
Copyright

by

Neeraj Mittal

2002

The Dissertation Committee for Neeraj Mittal

Certifies that this is the approved version of the following dissertation:

Techniques for Analyzing Distributed Computations

Committee:

Vijay K. Garg, Supervisor

Anish Arora

Craig M. Chase

Mohamed G. Gouda

Aloysius K. Mok

Harrick Vin

Techniques for Analyzing Distributed Computations

by

Neeraj Mittal, B.Tech., M.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 2002

To my parents

Acknowledgments

I consider myself to have been an extremely fortunate Ph.D. student in having Vijay

K. Garg as my Ph.D. supervisor. It is impossible to fully express the many ways in

which he has helped to make my Ph.D. experience a fulfilling and enjoyable phase of

my life. He has been a constant source of inspiration, encouragement, and guidance

in my research work and, thanks to him, I have been able to freely explore new ideas

and work on what is fun. Moreover, he has been a friend, encouraging me in my

non-Ph.D. related endeavours as well.

This dissertation has been shaped by discussions that I have had at various

times with fellow students. I am indebted to Om Damani and Ashis Tarafdar for

discussions early in my Ph.D., which inspired me to follow up on my early ideas.

Alper Sen has helped me at various times by reviewing my papers and providing

me with valuable criticism that has greatly improved my work. My committee

members, Mohamed G. Gouda, Anish Arora, Aloysius K. Mok, Craig M. Chase,

and Harrick Vin, have also helped to shape my Ph.D. into its current form through

their valuable comments and criticisms. Their varied expertise has provided me

with different perspectives from which to re-evaluate my work.

I am grateful to my friends in Austin for making my Ph.D. a very enjoyable

experience. Fun evenings, weekend trekking trips, late-night discussions, intense

workouts are but some of the memorable experiences that I have variously shared

with Subramanyam Gooty, Santanu Sinha, Vipin Gupta, Gokul Rajaram, Ravi P.

ix

Bulusu, Praveen K. Jaini, Parminder S. Chhabra, Vineet Kahlon, and Subramanian

Iyer. The biggest credit goes to my family for their love and support. My parents,

Suresh C. Mittal and Shakuntla Mittal, have kept me going by their never-ending

confidence in me. My sisters, Amita Gupta, Vanita Gupta, and Neelima Kumar,

have helped me with practical advice at various stages. Without my family, this

dissertation would never have been written.

Neeraj Mittal

The University of Texas at Austin

May 2002

x

Techniques for Analyzing Distributed Computations

Publication No.

Neeraj Mittal, Ph.D.

The University of Texas at Austin, 2002

Supervisor: Vijay K. Garg

Inherent non-determinism in distributed programs and presence of multiple threads

of control makes it difficult to write correct distributed software. Not surprisingly,

distributed systems are particularly vulnerable to software faults. To build a

distributed system capable of tolerating software faults, two important problems

need to be addressed: fault detection and fault recovery.

The fault detection problem requires finding a (consistent) global state of the

computation that satisfies certain predicate (e.g., violation of mutual exclusion). To

prevent a fault from causing any serious damage such as corrupting stable storage, it

is essential that it be detected in a timely manner. However, we prove that detecting

a predicate in 2-CNF, even when no two clauses contain variables from the same

process, is an NP-complete problem. We develop a technique, based on computation

slicing, to reduce the size of the computation and thus the number of global states

to be examined for detecting a predicate. Slicing can be used to throw away the

extraneous global states of the computation in an efficient manner, and focus on

only those that are currently relevant for our purpose. To detect a fault, therefore,

rather than searching the state-space of the computation, it is much more efficient

xi

to search the state-space of the slice. We identify several useful classes of predicates

for which the slice can be computed efficiently. Our experimental results indicate

that slicing can lead to an exponential reduction over existing techniques both in

terms of time as well as space for fault detection.

