Weighted Byzantine Agreement

Vijay K. Garg John Bridgman

Parallel and Distributed Systems Lab at The University of Texas at Austin

IPDPS 2011

Byzantine Agreement

- Introduced by Lamport, Shostak and Pease 1980
- Model:
 - n processes
 - f byzantine faults
 - Synchronous system

Byzantine Agreement Requirements

• Agreement: Two correct processes cannot decide on different values.

Byzantine Agreement Requirements

► Agreement: Two correct processes cannot decide on different values.

	P_0	P_1	P_2	 P_n
Input	0	1	0	 1
Good Output	1	1	1	 1
Bad Output	0	1	0	 1

Byzantine Agreement Requirements

- Agreement: Two correct processes cannot decide on different values.
- Validity: The value decided must be proposed by some correct process.

Byzantine Agreement Requirements

- Agreement: Two correct processes cannot decide on different values.
- Validity: The value decided must be proposed by some correct process.

	P_0	P_1	<i>P</i> ₂	 P_n
Input	1	1	1	 1
Good Output	1	1	1	 1
Bad Output	0	0	0	 0

Byzantine Agreement Requirements

- Agreement: Two correct processes cannot decide on different values.
- Validity: The value decided must be proposed by some correct process.
- **Termination**: All correct processes decide in finite number of steps.

Byzantine Agreement Lower Bounds

- ▶ n ≥ 3f + 1
- Given by Lamport, Shostak, Pease 1980

Byzantine Agreement Lower Bounds

- ▶ n ≥ 3f + 1
- ▶ Given by Lamport, Shostak, Pease 1980
- What if we have 30 processes where 15 of them can fail?

Byzantine Agreement Lower Bounds

▶ n ≥ 3f + 1

- ▶ Given by Lamport, Shostak, Pease 1980
- What if we have 30 processes where 15 of them can fail?

▶ *f* + 1 rounds worst case

Given by Fischer and Lynch 1982

Byzantine Agreement Lower Bounds

▶ n ≥ 3f + 1

- ► Given by Lamport, Shostak, Pease 1980
- What if we have 30 processes where 15 of them can fail?

▶ *f* + 1 rounds worst case

- Given by Fischer and Lynch 1982
- Can we design a protocol that under certain assumptions can beat these?

Weight Motivation

- 1. Abstract notion of trust
- 2. Support multiple classes of processes
- 3. Beat bounds under certain conditions

WBA Problem Specification

- Common weight vector, w
- \blacktriangleright Weight of failed no more than ρ
- Must satisfy:
 - Agreement
 - Validity
 - Termination

WBA Lower Bounds

Let α_ρ be the minimum number of processes whose weight exceeds ρ then

- α_{ρ} rounds
- $\blacktriangleright \ \rho < 1/3$

Outline

Introduction

Algorithms

Weighted-Queen Algorithm Weighted-King Algorithm

Initial Weight Assignment

Updating Weights

Related Work

Conclusions

Algorithms

Weighted Byzantine Algorithm Examples

- Two algorithms: Weighted Queen and Weighted King
- These have good properties
 - $\leq f + 1$ phases
 - Any failure combination so long as weight $<\rho$

The Weighted-Queen Algorithm

Based on Phase Queen given by Berman and Garay 1989

	Phase Queen (original)	Weighted Queen (ours)
Fault tolerance	f < n/4	ho < 1/4
Rounds	2(f + 1)	$2lpha_ ho$

The Weighted-Queen Algorithm

Based on Phase Queen given by Berman and Garay 1989

	Phase Queen (original)	Weighted Queen (ours)
Fault tolerance	f < n/4	ho < 1/4
Rounds	2(f + 1)	$2lpha_ ho$

 $\alpha_{
ho} \leq f+1$

The Weighted-Queen Algorithm

For α_{ρ} phases iterating over the processes starting with highest weight to lowest do:

- First round
 - Exchange own value, v, with everyone
 - Set v to the value with the highest weight
 - Set supp to the weight of v
- Second round
 - Queen broadcasts its value
 - If $supp \leq 3/4$, set v to the queen's value

Output own value

- Example: 7 processes with weight assignment [0.2, 0.2, 0.12, 0.12, 0.4, 0.12, 0.12]
- Standard algorithm: 1 fault only, Weighted: some 2 faults
- For example 0 and 4 together

Phase 1, Round 1:

▶ Phase 1, Round 1:

•

0	1	2	3
	0: 0.12 1: 0.88	0: 0.52 1: 0.48	0: 0.52 1: 0.48
4	5	6	
	0: 0.12 1: 0.88	0: 0.52 1: 0.48	

▶ Phase 1, Round 1:

0	1	2 3		
	v: 1 supp: 0.88	v: 0 supp: 0.52	v: 0 supp: 0.52	
4	5 v: 1 supp: 0.88	6 v: 0 supp: 0.52		

Phase 1, Round 2:

Phase 1, Round 2:

Phase 2, Round 1:

Phase 2, Round 1:

▶ Phase 2, Round 2:

Phase 2, Round 2:

Persistence of Agreement

Lemma (Persistence of Agreement)

Assuming $\rho < 1/4$, if all correct processes prefer a value v at the beginning of a round; then, they continue to do so at the end of the round.

