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Abstract. We examine the problem of detecting nested temporal pred-
icates given the execution trace of a distributed program. We present
a technique that allows efficient detection of a reasonably large class of
predicates which we call the Basic Temporal Logic or BTL. Examples
of valid BTL predicates are nested temporal predicates based on local
variables with arbitrary negations, disjunctions, conjunctions and the
possibly (EF or ♦) and invariant(AG or 2) temporal operators. We in-
troduce the concept of a basis, a compact representation of all global
cuts which satisfy the predicate. We present an algorithm to compute
a basis of a computation given any BTL predicate and prove that its
time complexity is polynomial with respect to the number of processes
and events in the trace although it is not polynomial in the size of the
formula. We do not know of any other technique which detects a simi-
lar class of predicates with a time complexity that is polynomial in the
number of processes and events in the system. We have implemented a
predicate detection toolkit based on our algorithm that accepts offline
traces from any distributed program.

1 Introduction

In large distributed programs it is often desirable to have a formal guarantee
that the program output is correct. One approach is to model check the entire
program with respect to the given specification. This is impractical even for most
moderately complex programs. For many applications, predicate detection offers
a simple and efficient alternative over model checking the entire program. Pred-
icate detection involves verifying the execution trace of a distributed program
with respect to a given property (for example, violation of mutual exclusion).
The correctness properties or the predicates, which enable us to formally define
a correct execution, can have temporal implications.

In scientific computing, it may be vital to verify that the result of a computa-
tion was valid, and if it was invalid due to a rare ‘chance’ bug, the program can
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be re-executed. Predicate detection provides a formal guarantee on the validity
of the computation (assuming that the specifications are correct). If the spec-
ifications can be expressed in a supported logic then verification of the traces
requires a comparatively insignificant overhead (polynomial in the number of
processes and events) using the algorithm discussed in this paper. Note that this
approach is obviously not useful for critical real time applications where it is
essential that all runs be correct.

A distributed computation, i.e., the execution trace of a distributed program,
can either be modeled as a total order, or as a partial order on the set of events in
the computation. Representing the computation as a total order can mask some
of the bugs in other possible consistent interleavings. A partial order, in contrast,
captures all the possible causally consistent interleavings. In this paper we use
a partial order representation based on Lamport’s happened before relation [1].

The drawback of using a partial order model is that the number of global
states of the computation is exponential in the number of processes. This makes
predicate detection a hard problem in general [2, 3]. A number of strategies like
symbolic representation of states and partial order reduction have been explored
to tackle the state explosion problem [4–10].

In this paper, we present a technique to efficiently detect all temporal pred-
icates that can be expressed in, what we call, Basic Temporal Logic or BTL.
An example of a valid BTL predicate would be a property based on local predi-
cates and arbitrarily placed negations, disjunctions and conjunctions along with
the possibly(♦) and invariant(2) temporal operators (the EF and AG operators
defined in [11]).

Our algorithm is based on computing a basis which is a compact represen-
tation of the subset of the computational lattice containing exactly those global
states (or cuts) that satisfy the predicate. In general, it is hard to efficiently com-
pute a basis for an arbitrary predicate. We utilize the fact that the set of global
states of a computation forms a distributive lattice and restrict the predicates
to BTL formulas. The basis introduced in this paper is a union of smaller sets
of cuts called semiregular structures.

Note that, without any restrictions on the predicate formula, predicate detec-
tion is NP-complete with respect to the formula size, and for arbitrary predicates
the time complexity could be exponential in the formula size. However, if the
input formula is in a ‘DNF like’ form after pushing in negations, our technique
detects it in polynomial time with respect to the formula size.

To summarize, this paper makes the following contributions:

– We introduce the concept of a basis and discuss representations of stable,
regular and semiregular predicates.

– We present an algorithm to efficiently compute the basis for BTL predicates.
This enables detection of BTL predicates in O(2k.|E|.n) time, where k is the
number of operators in the predicate, E is the set of events in the computa-
tion and n is the number of processes. To the best of our knowledge, there is
no other known technique that can detect nested temporal predicates con-



taining disjunctions or negations with a time complexity that is polynomial
in n and |E|.

