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D�etection au vol de motifs r�eguliers dans uneex�ecution r�epartieR�esum�e : Nous d�e�nissons ici une classe de propri�et�es pour les ex�ecutions r�epartiesd'un programme distribu�e ainsi qu'un algorithme qui les detecte au vol: les motifsr�eguliers. Cette classe permet �a un utilisateur de sp�eci�er un comportement souhait�eou non au moyen de s�equences d'�ev�enements pertinents ou de s�equences de pr�edi-cats qui doivent être successivement v�eri��es. Ces s�equences sont exprim�ees �a l'aided'automates d'�etats �nis (d'o�u l'emploi du terme r�egulier). Une ex�ecution r�epartiev�eri�e la propri�et�e ainsi exprim�ee si et seulement si un de ses chemins causaux v�eri�eune des s�equences admises par l'automate.Mots-cl�e : propri�et�e comportementale, ex�ecution r�epartie, d�everminage de pro-grammes r�epartis, detection au vol, motifs r�eguliers.



On the Fly Testing of Regular Patterns in Distributed Computations 31 INTRODUCTIONThe study of behavioral properties of parallel and distributed computations is im-portant for analysis, testing and debugging. By \behavioral property" we mean aproperty which expresses some order notion [3, 8, 15]. This is a typical situation inthe analysis of synchronization in distributed computations where we want to detectif a sequence of causally related relevant events (or a sequence of local states thatsatisfy some predicates) has been produced by a computation.One systematic way to detect such properties consists �rst in building the latticeassociated with a distributed execution [4, 5] and then in traversing this lattice todetect the considered behavioral pattern [2, 4]. A node of this lattice represents apossible global state of the distributed computation and an edge from one node toanother represents an event that would make the computation progress from the�rst to the second global state. The kinds of patterns that can be studied in thisway have very few limitations but the associated cost is very high since this methodrequires building the lattice (even if it is possible to build and to exploit it on the
y, during the execution of the analyzed computation as in [1, 2, 4]).To prevent this cost, some authors have de�ned particular behavioral patternswhose detection does not require building the lattice or using a centralized manager.These detection algorithms are superimposed on the distributed computation anduse a simple piggybacking technique to ensure consistency of the detection. One ofthe �rst of these behavioral patterns has been introduced by Miller and Choi [12];called linked predicates such a pattern describes a causal sequencing of local statesverifying some predicates ([6, 8, 12] present algorithms to detect such patterns). In[8], Hur�n et al. generalize this pattern to a more general atomic sequence of predi-cates; here some events can be forbidden between each pair of consecutive relevantevents.This paper presents a class of behavioral patterns that includes linked predicatesand atomic sequences as particular cases. This class of properties called regular pat-terns allows the user to specify a behavioral property of a computation as sequencesof relevant events (or of local predicates that must be veri�ed). These sequences arede�ned by a �nite state automaton, hence the name regular pattern. The propertyis detected as soon as a causal path of the computation matches one of these se-quences. The detection algorithm works on the 
y without building a complex andexpensive data structure such as a lattice.The paper is structured as follows: Section 2 presents the model of distributedcomputations. Section 3 de�nes regular patterns and the meaning of the claim \thisPI n�817



