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Motivation
Consider the following problems:

Shortest Path Problem:
Input: a weighted directed graph and a source vertex
Output: Least Cost of reaching any vertex i
Dijkstra’s algorithm for graph with non-negative weights,
Bellman-Ford algorithm for graphs with no negative cycles

Stable Marriage Problem:
Input: ordered preferences of n men and n women
Output: Man-optimal stable marriage
Gale-Shapley’s algorithm

Assignment Problem:
Input: n items, n bidders with valuation for items
Output: Least market clearing prices
Hungarian Algorithm (or Gale-Demange-Sotomayor’s Auction)

Could there be a single algorithm that solves all of these problems?
Lattice-Linear Predicate (LLP) Algorithm

UT Austin () Lattice-Linear Predicates 2



Other Applications of LLP

Housing Allocation Problem:
Input: n agents, n houses, initial endowment, preference list of agents
Output: allocation of houses such that there is no blocking group
Gale’s Top Trading Cycle Algorithm

Minimum Spanning Tree Problem:
Input: undirected weighted graph
Output: spanning tree with that minimizes sum of weight of edges
Prim’s Algorithm, Boruvka’ Algorithm

Horn Satisfiability:
Input: A boolean formula in Horn form
Output: Least satisfying assignment, if any
Horn’s Satisfiability Algorithm
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Outline of the Talk

What are Lattice-Linear Predicates (LLP)?

LLP Detection Algorithm

Applications

Enumerating All Satisfying Global States
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Steps of Using LLP Algorithm

Step 1: Model the underlying search space. A Distributive Lattice of
State Vectors. The order on the lattice is based on the optimization
objective of the problem.

Step 2: Define the feasibility predicate B. An element is feasible if it
satisfies constraints of the problem

Step 3: Check whether the feasibility predicate B is Lattice-Linear. If
B is lattice-linear, LLP Algorithm will return the optimal feasible
solution.
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Step 1: Modeling the underlying search space

Model the problem as n processes choosing their component in a vector of
size n. The choice for a single process is total ordered.

P

P

P

1

2

3

e
1

e
2

e
3

f
5

e
4

e

f
4

f
3

g
1

5

f
1

f
2

2
g
4

g g
3

computation: poset (E , → )
candidate solution: a possible global state of the system.
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Consistent Global State
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A subset G of E is a consistent global state if

∀e, f ∈ E : (f ∈ G ) ∧ (e → f )⇒ (e ∈ G )

The set of all consistent global states forms a finite distributive lattice.
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Step 1: Order on the underlying space
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(L,≤): Underlying Search Space
L : set of all consistent global state vectors
Order on Global State G ≤ H iff for all i : G [i ] ≤ H[i ].
meet of two global states: K = G u H = min(G ,H)
join of two global states: K = G t H = max(G ,H)
meet distributes over join.
(L,≤) is a distributive lattice.
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Step 1: Examples

G : Global State Vector where G [i ] is the component for process i .

Shortest Path: G [i ]: cost of reaching vertex i from the source vertex
initially 0

Stable Marriage: G [i ]: index in the preference list for man i
initially 1 // top choice

Market Clearing Prices: G [i ]: price of item i
initially 0
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Step 2: Defining Feasibility Predicate B

A global state G satisfies B iff G represents a feasible solution.

Shortest Path: All nodes most have a parent node. For every vertex j
(except source): there exists a vertex i such that G [j ] ≥ G [i ] + w [i , j ].

Stable Marriage: Every man must be matched to a different woman
and there must not be any blocking pair.

Market Clearing Prices: There is no overdemanded item at that
pricing vector.
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Step 2: Defining Feasibility Predicate Formally

Shortest Path: Every non-source node has a parent. For any node
j 6= 0,

∃i ∈ pre(j) : G [j ] ≥ G [i ] + w [i , j ]

Stable Marriage: Every man must be matched to a different woman
and there must not be any blocking pair. For any man j , let
z = mpref [j ][G [j ]]; //current woman assigned to man j

¬∃i : ∃k ≤ G [i ] : (z = mpref [i ][k]) ∧ (rank[z ][i ] < rank[z ][j ]))

Market Clearing Prices: There is no overdemanded item at that
pricing vector. For any item j ,

¬∃J : minimalOverDemanded(J,G ) ∧ (j ∈ J)
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Lattice-Linearity for Predicate Detection
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Forbidden State The state at Pi is forbidden at G with respect to B if
unless Pi is advanced B cannot become true.

forbidden(G , i ,B) ≡ ∀H : G ⊆ H : (G [i ] = H[i ]) ⇒ ¬B(H)

Lattice-Linear Predicates A predicate B is lattice-linear if for all consistent
cuts G ,

¬B(G ) ⇒ ∃i : forbidden(G , i ,B).

