
Maximal Antichain Lattice Algorithms for
Distributed Computations

Vijay K. Garg

Parallel and Distributed Systems Lab,
Department of Electrical and Computer Engineering,

The University of Texas at Austin,
Austin, TX 78712

http://www.ece.utexas.edu/˜garg

PDSL, UT Austin Maximal Antichain Lattice Algorithms for Distributed Computations



Model of a Distributed Computation: Poset

distributed computation = poset (partially ordered set)
(E ,→) where
E = is the set of events, and
→ is (happened-before) relation.

P

P

P

1

2

3

d

b f

c e

a
P

P

P

1

2

3

(1,0,2)

(1,0,0) (2,1,0)

(0,2,1)

(0,0,1)

(0,1,0)

(i) (ii)

Events can be timestamped in an online fashion using Vector
Clocks such that e → f ≡ V (e) < V (f ).

PDSL, UT Austin Maximal Antichain Lattice Algorithms for Distributed Computations



Computing Meet and Join

a

d e

c

f

b

Meet of a subset of events
meet of {d, e}
meet of {a,b}
meet of {e,f}
Join of a subset of events

Lattice: a poset in which all finite subsets have meets and
joins.

PDSL, UT Austin Maximal Antichain Lattice Algorithms for Distributed Computations



Consistent Cuts of a Distributed System

P
1

P
2

P
3

G
1

G
2

m

m

m1

2

3

Consistent cut = set of events executed so far
A subset G of E is a consistent cut (consistent global state) if

∀e, f ∈ E : (f ∈ G ) ∧ (e → f )⇒ (e ∈ G )

Same as the order ideal of the partial order (E ,→).

PDSL, UT Austin Maximal Antichain Lattice Algorithms for Distributed Computations



Motivation: Detecting Global Conditions in Distributed
Systems

b

d f

c

e

a {}

{a} {b} {c}

{a,b} {a,c} {b,c}

{a,b,d} {a,b,c}{a,c,e} {b,c,f}

{a,b,c,d} {a,b,c,f}{a,b,c,e}

{a,b,c,d,f}{a,b,c,d,e} {a,b,c,e,f}

{a,b,c,d,e,f}

{a,b,c}

{a,f} {c,d} {b,e}

{d,e,f}

Traversing a significantly smaller lattice of maximal antichains
rather than consistent cuts for certain predicates

PDSL, UT Austin Maximal Antichain Lattice Algorithms for Distributed Computations



Outline of the Talk

Motivation

Incremental Lattice Algorithms

Lattice Enumeration Algorithms

Applications to Global Predicate Detection

Conclusions and Future Work

PDSL, UT Austin Maximal Antichain Lattice Algorithms for Distributed Computations



Ideals and Antichains

b

d f

c

e

a

Poset P = (X ,≤)

Ideal: Q ⊆ X is an ideal ≡ if f is in Q and e ≤ f , then e is
also in Q.

Antichain: Y ⊆ X is called an antichain, if every distinct pair
of elements from Y are incomparable.

PDSL, UT Austin Maximal Antichain Lattice Algorithms for Distributed Computations



Maximal Antichains

b

d f

c

e

a {a,b,c}

{a,b,c,f} {a,b,c,d} {a,b,c,e}

{a,b,c,d,e,f}

{a,b,c}

{a,f} {c,d} {b,e}

{d,e,f}

Maximal Antichain: An antichain A is maximal if every
element not in A is comparable to some element in A.
{d , e} is an antichain but not a maximal antichain
{d , e, f } is a maximal antichain

Maximal Ideal: An ideal Q is maximal antichain ideal if its
maximal elements forms a maximal antichain.
{a, b, c , d} and {a, b, c , e} are maximal ideals
{a, b, c , d , e} is not a maximal ideal

PDSL, UT Austin Maximal Antichain Lattice Algorithms for Distributed Computations



