
Synchronous Message Passing

V. V. Murty and V. K. Garg

TR ECE-PDS-93-01 October 1993

Parallel & Distributed Systems group
Department of Electrical & Computer Engineering

University of Texas at Austin

Austin, Texas 78712

T
H
E
U
N
IV

ER
SITY

O
F
T
E
X
A
S

A
T
AUSTI

N

D
IS
C
I
P
L
I
N
A

P
R
AE
SIDIUM

C
I
V
I
T
A
T
I
S

Synchronous Message PassingV. V. Murty and V. K. GargDepartment of Electrical & Computer EngineeringUniversity of Texas at Austinemail: murty, vijay@pine.ece.utexas.eduAbstractThis paper studies the characteristics of synchronous ordering of messages. Synchronousordering of messages de�nes synchronous communication based on the causality relation ratherthan time. We present the necessary characteristics of any algorithm providing deadlock-freesynchronous ordering of the messages. We also present the su�cient conditions, based on thecausality relations, for any algorithm to provide synchronous ordering. The paper proposes analgorithm using acknowledgment messages to implement the su�cient conditions. The acknowl-edgment messages are used to satisfy the causality relation between the events. The algorithmis deadlock-free, and provides a higher degree of concurrency then the algorithms which de�nesynchronous communication based on time.1 IntroductionDistributed programs are di�cult to design and test due to their non-deterministic nature. Thatis, a distributed program may exhibit multiple behaviors on the same external input. This non-determinism is caused by a possible reordering of messages in di�erent executions. It is sometimesdesirable to control the non-determinism by restricting the possible message ordering in a system.For example, many systems restrict message delivery to FIFO order. This results in simplicity indesign of distributed algorithms which may depend on the FIFO assumption [3]. In this paper, wediscuss one such possible restriction on message ordering called synchronous message ordering.The problem of restricting message ordering has received wide attention [1, 7, 12, 13, 10].Charron-Bost, Mattern, and Tel [1] have recently proposed a strict hierarchy of message ordering- asynchronous, FIFO, causal ordering, and synchronous.An asynchronous computation does not have any restriction on the message ordering. It is easyto implement, and it permits maximum concurrency; but algorithms based on fully asynchronouscommunication can be di�cult to design. These algorithms are required to work for all ordering ofthe messages. A FIFO ordered computation is also easy to implement. It is usually implementedby using sequence numbers for messages. Causal ordering is a stronger condition than FIFO.Intuitively, causal ordering requires that a single message should not be overtaken by a sequenceof messages. Joseph and Birman [7] have given many examples of problems which are easier tosolve if causal ordering is assumed. It was �rst implemented in ISIS [4]. Many other algorithms forcausal ordering have appeared since then [12, 13]. Synchronous ordering is a stronger requirementthan causal ordering. Algorithms for synchronous systems are much easier to design than thosefor causally ordered systems. Unlike the case of causal ordering, there is very little work done onsynchronous ordering of messages. Usually, to achieve synchronous ordering of messages, the sendis blocking, i.e., the sender waits for an acknowledgment from the receiver to execute the nextevent. This informal algorithm as presented by Charron-Bost, Mattern, and Tel [1] can result indeadlocks. 1

In this paper, we present a deadlock free algorithm that ensures synchronous ordering of mes-sages. In addition, our algorithm permits higher degree of concurrency than algorithms based onblocking sends. In our algorithm the sender continues to execute internal events and receive eventswhile waiting for an acknowledgment message.This paper is organized as follows. In Section 2, we give formal de�nitions of various messageorderings in distributed computations. This section also includes background results on character-ization of synchronous computation using crowns [1]. In Section 3, we investigate the requirementsof any algorithm that achieves synchronous ordering. Note that message ordering can be restricted,in general, by delaying sends or by delaying receives. For example, the causal ordering algorithmproposed by Raynal, Schiper, and Toueg [12] uses receiver based delays. We show in this sectionthat any algorithm that implements synchronous ordering must include both sender and receiverbased delays. In Section 4, we present our algorithm and Section 5 provides the proof of its cor-rectness. Section 6 discusses the overhead associated with the algorithm and presents concludingremarks.2 Distributed Computations2.1 Our ModelLet a distributed system be de�ned as a set of n sequential processes fPi j0 � i < ng. Each processPi consists of a set of events E , which are classi�ed into three types: send events S, receive eventsR, and internal events I. The next event that is executed by process Pi after an event e is givenby the relation �1. The events in the same process form a total order under the transitive closureof �1.We assume that every send event has a corresponding receive event, i.e., every message thatis sent is eventually received. We also assume that every receive event has a corresponding sendevent, i.e., there are no spurious messages in the system. A send event s in process Pi and itscorresponding receive event r in process Pj (j 6= i) are related by the the relation ;. This isrepresented as s; r. For convenience, we denote the receive event corresponding to the send eventsi by ri and vice{versa. The message pair is represented as (si; ri)). Thus, 8i : si ; ri.The causal ordering of events in distributed systems is based on the well known \happenedbefore (!)" relation [8]. The happened before relation (also called causally precedes relation) isde�ned as the transitive closure of union of �1 and ; relations. In other words, e! f i�1. (e �1 f) _ (e; f), or2. 9h : (e! h ^ h! f):Similarly, the relation � is de�ned as the transitive closure of �1, that is, e � f i�1. e �1 f , or2. 9h : (e � h ^ h � f):For example in Figure 1, the events a; b; c; e; f are related as a �1 b, b �1 c, b ; e and e �1 f ;therefore, the events a and f are related as a ! f , and the events a and c are related as a � c(therefore, a! c). 2