Examples: Conjunctive Predicates: l1 ∧ l2 ∧ ... ∧ ln, Feasible Path, Stable
Matching, Market Clearing Prices, Minimum Spanning Tree, Housing
Core, Horn Formulas
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Examples of Lattice-Linear Predicates

A conjunctive predicate
l1 ∧ l2 ∧ . . . ∧ ln, where li is local to Pi .
Suppose G is not feasible. Then, there exists j such that lj is false in
G . The index j is forbidden in G .

Shortest Path
Any j such that vj does not have a parent,
(∀i ∈ pre(j) : G [j ] < G [i ] + w [i , j ]) is forbidden in G .

Stable Marriage
j is forbidden in G if
∃i : ∃k ≤ G [i ] : (z = mpref [i ][k]) ∧ (rank[z ][i ] < rank[z ][j ]))

Market Clearing Price
(¬∃J : minimalOverDemanded(J,G ) ∧ (j ∈ J))
Any j in a minimal overDemanded set is forbidden.
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Example of Predicates that are not Lattice-Linear
Example 1: B(G ) ≡ x + y ≥ 1

x = 1x = 0

y = 0 y = 1
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Example 2: B(G ) ≡ G is a matching.

w2w1

w1 w2

m
1

m
2

UT Austin () Lattice-Linear Predicates 14



Outline of the Talk

What are Lattice-Linear Predicates (LLP)?

LLP Detection Algorithm

Applications

Enumerating All Satisfying Global States
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Detecting Lattice-Linear Predicates

(Advancement Property) There exists an efficient (polynomial time)
algorithm to determine the forbidden state.

Theorem

[Chase and Garg 95] Any lattice-linear predicate that satisfies
advancement property can be detected efficiently.
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LLP Algorithm

How much to advance: j is forbidden in G until α iff

∀H ∈ L : H ≥ G : (H[j ] < α) ⇒ ¬B(H).

vector function getLeastFeasible(T : vector, B: predicate)
//T : top element of the lattice
var G : vector of reals initially ∀i : G [i ] = 0;
while ∃j : forbidden(G , j ,B) do

for all j such that forbidden(G , j ,B) in parallel:
if (α(G , j ,B) > T [j ]) then return null;
else G [j ] := α(G , j ,B);

endwhile;
return G ; // the optimal solution
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LLP Algorithm: Stable Marriage Problem

Pj :
var G : array[1..n] of 1..n;

input: mpref [i , k]: int for all i , k ; // men preferences
rank[k][i ]: int for all k, i ; // women ranking

init: G [j ] := 1;
always: w = mpref [j ][G [j ]];

forbidden:
(∃i : ∃k ≤ G [i ] : (w = mpref [i ][k]) ∧ (rank[w ][i ] < rank[w ][j ]))

advance: G [j ] := G [j ] + 1;
Slightly more general than Gale-Shapley Algorithm:
instead of starting from (1, 1, . . . , 1), can start from any choice vector.
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LLP Algorithm: Shortest Path Problem

input: pre(j): list of 1..n;
w [i , j ]: positive int for all i ∈ pre(j)
s : 1..n; // source node;

init: G [j ] := 0;
always:

parent[j , i ] = (i ∈ pre(j)) ∧ (G [j ] ≥ G [i ] + w [i , j ]);
fixed [j ] = (j = s) ∨ (∃i : parent[j , i ] ∧ fixed [i ])
Q = {(G [i ] + w [i , k])|(i ∈ pre(k)) ∧ fixed(i) ∧ ¬fixed(k)};

forbidden: ¬fixed [j ]
advance: G [j ] := max{min Q,min{G [i ] + w [i , j ] | i ∈ pre(j)}}

By ignoring the second part of advance, we can get Dijkstra’s algorithm.
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LLP Algorithm: Shortest Path Problem Revisited

Assume no negative cost cycle.

input: pre(j): list of 1..n;
w [i , j ]: int for all i ∈ pre(j)

init: if (j = s) then G [j ] := 0 else G [j ] := maxint;
forbidden: G [j ] > min{G [i ] + w [i , j ] | i ∈ pre(j)}
advance: G [j ] := min{G [i ] + w [i , j ] | i ∈ pre(j)}

Lattice is reversed: the bottom element is (maxint,maxint, . . . ,maxint)
This is just Bellman-Ford’s algorithm.
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LLP Algorithm: Market Clearing Prices

input: v [b, i ]: int for all b, i
init: G [j ] := 0;
always: E = {(k , b) | ∀i : (v [b, k]− G [k]) ≥ (v [b, i ]− G [i ])};

demand(U ′) = {k | ∃b ∈ U ′ : (k , b) ∈ E};
overDemanded(J) ≡ ∃U ′ ⊆ U : (demand(U ′) = J) ∧ (|J| < |U ′|)

forbidden: ∃J : minimal − OverDemanded(J) ∧ (j ∈ J)
advance: G [j ] := G [j ] + 1;

This is just Demange-Gale-Sotomayor exact auction algorithm.
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Properties of LLP Predicates

Lemma

Let B be any boolean predicate defined on a lattice L of vectors.