– We discuss the implementation of our algorithm and compare it with existing
approaches like using SPIN [12] and POTA [13] to detect predicates in dis-
tributed programs. Our tool, BTV (Basis based Trace Verifier), can analyze
traces in a compatible format generated by any distributed program.

Note that currently known approaches, like slicing [14] or model checking
of traces, for detecting a similar class of predicates, are inefficient and require
exponential time with respect to the number of processes.

The remainder of the paper is organized as follows: Section 2 discusses re-
lated work and section 3 explains in detail, the model and notation used in the
paper. Section 4 introduces the concept of a basis of a computation with respect
to a predicate and presents the main algorithm. In section 5, we present the
complexity analysis of our algorithm. We follow that with an example and a
short description of our implementation of a predicate detection toolkit based
on the algorithm in this paper.

2 Related Work

A number of approaches for checking computations using temporal logic have
been published. Temporal Rover [15], MaC [16] and JPaX [17] are some of the
available tools. Many of the tools are based on total ordering of events and hence
cannot be directly compared to our approach. These tools can miss potential
bugs which would be detected by partial order representations. JMPaX [18] is
based on a partial order model and supports temporal properties but its time
complexity is exponential in the number of processes in the computation.

Another available option to verify computation traces is to use a model check-
ing tool like SPIN [12, 19]. The computation trace needs to be converted to the
SPIN input computation and verification takes exponential time in the number
of processes.

Computational slicing [14] based approaches can efficiently detect regular
predicates. POTA [13] is such a partial order based tool which uses computa-
tional slicing to detect predicates. POTA guarantees polynomial time complexity
only if the predicate can be expressed in a subset of CTL [11] called Regular CTL
or RCTL [20]. Disjunctions and negations are not allowed in RCTL. If POTA
is used with a logic that allows disjunctions or negations (like BTL), it uses a
model checking algorithm to explore the reduced state space. Hence the asymp-
totic time complexity using POTA is exponential in the number of processes
when the predicate contains disjunctions. Table 1 compares the time complexi-
ties of SPIN, POTA and our algorithms implemented in the BTV tool.

3 Model and Notation

This paper uses basic lattice theory constructs that are formally defined in the
technical report [21]. We assume a loosely coupled, message-passing, asynchro-
nous system model. A distributed program consists of n sequential programs



SPIN POTA BTV
RCTL exponential in n polynomial in n polynomial in n
BTL exponential in n exponential in n polynomial in n

Table 1. Time complexities (n = number of processes)

P1, P2, . . . , Pn. A computation is a single execution of such a program. A dis-
tributed computation (〈E,→〉) is modeled as a partial order on the set of events
E, based on the happened before relation (→) [1]. The size of the computation
is the total number of events, |E|, in the computation.
Definition 1. (Consistent Cut) A consistent cut C is a set of events in the
computation which satisfies the following property: if an event e is contained in
the set C, then all events in the computation that happened before e are contained
in C.
∀e1, e2 ∈ E : (e2 ∈ C) ∧ (e1 → e2) ⇒ e1 ∈ C.

In figure 1(i) the set {e1, f1} is a consistent cut, while {e1, e2} is not. In the
following discussion, we mean ‘consistent cut’ whenever we simply say ‘cut’.
For notational convenience, we simply mention the maximal elements on each
process that are elements of the cut to represent that cut. For example, the
cut {e1, e2, f1, f2, f3} is written as {e2, f3}. The set of all consistent cuts in a
computation is denoted by C. This set, C, forms a distributive lattice [22] (also
called the computational lattice) under the less than equal to relation defined as
follows.
Definition 2. Cut C1 is less than or equal to cut C2 if and only if, C1 ⊆ C2.

A cut C, in a computation E, satisfies a predicate P if the predicate is true
in the global state represented by the cut. This is denoted by (C,E) |= P or
simply C |= P where the context is clear.

The join of two cuts is simply defined as their union, and the meet of two
cuts corresponds to the intersection of those two cuts.