P1P2P3 s ra b c e f
Figure 1: A Time Diagram for a Distributed run

P1P2P3 P1P2P3
Figure 2: Synchronous Time-diagram2.2 Hierarchy of Communication ModesBased on the happened before relation a strict hierarchy of communication modes can be de�ned [1].The various communication modes are:FIFO : Any two messages from a process Pi to Pj are received in the same order as they weresent. Formally, s1 � s2 =) :(r2 � r1): (FIFO)Causally Ordered : Let any two send events s1 and s2 in a distributed computation be relatedsuch that the �rst send causally precedes the second send. Then, the second message cannotbe received before the �rst message by any process [7, 12]. Formally,s1 ! s2 =) :(r2 � r1): (CO)Synchronous : A computation is synchronous if its time diagram can be drawn such that allmessage arrows are vertical [1] (see Figure 2). That is, all external events can be assigned atimestamp such that time increases within a single process and for any message its send andreceive are assigned the same timestamp. Formally,9T : E �! 1N : 8s; r; e; f 2 E n Is; r =) T(s) = T(r)e � f =) T(e) < T(f): (SYNC)3

P1P2P3 s1 r1s2 r2s r s1 r1s2 r2s3 r3Crown ofsize 2 Strong Crownof size 3Figure 3: Crowns of size 2 and 3This de�nition is di�erent from that given in [1] but it can easily be shown to be equivalent. In therest of the paper, we assume that there are no internal events, as they do not a�ect the messageordering; therefore, E = R[S. It is easy to see that, for any two events e and f(e! f) ^ :(e; f) =) T (e) < T(f): (1)The following theorem [1] is proved for the sake of completeness.Theorem 1 The hierarchy associated with the various modes of communications isSynchronous � Causally Ordered � FIFO:Proof:Causally Ordered � FIFO : This is true because,s1 � s2 =) s1 ! s2:Synchronous � Causally Ordered : We show that if a computation is synchronous then itis also causally ordered. Since the communication is synchronous there exists a function Tsatisfying SYNC.For any set of events s1; s2 2 S and r1; r2 2 R such that s1 ; r1, s2 ; r2 and s1 ! s2:T(s1) = T(r1) T(s2) = T(r2); and T(s1) < T(s2):It follows that T(r1) < T(r2). Therefore, (1) implies:(r2 ! r1): k2.3 Crowns in a Distributed ComputationA computation can also be characterized as synchronous based on absence of a structure called\crown". The concept of a crown was introduced by Charron-Bost et al., in [1] where they also4