Let f : L → R≥0 be any monotone function defined on the lattice L
of vectors of R≥0. Consider the predicate B ≡ G [i ] ≥ f (G ) for some
fixed i . Then, B is lattice-linear.

Let LB be the subset of the lattice L of the elements that satisfy B. If
B is lattice-linear then LB is closed under meets.

If B1 and B2 are lattice-linear then B1 ∧ B2 is also lattice-linear.

UT Austin () Lattice-Linear Predicates 22



Constrained Optimization
least stable marriage such that regret of Peter is less than or equal to
regret of John
least feasible path such that the cost of reaching x equals cost of
reaching y
least clearing prices such that item1 is priced at least 5 more than
item2.

All of the additional constraints are also lattice-linear.

Lemma

LLP can be adapted to find the least vector G that satisfies B1 ∧ B2 for
any lattice-linear predicates B1,B2.

Proof.

The algorithm LLP can be used with the following changes:
forbidden(G , j ,B1 ∧ B2) ≡ forbidden(G , j ,B1) ∨ forbidden(G , j ,B2), and
α(G , j ,B1 ∧ B2) = max{α(G , j ,B1), α(G , j ,B2)}.
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Meet Closure of Feasible Predicates

Theorem

[Chase and Garg 95] A predicate B is lattice-linear implies that it is
meet-closed (in the lattice of all consistent cuts).

Lattice-Linearity implies

If G and H are feasible cost vectors, then so is G u H.

If G and H are stable marriage choice vectors, then so is G u H.

If G and H are market clearing prices, then so is G u H.
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Dual of Lattice-Linearity

reverse-forbidden(G , i ,B) ≡ ∀H ∈ L : H ≤ G : (G [i ] = H[i ])⇒ ¬B(H).
B is dual-lattice-linear iff:
∀G ∈ L : ¬B(G ) ⇒ ∃i : reverse-forbidden(G , i ,B).
BstableMarriage and BmarketClearing are also dual-lattice-linear.
⇒

the set of stable marriages and market clearing prices are also closed
under joins

one can traverse the lattice backwards to find the woman-optimal
stable marriage or the greatest market clearing prices.

Note: BshortestPath is not dual-lattice-linear.
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Outline of the Talk

What are Lattice-Linear Predicates (LLP)?

LLP Detection Algorithm

Applications

Enumerating All Satisfying Global States
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Enumerating All Feasible Solutions
Assume that B is lattice-linear as well as dual-lattice-linear.

(2,2,0) (1,2,1)

(2,2,1)

(1,1,1)

(0,0,0)

(0,0,1)

(1,1,0)

(2,1,0)

(2,1,1)

(2,2,2)

(1,2,2)

:  global state : global states that satisfy the predicate

(1,0,0)

(1,0,1)
(2,0,0)

(2,0,1)(1,2,0)

LB (the subset of elements in L that satisfy B) forms a sublattice of L

LB is a distributive lattice.

Slicing: Can we represent LB concisely? [Mittal and Garg 01]
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Join-irreducible Elements
join-irreducible element: cannot be represented as join of two other
elements

(0,0,1)(1,1,0)

(2,1,0)

(1,2,2)

: join−irreducible element of the sublattice induced by the predicate

: states that satisfy the predicate

(2,2,2)

(0,0,0)

(2,1,1)

(1,1,1)

Theorem

[Birkhoff’s Representation Theorem] A distributive lattice can be
recovered exactly from the set of its join-irreducible elements.
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Algorithm to find All Join-Irreducible Elements

for all e ∈ E :
compute J(B, e)

J(B, e): the minimum global state of (E ,≤) that

satisfies B, and

contains e

Feasible predicate: Be(G ) ≡ B(G ) ∧ (e ∈ G )
Observation: Be is a conjunction of two lattice-linear predicates.
We can use LLP algorithm to find the least global state satisfying J(B, e)
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Applications of Slicing

Constrained Stable Marriages: We get a generalization of rotation
poset [Irving and Gusfield].

Constrained Market Clearing Prices: A poset that captures all integral
market clearing prices.
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Conclusions

How to Solve Many Combinatorial Optimization Problems
Find the least feasible element

View State space as the set of consistent global states

Each process starts with the most desirable choice and moves to less
desirable

Define a “feasibility” predicate B

Check if B satisfies the lattice-linearity condition

Other algorithms as special cases of the LLP Algorithm:

Gale’s Top Trading Cycle Algorithm,

Prim’s MST Algorithm,

Horn’s satisfiability algorithm,

Johnson’s algorithm to transform graphs with negative cost edges
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Future Work

Techniques when the feasibility predicate is not lattice-linear.
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