Figure 1 shows a computation and the distributive lattice formed by all the
consistent cuts in the computation. Birkhoff’s representation theorem [22] states
that a distributive lattice can be completely characterized by the set of its join
irreducible elements. Join irreducibles are elements of the lattice that cannot
be expressed as the join of any two elements.1 For example, in figure 1(ii),
cuts {}, {f1}, {f2}, {f3}, {e1, f1}, {e2, f1}, {e3, f1} are join irreducible. The cut,
{e1, f2} is not join irreducible because it can be expressed as the join of cuts
{f2} and {e1, f1}.

The initial cut is the least cut, i.e., the empty set {} and the final cut is the
greatest cut, i.e, the set of all events E, in the computational lattice.

Detecting a predicate in a distributed computation is determining if the initial
cut of the computation satisfies the predicate.
1 Commonly, the bottom element is not considered to be a join irreducible element.

However, in this paper, for notational convenience, we include the bottom element
(the initial cut {}) in the set of join irreducible elements.
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Fig. 1. A computation and the lattice of its consistent cuts

Definition 3. (Join-closed, Meet-closed and Regular Predicates) A predicate P
is join-closed if all cuts that satisfy the predicate are closed under union.
i.e., (C1 |= P ∧ C2 |= P ) ⇒ (C1 ∪ C2) |= P .

Similarly a predicate P is meet-closed if all the cuts that satisfy the predicate
are closed under intersection. A predicate is regular if it is join-closed and meet-
closed.

If cuts C1 and C2 satisfy a regular predicate, then by definition, C1 ∪ C2 and
C1 ∩ C2 also satisfy that predicate. For example, the predicate “No process has
the token and the token in not in transit” is regular. All conjunctions of local
predicates are regular.

A predicate is stable if, once it becomes true, it remains true [23]. A stable
predicate is always join-closed.

Definition 4. A predicate P is stable, if ∀C1, C2 ∈ C : C1 |= P ∧ C1 ≤ C2 ⇒
C2 |= P .

Some examples of stable predicates are loss of a token, deadlocks, and ter-
mination.

Figure 2 depicts examples of the cuts satisfied by meet-closed, join-closed,
regular and stable predicates.

4 Basis of a Computation

We now introduce the concept of a basis of a computation. Informally, a basis is
an exact compact representation of the set of cuts which satisfy the predicate.
Definition 5. (Basis) Given a computational lattice C, corresponding to a com-
putation E, and a predicate P , a subset S[P ] of C is a basis of P if

1. (Compactness) The size of S[P ] is polynomial in the size of computation that
generates C.
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Fig. 2. Predicates

2. (Efficient Membership) Given any cut (global state) C ∈ C, there exists a
polynomial time algorithm that takes S[P ], E and C as inputs and deter-
mines if (C,E) |= P .

We denote the basis with respect to a predicate P as S[P ]. Given a predicate
P , a cut C belongs to a basis S[P ], if C satisfies that predicate. i.e., C ∈ S[P ] ⇔
C |= P .

Note that direct enumeration of all the states satisfied by a predicate is, in
general, not a basis since determining if a cut is a member of that set could take
exponential time.

For a simple example of an basis, consider a class of predicates, such that
the cuts satisfying a predicate in that class form an ideal in the computational
lattice. (An ideal is a sublattice that contains every cut that is less than the
maximal cut in the sublattice.) A basis, for such a class of predicates, is just
the maximal cut of the ideal. It can be efficiently determined if a cut C ∈ Cp by
checking if the cut is less than or equal to the maximal cut.

Computational slicing, introduced in [14], is a technique to compute an effi-
cient predicate structure for regular predicates.

Definition 6. (Slice) The slice slice[P ] of a computation with respect to a predi-
cate P is the poset of the join irreducible consistent cuts representing the smallest
sublattice that contains all consistent cuts satisfying P .

Though the number of consistent cuts satisfying the predicate may be large,
the slice of a predicate can be efficiently represented by the set of the join



irreducible cuts in the slice. Slicing is the operation of computing the slice for
the given predicate.

When the predicate is regular, the computed slice represents exactly those
cuts that satisfy the predicate. Given the slice with respect to a predicate, it is
possible to efficiently detect if a cut satisfies that predicate. Therefore, a slice
is an efficient basis for regular predicates. However, using slicing for predicate
detection of non-regular predicates can take exponential time.