To recover from faults, we consider rollback recovery approach, which involves

restoring the system to a previous state and then re-executing. We focus on rollback

recovery using controlled re-execution, which is useful and effective for tolerating

synchronization faults. Unlike other approaches which depend on chance and do not

ensure that the re-execution is fault-free, the controlled re-execution method avoids

synchronization faults during re-execution in a deterministic fashion. Specifically, it

selectively adds synchronization dependencies during re-execution to ensure that the

previously detected synchronization faults do not occur again. We provide efficient

algorithms to solve the problem for two important classes of synchronization faults.

xii

Contents

Acknowledgments ix

Abstract xi

Chapter 1 Introduction 1

1.1 Detecting Global Predicates . 6

1.2 Controlling Global Predicates . 8

1.3 Slicing Distributed Computations . 10

1.4 Overview of the Dissertation . 13

Chapter 2 System Model 15

2.1 Distributed Computations . 15

2.2 Cuts, Consistent Cuts and Frontiers 17

2.3 Global Predicates . 18

Chapter 3 Detecting Global Predicates 23

3.1 Overview . 23

3.2 Problem Statement . 26

3.3 Singular k-CNF Predicates . 26

3.3.1 NP-Completeness Result . 27

3.3.2 Efficient Algorithm for Special Cases 32

xiii

3.3.3 Algorithms for the General Case 34

3.4 Relational Predicates: x1 + x2 + · · · + xn = k 34

3.4.1 NP-Completeness Result . 35

3.4.2 Efficient Algorithm for the Special Case 35

Chapter 4 Controlling Global Predicates 41

4.1 Overview . 41

4.2 Problem Statement . 43

4.3 Region Predicates . 44

4.3.1 Finding a Controlling Synchronization 47

4.4 Disjunctive Predicates . 62

4.4.1 Admissible Sequences . 62

4.4.2 Finding a Controlling Synchronization 75

4.4.3 Finding a Minimum Controlling Synchronization 80

Chapter 5 Slicing Distributed Computations 91

5.1 Overview . 91

5.2 Extending the Model . 94

5.2.1 Directed Graphs: Path- and Cut-Equivalence 94

5.2.2 Distributed Computations as Directed Graphs 95

5.3 Problem Statement . 97

5.4 Regular Predicates . 98

5.5 Establishing the Existence and Uniqueness of Slice 104

5.5.1 Regular Predicates . 104

5.5.2 General Predicates . 109

5.6 Representing a Slice . 113

5.7 Slicing for Regular Predicates . 117

5.7.1 Computing the Slice for Regular Predicates 118

xiv

5.7.2 Optimizing for the Special Case: Computing the Slice for De-

composable Regular Predicates 121

5.7.3 Optimal Algorithms for Special Cases 129

5.7.4 Applications of Slicing . 133

5.8 Slicing for General Predicates . 136

5.8.1 NP-Hardness Result . 137

5.8.2 Computing the Slice for Linear Predicates and their Dual . . 137

5.8.3 Grafting Two Slices . 139

5.8.4 Computing the Slice for Co-Regular Predicates 142

5.8.5 Computing the Slice for k-Local Predicates for Constant k . 145

5.8.6 Computing Approximate Slices 146

5.9 Detecting Global Predicates using Slicing: An Experimental Study . 149

Chapter 6 Related Work 159

6.1 Detecting Global Predicates . 159

6.2 Controlling Global Predicates . 162

6.3 Slicing Distributed Computations . 163

Chapter 7 Conclusions and Future Work 165

Bibliography 169

Vita 181

xv

Chapter 1

Introduction

Recent advances in communication technology have led to a rapid

proliferation of distributed systems. For example, a cluster of servers provided

Web coverage of the Sydney Summer Olympics. As another example, mass-

distributed computing was recently used to discover the largest known prime

number. As distributed systems evolve from the special case to commonplace,

ensuring their reliable operation has emerged as an important and challenging

problem. With distributed systems being increasingly employed in safety-critical

environments, a failure in one of these systems could have irreparable, if not tragic,

consequences. There have been several examples of serious systems failures (e.g.,

Ariane 5, Therac 25, Mars Observer) caused at least in part by critical defects in

the software.

