
The Weighted Byzantine Agreement Problem
Vijay K. Garg and John Bridgman

Department of Electrical and Computer Engineering
The University of Texas at Austin

Austin, TX 78712-1084, USA
garg@ece.utexas.edu, johnfb@mail.utexas.edu

Abstract—This paper presents a weighted version of the
Byzantine Agreement Problem and its solution under various
conditions. In this version, each machine is assigned a weight
depending on the application. Instead of assuming that at most
f out of N machines fail, the algorithm assumes that the total
weight of the machines that fail is at most f/N . When each
machine has weight 1/N , this problem reduces to the standard
Byzantine Generals Agreement Problem. By choosing weights
appropriately, the weighted Byzantine Agreement Problem can
be applied to situations where a subset of processes are more
trusted. By using weights, the system can reach consensus in
the presence of Byzantine failures, even when more than N/3
processes fail, so long as the total weight of the failed processes
is less than 1/3. Also, a method to update the weights of the
processes after execution of the weighted Byzantine Agreement
is given. The update method guarantees that the weight of any
correct process is never reduced and the weight of any faulty
process, suspected by correct processes whose total weight is at
least 1/4, is reduced to 0 for future instances. A short discussion
of some weight assignment strategies is also given.

I. INTRODUCTION

The Byzantine Agreement (BA) [1], [2] is a fundamental
problem in distributed computing with extensive literature [3]–
[5]. In the usual set-up, there are N processes required to agree
on a common value, given that at most f of them may show
arbitrary or Byzantine behavior. In real-life applications, there
may be multiple classes of processes. For example, in a mobile
computing scenario, mobile hosts may be more likely to fail
compared to mobile stations. In another example, processes in
the same data center may be more likely to fail together. This
paper defines a weighted version of the Byzantine Agreement
Problem (WBA) and provides lower bounds and algorithms
for it. In WBA, each process Pi is assigned a weight w[i],
such that 0 ≤ w[i] ≤ 1 and the sum of all weights is 1.
The WBA problem requires a protocol to reach consensus
when the total weight of the failed processes is at most ρ.
The weighted version gives some surprising results for the
BA problem. First, even if greater than N/3 processes are
Byzantine, the system can still reach consensus so long as ρ
is less than 1/3. This result is quite useful in the system with
a small set of trusted processes and a large set of less trusted
processes.

Secondly, the message complexity and the number of rounds
required to achieve consensus for the weighted version is
shown to always be less than or equal to those for the un-
weighted version. Suppose the system must tolerate ρ = f/N
for any integer f such that 0 ≤ f < N/3. It is known

that any protocol for BA requires at least f + 1 rounds [6].
The unweighted version of the Queen algorithm [7] requires
f + 1 rounds, each with two phases. In this paper, the notion
of anchor of a system (denoted by αρ) is defined as the
least number of processes whose total weight exceeds ρ. This
paper shows that WBA can be solved with the number of
rounds equal to the system’s anchor. The anchor for a system
with ρ = f/N is f + 1 at most and, in many cases, much
smaller than f + 1. Two algorithms for the WBA problem
are given: the weighted-Queen algorithm and the weighted-
King algorithm. These algorithms are generalizations of the
algorithms proposed by Berman and Garay [7] and Berman,
Garay and Perry [8]. The weighted-Queen algorithm takes αρ
rounds, each with two phases, and can tolerate any combi-
nation of failures so long as ρ < 1/4. The weighted-King
algorithm takes αρ rounds, each with three phases, and can
tolerate any combination of failures so long as ρ < 1/3. The
weighted version of BA gives a general framework to study
many algorithms by instantiating BA with different weights.
When the weight vector is (1, 0, 0, 0..0), our algorithm reduces
to a centralized algorithm, where the first process is expected
not to fail and any number of other processes may fail. If M
out of N processes are considered more trusted, two classes
of processes can be specified by setting the weight of the M
trusted processes to 1/M and 0 for rest. The traditional BA
problem is represented by setting all the weights to 1/N .

