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Abstract

This paper studies the characteristics of synchronous ordering of messages. Synchronous
ordering of messages defines synchronous communication based on the causality relation rather
than time. We present the necessary characteristics of any algorithm providing deadlock-free
synchronous ordering of the messages. We also present the sufficient conditions, based on the
causality relations, for any algorithm to provide synchronous ordering. The paper proposes an
algorithm using acknowledgment messages to implement the sufficient conditions. The acknowl-
edgment messages are used to satisfy the causality relation between the events. The algorithm
is deadlock-free, and provides a higher degree of concurrency then the algorithms which define
synchronous communication based on time.

1 Introduction

Distributed programs are difficult to design and test due to their non-deterministic nature. That
is, a distributed program may exhibit multiple behaviors on the same external input. This non-
determinism is caused by a possible reordering of messages in different executions. It is sometimes
desirable to control the non-determinism by restricting the possible message ordering in a system.
For example, many systems restrict message delivery to FIFO order. This results in simplicity in
design of distributed algorithms which may depend on the FIFO assumption [3]. In this paper, we
discuss one such possible restriction on message ordering called synchronous message ordering.

The problem of restricting message ordering has received wide attention [1, 7, 12, 13, 10].
Charron-Bost, Mattern, and Tel [1] have recently proposed a strict hierarchy of message ordering
- asynchronous, FIFO, causal ordering, and synchronous.

An asynchronous computation does not have any restriction on the message ordering. It is easy
to implement, and it permits maximum concurrency; but algorithms based on fully asynchronous
communication can be difficult to design. These algorithms are required to work for all ordering of
the messages. A FIFO ordered computation is also easy to implement. It is usually implemented
by using sequence numbers for messages. Causal ordering is a stronger condition than FIFO.
Intuitively, causal ordering requires that a single message should not be overtaken by a sequence
of messages. Joseph and Birman [7] have given many examples of problems which are easier to
solve if causal ordering is assumed. It was first implemented in ISIS [4]. Many other algorithms for
causal ordering have appeared since then [12, 13]. Synchronous ordering is a stronger requirement
than causal ordering. Algorithms for synchronous systems are much easier to design than those
for causally ordered systems. Unlike the case of causal ordering, there is very little work done on
synchronous ordering of messages. Usually, to achieve synchronous ordering of messages, the send
is blocking, i.e., the sender waits for an acknowledgment from the receiver to execute the next

event. This informal algorithm as presented by Charron-Bost, Mattern, and Tel [1] can result in

deadlocks.



In this paper, we present a deadlock free algorithm that ensures synchronous ordering of mes-
sages. In addition, our algorithm permits higher degree of concurrency than algorithms based on
blocking sends. In our algorithm the sender continues to execute internal events and receive events
while waiting for an acknowledgment message.

This paper is organized as follows. In Section 2, we give formal definitions of various message
orderings in distributed computations. This section also includes background results on character-
ization of synchronous computation using crowns [1]. In Section 3, we investigate the requirements
of any algorithm that achieves synchronous ordering. Note that message ordering can be restricted,
in general, by delaying sends or by delaying receives. For example, the causal ordering algorithm
proposed by Raynal, Schiper, and Toueg [12] uses receiver based delays. We show in this section
that any algorithm that implements synchronous ordering must include both sender and receiver
based delays. In Section 4, we present our algorithm and Section 5 provides the proof of its cor-
rectness. Section 6 discusses the overhead associated with the algorithm and presents concluding
remarks.

2 Distributed Computations

2.1 Our Model

Let a distributed system be defined as a set of n sequential processes {P; |0 < ¢ < n}. Each process
P; consists of a set of events &£, which are classified into three types: send events S, receive events
R, and internal events 7. The next event that is executed by process P; after an event e is given
by the relation <;. The events in the same process form a total order under the transitive closure
of <.

