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Introduction

Byzantine Agreement

I Introduced by Lamport, Shostak
and Pease 1980

I Model:
I n processes
I f byzantine faults
I Synchronous system
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Introduction

Byzantine Agreement Requirements

I Agreement: Two correct processes cannot decide on different values.

I Validity: The value decided must be proposed by some correct
process.

I Termination: All correct processes decide in finite number of steps.

P0 P1 P2 . . . Pn

Input 0 1 0 . . . 1

Good Output 1 1 1 . . . 1

Bad Output 0 1 0 . . . 1

P0 P1 P2 . . . Pn

Input 1 1 1 . . . 1

Good Output 1 1 1 . . . 1

Bad Output 0 0 0 . . . 0
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Introduction

Byzantine Agreement Lower Bounds

I n ≥ 3f + 1

I Given by Lamport, Shostak, Pease 1980

I What if we have 30 processes where 15 of them can fail?

I f + 1 rounds worst case

I Given by Fischer and Lynch 1982

I Can we design a protocol that under certain assumptions can beat
these?
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Introduction

Weight Motivation

1. Abstract notion of trust

2. Support multiple classes of
processes

3. Beat bounds under certain
conditions
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Introduction

WBA Problem Specification

I Common weight vector, w

I Weight of failed no more than ρ
I Must satisfy:

I Agreement
I Validity
I Termination
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Introduction

WBA Lower Bounds

Let αρ be the minimum number of
processes whose weight exceeds ρ
then

I αρ rounds

I ρ < 1/3
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Updating Weights

Related Work
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Algorithms

Weighted Byzantine Algorithm Examples

I Two algorithms: Weighted
Queen and Weighted King

I These have good properties
I ≤ f + 1 phases
I Any failure combination so

long as weight < ρ
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Algorithms Weighted-Queen Algorithm

The Weighted-Queen Algorithm

I Based on Phase Queen given by Berman and Garay 1989

Phase Queen (original) Weighted Queen (ours)

Fault tolerance f < n/4 ρ < 1/4

Rounds 2(f + 1) 2αρ

αρ ≤ f + 1
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Algorithms Weighted-Queen Algorithm

The Weighted-Queen Algorithm

For αρ phases iterating over the processes starting with highest
weight to lowest do:

I First round
I Exchange own value, v , with everyone
I Set v to the value with the highest weight
I Set supp to the weight of v

I Second round
I Queen broadcasts its value
I If supp ≤ 3/4, set v to the queen’s value

Output own value
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Algorithms Weighted-Queen Algorithm

Weighted-Queen Example

I Example: 7 processes with weight assignment
[0.2, 0.2, 0.12, 0.12, 0.4, 0.12, 0.12]

I Standard algorithm: 1 fault only, Weighted: some 2 faults

I For example 0 and 4 together
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Algorithms Weighted-Queen Algorithm

Weighted-Queen Example

I Phase 1, Round 1:

0 1 2 3

4 5 6

w[0]: 0.20 w[1]: 0.20
v: 1

w[2]: 0.12
v: 0

w[3]: 0.12
v: 1

w[4]: 0.04 w[5]: 0.12
v: 1

w[6]: 0.12
v: 0
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Algorithms Weighted-Queen Algorithm

Weighted-Queen Example

I Phase 1, Round 1:

0 1 2 3

4 5 6

0: 0.12
1: 0.88

0: 0.52
1: 0.48

0: 0.52
1: 0.48

0: 0.52
1: 0.48

0: 0.12
1: 0.88
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Algorithms Weighted-Queen Algorithm

Weighted-Queen Example

I Phase 1, Round 1:

0 1 2 3

4 5 6

v: 1
supp: 0.88

v: 0
supp: 0.52

v: 0
supp: 0.52

v: 1
supp: 0.88

v: 0
supp: 0.52
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Algorithms Weighted-Queen Algorithm

Weighted-Queen Example

I Phase 1, Round 2:

0 1 2 3

4 5 6

v: 1
supp: 0.88

v: 0
supp: 0.52

v: 0
supp: 0.52

v: 1
supp: 0.88

v: 0
supp: 0.52

0

0
1
0

0
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Algorithms Weighted-Queen Algorithm

Weighted-Queen Example

I Phase 1, Round 2:

0 1 2 3

4 5 6

v: 1 v: 0 v: 1

v: 1 v: 0
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Algorithms Weighted-Queen Algorithm

Weighted-Queen Example

I Phase 2, Round 1:

0 1 2 3

4 5 6

v: 1 v: 0 v: 1

v: 1 v: 0
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Weighted-Queen Example

I Phase 2, Round 1:

0 1 2 3

4 5 6

v: 1
supp: 0.88

v: 0
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v: 0
supp: 0.52

v: 1
supp: 0.88

v: 0
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Algorithms Weighted-Queen Algorithm