A general approach to the problem of knowing some kind of
structure to the ways processes can fail, has been considered
by Hirt and Maurer [9]. Hirt and Maurer come up with what
is called an adversarial structure. This structure is the set of all
subsets of processes whose failure must be tolerated. Consider
a set of processes P = {d, e, f, g, h, i}; then, the adversarial
structure A would be all subsets of P that should be tolerated.
Hirt and Maurer show that as long as the union of any three
sets in the adversarial structure does not contain all processes
in P ; then, an algorithm for Byzantine agreement that can
tolerate that adversarial structure exists. The basis of A, which
is all maximal sets in A, is Ā.

Ā = {{d, e, f}, {d, g}, {e, h}, {e, i}, {f, g}}

The traditional BA algorithm can only handle one faulty
process from P ; but, there exists an algorithm that can handle
at least one additional faulty process for any one faulty process
as indicated by Ā. Fitzi and Maurer [10] give an algorithm
that can perform Byzantine agreement on such an adversarial

structure. The algorithm by Fitzi and Maurer has message
complexity polynomial in the number of processes and round
complexity of less than two times the number of processes.
The round complexity for our algorithms are optimal. For this
particular example, a weight assignment can be found so that
the King algorithm presented here can tolerate all processes
in one of the subsets of P in A being faulty. One such weight
assignment is shown in Table I. Also, the adversarial structure
may be exponentially larger than the weight assignment. The
algorithms presented in this paper are considerably simpler
than the one presented by Fitzi and Maurer.

TABLE I
WEIGHT ASSIGNMENTS FOR P WHICH SATISFY THE ADVERSARIAL

STRUCTURE A.

Process d e f g h i
Weight 1/9 1/18 8/57 1/16 5/19 5/19

Others have considered the use of artificial neural networks
(ANN) for BA [11], [12]. The ideas in this paper could also be
extended to use ANN. Randomization or authentication is not
assumed to be available. There are many algorithms for BA
with randomization [13], [14] or with authentication [1], [15].
The method of using weights and updating weights presented
here is expected to be applicable in these settings as well.

Methods to update weights for future rounds of WBA are
also discussed. The weight update method guarantees that the
weight of a correct process is never reduced and the weight of
any faulty process, suspected by correct processes whose total
weight is at least 1/4, is reduced to 0. Initial weight assignment
is application specific. Some ideas for weight assignment and
resulting probabilities and round complexity are discussed.

The organization of the rest of this paper is as follows.
First, the model of the system that runs algorithms is defined.
Second, the Weighted-Queen Algorithm is given. Then, the
Weighted-King Algorithm is discussed. Next, a simple weight
update method is given. Then, some initial weight assignment
strategies are presented. Finally, concluding remarks are made.

II. SYSTEM MODEL

The system model used in this paper is a distributed system
with N processes, P1..PN , with a completely connected topol-
ogy. The underlying system is assumed to be synchronous; i.e.,
there is an upper bound on the message delay and on the du-
ration of actions performed by processes. The model assumes
that processes may fail; but, the underlying communication
system is reliable and satisfies first-in first-out (FIFO) message
ordering. The processes may fail in an arbitrary fashion; in
particular, they may lie and collude with other failed processes
to foil any protocol. The processes that do not fail in any
computation are called correct processes. Assume that there
is a non-negative weight w[i] associated with each process
Pi. All processes in the system have complete knowledge
of weights of all the processes. For simplicity, assume that
weights are normalized; i.e., the sum of all weights is one.
Let ρ be the sum of weights of all failed processes. This paper
assumes that ρ is strictly less than one.

The Weighted Byzantine Agreement (WBA) problem can
be specified as follows. All processes propose a binary value
with the goal of deciding on one common value. Given a
weight assignment to all processes, and the assumption that
the weight of processes that fail during the execution is at most
ρ, the WBA problem is to design a protocol that satisfies the
following conditions:

• Agreement: Two correct processes cannot decide on
different values.

• Validity: The value decided must be proposed by some
correct process.

• Termination: All correct processes decide in finite num-
ber of steps.

