$ choice	a	a	a	a	a	a	b
$3^{r d}$ choice	c	c	c	b	b	b	c

a	a	b	b	c	c
b	c	a	c	a	b
c	b	c	a	b	a

Pruned-Kemeny-Young - Example

$$
n=7, \quad f=2
$$

	P_{1}	P_{2}	P_{3}	P_{6}	P_{7}
$1^{\text {st }}$ choice	b	b	b	c	a
$2^{\text {nd }}$ choice	a	a	a	a	b
$3^{\text {rd }}$ choice	c	c	c	b	c

a	a	b	b	c	c
b	c	a	c	a	b
c	b	c	a	b	a

11

Pruned-Kemeny-Young - Example

$$
n=7, \quad f=2
$$

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}
$1^{\text {st }}$ choice	b	b	b	c	c	c	a
$2^{\text {nd }}$ choice	a	a	a	a	a	a	b
$3^{\text {rd }}$ choice	c	c	c	b	b	b	c

a	a	b	b	c	c
b	c	a	c	a	b
c	b	c	a	b	a
9	8	11	6	10	6

Pruned-Kemeny-Young - Example

$$
n=7, \quad f=2
$$

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}
$1^{\text {st }}$ choice	b	b	b	c	c	c	a
$2^{\text {nd }}$ choice	a	a	a	a	a	a	b
$3^{r d}$ choice	c	c	c	b	b	b	c

a	a	b	b	c	c
b	c	a	c	a	b
c	b	c	a	b	a
9	8	11	6	10	6

Pruned-Kemeny Scheme Result: $b \succ a \succ c$

Evaluating Scheme Efficacy

Suppose ω is an ideal ranking over k candidates
■ ω as the election outcome \Rightarrow maximum social welfare

Evaluating Scheme Efficacy

Suppose ω is an ideal ranking over k candidates

- ω as the election outcome \Rightarrow maximum social welfare
- All good voters in the system favor ω
- goodProb: probability of a good voter putting $a \succ b$ in her vote if $a \succ_{\omega} b$

Evaluating Scheme Efficacy

Suppose ω is an ideal ranking over k candidates

- ω as the election outcome \Rightarrow maximum social welfare

■ All good voters in the system favor ω

- goodProb: probability of a good voter putting $a \succ b$ in her vote if $a \succ_{\omega} b$

■ All bad voters in the system act hostile

- try to minimize social welfare by voting against ω
- badProb: probability of a bad voter putting $b \succ a$ in her vote if $a \succ_{\omega} b$

Evaluating Scheme Efficacy

Suppose ω is an ideal ranking over k candidates

- ω as the election outcome \Rightarrow maximum social welfare

■ All good voters in the system favor ω

- goodProb: probability of a good voter putting $a \succ b$ in her vote if $a \succ_{\omega} b$
- All bad voters in the system act hostile
- try to minimize social welfare by voting against ω
- badProb: probability of a bad voter putting $b \succ a$ in her vote if $a \succ_{\omega} b$

■ Analyze outcomes generated by schemes

Evaluating Scheme Efficacy

Suppose ω is an ideal ranking over k candidates

- ω as the election outcome \Rightarrow maximum social welfare
- All good voters in the system favor ω
- goodProb: probability of a good voter putting $a \succ b$ in her vote if $a \succ_{\omega} b$
- All bad voters in the system act hostile
- try to minimize social welfare by voting against ω
- badProb: probability of a bad voter putting $b \succ a$ in her vote if $a \succ_{\omega} b$

■ Analyze outcomes generated by schemes

$$
\# \text { of voters }=100, \# \text { of } b a d \text { voters }=33, b a d P r o b=0.9
$$

Simulation Results

Average (of 50 ballots) distances of produced outcomes from the ideal ranking

(a) $\#$ of Candidates $=3$

(b) \# of Candidates $=4$

Simulation Results, contd.

Average (of 50 ballots) distances of produced outcomes from the ideal ranking

(c) $\#$ of Candidates $=7$

(d) $\#$ of Candidates $=8$

Conclusion

■ Introduction of democratic election problem in distributed systems

Conclusion

■ Introduction of democratic election problem in distributed systems

■ Pruned-Kemeny-Young Scheme for Byzantine Social Welfare problem

■ Pruned-Kemeny-Young (and Kemeny-Young)
. NP-Hard

■ Pruned-Kemeny-Young (and Kemeny-Young)
. NP-Hard

- Yet produce 'better' results

■ Pruned-Kemeny-Young (and Kemeny-Young)

- NP-Hard
- Yet produce 'better' results
- Explore techniques for finding 'better' outcomes in polynomial steps

Thanks!

Backup

Backup

Average (of 50 ballots) distances of produced outcomes from the ideal ranking

(g) \# of Candidates $=5$

(h) \# of Candidates $=6$

Backup

(i) \# of Candidates $=5$

(j) $\#$ of Candidates $=6$

Backup

(k) \# of Candidates $=7$

(1) $\#$ of Candidates $=8$

Related Work

- Arrow's Impossibility Theorem, and his work on Social Choice and Welfare Theory
- 1950,1951
- Pairwise Comparison Schemes, Social Welfare Schemes, Theory of Voting, Welfare Economics
- Condorcet circa 1785, Buchanan 1954, Graaff 1957, Kemeny 1959, Farquharson 1969, Ishikawa et al. 1979, Young 1988

■ Multivalued Byzantine Agreement Schemes, Byzantine Leader Election, k-set Consensus

- Turpin and Coan 1984, Ostrovsky et al. 1994, Russell et al. 1998, Kapron et al. 2008, Prisco et al. 1999