Algorithms Weighted-Queen Algorithm

At Least One Correct Queen

Lemma

There is at least one in the first α_{ρ} rounds in which the queen is correct.

Weighted-Queen Satisfies the WBA Problem

Theorem

The Weighted-Queen Algorithm solves the agreement problem for all $\rho < 1/4$.

To prove this we have to prove that this algorithm satisfies the three properties listed previously: validity, termination, and agreement.

Weighted-King Algorithm

 Three round algorithm based on algorithm given by Berman, Garay and Perry 1989

	Phase King (orig.)	Weighted King (ours)
Fault tolerance	f < n/3	ho < 1/3
Rounds	3(f + 1)	$3lpha_ ho$

Initial Weight Assignment

- Weight assignment dramatically changes the nature of these algorithms.
- Simple examples:
 - $[1/n, 1/n, \dots, 1/n]$
 - $\blacktriangleright [1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 0, \dots, 0]$
 - ► [1,0,0,...,0]

Initial Weight Assignment

- Weight assignment dramatically changes the nature of these algorithms.
- Simple examples:
 - [1/n, 1/n, ..., 1/n]
 - $\blacktriangleright [1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 0, \dots, 0]$
 - ► [1,0,0,...,0]
- ► A more involved example with two sets of processes:
 - Set A is a collection of six highly reliable processes with probability of failure $f_a = 0.1$.
 - Set *B* is a collection of unreliable processes with probability of failure $f_b = 0.3$.

Initial Weight Assignment

Initial Weight Assignment Policies

- Uniform (Same as regular Byzantine Agreement)
- All weight to set A
- $w[i] \propto 1 Pr\{P_i \text{ fails}\}$
- $w[i] \propto \frac{1}{Pr\{P_i \text{ fails}\}}$

Weight Assignment Example Probabilities

Updating Weights

Can we update weights? Some issues with updating weights:

- Weight vector at each process must be the same
- Each process may see different views of what other have sent

Weight Update Algorithm

- A simple solution of agreeing on weights
- Process can detect a faulty process j if:
 - j sends a no message or corrupted message
 - *j* is queen, queen value is different from *v* and supp > 3/4
- After detect can reduce the weight of the process
- ► Have to be careful, faulty process can claim good process faulty

Updating Weights

Weight Update Algorithm

- Round one
 - Broadcast faultySet
 - For each process j that is suspected by some process if the weight of all processes that suspect is greater than ρ then add j to faultySet
- Round two
 - Use WBA to agree upon faultySet
 - Add to consensusFaulty each one agreed to be faulty
- Round three
 - Set the weight of processes in *consensusFaulty* to 0 and renormalise

Related Work

Related work: Adversarial Structure

- Adversarial structure by Hirt and Maurer 1997
- The adversarial structure is the set of all processes whose failure should be tolerated
- Adversarial structure is exponential in n
- Many adversarial structures can be converted to a weight assignment

Conclusions

Weighted Versus Unweighted

- Pros:
 - Simple
 - Can tolerate more than n/3 faults in certain circumstances
 - Always $\leq f + 1$ rounds
- Cons:
 - Even with fewer than n/3 faulty processes the algorithm may not work in some cases

Conclusions

Future Work

- Better update methods
- Apply weights to other algorithms
- Approximately equal weight vectors

29 / 33

Conclusions

Conclusion

- Weighted Byzantine Agreement
- Weighted Algorithms
- Initial Weight Assignment
- Update Method

Backup

Adversarial Structure Example

Let

$$P == \{d, e, f, g, h, i\}$$

and

$$\bar{A} = \{\{d, e, f\}, \{d, g\}, \{e, h\}, \{e, i\}, \{f, g\}\}$$

Then a weight assignment that satisfies this adversarial structure is:

Process	d	е	f	g	h	i
Weight	1/9	1/18	8/57	1/16	5/19	5/19

Weighted-King Algorithm

For α_{ρ} rounds where the king iterates over the processes from highest weight to lowest weight:

- Phase one:
 - Broadcast own value
 - ▶ If 1 or 0 has weight over 2/3 then set own value to that value
 - else set own value to undecided
- Phase two:
 - Broadcast own value
 - If the weight of some value received is above 1/3 (giving priority to 0, then 1, then undecided) set own value to that value

Phase three:

- King broadcasts its value
- if own value is undecided or the supporting weight from phase two of own value is under 2/3 then set value to kings value
- if own value is undecided set value to one

Artificial Neural Networks

- > Artificial Neural Networks deal with weighted sums of inputs
- Are not used the say way as the way we are using weights.