Inherent non-determinism in distributed programs and presence of multiple

threads of control make it difficult to write correct distributed software. Not

surprisingly, distributed systems are especially vulnerable to software faults. Dealing

with software faults requires efforts at multiple levels [TP00]. Early in the

software cycle, design methodologies, technologies and techniques that are aimed at

1

preventing the introduction of faults into the design can be used (fault prevention).

Later, the implementation can be verified using testing, and the faults thereby

exposed can be removed using debugging (fault removal). In spite of extensive

testing and debugging, software faults may persist even in production quality

software. Fault tolerance can be used as an extra layer of protection to provide

acceptable level of performance and safety at runtime after a fault becomes active.

In this dissertation, we focus on fault removal and fault tolerance techniques to

improve the reliability of distributed software.

Fault Removal

The correctness of a program is often expressed using a combination of safety and

liveness properties. A safety property specifies what the program must not do

(ensures “nothing bad will ever happen”). An example of a safety property is mutual

exclusion which demands that at no time should there be more than one process

in its critical section. A liveness property, on the other hand, specifies what the

program must eventually do (guarantees “something good will eventually happen”).

An example of a liveness property is that every process which is trying to acquire a

resource will succeed eventually.

Testing and debugging has been widely used for developing traditional

sequential programs. Testing involves executing the program for a specific input

sequence and then validating the output obtained with respect to the given safety

and liveness properties. Specifically, when testing for safety property, the objective

is to verify that the system always stayed in a safe state throughout the execution,

or, in other words, the system did not traverse through an unsafe state. Similarly,

when testing for liveness property, the aim is to ascertain that some desired condition

eventually became true in the execution. In case testing reveals that the program

behaved erroneously (it violated either safety or liveness property), debugging is the

2

process of tracking down the bug that caused the program to exhibit the faulty

behaviour.

The state of a distributed system, commonly referred to as global state, is

given by the set of events that have been executed so far (on all processes). In an

asynchronous distributed system, however, it is not possible for an external observer

to determine the exact order in which the events generated by the system were

executed in real-time. The events can only be partially ordered; the partial order is

referred to as the Lamport’s happened-before relation [Lam78] and the corresponding

partially ordered set (or poset) is called a distributed computation. Each interleaving

of events that respects the happened-before relation corresponds to an order in

which the events could have been executed. Testing a computation with respect

to safety and liveness properties, therefore, translates into answering the following

queries: “Does there exist an interleaving of events in which the system passes

through an unsafe global state?” and “Does a liveness property eventually become

true in all possible interleavings of events?” The two problems correspond to the

predicate detection problem under possibly and definitely modalities [CM91, GW91],

respectively.

On discovering a fault in the computation during testing phase, the next

step is to analyze the computation to locate the source of the fault. While the skill

and intuition of the programmer play an important role in debugging, tools that

provide an effective environment for debugging are indispensable. For example, on

detecting a violation of safety property, a programmer can gain considerable insight

into the bug, that caused the violation, by learning whether all possible interleavings

of events are unsafe in the sense that they all pass through a global state that is

unsafe. In that case, the bug cannot be fixed by adding or removing synchronization

alone. On the other hand, if it is possible to eliminate all unsafe interleavings by

adding synchronization to the computation, without creating a deadlock, then too

3

little synchronization is likely to be the problem. Furthermore, the knowledge of

the exact synchronization needed to maintain a safety property can facilitate the

localization of the bug in the program. The problem of finding a synchronization

required to maintain a safety property in a computation is referred to as the predicate

control problem [TG98b].