We assume that every send event has a corresponding receive event, i.e., every message that
is sent is eventually received. We also assume that every receive event has a corresponding send
event, i.e., there are no spurious messages in the system. A send event s in process P; and its
corresponding receive event r in process P; (j # ¢) are related by the the relation ~-. This is
represented as s ~» r. For convenience, we denote the receive event corresponding to the send event
s; by r; and vice—versa. The message pair is represented as (s;,7;)). Thus, Vi : s; ~ 7.

The causal ordering of events in distributed systems is based on the well known “happened
before (—)” relation [8]. The happened before relation (also called causally precedes relation) is
defined as the transitive closure of union of <; and ~+ relations. In other words, e — f iff

L (e=<1f)V (e~ [),or
2. 3h : (e —=h A h—f).
Similarly, the relation < is defined as the transitive closure of <1, that is, e < f iff
1. e=<q f,or
2. 3h : (e<h ANh=<f).

For example in Figure 1, the events a,b,c,e, f are related as @ <1 b, b <1 ¢, b~ e and e <1 f;
therefore, the events a and f are related as ¢ — f, and the events a and c¢ are related as a < ¢
(therefore, a — ¢).
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Figure 2: Synchronous Time-diagram

2.2 Hierarchy of Communication Modes

Based on the happened before relation a strict hierarchy of communication modes can be defined [1].

The various communication modes are:

FIFO : Any two messages from a process P; to P; are received in the same order as they were
sent. Formally,
81 < 89 — —|(7‘2 < 7‘1). (FIFO)

Causally Ordered : Let any two send events sy and sy in a distributed computation be related
such that the first send causally precedes the second send. Then, the second message cannot

be received before the first message by any process [7, 12]. Formally,

81 — 89 s —|(7‘2 =< 7‘1). (CO)

Synchronous : A computation is synchronous if its time diagram can be drawn such that all
message arrows are vertical [1] (see Figure 2). That is, all external events can be assigned a
timestamp such that time increases within a single process and for any message its send and

receive are assigned the same timestamp. Formally,

dT: & —N = Vs,re,feE\T
s~r1r = T(s)=T(r) (SYNC)
e<f = T(e) <T(f).
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Figure 3: Crowns of size 2 and 3

This definition is different from that given in [1] but it can easily be shown to be equivalent. In the
rest of the paper, we assume that there are no internal events, as they do not affect the message
ordering; therefore, £ = R U S. It is easy to see that, for any two events e and f

(e—=f)A=le~f) = T(e) <T() (1)
The following theorem [1] is proved for the sake of completeness.
Theorem 1 The hierarchy associated with the various modes of communications is
Synchronous C Causally Ordered C FIFO.
Proof:
Causally Ordered C FIFO : This is true because,

81 < 89 — 81 — Sg.

Synchronous C Causally Ordered : We show that if a computation is synchronous then it

is also causally ordered. Since the communication is synchronous there exists a function T
satisfying SYNC.

For any set of events 51,39 € § and 71,72 € R such that sy ~ ry, s3 ~ ry and 51 — sg:
T(s1) =T(r1) T(s2) =T(rz), and T(s1) < T(s2).
It follows that T(rq) < T(rz). Therefore, (1) implies

—|(7‘2 — 7‘1).

2.3 Crowns in a Distributed Computation

A computation can also be characterized as synchronous based on absence of a structure called
“crown”. The concept of a crown was introduced by Charron-Bost et al., in [1] where they also



prove that a computation is synchronous if and only if it does not contain any crown. In the rest
of the section we present the definition of a crown and provide a simpler proof of this property.
Definition (Crown): Let C be a computation. A crown (of size k) is a sequence {(s;,r;),t €

{0,1...,k—=1} : s;~ ;) of pairs of corresponding send and receive events such that (see Figure 3)

So — 71,81 — T2,y S8k—2 — Tk—1,5k-1 — To-

Theorem 2 A computation is synchronous iff there is no crown in it.
Proof:

Synchronous — —-Crown :
Since the computation is synchronous there exists a function T satisfying SYNC, and for any
two events e and f

(e = fin-le~ f) = Tle) <T(f)
Suppose, if possible, the computation has a crown of size &,
So — T,81 — T2,y Sg—2 = Tg—1,5k-1 — T0-

Therefore,

Vie{0,1,....,k—1} T(s:) < T(rii41) moa k)  (*)

Vied{l,2,....,k—1} T(s;) = T(r;). (%)
Therefore, from equations (*) and (**),

T(so) < T(ro).

which is a contradiction because SYNC implies that 7'(s9) = 1'(ro).