prove that a computation is synchronous if and only if it does not contain any crown. In the restof the section we present the de�nition of a crown and provide a simpler proof of this property.De�nition (Crown): Let C be a computation. A crown (of size k) is a sequence h(si; ri); i 2f0; 1 : : : ; k�1g : si ; rii of pairs of corresponding send and receive events such that (see Figure 3)s0 ! r1; s1 ! r2; � � � ; sk�2 ! rk�1; sk�1 ! r0:Theorem 2 A computation is synchronous i� there is no crown in it.Proof:Synchronous =) :Crown :Since the computation is synchronous there exists a function T satisfying SYNC, and for anytwo events e and f (e! f) ^ :(e; f) =) T(e) < T(f):Suppose, if possible, the computation has a crown of size k,s0 ! r1; s1 ! r2; � � � ; sk�2 ! rk�1; sk�1 ! r0:Therefore, 8i 2 f0; 1; : : : ; k� 1g T(si) < T(r(i+1) mod k) (�)8i 2 f1; 2; : : : ; k� 1g T(si) = T(ri): (��)Therefore, from equations (*) and (**),T (s0) < T (r0):which is a contradiction because SYNC implies that T (s0) = T (r0).:Crown =) Synchronous :Given a computation, we form a directed graph G(E; V), as follows. The vertex set V consistsof all messages in the computation. Thus, each vertex vi represents a set of two events: thesend event si and the corresponding receive event ri. That is,vi = fsi; rig:There is an edge from vi to vj if there is an event e 2 vi and an event f 2 vj such that e! f .Thus, (vi; vj) 2 E i� (si ! sj) _ (si ! rj) _ (ri ! sj) _ (ri ! rj). It is easy to see thateach of the four disjuncts implies si ! rj . Hence, (vi; vj) 2 E i� si ! rj .Since the computation does not have any crown, it follows that the graph G is acyclic.This means that G can be topologically sorted [2]. Therefore, there exists a function F: E ! 1Nsuch that, s; r =) F(s) = F(r) ande � f =) F(e) < F(f):Therefore, the computation is synchronous.5

kIn this paper, we also use a structure called strong crown. We de�ne a strong crown as,De�nition (Strong Crown): Let C be a computation. A strong crown (of size k) is a sequenceh(si; ri); i 2 f0; 1 : : : ; k � 1g : si ; rii of pairs of corresponding send and receive events such thats0 � r1; s1 � r2; � � � ; sk�2 � rk�1; sk�1 � r0:Note that a strong crown is a crown, but not all crowns are strong (see Figure 3). Later to provethe safety of the algorithm we show that, any distributed computation satisfying the conditions ofthe algorithm, has a strong crown if it has a crown.3 Some Impossibility ResultsIn this section we present the necessary charateristics of any algorithm that ensures synchronousordering of the messages. The assumptions for any protocol are:1. A protocol for any message is restricted to the processes executing the send event and thecorresponding receive event. If there is a message (s; r) from process Pi to Pj , the protocolshould not contain any control messages from Pk (k 6= i; k 6= j) to Pi or Pj , or vice-versa.2. A process can take a decision at t = t0 about any event e (i.e., whether to delay it or toexecute it) only based on the past. The past of any event e at time t is de�ned as:past(e) = ff jf ! eg:The ! includes the causality formed by the control messages.A protocol consists of a receiver part and the sender part. A protocol is de�ned as boundeddelay send if there exists an upper bound on the time to complete the sender part. Similarly, aprotocol is bounded delay receive if there exists an upper bound on the time to complete the receiverpart. Intuitively, a protocol is bounded delay receive if on receiving a message (s; r) at time t = t0,the process commits (completes the protocol) the message by time t = t1 + �t.For example, consider FIFO ordering in a two process system. The usual protocol to implementFIFO is a bounded delay send but not a bounded delay receive. If a process intends to send amessage, then it can immediately execute the send and end the sender part. Assume that thereare two messages (s1; r1) and (s2; r2), and s1 � s2. If the receiver process receives r2 at time t0before the message r1, then it cannot assure the commit of the message in a bounded time. Thisunbounded time execution of the protocol is due to the uncertainty in the amount of time themessage r1 will take. In e�ect, the process is delaying the receive until some other event has takenplace.In this section we prove that any protocol that implement synchronous ordering must be asym-metric and must include sender and receiver based delays. We assume without loss of generality,that the upper bound on time is �t on the completion of the sender part or the receiver part, ifthere exist one. We also assume, without loss of generality, that to implement the protocol forthe message (si; ri), the �rst message of the protocol between two processes is represented as themessage (si; ri). 6