In the remainder of this paper, we explore a technique to compute a basis for
a more general class of predicates, that we call BTL, which can have arbitrary
negations, disjunctions, conjunctions and the temporal possibly(♦) operator.
Since a BTL predicate can be non-regular, a slice of a BTL predicate is not a
valid basis. One naive approach to compute a predicate structure is to maintain
a set of slices instead of a single slice. Though this is polynomial in the number
of processes n, it results in a large number of slices (O(n2k

)), where k is the
size of the predicate. In this paper, we introduce a semiregular structure which
can efficiently represent a more general class than regular predicates. A BTL
predicate can be represented by using a set of semiregular structures.
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c2

c1

Fig. 3. Representing stable predicates

We start off by looking at the representation of a stable predicate. Figure
3 shows an example of a stable predicate. The set of states satisfying a stable
predicate can be considered to be the union of a set of filters of the computational
lattice. Thus, a stable predicate can be represented by the set of minimal cuts
that satisfy the predicate.

Another representation is to identify a set of ideals, I = {I1, I2, . . .} of the
computational lattice such that all the cuts satisfying the stable predicate are



contained in the complement of
⋃

I∈I I. The stable predicate in figure 3 can
be represented by two ideals as seen in the figure. We use the set of ideals
representation in this paper for computational efficiency while dealing with BTL
predicates.
Definition 7. (Stable Structure) Given a stable predicate P and the computa-
tional lattice C, a stable structure is the set of ideals I such that a cut satisfies
P iff it does not belong to any of the ideals in I. Therefore, C |= P ⇔ ¬(C ∈⋃

I∈I I).

A cut C is said to belong to the stable structure if C does not belong to
⋃

I∈I I.
Note that, any ideal is uniquely and efficiently represented by its maximal cut. In
the remainder of this paper we use I to represent a set of ideals representing the
stable predicate and simply maxCuts to denote the set containing the maximal
cut from each ideal in I.

Note that, this representation is not a basis since, the set of ideals could
be very large in general. However, we see later, that this leads to an efficient
representation when the predicate is expressed in BTL.

4.1 Semiregular Predicates and Structures
The conjunction of a stable predicate and a regular predicate is called a semi-
regular predicate and is more expressive than either of them.
Definition 8. P is a semiregular predicate if it can be expressed as a conjunc-
tion of a regular predicate with a stable predicate.

We now list some properties of semiregular predicates.

1. All regular predicates and stable predicates are semiregular. This follows
from the definition of semiregular predicates since true is a stable and regular
predicate.

2. Since regular and stable predicates are join-closed, it follows that their con-
junction, a semiregular predicate, is also join-closed. However not all join-
closed predicates are semiregular. Figure 4 shows a join-closed predicate that
is not semiregular.

3. Semiregular predicates are closed under conjunction, i.e., if P and Q are
semiregular then P ∧Q is semiregular.

4. If P is a semiregular predicate then ♦P and 2P are semiregular. If P is
semiregular, P has a unique maximal cut, say Cmax and ♦P is an ideal of
the lattice that contains all cuts less than or equal to Cmax.

We now present an alternative characterization of a semiregular predicate
that offers a different insight into the structure of the cuts satisfying such a
predicate.
Lemma 1. Predicate P is semiregular iff

– P is join-closed, i.e, C1 |= P ∧ C2 |= B ⇒ (C1 ∪ C2) |= P and
– The meet of two cuts that satisfy P is C, and C does not satisfy P , then

any cut smaller than C does not satisfy P . i.e., (C1 ∩ C2) |= P ∨ (∀C ′ ≤
(C1 ∩ C2) : ¬(C ′ |= P )).
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Fig. 4. A join-closed predicate may not be semiregular

A few examples of semiregular predicates are listed below.

– All processes are never red concurrently at any future state and process 0
has the token. That is P = ¬♦(

∧
redi) ∧ token0.

– At least one process is beyond phase k (stable) and all the processes are red.

We now define a representation for semiregular predicates.
Definition 9. (Semiregular Structure) A semiregular structure, g, is represented
as a tuple (〈slice, I〉) consisting of a slice and a stable structure, such that the
predicate is true in exactly those cuts that belong to the intersection of the slice
and the stable structure.