The following lower bounds follow easily from the standard
BA lower bound arguments.

Lemma 1: There is no protocol to solve the WBA problem
for all values of w when ρ ≥ 1/3.

Proof: Any protocol to solve WBA can be used to solve
standard BA by setting w[i] = 1/N for all i. For this
weight assignment, ρ ≥ 1/3 implies that the number of failed
processes f in the standard BA protocol is at least N/3. It
is well-known that no protocol exists for standard BA when
3f ≥ N [1].

For simplicity, also assume that weights associated with
Pi are in non-increasing order. This can be achieved by
renumbering processes, if necessary. Given any ρ and weight
assignment w, define the anchor αρ as the minimum number
of processes such that the sum of their weights is strictly
greater than ρ. Formally,

αρ = min {k |
i=k∑
i=1

w[i] > ρ}.

To get an insight into αρ, consider the case when ρ is f/N and
each process has equal weight 1/N . In this case, αρ equals
f + 1. The significance of αρ is that at least one process
from P1..Pαρ

is guaranteed to be correct. When ρ is zero, αρ
is 1. The largest possible value of αρ is N , because ρ < 1
by assumption. The following lower bound on the number of
rounds for any consensus protocol is obtained from standard
consensus arguments.

Lemma 2: Any protocol to solve the WBA problem for a
system with ρ < 1 takes at least αρ rounds of messages, in
the worst case.

Proof: If not, a protocol exists to solve BA in less than
f + 1 rounds when all weights are uniform.

III. WEIGHTED-QUEEN ALGORITHM

In this section, an algorithm is given that takes αρ rounds,
each round of two phases, to solve the WBA problem. The
algorithm is based on the unweighted version of the algorithm
given by Berman and Garay [7]. The algorithm uses constant-
size messages, but requires that ρ < 1/4. Each process has a
preference for each round, which is initially its input value.
The algorithm shown in Fig. 1 is based on the idea of a
rotating queen (or coordinator). Processor Pi is assumed to

Pi::
var
V : {0, 1} initially proposed value;
w: const array[1..N] of weights;

initially ∀j : w[j] ≥ 0 ∧ (
∑
j : w[j] = 1)

for q := 1 to αρ do

float s0,s1 := 0.0, 0.0;

first phase :
if (w[i] > 0) then

send V to all processes including itself;
forall j such that w[j] > 0 do

if 1 received from Pj then
s1 := s1 + w[j];

else if
0 received from Pj or no message from Pj
then
s0 := s0 + w[j];

if (s1 > 1/2) then
myvalue := 1; myweight := s1;

else myvalue := 0;myweight := s0;

second phase:
if (q = i) then

send myvalue to all other processes;
receive queenvalue from Pq;
if myweight > 3/4 then
V := myvalue;

else V := queenvalue;

endfor;

output V as the decided value;

Fig. 1. Queen algorithm for Weighted Byzantine Agreement at Pi

be the queen for round i. In the first phase of a round,
each process exchanges its value with all other processes.
Based on the values received and the weights of the processes
sending these values, the process determines its estimate in the
variable myvalue. In the second phase, the process receives
the value from the queen. If Pi receives no value (because the
queen has failed), then Pi assumes 0 (a default value) for the
queen value. Now, Pi decides whether to use its own value
or the queenvalue. This decision is based on the sum of the
weights of the processes which proposed myvalue given by
the variable myweight. If myweight is greater than 3/4, then
myvalue is chosen for V ; otherwise, queenvalue is used. The
correctness of the protocol is shown by the following sequence
of lemmas.

Lemma 3 (Persistence of Agreement): Assuming ρ < 1/4,
if all correct processes prefer a value v at the beginning of a

round; then, they continue to do so at the end of the round.
Proof: If all correct processes prefer v, then the value

of myweight for all correct processes will at least be 3/4;
because, ρ is at most 1/4. Hence, they will choose myvalue
in the second phase and ignore the value sent by the queen.

Lemma 4: There is at least one round in which the queen
is correct.