P1P2 s1 r1s2 s2 P1P2P3P4 s1 r1s2 r2s3 r3s4 r4(a) (b)Figure 4: Non-synchronous ordering for impossibilitiesTheorem 3 Any protocol that implements SYNC cannot be1. symmetric, or2. have bounded delay sends, or3. have bounded delay receives.Proof:1. We show that given a symmetric protocol with respect to the processes, there exists a dis-tributed computation where synchronous ordering is not possible.Consider the distributed computation shown in Figure 4(a). Both the processes intend tosend a message to each other at the same time t0. Since the past for each of the sends isan empty set, none of the processes can delay the send. It is obvious that the system isin a symmetric state with respect to P1 and P2. If this symmetric state is the input to anysymmetric protocol, the resulting output cannot be asymmetric. This rules out the possibilityof the asymmetric ordering of messages i.e., (s1 � r2 ^ r1 � s2) or (s2 � r1 ^ r2 � s1),which are the only possible synchronous message orderings.Therefore, either the resulting computation does not satisfy SYNC, or the processes will neversend the message.2. Bounded delay receive protocol:Consider the distributed computation as shown in Figure 4(b). Each of the processes P1, P2and P3 sends a message at time t0. Since the past for each of the sends is an empty set, noneof the processes can delay the send. The message (s1; r1) is received by process P2 at time t1.The process P2 completes the protocol for message (s1; r1) by time t1 + �t since the protocolis bounded delay receive. At the completion of the protocol, process P2 may not have anyinformation about the event r2. This is because the time taken for message (s2; r2) may havebeen greater than t1 + �t� t0.Consider message (s1; r1); the following are true:(a) Processes taking part in the protocol are P1 and P2.(b) Process P2 completes the protocol at time t1 + �t.7

(c) Process P2 cannot send any more messages to P1 after time t1+ �t, because of Boundeddelay receive.(d) When the process P1 completes the protocol at say time t2, it knows its past (i.e., t � t2)and the past of the process P2 before the completion of event r1, i.e., t � (t1 + �t).As a result of statement (d), the process P1 has no knowledge of event r2 at time t2.Now consider the message (s4; r4), which the process P1 wants to execute at t = t3 > t2.From the assumption 2 of the protocol, the process P1 executes the event s4 based on itspast, i.e., past(s4) � fs1; s2; r1g:Based on the past, the process P1 cannot delay the send of event s4. Let the process P4receive the message (s4; r4) at time t4. The process P4 completes the protocol at time t4+ �tsince the protocol is bounded delay receive.If the message (s3; r3) takes more than t4 + �t � t0, then the process P4 orders the receiveevents r3; r4 such that r4 � r3. The resulting distributed computation is non-synchronous asthere is a crown.3. Bounded delay send protocol:Again, consider the distributed computation as shown in �gure 4.(b), each process P1, P2,and P3 send a message at time t0.Assume the process P1 wants to send another message (s4; r4) at time t1. Since the protocolis bounded delay send, the process P1 executes s4 and completes the send part of the protocolbefore t = t1 + �t. If the message (s1; r1) takes more than t1 + �t� t0 units of time, then themessage (s4; r4) carries no information about the event r1. Therefore,past(s4) = fs1g:Let the message (s4; r4) reach the process P4 at time t = t2. On receiving the message r4, theprocess has no knowledge of the message (s3; r3) since,past(r3) = fs1; s4g:Therefore, the only possible action the process P4 can take is to commit the receive of themessage r3 at time t2. The message ordering results in a non-synchronous computation. k4 Algorithm4.1 Commit Point of a MessageTo implement synchronous ordering in the traditional algorithm, a process sends a messages1 ; r1 and waits for an acknowledgment s2 ; r2 before executing other events. Therefore, themessage transaction is completed on the receive of the acknowledgment. In these systems, the8

P1P2 es1 r1 s2 r2
Figure 5: A message from P2 to P1interval from s1 to r2 is atomic. That is, the sender does not execute any event between s1 andr2. In our algorithm, the send of a message and the receive of the corresponding acknowledgmentresult in completion of the message transaction, but the events s1 and r2 are not atomic. Thisgives a process
exibility to order the message as if it was sent at either s1 or r2. For example, in�gure 5 the process starts the message transaction at event s1 and ends the transaction at eventr2. If the process P2 commits the message at s1 the message causally precedes the event e, whereasif the process commits the message at r2 the event e causally precedes the message.4.2 ProtocolThe algorithm to implement synchronous ordering of messages has three components: the priorityrule (PR), the send condition (SC) and receive condition (RC). As shown in Section 3, any protocolthat achieves synchronous ordering must be asymmetric with respect to processes. We introducethis asymmetry by the priority rule. The algorithm introduces control messages. These controlmessages are denoted by sc and rc and belong to the event set Ec. Based on the event sets E andEc, we de�ne the relations !E and 7!, subsets of ! as,De�nition of !E :e!E f i� (e; f 2 E) ^((e; f) _ (e � f) _ (9s1 2 E : e � s1 ^ r1 !E f)) :In other words two events are related by !E i� the causality chain is formed by the eventsin E .De�nition of 7! :e 7! f i�, (e; f 2 E) ^((e; f) _ (e � f) _ (9s1 2 E : e � s1 ^ r1 ! f)) :The relations is motivated from the fact that a computation restricted to the event set E is notsynchronous if there exists a crown, such that causality chains are formed by the relation !E . That9