-Crown — Synchronous :
Given a computation, we form a directed graph G(F, V), as follows. The vertex set V' consists
of all messages in the computation. Thus, each vertex v; represents a set of two events: the
send event s; and the corresponding receive event r;. That is,

v; = {si,7i}.
There is an edge from v; to v; if there is an event e € v; and an event f € v; such that e — f.
Thus, (v;,v;) € Eiff (s; — s;) V (s; — 7;) V (r; — s;) V (r; — r;). It is easy to see that
each of the four disjuncts implies s; — r;. Hence, (v;,v;) € E iff s; — r;.
Since the computation does not have any crown, it follows that the graph G is acyclic.

This means that GG can be topologically sorted [2]. Therefore, there exists a function F: £ — N
such that,

s~r = F(s)=F(r) and
e<f = F(e) <F(f).

Therefore, the computation is synchronous.



In this paper, we also use a structure called strong crown. We define a strong crown as,
Definition (Strong Crown): Let C be a computation. A strong crown (of size k) is a sequence
((siyri), 1 €40,1...,k =1} 1 s; ~ 1) of pairs of corresponding send and receive events such that

S0 = T1,81 =< T2y, 8k—2 <X Tk—1,5k—1 < To.

Note that a strong crown is a crown, but not all crowns are strong (see Figure 3). Later to prove
the safety of the algorithm we show that, any distributed computation satisfying the conditions of

the algorithm, has a strong crown if it has a crown.

3 Some Impossibility Results

In this section we present the necessary charateristics of any algorithm that ensures synchronous
ordering of the messages. The assumptions for any protocol are:

1. A protocol for any message is restricted to the processes executing the send event and the
corresponding receive event. If there is a message (s,r) from process P; to P;, the protocol
should not contain any control messages from Py (k # i,k # j) to P; or P}, or vice-versa.

2. A process can take a decision at t = to about any event e (i.e., whether to delay it or to
execute it) only based on the past. The past of any event e at time ¢ is defined as:

past(e) = {f|f — e}
The — includes the causality formed by the control messages.

A protocol consists of a receiver part and the sender part. A protocol is defined as bounded
delay send if there exists an upper bound on the time to complete the sender part. Similarly, a
protocol is bounded delay receive if there exists an upper bound on the time to complete the receiver
part. Intuitively, a protocol is bounded delay receive if on receiving a message (s, r) at time ¢ = o,
the process commits (completes the protocol) the message by time ¢ = #; + 6t.

For example, consider FIFO ordering in a two process system. The usual protocol to implement
FIFO is a bounded delay send but not a bounded delay receive. If a process intends to send a
message, then it can immediately execute the send and end the sender part. Assume that there
are two messages (s1,71) and (sg,73), and s; < sz. If the receiver process receives ry at time 7
before the message r1, then it cannot assure the commit of the message in a bounded time. This
unbounded time execution of the protocol is due to the uncertainty in the amount of time the
message r1 will take. In effect, the process is delaying the receive until some other event has taken
place.

In this section we prove that any protocol that implement synchronous ordering must be asym-
metric and must include sender and receiver based delays. We assume without loss of generality,
that the upper bound on time is 6t on the completion of the sender part or the receiver part, if
there exist one. We also assume, without loss of generality, that to implement the protocol for
the message (s;,7;), the first message of the protocol between two processes is represented as the
message (s;,7;).
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Figure 4: Non-synchronous ordering for impossibilities

Theorem 3 Any protocol that implements SYNC cannot be
1. symmelric, or
2. have bounded delay sends, or

3. have bounded delay receives.
Proof:

1. We show that given a symmetric protocol with respect to the processes, there exists a dis-
tributed computation where synchronous ordering is not possible.

