Weighted Byzantine Agreement

Vijay K. Garg John Bridgman

Parallel and Distributed Systems Lab at The University of Texas at Austin

IPDPS 2011

Byzantine Agreement

- Introduced by Lamport, Shostak and Pease 1980
- Model:
- n processes
- f byzantine faults
- Synchronous system

Byzantine Agreement Requirements

- Agreement: Two correct processes cannot decide on different values.

Byzantine Agreement Requirements

- Agreement: Two correct processes cannot decide on different values.

	P_{0}	P_{1}	P_{2}	\ldots	P_{n}
Input	0	1	0	\ldots	1
Good Output	1	1	1	\ldots	1
Bad Output	0	1	0	\ldots	1

Byzantine Agreement Requirements

- Agreement: Two correct processes cannot decide on different values.
- Validity: The value decided must be proposed by some correct process.

Byzantine Agreement Requirements

- Agreement: Two correct processes cannot decide on different values.
- Validity: The value decided must be proposed by some correct process.

	P_{0}	P_{1}	P_{2}	\ldots	P_{n}
Input	1	1	1	\ldots	1
Good Output	1	1	1	\ldots	1
Bad Output	0	0	0	\ldots	0

Byzantine Agreement Requirements

- Agreement: Two correct processes cannot decide on different values.
- Validity: The value decided must be proposed by some correct process.
- Termination: All correct processes decide in finite number of steps.

Byzantine Agreement Lower Bounds

- $n \geq 3 f+1$
- Given by Lamport, Shostak, Pease 1980

Byzantine Agreement Lower Bounds

- $n \geq 3 f+1$
- Given by Lamport, Shostak, Pease 1980
- What if we have 30 processes where 15 of them can fail?

Byzantine Agreement Lower Bounds

- $n \geq 3 f+1$
- Given by Lamport, Shostak, Pease 1980
- What if we have 30 processes where 15 of them can fail?
- $f+1$ rounds worst case
- Given by Fischer and Lynch 1982

Byzantine Agreement Lower Bounds

- $n \geq 3 f+1$
- Given by Lamport, Shostak, Pease 1980
- What if we have 30 processes where 15 of them can fail?
- $f+1$ rounds worst case
- Given by Fischer and Lynch 1982
- Can we design a protocol that under certain assumptions can beat these?

Weight Motivation

1. Abstract notion of trust
2. Support multiple classes of processes
3. Beat bounds under certain conditions

WBA Problem Specification

- Common weight vector, w
- Weight of failed no more than ρ
- Must satisfy:
- Agreement
- Validity
- Termination

WBA Lower Bounds

Let α_{ρ} be the minimum number of processes whose weight exceeds ρ then

- α_{ρ} rounds
- $\rho<1 / 3$

Outline

Introduction

Algorithms
Weighted-Queen Algorithm
Weighted-King Algorithm
Initial Weight Assignment
Updating Weights
Related Work

Conclusions

Weighted Byzantine Algorithm Examples

- Two algorithms: Weighted Queen and Weighted King
- These have good properties
- $\leq f+1$ phases
- Any failure combination so long as weight $<\rho$

The Weighted-Queen Algorithm

- Based on Phase Queen given by Berman and Garay 1989

	Phase Queen (original)	Weighted Queen (ours)
Fault tolerance	$f<n / 4$	$\rho<1 / 4$
Rounds	$2(f+1)$	$2 \alpha_{\rho}$

The Weighted-Queen Algorithm

- Based on Phase Queen given by Berman and Garay 1989

	Phase Queen (original)	Weighted Queen (ours)
Fault tolerance	$f<n / 4$	$\rho<1 / 4$
Rounds	$2(f+1)$	$2 \alpha_{\rho}$

$$
\alpha_{\rho} \leq f+1
$$

The Weighted-Queen Algorithm

For α_{ρ} phases iterating over the processes starting with highest weight to lowest do:

- First round
- Exchange own value, v, with everyone
- Set v to the value with the highest weight
- Set supp to the weight of v
- Second round
- Queen broadcasts its value
- If supp $\leq 3 / 4$, set v to the queen's value

Output own value

Weighted-Queen Example

- Example: 7 processes with weight assignment [0.2, 0.2, 0.12, 0.12, 0.4, 0.12, 0.12]
- Standard algorithm: 1 fault only, Weighted: some 2 faults
- For example 0 and 4 together

Weighted-Queen Example

- Phase 1, Round 1:

Weighted-Queen Example

- Phase 1, Round 1 :

Weighted-Queen Example

- Phase 1, Round 1:

Weighted-Queen Example

- Phase 1, Round 2 :

Weighted-Queen Example

- Phase 1, Round 2 :

Weighted-Queen Example

- Phase 2, Round 1 :

Weighted-Queen Example

- Phase 2, Round 1 :

Weighted-Queen Example

- Phase 2, Round 2 :

Weighted-Queen Example

- Phase 2, Round 2:

Persistence of Agreement

Lemma (Persistence of Agreement)

Assuming $\rho<1 / 4$, if all correct processes prefer a value v at the beginning of a round; then, they continue to do so at the end of the round.