is, a computation is sychronous if and only if there is no crown such that,s0 !E r1; � � � ; sk�2 !E rk�1; sk�1 !E r0:It is easy to see that if there exist a crown (of size k) restricted to the event set E then thereexists a crown, s0 7! r1; s1 7! r2; � � � ; sk�2 7! rk�1; sk�1 7! r0:4.2.1 Priority Rule (PR)We de�ne a total order among the processes of a distributed system as Pi < Pj i� i < j. Wealso de�ne the function P : E ! 1N, such that P(e) = i i� e is an event in process Pi. Based on thefunction P, any message (s ; r) can be classi�ed into two types (assuming that a process cannotsend a message to itself) :Type 1 A message to a smaller process, i.e., P(s) > P(r), andType 2 A message to a bigger process, i.e., P(s) < P(r).The messages of type 1 are committed at the send of the message by the process that is executingthe send. The receiver commits the message as soon as it receives the message. In case of themessage of type 2, the smaller process sends a request message to the bigger process. The biggerprocess, when in a position to commit the message, executes the message and sends the message(with the same content) to the smaller process. The smaller process commits the message onreceiving. For example,Type 1 s ; r: As shown in �gure 6, the process P2 commits on the message at event s andprocess P1 commits at event r.Type 2 s; r: As shown in �gure 6, the process P2 commits the message at the event r0, and theprocess P3 commits the message at event s0. Therefore, the process P2 orders its event suchthat event e causally precedes the message (or the send of the message s; r).Therefore, every message is committed by the participating process at the send and receive ofa message from the bigger process to the smaller process. Keeping this in mind we can assume thesystem has messages from bigger to smaller processes only. Therefore,8(s; r) 2 E : P(s) > P(r):4.2.2 Send Condition (SC)The send condition of a protocol delays the send event. The send condition for message (s2; r2) 2 Eis formally stated as s1 � s2 =) r1 ! r2Informally, the condition restricts a process from sending a message until it has the knowledge ofreceives of all the previous sends. That is, there exists a sequence of messages in E [Ec such thatr1 ! r2 holds. 10

P1P2P3 s r s r s0 r0e(a) The message along with the underlying message P1P2P3 s r r se(b) The resulting message orderingFigure 6: The messages under the Priority Rule (PR)4.2.3 Receive Condition (RC)The receive condition of the delays the receive of a message. It is formally stated for the receive ofmessage (s2; r2) 2 E as, s1 � r2 =) :(r2 ! r1):Informally, the condition delays the receive of a message until it is sure that there cannot exist amessage in E [Ec such that r2 ! r1.4.3 ImplementationIn this section we describe how acknowledgment messages can be used to satisfy the send andreceive conditions.In the algorithm, every message e ; f has a underlying acknowledgment message and isrepresented as e:ack ; f:ack, as shown in �gure 7, where e; f 2 E and e:ack; f:ack 2 Ec (thecontrol message). The acknowledgment messages are used to implement the Send Condition andthe Receive Condition.A process Pi can be in one of the two states: active or passive. The initial state of every processis active. A process changes its state according to the following rules:{ On sending a message, the process changes its state from active to passive,{ On receiving an acknowledgment, the process changes its state from passive to active.Let us consider a message e; f , were e 2 Pi and f 2 Pj . On receiving the message at f , processPj executes a send of an acknowledgment f:ack, such that f � f:ack and process Pi executes areceive of the acknowledgment e:ack, such that f:ack ; e:ack and e � e:ack (see �gure 7).4.3.1 Send Protocol (SP)The Send Protocol prohibits a process from executing a send event (s 2 E) when it is passive. Forexample in �gure 7, the process Pi was active just before the event e, and passive until the event11