Analyzing an erroneous computation in order to track down the source of the

fault is complicated by the fact that the computation in general contains exponential

number of global states. Therefore it is helpful and desirable to focus on only those

global states that are likely to be involved in the fault. For example, to locate the

bug, it may suffice to examine only transitless global states, the ones in which all sent

messages have been received. To that end, we define the notion of computation slice.

Intuitively, slice is a concise representation of those global states of the computation

that satisfy certain property. More precisely, the slice of a computation with respect

to a predicate is the computation satisfying the following two conditions. First,

it contains all global states for which the predicate evaluates to true. Second,

among all computations that fulfill the first condition, it contains the least number

of global states. A slice may contain exponentially fewer number of global states

than the computation, thereby substantially reducing the size of the computation

to be analyzed.

Fault Tolerance

A production quality software which has been extensively tested and debugged

contains around 3 bugs per 1,000 lines of code [GR93]. Many systems, especially

those employed in safety-critical environments, should be able to operate properly

even in the presence of these bugs. An overwhelming majority of the bugs tend to

be non-deterministic in nature and are often caused by transient conditions such

as timing and synchronization. Therefore they do not manifest themselves in every

4

Monitor

Fault Handler

Application

Fault Detector

Figure 1.1: A software fault tolerance system.

program execution with the same input sequence and it is possible to tolerate them

at runtime using rollback recovery [GR93]. A system capable of tolerating software

faults can be built using a monitor that continuously observes the system execution

to detect an occurrence of a fault. On detecting a fault, it rolls back the program

to a state before the fault occurred and re-executes it hoping that the previously

detected fault does not occur again. To prevent the fault from causing any serious

damage such as corrupting stable storage, it is essential that the monitor be able to

detect the fault in a timely manner. This requires the fault detection algorithm to

be fast and efficient. Further, to minimize the disruption in service caused by the

fault, it is desirable that during re-execution the fault be avoided in a deterministic

fashion instead of relying on chance [WHF+97]. Tarafdar and Garg [TG99] proposed

the controlled re-execution approach which assumes some knowledge about the fault

(e.g., fault occurred because of improper synchronization) but provides a guarantee

that the previously detected fault will not recur during re-execution. Therefore to

build a software fault tolerant system, two issues need to be addressed: (1) fault

detection which gives rise to the problem of detecting a predicate under possibly

modality, and (2) fault recovery which in the case of synchronization faults gives

rise to the predicate control problem.

5

To summarize, our goals are:

• To investigate the problem of detecting a predicate in a computation.

• To investigate the problem of controlling a predicate in a computation.

• To formulate and investigate the notion of slice of a computation with respect

to a predicate.

In the next three sections, we give an introduction to our work towards each

of these goals. This is followed by an overview of the dissertation.

1.1 Detecting Global Predicates

Verifying the correctness of an observed behaviour of a program, for a specific input

sequence, gives rise to the problem of detecting a predicate in a computation under

possibly and definitely modalities. When detecting a predicate under possibly

modality, the objective is to find a global state in the computation that violates

the safety property. For example, consider the computation in Figure 1.2 with three

processes p1, p2 and p3. The safety property is mutual exclusion which demands

that no two processes are in critical sections (labeled CS1, CS2, CS3 and CS4) at

the same time. Clearly, the given computation does not maintain mutual exclusion

at all times. Specifically, mutual exclusion is violated for global state C in which

processes p1 and p3 are in their respective critical sections.

Detecting a predicate under definitely modality requires verifying that the

liveness property eventually becomes true in all interleavings of events. For example,

consider the computation in Figure 1.3 with two processes p1 and p2. The liveness

property requires that the system always passes through a state in which both

6

CS3

CS2

CS4

1CS
C

1p

p3

p2

Figure 1.2: Detecting a predicate under possibly modality.

processes are in the second round. Clearly, if the events are interleaved in the order

a e b c f d g h, the desired condition never becomes true.