Consider the distributed computation shown in Figure 4(a). Both the processes intend to
send a message to each other at the same time t3. Since the past for each of the sends is
an empty set, none of the processes can delay the send. It is obvious that the system is
in a symmetric state with respect to Py and P,. If this symmetric state is the input to any
symmetric protocol, the resulting output cannot be asymmetric. This rules out the possibility
of the asymmetric ordering of messages i.e., (s1 < 73 A 711 < sz)or (sg <71 A 72 < §1),
which are the only possible synchronous message orderings.

Therefore, either the resulting computation does not satisfy SYNC, or the processes will never
send the message.

2. Bounded delay receive protocol:

Consider the distributed computation as shown in Figure 4(b). Each of the processes Py, P,
and Ps sends a message at time {g. Since the past for each of the sends is an empty set, none
of the processes can delay the send. The message (s1,71) is received by process P at time 1.
The process P; completes the protocol for message (s1,71) by time ¢ + 6t since the protocol
is bounded delay receive. At the completion of the protocol, process P, may not have any
information about the event r3. This is because the time taken for message (s2,72) may have
been greater than t; + 6t — 1g.

Consider message (s1,71); the following are true:

(a) Processes taking part in the protocol are Py and P;.

(b) Process P, completes the protocol at time ¢, + 6t.



¢) Process P2 cannot send any more messages to P1 after time tl + 6t, because of Bounded
g ’
delay recetve.

(d) When the process P; completes the protocol at say time ¢, it knows its past (i.e., ¢ < #3)
and the past of the process P, before the completion of event 7, i.e., t < (#1 + 61).

As a result of statement (d), the process P, has no knowledge of event ry at time t5.

Now consider the message (s4,74), which the process Py wants to execute at ¢t = t3 > 5.
From the assumption 2 of the protocol, the process P, executes the event s; based on its
past, i.e.,

past(sq) C {s1,82,71}.

Based on the past, the process P; cannot delay the send of event s;. Let the process Py
receive the message (s4,74) at time #4. The process Py completes the protocol at time t4 + 6t
since the protocol is bounded delay receive.

If the message (ss,73) takes more than t4 + 6t — to, then the process Py orders the receive
events r3, r4 such that r4 < r3. The resulting distributed computation is non-synchronous as
there is a crown.

. Bounded delay send protocol:

Again, consider the distributed computation as shown in figure 4.(b), each process Py, Py,
and P53 send a message at time {g.

Assume the process Py wants to send another message (s4,74) at time #;. Since the protocol
is bounded delay send, the process P; executes s4 and completes the send part of the protocol
before t = t; 4 6. If the message (s1,71) takes more than #; + 8t — o units of time, then the
message (s4,74) carries no information about the event 7. Therefore,

past(ss) = {s1}.

Let the message (s4,74) reach the process Py at time ¢ = t3. On receiving the message ry, the
process has no knowledge of the message (s3,73) since,

past(rs) = {s1, s4}.

Therefore, the only possible action the process P; can take is to commit the receive of the
message r3 at time ¢;. The message ordering results in a non-synchronous computation.

4 Algorithm

4.1

Commit Point of a Message

To implement synchronous ordering in the traditional algorithm, a process sends a message

s1 ~ rp and waits for an acknowledgment sy ~+ ro before executing other events. Therefore, the

message transaction is completed on the receive of the acknowledgment. In these systems, the
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Figure 5: A message from P, to P;

interval from sy to 79 is atomic. That is, the sender does not execute any event between s; and
ro. In our algorithm, the send of a message and the receive of the corresponding acknowledgment
result in completion of the message transaction, but the events s; and r, are not atomic. This
gives a process flexibility to order the message as if it was sent at either s; or ry. For example, in
figure 5 the process starts the message transaction at event s; and ends the transaction at event
ro. If the process P, commits the message at s; the message causally precedes the event e, whereas
if the process commits the message at ro the event e causally precedes the message.