Hence C ∈ g ⇔ (C ∈ slice) ∧ ¬(C ∈ ⋃
I∈I I).

Note that, a cut is contained in a semiregular structure if it belongs to the
slice and the stable structure in the semiregular structure. The maximal cut in a
semiregular structure is the maximal cut in the slice if the semiregular structure
is nonempty.

We see later that any BTL predicate can be expressed as a basis consisting
of a union of semiregular structures. A semiregular structure enables us to easily
handle predicates of the form ¬♦P . Such a predicate can be represented by
n slices or by a single stable structure or a semiregular structure. We use this
in our algorithms and prove that it is possible to compute an efficient basis
representation for any BTL predicate.

4.2 Logic Model (BTL)
In this section formally define Basic Temporal Logic (BTL), such that any pred-
icate expressible in BTL can be efficiently detected using the algorithm pre-
sented later in this paper. The atomic propositions in BTL are local predicates,
i.e., properties that depend on a single process in the computation. Local predi-
cates and their negations are regular predicates. Let AP be the set of all atomic



propositions. Given the set of all consistent cuts, C, of a computation, a labeling
function λ : C → 2AP assigns to each consistent cut, the set of predicates from
AP that hold in it. The operators ∧ and ∨ represent the boolean conjunction
and disjunction operators as usual, ¬ represent the negation of a predicate and
we define the possibly (♦) temporal operator (called EF in [4]).
Definition 10. If C is the set of all consistent cuts of the computation, then
♦P holds at consistent cut C, if and only if, there exists C ′ ∈ C such that P is
true at C ′ and C ⊆ C ′.

The formal BTL syntax is given below.
Definition 11. A predicate in BTL is defined recursively as follows:

1. ∀l ∈ AP , l is a BTL predicate
2. If P and Q are BTL predicates then P ∨ Q, P ∧ Q, ♦P and ¬P are BTL

predicates

We formally define the semantics of BTL.

– (C,E, λ) |= l ⇔ l ∈ λ(C) for an atomic proposition l
– (C,E, λ) |= P ∧Q ⇔ C |= P and C |= Q
– (C,E, λ) |= P ∨Q ⇔ C |= P or C |= Q
– (C,E, λ) |= ♦P ⇔ ∃C ′ ∈ C : (C ⊆ C ′ and C ′ |= P )
– (C,E, λ) |= ¬P ⇔ ¬(C |= P )

We use (C, E) |= P or simply C |= P in the rest of the discussion when E
and λ are obvious from the context. Note that, the AG operator in CTL [4] can
be written as ¬♦¬ in BTL.

4.3 Algorithm
We present an algorithm to compute a basis for any predicate expressed in BTL.
The computed basis consists of a set of semiregular structures such that a cut
belongs to the basis if it belongs to any semiregular structure in that set.
Definition 12. Given a BTL predicate P , we define a representation S of the
predicate that consists of a set of semiregular structures such that C |= P ⇔
(∃g ∈ S : C ∈ g).

We assume that the input predicate has negations pushed in to the local
predicates or the ♦ operators. In the following discussion, we often treat ¬♦ as
single operator. We see later that our algorithm returns an efficient predicate
structure which allows polynomial time detection of the predicate.

Each semiregular structure, g, is represented as a tuple 〈slice, maxCuts〉
where g.slice is the slice in g and g.maxCuts is the set of cuts corresponding to
the ideals representing the stable structure. The use of ideals instead of filters
is very important and results in the 2k bound (see theorem 2) on the size of
the stable structure. (The stable structures calculated by the algorithm could
require nk filters to represent it.)