It can be proved that detecting a predicate in a computation under definitely

modality is the dual of controlling a predicate in a computation. Thus our results

in solving the predicate control problem are applicable to the predicate detection

problem under definitely modality as well. Hereafter, the default modality for

predicate detection is possibly. Moreover, we do not specify possibly modality

unless we need to distinguish it from definitely modality.

Contributions

It is always useful and desirable to know for what classes of predicates an efficient

polynomial-time detection algorithm is unlikely to exist. To that end, Chase and

Garg prove in [CG95] that detecting a predicate in 3-CNF is an NP-complete

problem. Also, Stoller and Schneider [SS95] show that it is computationally hard

to detect a 2-local conjunctive predicate (a predicate expressed as conjunction of

clauses where each clause depends on variables of at most two processes). We

demonstrate that detecting a predicate in 2-CNF even when no two clauses contain

variables from the same process is an NP-complete problem as well. It may be noted

that our intractability result subsumes the two aforementioned NP-completeness

results. Nevertheless, computation slicing, discussed later, can be used to achieve

7

f he g

a b c d

1 1 2 3

1 2 2 3

p2

1p

2round

round1

Figure 1.3: Detecting a predicate under definitely modality.

an exponential improvement in time as well as space for detecting a predicate that

is otherwise computationally hard to detect.

Additionally, we establish that detecting a relational predicate of the form

x1 + x2 + · · · + xn = k for constant k, where xi is an integer variable on process

pi, is an NP-complete problem. This is somewhat surprising because a relational

predicate of the form x1+x2+· · ·+xn 6 k, for constant k, can be detected efficiently.

(This is true even when 6 is replaced with >.) However, for certain restricted but

useful class of general computations, it is indeed possible to provide an efficient

polynomial-time algorithm to detect the former relational predicate. This class

corresponds to computations in which each xi is incremented or decremented by at

most one at each step. Such computations are generated, for example, when each

xi is a binary variable and can assume values 0 or 1. As a corollary, any symmetric

predicate—predicate composed from boolean variables that is invariable under any

permutation of its variables—can be efficiently detected.

1.2 Controlling Global Predicates

The problem of controlling a predicate in a computation involves adding

synchronization to the computation, without creating a cycle, such that the given

predicate is never falsified in the resultant computation. As an example, consider the

computation in Figure 1.4(a) with three processes p1, p2 and p3. Suppose the stated

predicate is the mutual exclusion predicate which requires that no two processes are

8

CS3

CS2

CS4

1CS
C

CS3

CS2

CS4

1CS
C

(a) (b)

1p

p3

p2

1p

p3

p2

Figure 1.4: Controlling a predicate in a computation: (a) original computation, and
(b) controlled computation.

in critical sections (labeled CS1, CS2, CS3 and CS4) at the same time. Clearly,

the computation does not maintain mutual exclusion at all times. Figure 1.4(b)

depicts the same computation with added synchronization that ensures that mutual

exclusion is maintained at all times. We call such a computation as “controlled

computation” and the added synchronization as “controlling synchronization”. The

main difficulty in determining such a controlling synchronization lies in adding the

synchronization dependencies in such a manner as to maintain the given property

without causing deadlock with existing synchronization dependencies.

Contributions

Tarafdar and Garg prove in [TG98b] that it is in general NP-complete to compute a

controlling synchronization for a predicate. We therefore focus on two useful classes

of predicates for which polynomial-time algorithms can be provided.

The first class of predicates we consider is the class of “region predicates”.

Informally, a region predicate partitions the set of global states of the computation

that satisfy the predicate into bounded convex regions, one for each event. Some

examples of region predicates include “the virtual clocks of all processes are

approximately synchronized”, and channel predicates such as “all request messages

9

have been received”. We give an O(n|E|2) algorithm for computing a controlling

synchronization for a region predicate, where n is the number of processes and E is

the set of events. We also show that the controlling synchronization generated by the

algorithm is optimal in the sense that it permits the maximum possible concurrency

in the controlled computation.

The other class of predicates we study is the class of “disjunctive predicates”.