4.2 Protocol

The algorithm to implement synchronous ordering of messages has three components: the priority
rule (PR), the send condition (SC) and receive condition (RC). As shown in Section 3, any protocol
that achieves synchronous ordering must be asymmetric with respect to processes. We introduce
this asymmetry by the priority rule. The algorithm introduces control messages. These control
messages are denoted by s° and r° and belong to the event set £°. Based on the event sets & and

£°, we define the relations —¢ and —, subsets of — as,

Definition of —¢ :
€ —¢ f iff
(e,fe&) A

(e~ flvie<f)V(Is1 €& t e<s1 AT —¢ f)).
In other words two events are related by —¢ iff the causality chain is formed by the events
in £.
Definition of — :
e — fiff,
(e, f€E) A

(e~ flvie<f)v(Asi €& s e<si Ay — [)).

The relations is motivated from the fact that a computation restricted to the event set £ is not
synchronous if there exists a crown, such that causality chains are formed by the relation —¢. That



is, a computation is sychronous if and only if there is no crown such that,

S0 —ET1," s Sk—2 —& Tk—1,5k-1 —& T0-

It is easy to see that if there exist a crown (of size k) restricted to the event set £ then there
exists a crown,

So =~ T1,81 = T2,y 82+~ Tk—1,5k-1 — To.

4.2.1 Priority Rule (PR)

We define a total order among the processes of a distributed system as P; < P;iff ¢ < j. We
also define the function P : £ — N, such that P(e) = 7 iff e is an event in process P;. Based on the
function P, any message (s~ r) can be classified into two types (assuming that a process cannot
send a message to itself) :

Type 1 A message to a smaller process, i.e., P(s) > P(r), and
Type 2 A message to a bigger process, i.e., P(s) < P(r).

The messages of type 1 are committed at the send of the message by the process that is executing
the send. The receiver commits the message as soon as it receives the message. In case of the
message of type 2, the smaller process sends a request message to the bigger process. The bigger
process, when in a position to commit the message, executes the message and sends the message
(with the same content) to the smaller process. The smaller process commits the message on
receiving. For example,

Type 1 s ~ r: As shown in figure 6, the process P, commits on the message at event s and
process P, commits at event r.

Type 2 s~ r: As shown in figure 6, the process P, commits the message at the event v/, and the
process P3 commits the message at event s’. Therefore, the process P, orders its event such
that event e causally precedes the message (or the send of the message s ~ r).

Therefore, every message is committed by the participating process at the send and receive of
a message from the bigger process to the smaller process. Keeping this in mind we can assume the
system has messages from bigger to smaller processes only. Therefore,

V(is,r)e &  P(s)>P(r).

4.2.2 Send Condition (SC)

The send condition of a protocol delays the send event. The send condition for message (s2,72) € €
is formally stated as

81 <8 == T] —TI9

Informally, the condition restricts a process from sending a message until it has the knowledge of
receives of all the previous sends. That is, there exists a sequence of messages in £ U £° such that
71 — T9 holds.

10
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Figure 6: The messages under the Priority Rule (PR)

4.2.3 Receive Condition (RC)

The receive condition of the delays the receive of a message. It is formally stated for the receive of
message (sg,72) € € as,
sy <ry = (rg—r11).

Informally, the condition delays the receive of a message until it is sure that there cannot exist a

message in & U £° such that ro — rq.

4.3 Implementation

In this section we describe how acknowledgment messages can be used to satisfy the send and
receive conditions.

In the algorithm, every message e ~» f has a underlying acknowledgment message and is
represented as e.ack ~ f.ack, as shown in figure 7, where e, f € £ and e.ack, f.ack € £° (the
control message). The acknowledgment messages are used to implement the Send Condition and
the Receive Condition.