Figure 5 outlines the main algorithm to compute a basis of the computation
for any BTL predicate. For predicate detection, we simply check if the initial cut



/*The input predicate Pin has all negations pushed
- inside to the ♦ operator or to the atomic propositions */
/* each semiregular structure is represented as a tuple 〈slice, maxCuts〉
- where maxCuts is the set of maximal cuts
- of the ideals I representing the stable structure */

function getBasis(Predicate Pin)
output: S[Pin], a set of semiregular structures

Case 1. (Base case: local predicates) : Pin = l or Pin = ¬l
S[Pin] := {〈slice(P ), {}〉}

Case 2. Pin = P ∨Q
S[P ] := getBasis(P ); S[Q] = getBasis(Q);
S[Pin] := {S[P ] ∪ S[Q]};

Case 3. Pin = P ∧Q
S[P ] := getBasis(P ); S[Q] = getBasis(Q);
S[Pin] :=

⋃
gp∈S[P ],gq∈S[Q]{(〈gp.slice ∧ gq.slice, gp.maxCuts ∪ gq.maxCuts〉)};

Case 4. Pin = ♦P
S[P ] := getBasis(P );
S[Pin] :=

⋃
g∈S[P ]{〈♦(g.slice), {}〉};

Case 5. Pin = ¬♦P
S[P ] := getBasis(P );
/* sliceorig is the original computation */
S[Pin] := {〈sliceorig,∪g∈S[P ]{maxCutIn(g.slice)}〉};

Remove all empty semiregular structures from S[Pin];

return S[Pin]

Fig. 5. Computing a basis

of the computation is contained in the computed basis. To determine if a cut is
contained within the basis, we need to examine if it belongs to any semiregular
structure in the basis. A basis is nonempty if the predicate is true in any con-
sistent cut of the computation. Note that, in case we need to check whether a
predicate P is true at any cut in the computation (and not just the initial cut),
we can either apply our algorithm on the predicate ♦P or alternatively apply
the algorithm on P and check if the returned basis is nonempty.

The algorithm computes the basis by recursively processing the predicate
inside out.

– The base case is a local predicate. Note that, the negation of a local predicate
is also local. We know that for each atomic proposition li, slice[li] can be
computed in polynomial time. Efficient algorithms to compute slice[li] (or
slice[¬li]) when the atomic propositions are local predicates, can be found
in [14]. The basis of a local predicate has a single semiregular structure that



consists of a slice and an empty set of ideals. (A local predicate and its
negation are regular predicates and hence a slice is an efficient basis for such
predicates).

– The second case handles disjunctions. If the input predicate Pin is of the
form P ∨ Q the basis is the structure containing all the cuts in S[P ] and
S[Q] and is obtained by computing the union of the sets S[P ] and S[Q].

– When the input predicate is of the form P ∧ Q, the resultant basis is the
pairwise intersection of each semiregular structure in S[P ] and S[Q]. Each
semiregular structure consists of a slice and a stable structure. The inter-
section of two semiregular structures, say gp and gq, is the tuple 〈gp.slice ∩
gq.slice, gp.stable structure ∩ gq.stable structure〉 . The grafting algorithm
described in [14] describes a technique to compute the intersection of two
slices. Since we use ideals to represent stable structures, the intersection of
the stable structures is represented by the union of the sets gp.maxCuts and
gq.maxCuts.

– The fourth case in the algorithm handles predicates of the form Pin = ♦P .
S[P ] is the union of a set of semiregular structures. The resultant basis is
obtained by computing ♦g for each g in S[P ] and taking the union. Note
that ♦g is equivalent to ♦(g.slice) and the algorithm for EF of a regular
predicate in [20] can be used to determine ♦(g.slice).

– Since ¬♦P is stable, the basis corresponding to ¬♦P contains a single semi-
regular structure g. The slice in this semiregular structure is the original
computation while the ideals are represented by the maximal cuts of the
slice in each of the semiregular structures that belong to S[P ]. In this case,
it becomes clear that using the ‘set of ideals representation’ for stable struc-
tures is more efficient. The number of ideals is guaranteed to be k if S[P ]
had k semiregular structures. Using another representation like maintaining
a set of filters would have resulted in expensive operations since the number
of filters could be nk in this case.

After each step, the algorithm checks if any of the semiregular structures are
empty and discards the empty semiregular structures. A semiregular structure
is empty, if the maximal element of the slice is less than or equal to each cut in
g.maxCuts.

It can be seen that the structure returned by our algorithm contains exactly
those cuts which satisfy the input predicate. We show in section 5 that the
number of semiregular structures and the number of ideals required to represent
the stable structures returned by our algorithm is polynomial in n. This enables
us to check whether a cut belongs to the structure in polynomial time and hence
the structure is efficient.