A disjunctive predicate can be expressed as disjunction of local predicates. Some

examples include “at least one server is not busy”, “at least one philosopher does not

have a fork”, and (n−1)-mutual exclusion with n processes in the system. Intuitively,

a disjunctive predicate ensures that a bad combination of local conditions does not

occur. We provide an O(n|E|) algorithm for computing a controlling synchronization

for a disjunctive predicate, where n is the number of processes and E is the set of

events. We further modify the algorithm to compute a controlling synchronization

with the least number of synchronization dependencies. The modified algorithm has

O(|E|2) time-complexity.

1.3 Slicing Distributed Computations

The slice of a computation with respect to a predicate is the computation with

the least number of global states such that it contains all global states of the

original computation satisfying the given predicate. As an illustration, consider the

computation in Figure 1.5(a). In the figure, the first event on each process initializes

the state of the process. The initial global state is therefore obtained by executing

the events a, e and u. Suppose we wish to examine only those global states for

which (x1 > 1) ∧ (x3 6 3). A concise representation of such global states—referred

to as slice—is shown in Figure 1.5(b). Informally, in the slice, the partial order is

specified on subsets of events rather than events. Intuitively, all events in a subset

are executed atomically, that is, either none of them is executed or all of them are

10

x2p2

x3p3

x1p1

(b)(a)
w

2

1

g

0

d

−1

c

2

b

1

a

0

e

2 3

h

4

x

1

v

4

u

f

{a,e,f,u,v} {b}

{w} {g}

Figure 1.5: (a) A computation, and (b) its slice with respect to the predicate
(x1 > 1) ∧ (x3 6 3).

executed. For instance, the global state of the computation obtained by executing

the events a, b, e and u is not a global state of the slice because only some of the

events in the subset {a, e, f, u, v} have been executed. The computation contains

twenty eight global states whereas the slice contains only six global states.

Now, suppose we want to find a global state of the computation for which

the predicate (x1 ∗ x2 + x3 < 5) ∧(x1 > 1) ∧ (x3 6 3) evaluates to true. Without

computation slicing, we are forced to examine all global states of the computation

to ascertain whether some global state satisfies the predicate. With computation

slicing, however, we can restrict our search to the global states of the slice, thereby

resulting in substantial savings.

Contributions

We first establish that slice exists and is uniquely defined for all predicates. The

slice for a predicate may contain global states that do not satisfy the predicate. We

identify the class of “regular predicates” for which the slice is “lean”. In other words,

the slice for a regular predicate contains precisely those global states for which the

predicate evaluates to true. The set of global states that satisfy a regular predicate

forms a sublattice, that is, it is closed under intersection and union. Some examples

of regular predicates are: conjunction of local predicates like “no process has the

11

token”, and channel predicates such as “all request messages have been received”.

We prove that the class of regular predicates is closed under conjunction, that is,

the conjunction of two regular predicates is also a regular predicate. We devise an

efficient algorithm to compute the slice for a regular predicate. The time-complexity

of the algorithm is O(n2|E|), where n is the number of processes and E is the set of

events. Additionally, for special cases of regular predicates such as conjunction of

local predicates, we develop optimal algorithms for computing the slice which have

O(|E|) time-complexity. In addition to regular predicates, we also provide efficient

algorithms to compute the slice for many classes of non-regular predicates including

“linear predicates” and “post-linear predicates”.

We prove that it is intractable in general to compute the slice for a predicate.

Nonetheless, it is still useful to be able to compute an approximate slice for such

a predicate efficiently. An approximate slice may be bigger than the actual slice

but will be much smaller than the computation itself. To that end, we develop

efficient algorithms to compose two slices using “grafting”. Specifically, given two

slices, grafting involves computing either (1) the smallest slice that contains all

global states common to both the slices, or (2) the smallest slice that contains

all global states that belong to at least one of the slices. We apply grafting to

efficiently compute the slice for the complement of a regular predicate—referred to

as “co-regular predicate”. The algorithm has O(n2|E|2) time-complexity, where n

is the number of processes and E is the set of events. We also employ grafting

to compute the slice for a “k-local predicate” with constant k in polynomial-time.