Important Lattices Associated with a Poset

Lattice of Interpretation in DC References

Ideals consistent global states [Mattern88, CM91,..]
Normal Cuts Smallest lattice containing P [Garg OPODIS12]
Maximal Ideals State for maximal antichain [JRJ94, this paper]

Table: Summary of Lattices for Distributed Computations modeled as a
poset P

PDSL, UT Austin Maximal Antichain Lattice Algorithms for Distributed Computations



Related Work: Incremental Algorithms

Elements of the computation arrive in a sorted order
Input: poset P, its lattice of maximal antichains L, element x
Output: L′ := lattice of maximal antichains of P ∪ {x}

Incremental Algorithms Time Complexity Space Complexity

[Jourdan, Rampon, Jard 94] O(w3m) O(mn log n)
[Nourine and Raynaud 99, 02] O(mn) O(mn log n)
Algorithm ILMA [this paper] O(wm log m) O(mw log n)
Algorithm OLMA [this paper] O(mxw2 log wL)) O(wLw log n)

Symbol Definition Symbol Definition

n size of the poset P m size of the lattice L
w width of the poset P mx # (strict ideals ≥ D(x))
wL width of the lattice L

PDSL, UT Austin Maximal Antichain Lattice Algorithms for Distributed Computations



Strict Ideals

D(A) = the set of elements strictly smaller than A
Strict Ideal: A set Y is a strict ideal if there exists an antichain A
such that D(A) = Y .

b

d f

c

e

a

Example: {a, b} is a strict ideal. {a, b, c , d} is not.

PDSL, UT Austin Maximal Antichain Lattice Algorithms for Distributed Computations



Equivalence of maximal ideals and strict ideals

b

d f

c

e

a

{a,b,c}

{a,b,c,f} {a,b,c,d} {a,b,c,e}

{a,b,c,d,e,f}

{a,b,c}

{a,f} {c,d} {b,e}

{d,e,f}

{}

{b,c} {a,b} {a,c}

{a,b,c}

Lattices of maximal ideals, maximal antichains, and strict ideals
are isomorphic.
Mapping from strict ideals to maximal antichains: S is mapped to
the minimal elements of the complement of S .

PDSL, UT Austin Maximal Antichain Lattice Algorithms for Distributed Computations



Incremental Algorithm 1

Input: P: a finite poset as a list of vector clocks
L: lattice of maximal antichains of vector clocks
x : new element
Output: L′ := Lattice of maximal antichains of P ∪ {x} initially L

// Step 1: Compute the set D(x)
Let V be the vector clock for x on process Pi ;
S := V ; S [i ] := S [i ]− 1;
// Step 2:
if S 6∈ L then

L′ := L′ ∪ {S};
forall vectors W ∈ L:

if max(W ,S) 6∈ L then L′ := L′ ∪max(W , S);

PDSL, UT Austin Maximal Antichain Lattice Algorithms for Distributed Computations



Example

Poset and its lattice of maximal antichains

(1,0,0)

(2,0,0) (1,1,0) (1,0,1)

(3,0,0) (2,2,0) (1,1,2)

(1,0,0)

(2,1,1)

(3,1,1)

(2,1,2)(3,2,1)

(3,2,2)

PDSL, UT Austin Maximal Antichain Lattice Algorithms for Distributed Computations



Example

Step 1: D[x ] = (1, 0, 0)
D(x) = (0, 0, 0), strict ideals added: (0, 0, 0)
Set of Maximal Antichains = {(1, 0, 0)}

(1,0,0)

(2,0,0) (1,1,0) (1,0,1)

(3,0,0) (2,2,0) (1,1,2)

(1,0,0)

PDSL, UT Austin Maximal Antichain Lattice Algorithms for Distributed Computations



Example

Step 2: D[x ] = (2, 0, 0)
D(x) = (1, 0, 0), strict ideals added: (1, 0, 0)
Set of Maximal Antichains = {(1, 0, 0), (2, 1, 1)}

(1,0,0)

(2,0,0) (1,1,0) (1,0,1)

(3,0,0) (2,2,0) (1,1,2)