Proof: By assumption, the total weight of processes that
have failed is ρ. The for loop is executed αρ times. By
definition of αρ, there exists at least one round in which the
queen is correct.

Now the correctness of the protocol can be shown.
Theorem 1: The algorithm in Fig. 1 solves the agreement

problem for all ρ < 1/4.
Proof: The validity property follows from the persistence

of agreement. If all processes start with the same value v, then,
v is the value decided. Termination is obvious because the
algorithm takes a fixed number of rounds. Next, the agreement
property is shown. From Lemma 4, at least one of the rounds
has a correct queen. Each correct process decides either on
the value sent by the queen in that round or its own value.
It chooses its own value w only if myweight is at least 3/4.
Therefore, the queen of that round must have weight of at least
1/2 for that value; because, at most 1/4 of the weight in Pi
is from faulty processes. Thus, the value chosen by the queen
is also w. Hence, each process decides on the same value at
the end of a round in which the queen is non-faulty. From
persistence of agreement, the agreement property at the end
of the algorithm follows.

Let us analyze the algorithm’s message complexity. There
are αρ rounds, each with two phases. In the first phase, all
processes with positive weight send messages to all processes.
This phase results in pN messages where p ≤ N is the
number of processes with positive weight. The second phase
uses only N messages. Thus, the total number of messages is
αρ(pN+N). The number of messages can be further reduced
by sending messages to zero weight processes only in the last
round. Note that the algorithm from [7] takes f + 1 rounds
(each with two phases) when the maximum number of allowed
failures is f . The following lemma shows that the number of
rounds for the weighted version is at most the number required
for the unweighted version.

Lemma 5: αf/N ≤ f + 1 for all w and f .
Proof: It is sufficient to show that for all f ,

∑i=f
i=1 w[i] ≥

f/N . Suppose
∑i=f
i=1 w[i] < f/N for some f . This implies

that the sum of the remaining weights is
∑i=n
i=f+1 w[i] >

(N − f)/N , because all weights add up to 1. Since w is in
nondecreasing order, w[f + 1] > 1/N ; otherwise, the sum of
the remaining weights would be at most (N−f)/N . But, this
implies that

∑i=f
i=1 w[i] > f/N , because w[i] for all i ≤ f is

at least w[f + 1]. This contradicts our original assumption.

IV. WEIGHTED-KING ALGORITHM

This section gives an algorithm that takes αρ rounds with
three phases per round to solve the WBA problem. The algo-

rithm is based on the Phase King algorithm by Berman, Garay
and Perry [8]. The King algorithm only requires ρ < 1/3;
but, adds an additional phase per round compared to the
Queen algorithm. The King algorithm is given in Fig. 2. As
in the Queen algorithm, the King algorithm has a rotating
coordinator. It is assumed that the coordinator for round k is
process Pk. Each process Pi has a current preference V which
can be 0, 1, or undecided. Initially, for every Pi, V is either
0 or 1.

In the first phase, if process Pi has a positive weight, then
Pi sends V to all processes including itself. Next, Pi receives
values from every process with positive weight and adds up
the cumulative weight of processes that propose 0 as s0 and
1 as s1. If s0 or s1 are greater than or equal to 2/3, then Pi
sets its preference V to the corresponding value; otherwise,
Pi sets its preference to undecided.

In phase two, Pi first sends its new preference of V to
every process if Pi’s weight is positive and resets s0, s1, and
su. Note that in this phase, unlike in phase one, processes
may propose the value undecided. Then, Pi receives from all
processes with positive weights and accumulates the sum of
weights of processes into s0 for processes who propose 0,
into s1 for processes who propose 1 and into su for processes
who propose undecided. The final step in phase two is for Pi
to set its preference to a new value based on the cumulative
weights computed in the first part of this phase. If one of the
cumulative weights is greater than 1/3, Pi sets its preference
to that value. If more than one of the sums is greater than 1/3,
Pi gives preference to 0, then 1, then undecided. Pi also sets
myweight to the cumulative weight of the value that V is set.