More importantly, we use grafting to compute an approximate slice—in polynomial-

time—for a predicate composed using ∧ and ∨ operators from predicates for which

the slice can be computed efficiently (e.g., regular predicates, linear predicates).

Example of such predicate is: (x1 ∨ ¬x2) ∧ (x3 ∨ ¬x1) ∧ (x2 ∨ x3), where each xi

is a linear predicate. We conduct simulation tests to experimentally measure the

12

effectiveness of computation slicing in pruning the search space when detecting a

predicate. Our results indicate that computation slicing can lead to an exponential

reduction over existing techniques both in terms of time as well as space.

1.4 Overview of the Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2, we define our

model. Next, we have three main chapters of the dissertation. Chapter 3 discusses

our results in detecting global predicates, Chapter 4 investigates the problem of

controlling global predicates, and Chapter 5 describes our study of the computation

slicing technique. In Chapter 6, we give a summary of the related work. Finally, we

draw conclusions and describe future directions in Chapter 7.

13

Chapter 2

System Model

In this chapter we formally describe the model and notation used in this

dissertation. Our model is based on the Lamport’s happened-before model [Lam78].

The model is further extended in Chapter 5 where we discuss computation slicing

in detail.

2.1 Distributed Computations

We assume an asynchronous distributed system with the set of processes P =

{p1, p2, . . . , pn}. Each process executes a predefined program. Processes do not

share any clock or memory; they communicate and synchronize with each other by

sending messages over a set of channels. We assume that channels are reliable, that

is, messages are not lost, altered or spuriously introduced into a channel. We do not

assume FIFO channels.

The local computation of a process is given by the sequence of events that

transforms the initial state of the process into the final state. At each step, the local

state is captured by the initial state together with the sequence of events that have

15

been executed up to that step. Each event is either an interval event or an external

event. An external event could be a send event or a receive event or both. An event

causes the local state of a process to be updated. Additionally, a send event causes

a message or a set of messages to be sent and a receive event causes a message or

a set of messages to be received. We assume the presence of fictitious initial events

on each process pi, denoted by ⊥i. The initial event occurs before any other event

on the process and initializes the state of that process. We denote the last event on

process pi, called the final event, by ⊤i. Let ⊥ and ⊤ denote the set of all initial

events and final events, respectively.

Let proc(e) denote the process on which event e occurs. The predecessor and

successor events of e on proc(e) are denoted by pred(e) and succ(e), respectively,

if they exist. Observe that an initial event does not have a predecessor and a final

event does not have a successor.

We model a distributed computation (or simply a computation) by an

irreflexive partial order on a set of events. We use 〈E,→〉 to denote a distributed

computation with the set of events E and the partial order →. The partial order →
is given by the Lamport’s happened-before relation (or causality relation) [Lam78]

which is defined as the smallest transitive relation satisfying the following properties:

1. if events e and f occur on the same process, and e occurred before f in real

time then e happened-before f , and

2. if events e and f correspond to the send and receive, respectively, of a message

then e happened-before f .

Given a computation 〈E,→〉, we denote the order of events on processes by

P→ which is referred to as process order. Note that the projection of
P→ onto the

events of a single process is a total order. The reflexive closure of an irreflexive

partial order is represented by and its transitive closure is denoted by +. A

16

a b c d

hgfe

C D

p2

p1

Figure 2.1: An example of a computation.

run or interleaving of a computation 〈E,→〉 is some total order on events E that is

consistent with the partial order →.