PiPj e� passive -f f:ack e:ack� activeFigure 7: Message with the Acknowledgmente:ack. As the event e can be enabled only if the process is active, the last send from the process Pimust have been acknowledged before e.Formally, we can state SP as,To send a message (s1 ; r1) from Pi to Pj (i > j), wait until it is active (i.e., wait for anacknowledgment for the previous send). Therefore,s1 � s2 =) s1:ack � s2:Theorem 4 SP is su�cient to implement SC.Proof: Let s1 � s2. We need to show that r1 ! r2.From SP, s1 � s2 =) s1:ack � s2: (2)By the conditions of acknowledgment messages, r1 � r1:ack and r1:ack ; s1:ack. Therefore,r1 ! s1:ack. From (2), we get that r1 ! s2. This in turn implies r1 ! r2 since s2 ; r2. k4.3.2 Receive Protocol (RP)The Receive Protocol requires that a process send an acknowledgment for the receive of a messageonly if it is active (i.e., it has received an acknowledgment for the previous send). For example, in�gure 7 the process Pj can execute the event f:ack when the process is active, i.e., the last sendfrom the process Pj has been acknowledged.Formally, we can state RP as,On receiving a message (s1 ; r1) from Pi, Pj (i > j), commits on the receive of themessage and sends an acknowledgment (r1:ack ; s1:ack) back when it is active (i.e., theacknowledgment of the last send of the message from Pj has been received). Therefore,s1 � r2 =) s1:ack � r2:ack:Theorem 5 If a system satis�es SP, then RP is su�cient to implement RC.12

Pi :: var messageQueue :: Queue of messagesackQueue :: Queue of messagesstate :: Boolean initially active2 SendIntent (hm;Pi; Pji)if (i < j) /* message to bigger process PR */send (hm;Pi; Pji)else if (state = active) /* commit and send the message */state = passivesend (hm;Pi; Pji)commit (hm;Pi; Pji)else /* wait for the ack message SP */Enqueue (messageQueue, hm;Pi; Pji)2 Receive (hm;Pj; Pii)if (i > j) /* message from smaller process PR */SendIntent (hm;Pi; Pji)else Commit (hm;Pj; Pii)if (state = active)send (hack; Pi; Pji)else /* wait for the previous ack RP */Enqueue (ackQueue, hack; Pi; Pji)2 Receive (hack; Pi; Pji)state = activewhile (notEmpty (ackQueue)) /* send acks if active RP */hack; Pi; Pji = Dequeue (ackQueue)send (hack; Pi; Pji)if (notEmpty (messageQueue))state = passivehm;Pi; Pji = Dequeue (messageQueue)send (hm;Pi; Pji)commit (hm;Pi; Pji)Figure 8: Algorithm to Implement Synchronous Ordering of Messages13

Proof: Let s1 � r2. We need to show that :(r2 ! r1).From s1 � r2, we get that s1:ack � r2:ack using RP. Now consider s1:ack and r2. There are twocases possible:Case 1: s1:ack � r2 :Since r1 ! s1:ack and s1:ack � r2, we get that r1 ! r2.Therefore, :(r2 ! r1) holds.Case 2: r2 � s1:ack :Since r1 ! s1:ack;r2 ! r1 =) 9s 2 E [Ec : r2 � s � s1:ack ^ r! r1:The send s 62 E otherwise SP is violated. The send s0 62 Ec otherwise RP is violated. Thereforethere cannot exists a send in the interval starting at r2 and ending at s1:ack.Therefore, :(r2 ! r1) holds. k5 Proof of correctnessThe correctness of the above algorithm is proved in the usual two steps: safety and liveness.5.1 Proof of SafetyOur strategy of the proof is to show that if a distributed computation satis�es SC and AC then itwill not have a crown formed by causality of events in the set E . We �rst show that if there existsa crown (of size k) in a distributed run (or computation) then, there also exists a strong crown ofsize k0 where k0 � k. The second part of the proof shows that a synchronous distributed run cannothave a strong crown. We �rst prove an elementary lemma.Lemma 1 If (e 7! f) ^ :(e; f) then, (e � f) _9(s1; r1) 2 E : (e � s1 ^ r1 ! f) _ 9g : (e; g ^ g ! f):Proof: The lemma states that if two events are causally related, then either they are in the sameprocess, or there exists a send event in the same process (and corresponding receive) in the causalitychain. kThe next lemma is used to reduce the crown to a strong crown. If two events s1 2 S and r2 2 Rare causally related as s1 7! r2, then either both the events are in the same process or there is asend event s3 2 E in the causality chain such that s1 � s3.Lemma 2 Let (s1 ; r1) and (s2 ; r2). If s1 7! r2 and SC, thenr1 ! r2 _ s1 � r2:14