In phase three, if Pi is the king for the current phase, Pi
sends its preference V to every process. Next, all processes
receive the king’s value into kingvalue. Then, if Pi is unde-
cided (V = undecided) or the weight stored in myweight
from phase two is less than 2/3, Pi sets its preference to
kingvalue if kingvalue is not undecided or 1 if kingvalue
is undecided. After executing for αρ rounds, Pi outputs V as
the decided value. The correctness of the King algorithm is
shown in the following lemmas.

Lemma 6 (Persistence of Agreement): Assuming ρ < 1/3,
if all correct processes prefer a value v at the beginning of a
round; then, they continue to do so at the end of the round.

Proof: If all correct processes agree at the beginning of
the round; then, for the first phase, by definition, the same
value must be chosen as ρ < 1/3. For the second phase, the
same value must again be chosen as ρ < 1/3. For the third
phase, because all correct processes agree and ρ < 1/3, all
correct processes will ignore the king’s value and keep their
own.

Lemma 7: There is at least one round in which the king is
correct.

Proof: By assumption, the total weight of processes that
have failed is less than ρ. The for loop is executed αρ times.
By definition of αρ, there exists at least one round in which
the king is correct.

Theorem 2: The algorithm in Fig. 2 solves the agreement

Pi::
var
V : {0, 1, undecided} initially proposed value;
w: const array[1..N] of weights;

initially ∀j : w[j] ≥ 0 ∧ (
∑
j : w[j] = 1)

for k := 1 to αρ do

float s0,s1,su := 0.0, 0.0, 0.0;

first phase :
if (w[i] > 0) then

send V to all processes including itself;
forall j such that w[j] > 0 do

if 1 received from Pj then
s1 := s1 + w[j];

else if 0 received from Pj then
s0 := s0 + w[j];

if (s0 ≥ 2/3) then V := 0;
else if (s1 ≥ 2/3) then V := 1;
else V = undecided;

second phase:
s0,s1,su := 0.0, 0.0, 0.0;
if (w[i] > 0) then

send V to all processes including itself;
forall j such that w[j] > 0 do

if 1 received from Pj then
s1 := s1 + w[j];

else if 0 received from Pj then
s0 := s0 + w[j];

else su := su+ w[j];
if (s0 > 1/3) then
V := 0; myweight := s0;

else if (s1 > 1/3) then
V := 1; myweight := s1;

else if (su > 1/3) then
V := undecided; myweight := su;

third phase:
if (k = i) then send V to all other processes;
receive kingvalue from Pk;
if V = undecided or myweight < 2/3 then

if kingvalue = undecided then V = 1
else V = kingvalue

endfor;

output V as the decided value;

Fig. 2. King algorithm for Weighted Byzantine Agreement at Pi

problem for ρ < 1/3.
Proof: Validity is satisfied by persistence of agreement. If

all processes start with the same value, then that value will be
decided. Termination is obvious because the algorithm takes
a fixed number of rounds. From Lemma 7, in at least one
round, the king will be correct. In that round, every correct
process will choose either the king’s value, 1, or its own
value. The only way that a process may choose its own value
is if myweight ≥ 2/3 and the process is not undecided;
otherwise, the process will choose the king’s value or 1 if
the king is undecided. If a process chooses its own value,
then, myweight ≥ 2/3 for that process and the weight of its
value V will be ≥ 1/3. So, the king must also have chosen
the same value. If myweight < 2/3 or V is undecided, then
the process will choose the kings value or 1 if the king is
undecided. Because the king is correct, then all processes will
choose the same value.

The King algorithm takes αρ rounds with three phases per
round. In phase one and two, each process with positive weight
sends N messages. In phase three, the king process sends N
messages. This results in αρ(2pN +N) messages where p is
the number of processes with positive weight.

V. UPDATING WEIGHTS

In this section, the case when the system is required to solve
BA multiple times is considered. This case arises in most real-
life applications of BA, such as, maintenance of replicated data
and fault-tolerant file systems [16]. In addition, each execution
of the BA protocol provides certain feedback in terms of the
processes’ behavior. For example, if a process did not follow
the protocol (i.e., did not send the required messages), it should
be considered less reliable for future BA instances. In this
section, a fault-tolerant method to update weights is given.
For simplicity, only the weighted-Queen algorithm is given;
the extension to weighted-King algorithm is similar.