Weighted-Queen Example

I Phase 2, Round 2:

0 1 2 3

4 5 6

1
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Algorithms Weighted-Queen Algorithm

Weighted-Queen Example

I Phase 2, Round 2:

0 1 2 3

4 5 6

v: 1 v: 1 v: 1

v: 1 v: 1
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Algorithms Weighted-Queen Algorithm

Persistence of Agreement

Lemma (Persistence of Agreement)

Assuming ρ < 1/4, if all correct processes prefer a value v at the beginning
of a round; then, they continue to do so at the end of the round.
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Algorithms Weighted-Queen Algorithm

At Least One Correct Queen

Lemma
There is at least one in the first αρ rounds in which the queen is correct.
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Algorithms Weighted-Queen Algorithm

Weighted-Queen Satisfies the WBA Problem

Theorem
The Weighted-Queen Algorithm solves the agreement problem for all
ρ < 1/4.

To prove this we have to prove that this algorithm satisfies the three
properties listed previously: validity, termination, and agreement.
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Algorithms Weighted-King Algorithm

Weighted-King Algorithm

I Three round algorithm based on
algorithm given by Berman,
Garay and Perry 1989

Phase King (orig.) Weighted King (ours)

Fault tolerance f < n/3 ρ < 1/3

Rounds 3(f + 1) 3αρ
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Initial Weight Assignment

Initial Weight Assignment

I Weight assignment dramatically changes the nature of these
algorithms.

I Simple examples:
I [1/n, 1/n, . . . , 1/n]
I [1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 0, . . . , 0]
I [1, 0, 0, . . . , 0]

I A more involved example with two sets of processes:

I Set A is a collection of six highly reliable processes with probability of
failure fa = 0.1.

I Set B is a collection of unreliable processes with probability of failure
fb = 0.3.
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Initial Weight Assignment

Initial Weight Assignment Policies

I Uniform (Same as regular Byzantine Agreement)

I All weight to set A

I w [i ] ∝ 1− Pr{Pi fails}
I w [i ] ∝ 1

Pr{Pi fails}
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Weight Assignment Example Probabilities
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Updating Weights

Updating Weights

Can we update weights?
Some issues with updating weights:

I Weight vector at each process
must be the same

I Each process may see different
views of what other have sent
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Updating Weights

Weight Update Algorithm

I A simple solution of agreeing on weights
I Process can detect a faulty process j if:

I j sends a no message or corrupted message
I j is queen, queen value is different from v and supp > 3/4

I After detect can reduce the weight of the process

I Have to be careful, faulty process can claim good process faulty
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Updating Weights

Weight Update Algorithm

I Round one
I Broadcast faultySet
I For each process j that is suspected by some process if the

weight of all processes that suspect is greater than ρ then add
j to faultySet

I Round two
I Use WBA to agree upon faultySet
I Add to consensusFaulty each one agreed to be faulty

I Round three
I Set the weight of processes in consensusFaulty to 0 and

renormalise
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Related Work

Related work: Adversarial Structure

I Adversarial structure by Hirt and Maurer 1997

I The adversarial structure is the set of all processes whose failure
should be tolerated

I Adversarial structure is exponential in n

I Many adversarial structures can be converted to a weight assignment
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Conclusions

Weighted Versus Unweighted

I Pros:
I Simple
I Can tolerate more than n/3 faults in certain circumstances
I Always ≤ f + 1 rounds

I Cons:
I Even with fewer than n/3 faulty processes the algorithm may not work

in some cases
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Conclusions

Future Work

I Better update methods

I Apply weights to other algorithms

I Approximately equal weight vectors
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Conclusions

Conclusion

I Weighted Byzantine Agreement

I Weighted Algorithms

I Initial Weight Assignment

I Update Method

John Bridgman (PDSL UT) WBA IPDPS 2011 30 / 33



Backup

Adversarial Structure Example

Let
P == {d , e, f , g , h, i}

and
Ā = {{d , e, f }, {d , g}, {e, h}, {e, i}, {f , g}}

Then a weight assignment that satisfies this adversarial structure is:
Process d e f g h i

Weight 1/9 1/18 8/57 1/16 5/19 5/19
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Backup

Weighted-King Algorithm

For αρ rounds where the king iterates over the processes from highest
weight to lowest weight:

I Phase one:
I Broadcast own value
I If 1 or 0 has weight over 2/3 then set own value to that value
I else set own value to undecided

I Phase two:
I Broadcast own value
I If the weight of some value received is above 1/3 (giving priority to 0,

then 1, then undecided) set own value to that value

I Phase three:
I King broadcasts its value
I if own value is undecided or the supporting weight from phase two of

own value is under 2/3 then set value to kings value
I if own value is undecided set value to one
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Backup

Artificial Neural Networks

I Artificial Neural Networks deal with weighted sums of inputs

I Are not used the say way as the way we are using weights.
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