Proof: If s1 7! r2 then (by lemma 1),(i) s1 � r2 _(ii) s1 ; r1 ^ r1 ! r2 _(iii) 9s3 2 E : s1 � s3 ^ r3 ! r2:The �rst two cases directly satisfy the lemma. In the third case, as s1 � s3, thereforer1 ! r3 by SC:and as r3 ! r2, we have r1 ! r2. kWe now show that if a crown exists then there also exists a strong crown in the distributedcomputation.Lemma 3 If a distributed computation satis�es SC and RC, and it does not have a strong crownof size 2 formed by the events in E, then it does not have a crown (of size 2) such that,s1 7! r2; s2 7! r1:Proof: Assume that a distributed computation has a crown of size 2.s1 7! r2; s2 7! r1:Since the crown is not strong (without loss of generality) assume that :(s1 � r2). From lemma 2,we get that r1 ! r2: (3)From (r1 ! r2) by using RC we get that :(s2 � r1).Applying lemma 2 again to :(s2 � r1) and s2 7! r1, we get thatr2 ! r1:which is a contradiction to equation 3. kLemma 4 If a distributed computation satisfying AC and SC has a crown (of size k),s0 7! r1; s1 7! r2; � � � ; sk�2 7! rk�1; sk�1 7! r0:then it also contains a strong crown of size (k0 � k) such that,s00 � r01; s01 � r02; � � � ; s0k�2 � r0k�1; s0k�1 � r00:15

Proof: If k � 2, then the theorem follows directly from lemma 3. Assume k > 2. Pick any part ofthe crown starting from any index i mod k,si�1 7! ri; si 7! ri+1 (�)such that, :(si � ri+1), such an i exists otherwise the crown is already strong. Since si 7! ri+1 (bylemma 2), ri ! ri+1:Since si�1 7! ri and ri ! ri+1, equation (*) can be reduced tosi�1 7! ri+1:Therefore, in the sequence (k > 2),s0 7! r1; s1 7! r2; � � � ; sk�2 7! rk�1; sk�1 7! r0:If :(si � ri+1) then the sequence can be reduced by removing the (si; ri) message. On repeatingthe process the resulting sequence can be:{ A strong crown of size k0 � k:s00 � r01; s01 � r02; � � � ; s0k0�2 � r0k0�1; s0k0�1 � r00:{ Or the resulting crown is of size 2, such thats1 7! r2; s2 7! r1:By lemma 3, the two crown is strong. kTheorem 6 (Safety) Any distributed run that satis�es SC, AC and PR is synchronous.Proof: The proof is by contradiction. Let a distributed run be not synchronous. Then by The-orem 2 there exists a crown. The conditions of lemma 4 are true, i.e., SC and AC. Therefore bylemma 4, there will exist a strong crown,s0 � r1; s1 � r2; � � � ; sk�2 � rk�1; sk�1 � r0:From the crown we get8i 2 f0; 2; 3; : : : ; k� 1)g : P(si) = P(ri+1 mod k); (�)and (by PR) 8i 2 f1; 2; 3; : : : ; k� 1g : P(si) > P(ri): (��)Combining (*) and (**) we get, P(r0) > P(s0);which is a contradiction to PR. k16

Theorem 7 (Safety) Any distributed computation that satis�es SP and RP is synchronous.Proof: The proof is by contradiction. Let a distributed run be not synchronous. Then by Theo-rem 2 there exists a crown. By lemma 4, there will exist a strong crown,s0 � r1; s1 � r2; � � � ; sk�2 � rk�1; sk�1 � r0:If si � ri+1 then by RP, si:ack! ri+1:ack. Therefore, from the crown we get8i 2 f1; 2; 3; : : : ; (k� 1)g si:ack! ri+1:ack; (�)and (by de�nition) 8i 2 f1; 2; 3; : : : ; kg ri:ack! si:ack: (��)Combining (*) and (**) we get, r1:ack! sk:ack;but according to the strong crown, we havesk � r1 =) sk :ack � r1:ack;which is a contradiction. k5.2 Proof of LivenessTheorem 8 (Liveness) In a distributed computation that satis�es SP, RP and PR, every processPk that wants to send a message will eventually be able to send it.Proof: By induction on k,Case k = 1: The smallest process P1 does not send any message therefore it is always active. Itsends an acknowledgment as soon as it gets a message. Therefore on receiving a message (s; r),r � r:ack:Now on applying induction, given that k smallest processes eventually be in active state, then(k + 1)th process if passive will eventually be active. The process Pk+1 is passive at time t if1. there exists a send of message (s1; r1) at time t0 < t and2. the process is passive between the time interval from t0 to t.Therefore, there exists an acknowledgment message (r1:ack; s1:ack) from a process P(r1) to Pk+1such that,1. the acknowledgment is in transit, or2. send of the acknowledgment will eventually be executed when the process P(r1) is active.If the message is in transit then process Pk+1 will eventually receive s1:ack and become active. Ifthe second condition is true, then as P(r1) < Pk+1 therefore, P(r1) will eventually turn active andexecute send of acknowledgment message. Therefore, process Pk+1 will eventually be active. k17