The following lemma gives the conditions sufficient for Pi
to detect that Pj is faulty.

Lemma 8: In the Weighted-Queen algorithm, a correct pro-
cess Pi can detect that Pj is faulty if any of the following
conditions are met:

1) If Pj either does not send a message or sends a message
with wrong format in any of the rounds, then Pj is faulty.

2) If myweight > 3/4 in any round and the value sent by
the queen in that round is different from myvalue, then
the queen is faulty.

Proof: The first part is obvious. For the second part, note
that if myweight > 3/4; then, the weight for the queen for
that value in that round is at least 1/2. If the queen were
correct, the value sent by the queen would have matched
myvalue.

The algorithm in Fig. 1 is modified by adding a variable
faultySet that keeps track of all processes that Pi has
detected to be faulty based on Lemma 8. Now a method is
presented to update the weights of the processes such that with
every execution of WBA, the processes get better in solving
WBA by increasing the weights of reliable processes. These

algorithms require that the weight assignment for all correct
processes be identical; so, it is not sufficient for a process to
update its weight individually. All correct processes need to
agree on the faulty set.

The algorithm to update weights shown in Fig. 3 consists
of three phases. In the first phase, called the learning phase,
processes broadcast their faultySet to learn about faulty
processes from other correct processes. The main idea is
that if processes with total weight at least 1/4 inform Pi
that some process Pj is faulty, then Pj is in faultySet
of at least one correct process. The second phase consists
of processes agreeing on the set of faulty processes. For
each process j, if j is in the faultySet of Pi , then Pi
invokes Weighted-Queen-BA algorithm with 1 as the
proposed value; otherwise, it invokes it with 0 as the proposed
value. The output variable value denotes the decided value
by the Weighted-Queen-BA algorithm. Therefore, the set
of faulty processes that all correct processes agree upon is
consensusFaulty. In the third phase, processes update their
weights based on consensusFaulty.

The correctness of the algorithm in Fig. 3 is shown in the
following lemma and theorem.

Lemma 9: All correct processes with positive weights be-
fore the execution of the algorithm have identical w vectors
after the execution of the algorithm.

Proof: The weight assignment is done based on
consensusFaulty. The variable consensusFaulty is iden-
tical at all correct processes based on the correctness of
Weighted-Queen algorithm.

Theorem 3: A correct process can never be in
consensusFaulty. Any faulty process that is in the
initial faultySet of correct processes with total weight
at least 1/4 will be in consensusFaulty of all correct
processes.

Proof: A correct process Pj can never be in the initial
faultySet of any correct process (due to Lemma 8). In the
learning phase, suspectWeight[j] at any process can never
be equal or more than 1/4, because only faulty processes can
suspect Pj . Therefore, j is not in faultySet of any correct
process after the learning phase. Since all correct processes
will invoke WBA with 0 for Pj , by validity of the Weighted-
Queen-BA algorithm, it will not be in consensusFaulty.
Any faulty process that is in the initial faultySet of cor-
rect processes with total weight of at least 1/4 will be in
faultySet of all correct processes after the learning phase.
Again, from the validity of WBA, the faulty process will be
in consensusFaulty.

The model assumed here for updating weights is that once
a process is faulty, it will always be faulty. A modification
can be considered where a process may become non-faulty
after being faulty for a period of time. In this case, instead of
setting the weight to zero, the weight can be reduced by some
multiple.