4 E. Fromentin, M.Raynal, V.K.Garg and A.Tomlinsoncomputation satis�es this pattern". Section 4 is devoted to the presentation of adetection algorithm for regular patterns.2 MODEL OF DISTRIBUTED COMPUTATIONS2.1 The underlying systemThe underlying system that executes distributed programs is composed of n nodesthat can exchange messages. Neither shared memory nor a global clock is available.Messages are exchanged through reliable but not necessarily FIFO channels. Trans-mission delays are �nite but unpredictable.2.2 Distributed computationsA distributed program is made of n processes Pi which communicate and synchronizeonly by means of message passing. A distributed computation describes the executionof a distributed program.2.2.1 Partial order on eventsThe activity of each process Pi is modeled by a sequence of events hi called thehistory of Pi: hi = e1i e2i e3i � � � (where exi is the xth event executed by Pi). An eventis a send event, a receive event or an internal event. Let e! be the classical binaryrelation de�ned by Lamport on events [10]: exi e! eyj i� i = j and x+ 1 = y (in thatcase we note exi <eim eyj ), or exi is the sending of m and eyi the reception of m, or 9ezksuch that exi e! ezk and ezk e! eyj .Let H be the set of all the events. A distributed computation is a partiallyordered set (poset) bH = (H; e!).2.2.2 Partial order on local statesEach process Pi is initially in the local state s0i . Event exi transforms Pi's local statesx�1i into sxi . Let S be the set of local states of all the processes. Moreover, let s! bethe following binary relation on local states, sxi s! syj i� one of the following hold:i = j and x+ 1 = y (in that case we note (sxi <sim syj ), or ex+1i is the sending of mand eyi the reception of m, or 9szk such that sxi s! szk and szk s! syj .This relation on local states is Lamport's relation applied to local states. A posetbS = (S; s!) is associated with each distributed computation bH = (H; e!). Figure 1Irisa



On the Fly Testing of Regular Patterns in Distributed Computations 5s01 s11 s21 s41e11 e21 e31s02 s32e12 e32s03 s23 s33e13 e23 e33e22 s22s13 s31 e41s12Figure 1: A distributed executiondisplays a distributed execution in the classical space-time diagram (black circles areevents, white squares are local states). To obtain the representation of an associatedposet bH or bS we consider only relevant elements (either events or local states) andadd all edges due to transitivity.2.2.3 Reduction of a distributed executionEach poset bH = (H; e!) can be associated with a relation called H-reduction,cHr = (H; e!r), where relation e!r is relation e! from which have been suppressed:all transitivity edges due to the transitive closure of <eim and all transitivity edgesconnecting events from two distinct processes1.Figure 2 displays the H-reduction associated with the computation shown inFigure 1 (edge (e21; e33) has been suppressed as it is a transitivity edge). The S-reduction cSr = (S; s!r) is de�ned similarly from bS.A causal path of bH (respt. bS) is a directed path in the associated H-reductioncHr (respt. in the associated S-reduction cSr). cHr (respt. cSr) will be used to reasonabout sequences of relevant events (respt. sequences of local states satisfying somepredicates).1If messages deliveries respect causal order [13], there are no such transitivity edges.
PI n�817



6 E. Fromentin, M.Raynal, V.K.Garg and A.Tomlinsone31e12 e32e13 e33e22 e41e11 e23e21
Figure 2: The H-reduction of the poset bH3 REGULAR PATTERNS3.1 Regular patternA regular pattern P is a language (set of words) de�ned on a vocabulary V , bya �nite state automaton. The regular pattern and the corresponding �nite stateautomaton are given the same name P .3.2 LabellingIn order to recognize a pattern on a distributed execution, it is necessary to labelevents (or local states) with symbols of V . In order to ignore irrelevant events (orlocal states) the empty symbol � belongs to V .The labelling function � associates with each event e (respt. to each local states) a set of labels �(e) (respt. �(s)). Considering the causal path C = e1e2e3 � � �, �(C)represents the set fx1x2x3 � � � j xi 2 �(ei)g. In others words �(C) is the set of all thewords that can be build from C with all possible labellings.3.3 Detection of a patternA pattern P is veri�ed in a distributed computation bH if there is a causal path Csuch that an element of �(C) is recognized by P . If P is on events, C is a path ofcHr; if P is on local states C is a path of cSr. Irisa