(1,0,0)

(2,1,1)

PDSL, UT Austin Maximal Antichain Lattice Algorithms for Distributed Computations



Example

Step 3: D[x ] = (1, 1, 0)
D(x) = (1, 0, 0), strict ideals added: φ
Set of Maximal Antichains = {(1, 0, 0), (2, 1, 1)}

(1,0,0)

(2,0,0) (1,1,0) (1,0,1)

(3,0,0) (2,2,0) (1,1,2)

(1,0,0)

(2,1,1)

PDSL, UT Austin Maximal Antichain Lattice Algorithms for Distributed Computations



Example

Step 4: D[x ] = (1, 0, 1)
D(x) = (1, 0, 0), strict ideals added: φ

(1,0,0)

(2,0,0) (1,1,0) (1,0,1)

(3,0,0) (2,2,0) (1,1,2)

(1,0,0)

(2,1,1)

PDSL, UT Austin Maximal Antichain Lattice Algorithms for Distributed Computations



Example

Step 5: D[x ] = (3, 0, 0)
D(x) = (2, 0, 0), strict ideals added: (2, 0, 0)
Maximal antichain added: (3, 1, 1)

(1,0,0)

(2,0,0) (1,1,0) (1,0,1)

(3,0,0) (2,2,0) (1,1,2)

(1,0,0)

(2,1,1)

(3,1,1)

PDSL, UT Austin Maximal Antichain Lattice Algorithms for Distributed Computations



Example

Step 6: D[x ] = (2, 2, 0)
D(x) = (2, 1, 0), strict ideals added: (2, 1, 0)
Maximal antichain added: (3, 2, 1)

(1,0,0)

(2,0,0) (1,1,0) (1,0,1)

(3,0,0) (2,2,0) (1,1,2)

(1,0,0)

(2,1,1)

(3,1,1)

(3,2,1)

PDSL, UT Austin Maximal Antichain Lattice Algorithms for Distributed Computations



Example

Step 6: D[x ] = (1, 1, 2)
D(x) = (1, 1, 1), strict ideals added: (1, 1, 1), (2, 1, 1)
Maximal antichains added: {(2, 1, 2), (3, 2, 2)}

(1,0,0)

(2,0,0) (1,1,0) (1,0,1)

(3,0,0) (2,2,0) (1,1,2)

(1,0,0)

(2,1,1)

(3,1,1)

(2,1,2)(3,2,1)

(3,2,2)

PDSL, UT Austin Maximal Antichain Lattice Algorithms for Distributed Computations



Analysis of the Incremental Algorithm 1

1 Simple Algorithm

2 To check if max(S ,W ) ∈ L, maintain L as a binary search tree

3 Requires storage of the the entire lattice (exponential in size
of the poset in the worst case)

PDSL, UT Austin Maximal Antichain Lattice Algorithms for Distributed Computations



Space Efficient Incremental Algorithm

Input: a finite poset P, x maximal element in P ′ = P ∪ {x}
Output: enumerate M such that LMA(P ′) = LMA(P) ∪M

(1) S := the vector clock for x on process Pi ;
(2) S [i ] := S [i ]− 1;
(3) if S is not a strict ideal of P then
(4) // BFS(S): Do Breadth-First-Search traversal of M
(5) T := set of vectors initially {S};
(6) while T is nonempty do
(7) H := delete the smallest vector from T ;
(8) enumerate H;
(9) foreach process k with next event e do
(10) explore H using e;
(11) endfor;
(12) endwhile;
(13) endif;

PDSL, UT Austin Maximal Antichain Lattice Algorithms for Distributed Computations



Outline of the Talk

Motivation

Incremental Lattice Algorithms

Lattice Enumeration Algorithms

Applications to Global Predicate Detection

Conclusions and Future Work

PDSL, UT Austin Maximal Antichain Lattice Algorithms for Distributed Computations