Pi::
// Only processes with positive weights participate
// in this algorithm
var
faultySet: set of processes based on Lemma 8;
consensusfaulty: set of processes initially {};
suspectWeight: array[1..p] of float initially all 0.0;

First phase (learning phase):
forall j do

send faultySet to all (including itself);
forall j do

receive faultySetj from Pj ;
forall k ∈ faultySetj do
suspectWeight[k] :=
suspectWeight[k] + w[j];

forall j do
if suspectWeight[j] ≥ 1/4 then
faultySet := faultySet ∪ {j};

Second phase:
// Do WBA on each of the processes to see
// if they are faulty
forall j do

if j ∈ faultySet then
value := Weighted-Queen-BA(1);

else value := Weighted-Queen-BA(0)
if (value = 1) then
consensusFaulty := consensusFaulty ∪ {j};

Third phase:
// set weight of faulty processes to 0
float totalWeight := 1.0;
forall j ∈ consensusFaulty do
totalWeight := totalWeight− w[j];
w[j] := 0;

// renormalise weights
forall j do
w[j] := w[j]/totalWeight;

Fig. 3. Weight-Update Algorithm for the Queen algorithm for Weighted
Byzantine Agreement at Pi

VI. WEIGHT ASSIGNMENT

Deciding what weight assignment to use is application spe-
cific. A simplified example will be considered for this section.
Consider two sets of processes A and B where all processes
in A have probability of failure fa and all processes in B
have probability of failure fb. We will consider four weight
assignments. The first is a uniform weight assignment for
everyone. This weight assignment produces the same results
as the classical algorithm. The next assignment is to only give
non-zero weights to the set with a lower probability of failure.
The third is to give weights to each process proportional to the

inverse of their probability of failure. Weights proportional to
the probability of not failing is the final assignment considered.

The graph in Fig. 4 is the probability of the weight of
failed processes exceeding 1/3 versus |B| with |A| = 6, fa =
0.1, fb = 0.3. This graph is only taken for points where
the number of processes is divisible by three. The number
three is chosen because taking every point produces many
more jumps in the graph which just add noise and distract
from the trend. Notice that there are still some jumps. These
jumps are caused by the effect of adding a process to a group
where that addition does not increase the number of faulty
processes that can be tolerated. But, adding that one process
increases the expected weight of failed processes. So, there is
a jump in the probability of the total weight of failed processes
being above 1/3. Each curve starts at the same value as set
B is empty. Observe that each curve initially has a positive
average slope. It is not until a significant number of additional
processes are added that the curve begins to have a negative
slope. The uniform assignment gives the worse probability
for a small size of B relative to the size of A. Changing
the number of processes in set A moves the curves vertically
in relation to each other. Which weight assignment is best
depends upon the number of processes in both A and B and
their probability of failure. In this particular example, setting
the weight proportional to the inverse probability of failure
gives the best results.

0 50 100 150 200 250 300 350 400
Number of processes in set B

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ili

ty
 o

f t
he

 w
ei

gh
t o

f f
ai

le
d

pr
oc

es
se

s
ex

ce
ed

in
g

1/
3

Only A non-zero
Uniform
Proportional to the inverse probability of failure
Proportional to the probability of not failing

Fig. 4. Probability of the weight of failed processes exceeding 1/3 with
versus |B| with |A| = 6, fa = 0.1, fb = 0.3.

Fig. 5 shows the number of rounds required for the King
algorithm to ensure success. Notice the uniform assignment is
the highest. In both of these graphs, the uniform weight assign-
ment was the least attractive. The most attractive assignments
are only giving positive weights to group A and setting the
weight proportional to the inverse probability of failure. For
this particular setup, setting weights proportional to the inverse
probability of failure is the best. When the size of set B is
not much larger than A, only giving positive weights to set
A may be the best. When the size of set B is significantly

0 50 100 150 200 250 300 350 400
Number of processes in set B

0

20

40

60

80

100

120

140
Nu

m
be

r o
f r

ou
nd

s

Only A non-zero
Uniform
Proportional to the inverse probability of failure
Proportional to the probability of not failing

Fig. 5. The number of rounds required for the King algorithm versus the
number of processes in set B for the different weight assignments.

larger than A, then setting the weights to be proportional to
the inverse probability of failure is the best.