On the Fly Testing of Regular Patterns in Distributed Computations 73.4 ExamplesExample 1Consider the following sequence of local predicates �1 = '1'2'3 [6, 8, 12]. Thissequence describes a pattern that is veri�ed if there is a causal path in cSr in whichthere is a local state of Px(1) satisfying '1 followed by a local state of Px(2) satisfying'2 followed by a local state of Px(3) satisfying '3.All local states of Px(i) that satisfy 'i are labeled 'i. Other states are labeled �.�1 is true if there exist a causal path that matches the regular expression '1'2'3.Example 2Consider the more sophisticated predicate �2 = [�1]'2[�3]'4[�5] where �i and 'jare local predicates [8]. �2 is true if there is a causal path in which as before thereis a local state s2 in Px(2) satisfying '2 and a local state s4 in Px(4) satisfying '4and additionally on this causal path all local states preceding s2 do not verify �1,all local states in between s2 and s4 do not verify �3 and all local states following s4do not verify �5 (see [8] for more details about atomic sequences of predicates).A local state that satis�es a local predicate � or ' is labeled by this predicate.Local states of a process on which no local predicates ' or � are de�ned are labeled�. �2 is true if there is a causal path recognized by the following regular expression:('2 + �3 + '4 + �5)�'2 (�1 + '2 + '4 + �5)�'4 (�1 + '2 + �3 + '4)�.4 AN ON THE FLY TESTING ALGORITHM4.1 The �nite state automatonLet P be the �nite state automaton (deterministic or not) describing the regularpattern we are interested in. P = (Q; V; q0; QF ; �) with: Q the set of states, V theset input symbols (including �), q0 the initial state, QF the set of �nal states and �the transition function2.Figure 3 displays the �nite state automaton associated with the pattern ofexample 2 in Section 3.4.4.2 Working on the H(or S)-reductionIn order to work on the H(or S)-reduction, processes are equipped with a vector clocksystem [11]. Each process Pi is augmented with a vector vci[1 � � �n] whose elements2� is such that (q; x) �7! Q0 with Q0 � Q and (q; �) �7! fqg for all states q 2 Q.PI n�817



8 E. Fromentin, M.Raynal, V.K.Garg and A.Tomlinsonf�;'2; �1; '4; �3g'4'2f�; '2; �1; '4; �5gf�;'2; �3 ; '4; �5gFigure 3: A �nite state automaton for an atomic sequenceare initialized to 0. Each time it produces an event, vci[i] is incremented by a positivevalue. Each message m piggybacks the value vc(m) of the vector clock of its sender.When it receives a message m, process Pi updates vci to max(vci; vc(m))3. Whenit arrives at Pi, message m adds a transitivity edge to the H(or S)-reduction if andonly if vci > vc(m)4 [14].In that case this receive is ignored from the point of viewof the detection. In the following, we do not describe vector clock management.4.3 The detection algorithmA controller CTLi is superimposed on each process Pi of the underlying computa-tion. In addition to vector clocks, CTLi manages an array Ai[Q] of boolean valueswith the following meaning: Ai[q] is true i� there is a causal path C ending at thecurrent local state of Pi (or at the last event it produced such that a word of �(C)puts P in state q.Ai[q0] is initially the only entry with value True. CTLi executes the followingstatements: S1, S2 and S3. Statement S1 is executed each time an event ei is producedby a process Pi (or each time a new local state si is entered). Statements S2 and S3are associated with each communication message.3max is done element per element.4vci > vc(m) , 8j 2 1 � � �n : vci[j]� vc(m)[j] and 9j 2 1 � � �n : vci[j] > vc(m)[j].
Irisa



On the Fly Testing of Regular Patterns in Distributed Computations 9S1: Each time an event ei is produced by Pi:let X = �(ei); % or X = �(si) %foreach x 2 X doAx[Q] := (False; � � � ; False);foreach q 2 Q such that Ai[q] doforeach r 2 �(q; x) do Ax[r] := True odododforeach q 2 Q do Ai[q] := Wx2X Ax[q]; odS2: When Pi sends a message m:if the regular pattern is on events thenexecute statement S1 where ei is this send event;Piggyback Ai on m before it is sent;S3: When Pi receives a msg m piggybacked with A(m):if m does not create a transitivity edge thenforeach q 2 Q do Ai[q] := Ai[q] _A(m)[q]; odif the regular pattern is on events thenexecute S1 where ei is this receive event.4.4 Correctness proofThe proof is done for regular patterns of events (a similar reasoning can be donefor regular patterns of local predicates). Consider the H-reduction associated witha distributed computation. Let e be a node of this partial order and Ae the valueof the array A associated with the event e by the previous algorithm. Let CP (e) bethe set of causal paths ending at e.The proof consists in showing that for any event e the following proposition PRis true.PR Ae[q] is true i� there exists a causal path C 2 CP (e) such that: y 2 �(C)and the word y puts the automaton in state q.PI n�817