A process F; can be in one of the two states: active or passive. The initial state of every process

is active. A process changes its state according to the following rules:

— On sending a message, the process changes its state from active to passive,

— On receiving an acknowledgment, the process changes its state from passive to active.

Let us consider a message e ~ f, were e € P; and f € P;. Onreceiving the message at f, process
P; executes a send of an acknowledgment f.ack, such that f < f.ack and process P; executes a
receive of the acknowledgment e.ack, such that f.ack ~ e.ack and e < e.ack (see figure 7).

4.3.1 Send Protocol (SP)

The Send Protocol prohibits a process from executing a send event (s € £) when it is passive. For

example in figure 7, the process P; was active just before the event e, and passive until the event

11
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Figure 7: Message with the Acknowledgment

e.ack. As the event e can be enabled only if the process is active, the last send from the process F;
must have been acknowledged before e.

Formally, we can state SP as,

To send a message (s ~ r1) from P; to P; (7 > j), wait until it is active (i.e., wait for an

acknowledgment for the previous send). Therefore,

851 < 89 == si.ack < sg.

Theorem 4 SP is sufficient to implement SC.

Proof: Let s1 < s3. We need to show that r; — ry.
From SP,

51 < 83 == si.ack < sg. (2)

By the conditions of acknowledgment messages, 1 < ri.ack and ri.ack ~ sj.ack. Therefore,
r1 — sy.ack. From (2), we get that r; — s3. This in turn implies 7y — 73 since s ~ ra. I

4.3.2 Receive Protocol (RP)

The Receive Protocol requires that a process send an acknowledgment for the receive of a message
only if it is active (i.e., it has received an acknowledgment for the previous send). For example, in
figure 7 the process P; can execute the event f.ack when the process is active, i.e., the last send
from the process P; has been acknowledged.

Formally, we can state RP as,

On receiving a message (sq1 ~ r1) from P;, P; (¢ > j), commits on the receive of the
message and sends an acknowledgment (ri.ack ~ sj.ack) back when it is active (i.e., the
acknowledgment of the last send of the message from P; has been received). Therefore,

$1 <19 == sy.ack < ro.ack.

Theorem 5 If a system satisfies SP, then RP is sufficient to implement RC.

12



var
messageQueue 1 Queue of messages
ackQueue 2 Queue of messages
state :: Boolean initially active

O SendIntent ((m, P;, P;))
if (i < j) /* message to bigger process PR */

send ((m, P;, P;))

else
if (state = active) /* commit and send the message */
state = passive
send ((m, P;, P;))
commit ({(m, P;, P;))
else /* wait for the ack message SP */

Enqueue (messageQueue, (m, P;, P;))

O Receive ((m, P;, P;))
if (> j) /* message from smaller process PR */
SendIntent ((m, P;, P;))
else
Commit ({m, P;, P;))
if (state = active)
send ((ack, P;, P;))
else /* wait for the previous ack RP */
Enqueue (ackQueue, (ack, P;, P;))

O Receive ({ack, P;, P;))

state = active

while (notEmpty (ackQueue)) /* send acks if active RP */
(ack, P;, P;) = Dequeue (ackQueue)
send ((ack, P;, P;))

if (notEmpty (messageQueue))
state = passive
(m, P;, P;) = Dequeue (messageQueue)
send ((m, P;, P;))
commit ({(m, P;, P;))

Figure 8: Algorithm to Implement Synchronous Ordering of Messages

13



Proof: Let s; < 3. We need to show that —(ry; — rq).
From s1 < 79, we get that sy.ack < ro.ack using RP. Now consider sy.ack and ry. There are two

cases possible:

Case 1: sj.ack < rq :
Since r1 — s1.ack and sy.ack < ry, we get that r; — ro.

Therefore, =(ry — 71) holds.
Case 2: ry < s7.ack :
Since 71 — sy.ack,

rg — 1] = ds € EUES : rg < s < sj.ack ANr — 1.