At Least One Correct Queen

Lemma

There is at least one in the first α_{ρ} rounds in which the queen is correct.

Weighted-Queen Satisfies the WBA Problem

```
Theorem
The Weighted-Queen Algorithm solves the agreement problem for all \(\rho<1 / 4\).
To prove this we have to prove that this algorithm satisfies the three properties listed previously: validity, termination, and agreement.
```


Weighted-King Algorithm

- Three round algorithm based on algorithm given by Berman, Garay and Perry 1989

	Phase King (orig.)	Weighted King (ours)
Fault tolerance	$f<n / 3$	$\rho<1 / 3$
Rounds	$3(f+1)$	$3 \alpha_{\rho}$

Initial Weight Assignment

- Weight assignment dramatically changes the nature of these algorithms.
- Simple examples:
- $[1 / n, 1 / n, \ldots, 1 / n]$
- $[1 / 7,1 / 7,1 / 7,1 / 7,1 / 7,1 / 7,1 / 7,0, \ldots, 0]$
- $[1,0,0, \ldots, 0]$

Initial Weight Assignment

- Weight assignment dramatically changes the nature of these algorithms.
- Simple examples:
- $[1 / n, 1 / n, \ldots, 1 / n]$
- $[1 / 7,1 / 7,1 / 7,1 / 7,1 / 7,1 / 7,1 / 7,0, \ldots, 0]$
- $[1,0,0, \ldots, 0]$
- A more involved example with two sets of processes:
- Set A is a collection of six highly reliable processes with probability of failure $f_{a}=0.1$.
- Set B is a collection of unreliable processes with probability of failure $f_{b}=0.3$.

Initial Weight Assignment Policies

- Uniform (Same as regular Byzantine Agreement)
- All weight to set A
- $w[i] \propto 1-\operatorname{Pr}\left\{P_{i}\right.$ fails $\}$
- $w[i] \propto \frac{1}{\operatorname{Pr}\left\{P_{i} \text { fails }\right\}}$

Weight Assignment Example Probabilities

Updating Weights

Can we update weights?
Some issues with updating weights:

- Weight vector at each process must be the same
- Each process may see different views of what other have sent

Weight Update Algorithm

- A simple solution of agreeing on weights
- Process can detect a faulty process j if:
- j sends a no message or corrupted message
- j is queen, queen value is different from v and supp $>3 / 4$
- After detect can reduce the weight of the process
- Have to be careful, faulty process can claim good process faulty

Weight Update Algorithm

- Round one
- Broadcast faultySet
- For each process j that is suspected by some process if the weight of all processes that suspect is greater than ρ then add j to faultySet
- Round two
- Use WBA to agree upon faultySet
- Add to consensusFaulty each one agreed to be faulty
- Round three
- Set the weight of processes in consensusFaulty to 0 and renormalise

Related work: Adversarial Structure

- Adversarial structure by Hirt and Maurer 1997
- The adversarial structure is the set of all processes whose failure should be tolerated
- Adversarial structure is exponential in n
- Many adversarial structures can be converted to a weight assignment

Weighted Versus Unweighted

- Pros:
- Simple
- Can tolerate more than $n / 3$ faults in certain circumstances
- Always $\leq f+1$ rounds
- Cons:
- Even with fewer than $n / 3$ faulty processes the algorithm may not work in some cases

Future Work

- Better update methods
- Apply weights to other algorithms
- Approximately equal weight vectors

Conclusion

- Weighted Byzantine Agreement
- Weighted Algorithms
- Initial Weight Assignment
- Update Method

Adversarial Structure Example

Let

$$
P==\{d, e, f, g, h, i\}
$$

and

$$
\bar{A}=\{\{d, e, f\},\{d, g\},\{e, h\},\{e, i\},\{f, g\}\}
$$

Then a weight assignment that satisfies this adversarial structure is:

Process	d	e	f	g	h	i
Weight	$1 / 9$	$1 / 18$	$8 / 57$	$1 / 16$	$5 / 19$	$5 / 19$

Weighted-King Algorithm

For α_{ρ} rounds where the king iterates over the processes from highest weight to lowest weight:

- Phase one:
- Broadcast own value
- If 1 or 0 has weight over $2 / 3$ then set own value to that value
- else set own value to undecided
- Phase two:
- Broadcast own value
- If the weight of some value received is above $1 / 3$ (giving priority to 0 , then 1 , then undecided) set own value to that value
- Phase three:
- King broadcasts its value
- if own value is undecided or the supporting weight from phase two of own value is under $2 / 3$ then set value to kings value
- if own value is undecided set value to one

Artificial Neural Networks

- Artificial Neural Networks deal with weighted sums of inputs
- Are not used the say way as the way we are using weights.