6 ConclusionsThe algorithm consists of three components: the priority rule, send condition, and the receivecondition. The priority rule results in one control message and a delay of less than 2t time units(assuming that the upper bound in the delay between any two processes is t time units) for everymessage (s; r) 2 E if P(s) < P(r). In the case of any message (s; r) 2 E where P(s) > P(r) thereare no control message or delay introduced. However, note that during the delay introduced dueto PR, the process can continue to execute any other event.The send condition introduces only one control message of every message and the receive con-dition introduces a delay of which is upper bounded by nt, were n is the number of processes inthe system. Therefore, the message complexity is 1:5 control messages (2 Ec) for every message(s; r) 2 E .On comparing with the informal algorithm for synchronous ordering, where the sender waitsuntil the receive of an acknowledgment, the resulting algorithm has a higher degree of concurrency.This can be easily seen as both the send condition and the receive conditions are satis�ed byinformal algorithm.In this paper we studied the characteristics of a synchronous ordering of messages. The necessarycharacteristics, i.e., asymmetric and both sender and receiver based protocol, for any algorithmto ensure synchronous ordering were presented. The conditions su�cient (PR, SP, and RP) toimplement synchronous ordering were presented based on the necessary characteristics to ensuresafety properties. Further, an algorithm was presented based on acknowledgment messages tosatisfying SP and RP conditions.7 AcknowledgmentsWe would like to thank Alex Tomlinson for his comments and suggestions.References[1] Charron-Bost, B., Mattern, F. and Tel, G., \Synchronous and Asynchronous Communicationin Distributed Computations", Tech Report TR91.55, LITP, University Paris 7, France, Sept.1991.[2] Cormen, T.H., Leiserson, C.E., and Rivest, R.L., Introduction to Algorithms, The MIT Press,1990.[3] Chandy, K.M. and Lamport, L. \Distributed Snapshots: Determining Global States of Dis-tributed Systems", ACM Trans., on Computer Systems, 3(1): 63{75, Feb., 1985.[4] Birman, K.P., and Joseph, T.A., \Reliable Communication in the Presence of Failures", ACMTrans. on Computer Systems, 5(1): 47{76, 1987.[5] Dijkstra, E.W., Feijen, W.H.J., and van Gasteren, A.J.M., \Derivation of a Termination De-tection Algorithm for Distributed Computations", Inf. Proc. Letters, 16:217-219, 1983.18

[6] Goldman, K. J., \Highly Concurrent Logically Synchronous Multicast", Proc. of the 3rd In-ternational Workshop on Distributed Algorithm, J-C Bermond, M. Raynal (eds), pp 94{110,Springer-Verlag, 1989.[7] Joseph, T.A., and Birman, K.P., \Reliable Broadcast Protocol", Distributed Systems, Editedby Sape Mullender, pp 294{317, Addison-Wesley, 1989.[8] Lamport, L., \Time, Clocks and the Ordering of Events in a Distributed System", Communi-cations of the ACM 21(7): 95{114, July 1978.[9] Mattern, F., \Virtual Time and Global States of Distributed Systems", Proc. Workshop onParallel and Distributed Algorithms, M. Cosnard et al. (eds), pp 215{226, Elsevier/NorthHolland, 1989.[10] Mostefaoui, A., and Raynal, M., \Causal Multicast in Overlapping Groups: Towards a LowCost Approach", Proc. IEEE Int. Conf. on Future Trends of Dist. Comp. Systems. Lisboa,Sept 1993.[11] Raynal, M. and Helary, J-M., Synchronization and Control of Distributed Systems and Pro-grams, Wiley & Sons, 1990.[12] Raynal, M., Schiper, A. and Toueg, S., \The Causal Ordering Abstraction and a Simple wayto Implement It", Information Processing Letters, 39(6): 343{350, 1991.[13] Schiper, A., Eggli, J., and Sandoz, A., \A New Algorithm to Implement Causal Ordering",Proc. of the 3rd Int. Workshop on Distributed Algorithms, pp. 219-232, Springer Verlag, 1989.

19