10 E. Fromentin, M.Raynal, V.K.Garg and A.TomlinsonProof: Augment each process Pi by a �ctitious initial event e0i labeled �. Theproof is done by induction on the rank of events in the augmented H-reduction (therank of an event is the length of the longest causal path ending at e).Due to initialization of arrays Ai, the proposition is trivially true for all initialevents which have rank 1. Now assuming proposition PR is true for all events withrank less than r, consider an event e of rank r. Events, other than e, belonging to apath of CP (e) have a rank less than r. Two cases have to be considered:1. e is an internal or a send event.It follows that e has only one predecessor e0, and e0 has rank r � 1. StatementS � 1 checks all possible transitions from all automaton states q0 such thatAe0 [q0] with all labels of �(e). It follows that the array Ae, associated with ewhose rank is r, satis�es proposition PR.2. e is a receive event.In this case, e has two predecessors e0 and e00 and at least one of them has rankr � 1. Statement S3 merges Ae0 and Ae00 into an intermediate array which isused as the input array when S3 calls S1. The same reasoning as in case 1applies and proposition PR is veri�ed for e.It follows proposition PR is true for all events of rank r. 25 RELATED WORKAs mentioned in section 3, linked predicates [6, 8, 12] and atomic sequences ofpredicates [8] can be expressed as regular patterns. In the case of linked predicates,the associated automaton is linear and messages have only to piggyback the lastrecognized state of this automaton.In [9], Jard et al. propose to check for regular properties of distributed com-putations. These properties are described by �nite state automata. To answer thequestion \is this property veri�ed by the distributed computation ?" Jard et al.consider the lattice of global states representing all possible observations of the dis-tributed computation (an observation is a path in this lattice from the initial tothe �nal global state [4]). \Some" satisfaction is claimed when at least one path ofthe lattice is recognized by the automaton whereas \every" satisfaction is claimedwhen each path of the lattice is recognized by the automaton (two distinct pathsof the lattice can be associated with two distinct sentences both accepted by theIrisa



On the Fly Testing of Regular Patterns in Distributed Computations 11automaton). In our algorithm the veri�cation is done, on the 
y, on the paths of thepartial order generated by the execution.6 CONCLUSIONThis paper has introduced a class of behavioral patterns for distributed computa-tions. Such patterns are causal sequences of relevant events (or causal sequences oflocal states that satisfy some predicates) de�ned by a �nite state automaton (hencethe name regular patterns). Theoretical results (about complementary, union, etc)on �nite state automata can simplify the task of designing and verifying such beha-vioral patterns. An algorithm that detects these regular patterns on the 
y has beenproposed; it needs neither complex data structures (such as a lattice), nor a centralmonitor, nor additional messages; it only requires that each message piggybacks aboolean array (whose size is the number of states of the �nite state automaton) anda vector clock if causal order is not ensured by the underlying system.An implementation of this detection algorithm is currently in progress in ourdistributed debugging facility [7].AcknowledgementsWe are grateful to �O.Babao�glu, M.Hur�n and Cl. Jard for interesting discussionsabout distributed detection of predicates. This work has been supported in part bythe Commission of European Communities under ESPRIT Programme BRA 6360(BROADCAST), by the French CNRS under the grant Parallel Traces and by aFrench-Israeli grant on distributed computing.References[1] �O. Babao�glu and K. Marzullo. Consistent global states of distributed systems:fundamental concepts and mechanisms, in Distributed Systems, chapter 4. ACMPress, Frontier Series, S.J. Mullender Ed., (1993).[2] �O. Babao�glu and M. Raynal. \Speci�cation and detection of behavioral patternsin distributed computations", In Proc. of 4th IFIP WG 10.4 Int. Conferenceon Dependable Computing for Critical Applications, Springer Verlag Series inDependable Computing, San Diego, (January, 1994).PI n�817
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