The send s ¢ & otherwise SP is violated. The send s’ ¢ £° otherwise RP is violated. Therefore
there cannot exists a send in the interval starting at ro and ending at s;.ack.

Therefore, =(ry — 71) holds.

5 Proof of correctness

The correctness of the above algorithm is proved in the usual two steps: safety and liveness.

5.1 Proof of Safety

Our strategy of the proof is to show that if a distributed computation satisfies SC and AC then it
will not have a crown formed by causality of events in the set £. We first show that if there exists
a crown (of size k) in a distributed run (or computation) then, there also exists a strong crown of
size k' where k' < k. The second part of the proof shows that a synchronous distributed run cannot

have a strong crown. We first prove an elementary lemma.
Lemma 1 If(e— f) A —(e~s f) then,
(e<f) Vv
Is1,m)€E: (e<s1 AT — f) % dg: (e~gAhg— f).

Proof: The lemma states that if two events are causally related, then either they are in the same
process, or there exists a send event in the same process (and corresponding receive) in the causality
chain. I

The next lemma is used to reduce the crown to a strong crown. If two events s; € S and r5 € R
are causally related as s; — ro, then either both the events are in the same process or there is a
send event s3 € £ in the causality chain such that sy < s3.

Lemma 2 Let (s~ r1) and (s3~ 13). If 81 — 7o and SC, then

T — T2 V 81 < To.

14



Proof: If sy — 73 then (by lemma 1),

(l) $1 <19 V
(i7) S1~11 ATy —=T19 V
(id7) ds3 € & 181 <83 A r3— 1o,

The first two cases directly satisfy the lemma. In the third case, as sy < s3, therefore
L — T3 by SC.

and as r3 — 79, we have 7y — 7. I
We now show that if a crown exists then there also exists a strong crown in the distributed

computation.

Lemma 3 If a distributed computation satisfies SC and RC, and it does not have a strong crown
of size 2 formed by the events in &, then it does not have a crown (of size 2) such that,

81 = T9, Sg = T1.

Proof: Assume that a distributed computation has a crown of size 2.
81 = T9, Sg = T1.

Since the crown is not strong (without loss of generality) assume that =(s; < 73). From lemma 2,
we get that

T — To. (3)

From (r; — r2) by using RC we get that —(sg < r1).
Applying lemma 2 again to =(sz < r1) and sy — rq, we get that

ro — Tq.
which is a contradiction to equation 3. I
Lemma 4 If a distributed computation satisfying AC and SC has a crown (of size k),
SoF> T, 81 7> T2,y Sk—2 > Tk—1,5k-1 = To-
then it also contains a strong crown of size (k' < k) such that,

7 7 7 7 7 7 7 7
89 X T1,87 < Ty, 389 = Thp_1,5,_1 =< Tp-
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Proof: If £ < 2, then the theorem follows directly from lemma 3. Assume k& > 2. Pick any part of
the crown starting from any index ¢ mod k,

Sim1 b Tiy 8 > Tikq ()

such that, =(s; < 7;41), such an 7 exists otherwise the crown is already strong. Since s; — ;41 (by
lemma 2),

Ty — Ti41.

Since s;_1 — 7; and r; — 7,41, equation (*) can be reduced to
Si—1 F— Ti41-
Therefore, in the sequence (k > 2),
SoF> T, 81 7> T2,y Sk—2 > Tk—1,5k-1 = To-

If =(s; < ri41) then the sequence can be reduced by removing the (s;, ;) message. On repeating
the process the resulting sequence can be:

— A strong crown of size k' < k:
86 =< 7‘1,8’1 =< T/27 o '782’—2 =< 7‘2/—1752/—1 =< Té)'
— Or the resulting crown is of size 2, such that
81 = T2, S — T1.

By lemma 3, the two crown is strong.

Theorem 6 (Safety) Any distributed run that satisfies SC, AC and PR is synchronous.