VII. CONCLUSIONS

This paper has presented a weighted version of the Byzan-
tine Agreement Problem and provided solutions for the prob-
lem in a synchronous distributed system. We show that the
weighted version has the advantage of using fewer messages
and tolerating more failures (under certain conditions) than
is required by the lower bound for the unweighted version.
These algorithms have applications in many systems in which
there are two classes of processes: trusted and untrusted
processes. Instead of tolerating any f faults in the BA problem,
these algorithms tolerate failure of processes with total weight
less than f/N . For example, an implementation can now
tolerate more than f faults of untrusted processes; but, fewer
than f faults of trusted processes depending on the weight
assignment. A fault-tolerant method has also been presented
to update the weights at all the correct processes. This algo-
rithm is useful for many applications where the agreement is
required multiple times. Our update algorithm guarantees that
the weight of a correct process is never reduced and the weight
of any faulty process, suspected by correct processes whose
total weight is at least 1/4, is reduced to 0.

REFERENCES

[1] M. Pease, R. Shostak, and L. Lamport, “Reaching agreements in the
presence of faults,” Journal of the ACM, vol. 27, no. 2, pp. 228–234,
Apr. 1980.

[2] L. Lamport, R. E. Shostak, and M. C. Pease, “The byzantine generals
problem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401,
1982.

[3] P. Feldman and S. Micali, “An optimal probabilistic protocol for
synchronous byzantine agreement,” SIAM J. Comput., vol. 26, no. 4,
pp. 873–933, 1997.

[4] D. Dolev, R. Reischuk, and H. R. Strong, “Early stopping in byzantine
agreement,” J. ACM, vol. 37, no. 4, pp. 720–741, 1990.

[5] J. A. Garay and Y. Moses, “Fully polynomial byzantine agreement in t
+ 1 rounds,” in STOC ’93: Proceedings of the twenty-fifth annual ACM
symposium on Theory of computing. New York, NY, USA: ACM, 1993,
pp. 31–41.

[6] D. Dolev and H. R. Strong, “Polynomial algorithms for multiple
processor agreement,” in Proceedings of the ACM symposium on Theory
of computing. New York, NY, USA: ACM, 1982, pp. 401–407.

[7] P. Berman and J. A. Garay, “Asymptotically optimal distributed con-
sensus,” in ICALP: Proceedings of the International Colloquium on
Automata, Languages and Programming. London, UK: Springer-
Verlag, 1989, pp. 80–94.

[8] P. Berman, J. Garay, and K. Perry, “Towards optimal distributed con-
sensus,” in Foundations of Computer Science, 30 1989, pp. 410 –415.

[9] M. Hirt and U. Maurer, “Complete characterization of adversaries
tolerable in secure multi-party computation (extended abstract),” in
PODC ’97: Proceedings of the sixteenth annual ACM symposium on
Principles of distributed computing. New York, NY, USA: ACM, 1997,
pp. 25–34.

[10] M. Fitzi and U. M. Maurer, “Efficient byzantine agreement secure
against general adversaries,” in DISC ’98: Proceedings of the 12th
International Symposium on Distributed Computing. London, UK:
Springer-Verlag, 1998, pp. 134–148.

[11] S. C. Wang and S. H. Kao, “A new approach for byzantine agreement,”
in Proceedings of the The International Conference on Information
Networking. Washington, DC, USA: IEEE Computer Society, 2001, p.
518.

[12] K.-W. Lee and H.-T. Ewe, “Performance study of byzantine agreement
protocol with artificial neural network,” Inf. Sci., vol. 177, no. 21, pp.
4785–4798, 2007.

[13] M. O. Rabin, “Randomized byzantine generals,” in Foundations of
Computer Science. IEEE, 1983, pp. 403–409.

[14] G. Bracha, “An O(logn) expected rounds randomized Byzantine gen-
erals protocol,” Journal of the ACM, vol. 34, no. 4, pp. 910–920, Oct.
1987.

[15] D. Dolev and H. R. Strong, “Authenticated algorithms for byzantine
agreement,” SIAM J. Comput., vol. 12, no. 4, pp. 656–666, 1983.

[16] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in OSDI,
1999, pp. 173–186.