5 Complexity Analysis

The time taken by the algorithm in figure 5 depends on the number of ideals
representing the stable structure in each semiregular structure and the total
number of semiregular structures in the resultant basis (the size of the basis).
The proofs for most the results in this section are presented in the technical



report [21] due to space constraints. We first present a result on the bound on
the size of computed basis.

Theorem 1. The basis S[P ] computed by the algorithm in Figure 5 for a BTL
predicate P with k operators has at most 2k semiregular structures.

This leads to the following theorem.

Theorem 2. The total number of ideals |I| in the basis computed by the algo-
rithm in Figure 5 for a BTL predicate P is at most 2k.

The time required to compute the conjunction of two slices with respect to
∧ is O(|E|n) [14]. It takes O(|E|n) time to compute the slice with respect to the
♦ operator.

Theorem 3. The time complexity of the algorithm in figure 5 is polynomial in
the number of events (|E|) and the number of processes (n) in the computation.

The algorithm simplifies the predicate by computing the basis one operator at
a time. Hence, if there are k operators in all, it requires k steps to compute the
basis for the entire predicate.

Theorem 1 states that after the lth operator is processed at most 2l new
semiregular structures are generated. The generation of each semiregular struc-
ture takes less than or equal to |E|n time. The time required to generate all the
semiregular structures is 2l.|E|n.

The algorithm compares each ideal to the maximal cut of a slice to check if
the semiregular structure is empty. There are at most 2l semiregular structures
(theorem 1) which implies that there are no more than 2l slices (since each
semiregular structure contains exactly one slice). The total number of ideals is
less than or equal to 2l (theorem 2). Since comparing two cuts requires O(n)
time, it takes (2l + 2l)n time to check which semiregular structures are empty.
Hence the time required to process the lth operator is 2l.(|E|n) + n(2l+1) , i.e,
2l+1.n.(2|E|+ 1))

Therefore the total time required is Σk
l=12

l+1.n.(2|E|+ 1) = O(2k|E|n).
If the input predicate is in a ‘DNF-like’ form then predicate detection is even

more efficient (polynomial in k).

Theorem 4. If the input predicate has conjunctions only over regular predicates,
then the size of the predicate structure and the total number of ideals |I|, is at
most k.

Since conjunctions are allowed over regular predicates, the resulting predicate
is regular and can be represented by exactly one semiregular predicate with no
ideals.

6 Implementation

We have implemented a toolkit to verify computation traces generated by dis-
tributed programs. This toolkit accepts offline execution traces as its input.

We used a Java implementation of the distributed dining philosophers al-
gorithm from [24] and checked for errors in the system. We injected faults in



the traces and verified the traces using, both, our toolkit and POTA [13]. Note
that, for predicates containing disjunctions, POTA reduces the computation size
and uses SPIN [19] to check for predicate violations. The POTA-SPIN combi-
nation performs well in some runs (when the slice generated is lean or empty)
but it runs out of memory when the number of processes is increased, especially
when configured to list all predicate violations. BTV, as expected, scales well
and we could use it to verify computations with large number of processes. Our
implementation (including the Java source code) can be downloaded from our
laboratory website. Note that the toolkit relies on offline traces and hence it is
not necessary for the program that is being tested to be implemented in Java.
It can be used with any arbitrary distributed program that outputs a compati-
ble trace. The toolkit includes a utility to convert traces from the POTA trace
format.

7 Conclusions

We conclude that it is possible to efficiently detect nested temporal predicates
containing disjunctions and negations (along with conjunctions and ♦). We have
introduced the notion of a semiregular structure and have presented techniques
to efficiently compute an efficient basis given any BTL predicate. This has many
practical applications which require verification of traces. Apart from ensuring
the validity of runs, the technique discussed in this paper is also useful in distrib-
uted program debuggers. Since the computed basis contains exactly all states
where the predicate holds, we can use it to pinpoint the faults in the program.
One useful extension of this work would be an online version of the algorithm
which could be used to control distributed programs by changing their behavior
at runtime if faults are detected.
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