Proof: The proof is by contradiction. Let a distributed run be not synchronous. Then by The-
orem 2 there exists a crown. The conditions of lemma 4 are true, i.e., SC and AC. Therefore by
lemma 4, there will exist a strong crown,

80 < T1,81 < T2,y Sk—2 < Tk-1,Sk—1 < To-
From the crown we get
Vie{0,2,3,....k—1)} : P(s;) =P(rit1 mod k), ()

and (by PR)
Vie {1,2,3,...,k—1} : P(s;) > P(ry).  (%%)

Combining (*) and (**) we get,
P(To) > P(So),

which is a contradiction to PR. I
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Theorem 7 (Safety) Any distributed computation that satisfies SP and RP is synchronous.

Proof: The proof is by contradiction. Let a distributed run be not synchronous. Then by Theo-

rem 2 there exists a crown. By lemma 4, there will exist a strong crown,
Sgp < T1,81 < Tg, **,8k_2 < Tk_1,8k—1 < To.
If s; < r;41 then by RP, s;.ack — r;y1.ack. Therefore, from the crown we get
Vied{l,2,3,....(k—=1)} s;.ack — riy1.ack, (%)

and (by definition)
Vied{l,2,3,...,k} riack — sp.ack.  (*x)

Combining (*) and (**) we get,
ri.ack — s.ack,

but according to the strong crown, we have

s <1y = sp.ack < ri.ack,

which is a contradiction. I

5.2 Proof of Liveness

Theorem 8 (Liveness) In a distributed computation that satisfies SP, RP and PR, every process
P that wants to send a message will eventually be able to send it.

Proof: By induction on k,
Case k = 1: The smallest process P; does not send any message therefore it is always active. It

sends an acknowledgment as soon as it gets a message. Therefore on receiving a message (s ~ ),
r < r.ack.

Now on applying induction, given that k smallest processes eventually be in active state, then
(k 4 1)th process if passive will eventually be active. The process Pyiq is passive at time ¢ if

1. there exists a send of message (s1,71) at time tg < t and
2. the process is passive between the time interval from %y to .

Therefore, there exists an acknowledgment message (rq.ack, sy.ack) from a process P(r1) to Py
such that,

1. the acknowledgment is in transit, or
2. send of the acknowledgment will eventually be executed when the process P(rq) is active.

If the message is in transit then process Pyry; will eventually receive sq.ack and become active. If
the second condition is true, then as P(r1) < Pgyy therefore, P(rq) will eventually turn active and

execute send of acknowledgment message. Therefore, process Pyyq will eventually be active. I
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6 Conclusions

The algorithm consists of three components: the priority rule, send condition, and the receive
condition. The priority rule results in one control message and a delay of less than 2¢ time units
(assuming that the upper bound in the delay between any two processes is ¢ time units) for every
message (s,7) € £ if P(s) < P(r). In the case of any message (s,7) € £ where P(s) > P(r) there
are no control message or delay introduced. However, note that during the delay introduced due
to PR, the process can continue to execute any other event.

The send condition introduces only one control message of every message and the receive con-
dition introduces a delay of which is upper bounded by nt, were n is the number of processes in
the system. Therefore, the message complexity is 1.5 control messages (€ £°) for every message
(s,7)€E&.

On comparing with the informal algorithm for synchronous ordering, where the sender waits
until the receive of an acknowledgment, the resulting algorithm has a higher degree of concurrency.
This can be easily seen as both the send condition and the receive conditions are satisfied by
informal algorithm.

In this paper we studied the characteristics of a synchronous ordering of messages. The necessary
characteristics, i.e., asymmetric and both sender and receiver based protocol, for any algorithm
to ensure synchronous ordering were presented. The conditions sufficient (PR, SP, and RP) to
implement synchronous ordering were presented based on the necessary characteristics to ensure
safety properties. Further, an algorithm was presented based on acknowledgment messages to
satisfying SP and RP conditions.
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