Motivation for Enumeration of Maximal Antichains

Global predicate detection requires enumeration not
construction of the lattice

Lattice of maximal antichains may be exponential in the
number of processes

PDSL, UT Austin Maximal Antichain Lattice Algorithms for Distributed Computations



Related Work: Enumeration Algorithms

Input: a nonempty finite poset P
Output: enumerate all elements of L := DM-completion of P

Algorithm Time Space

[Jourdan, Rampon, Jard 94] O((n + w2)wm) O(mn log n)
[Nourine and Raynaud 99, 02] O(mn2) O(mn log n)
Algorithm ILMA [this paper] O(nwm log m) O(mw log n)

BFS-MA [this paper] O(mw2 log m) O(wLw log n)
DFS-MA [this paper] O(mw4) O(nw log n)
Lexical by [Ganter84] O(mn3) O(n log n)

The parameters are:
n: size of the poset P,
m: size of the lattice L of normal cuts of P,
w : width of the poset P,
wL: width of the lattice L.

PDSL, UT Austin Maximal Antichain Lattice Algorithms for Distributed Computations



Enumeration using Closed Sets

closure(Y ) = smallest maximal antichain ideal that contains
Y . The operator closure(Y ) is monotone, extensive and
idempotent.

Idea: View the lattice of maximal antichains as a directed
graph and enumerate the nodes of the graph using the closure
operator.

Difficulty: Usual DFS on graph cannot be employed as the
graph cannot be stored. Cannot mark which nodes have been
visited before.

PDSL, UT Austin Maximal Antichain Lattice Algorithms for Distributed Computations



Depth First Search Enumeration of Maximal Antichain
Ideals

Input: a finite poset P, starting state G
Output: DFS Enumeration of Maximal Antichain Ideals of P

(1) output(G );
(2) foreach event e enabled in G do
(3) K := closure(G ∪ {e});
(4) if (K covers G ) and (not visited before) then
(5) DFS(K);

PDSL, UT Austin Maximal Antichain Lattice Algorithms for Distributed Computations



How to avoid revisiting cuts?

Visit a state only from the maximum predecessor.
(4) if K does not cover G then go to the next event;
(5) M := get-Max-predecessor(K ) ;
(6) if M = G then
(7) DFS-MaximalIdeals(K);

To check whether K covers G : use the efficient
characterization provided by [Reuter 91].

To choose the maximum predecessor Expand the nodes of the
dual poset and choose the biggest predecessor

PDSL, UT Austin Maximal Antichain Lattice Algorithms for Distributed Computations



Outline of the Talk

Motivation

Incremental Lattice Algorithms

Lattice Enumeration Algorithms

Applications to Global Predicate Detection

Conclusions and Future Work

PDSL, UT Austin Maximal Antichain Lattice Algorithms for Distributed Computations



Application to Global Predicate Detection

Definition (Antichain-Consistent Predicate)

A global predicate is an antichain-consistent predicate if

1 its evaluation depends only on maximal events of a consistent
global state and

2 if it is true on a subset of processes, then presence of
additional processes does not falsify the predicate.

Examples of antichain-consistent predicates

Violation of mutual exclusion: “there is more than one process
in the critical section.”

Violation of resource usage: “there are more than k
concurrent activation of certain service,”

Global Control Point: The predicate, B, “Process P1 is at line
35 and P2 is at line 23 concurrently,”

PDSL, UT Austin Maximal Antichain Lattice Algorithms for Distributed Computations



Equivalence in Global Predicate Detection

Theorem

There exists a consistent global state that satisfies an
antichain-consistent predicate B iff there exists a maximal ideal
that satisfies B.

PDSL, UT Austin Maximal Antichain Lattice Algorithms for Distributed Computations



Conclusions and Future Work

An Incremental Algorithm to generate the lattice of maximal
antichains

BFS and DFS enumeration of maximal antichains

Applications to global predicate detection

Question: Is there a space-efficient algorithm with time complexity
O(mw log n)?

PDSL, UT Austin Maximal Antichain Lattice Algorithms for Distributed Computations