Example 2.1 Figure 2.1 depicts a computation involving two processes, namely p1

and p2. The local computation of each process advances from left to right as shown

in the figure. The circles represent events and the arrows denote messages. The

local computation of p1 is given by the sequence abcd. The event b is a send event,

the event f is a receive event and the event d is an internal event. Here, ⊥1 = a

and ⊥2 = e whereas ⊤1 = c and ⊤2 = h. Also, proc(b) = p1, pred(b) = a and

succ(e) = c. The set of events E = {a, b, c, d, e, f, g, h} and the happened-before

order → = {(a, b), (b, c), (c, d), (e, f), (f, g), (g, h), (b, f), (g, c)}+. The process order

P→ is given by {(a, b), (b, c), (c, d), (e, f), (f, g), (g, h)}+. Finally, aebfghcd is a run

of the computation.

2.2 Cuts, Consistent Cuts and Frontiers

The state of a distributed system, called the global state, is given by the collective

state of processes. The equivalent notion based on events is called cut and is defined

as a subset of events that contains all initial events such that it contains an event

only if its predecessor, if it exists, also belongs to the subset. Formally,

C is a cut , (⊥ ⊆ C) ∧ 〈∀ e : e ∈ C : e 6∈ ⊥ ⇒ pred(e) ∈ C〉

17

The frontier of a cut C is defined as the set of those events in C whose

successors are not in C. Formally,

frontier(C) , { e ∈ C | e 6∈ ⊤ ⇒ succ(e) 6∈ C }

We say that a cut passes through an event if the event is included in

its frontier. Not every cut can occur during system execution. A cut is said

to be consistent if it contains an event only if it also contains all events that

happened-before it. Formally,

C is a consistent cut , (C is a cut) ∧ 〈∀ e, f : e → f : f ∈ C ⇒ e ∈ C〉

In particular, only those cuts which are consistent can possibly occur during

an execution. The equivalent notion based on state is called consistent global state.

We denote the set of consistent cuts of a computation 〈E,→〉 by C(〈E,→〉).
Two events are consistent if there exists a consistent cut that passes through

both the events, otherwise they are inconsistent. It can be verified that events e

and f are inconsistent if and only if either succ(e)→f or succ(f)→e. Finally, two

events e and f are independent if they are incomparable with respect to →.

Example 2.2 Consider the computation in Figure 2.1. Pictorially, we represent a

cut by a line drawn from top to bottom passing through exactly one event on each

process; an event belongs to the cut if and only if it either lies on the line or lies

on the left of the line. The cut C = {a, e, f}. The cut D is consistent whereas C is

not. Here, frontier(C) = {a, f} and frontier(D) = {b, g}. The events b and f are

consistent whereas events a and f are not. Finally, events c and h are independent

but b and f are not.

2.3 Global Predicates

A global predicate (or simply a predicate) is defined as a boolean-valued function on

variables of processes. Given a consistent cut, a predicate is evaluated with respect

18

to the values of variables resulting after executing all events in the cut. If a predicate

b evaluates to true for a consistent cut C, we say that “C satisfies b” and denote it

by C |= b.

A global predicate is local if it depends on variables of a single process. Note

that it is possible to evaluate a local predicate with respect to an event on the

appropriate process. In case the predicate evaluates to true, the event is called a

true event; otherwise, it is called a false event. We use e |= b to denote the fact

that the event e satisfies the local predicate b.

A run is called safe with respect to a predicate if every consistent cut of the

run satisfies the predicate; otherwise, the run is unsafe.

Remark 2.1 We assume that the time-complexity of evaluating a predicate for a

consistent cut is polynomial in input size. However, for convenience, throughout

this dissertation, we specify the time-complexity of our algorithms assuming that

the time-complexity of evaluating a predicate is linear in number of processes whose

variables the predicate depends on. In case the time-complexity is actually higher,

the time-complexity of the algorithms will increase correspondingly.

The value of a predicate is defined with respect to a consistent cut. So,

what does it mean to evaluate a predicate for a computation which may consist of

several consistent cuts? Given a computation, it is possible to evaluate a predicate

under various modalities, namely possibly, definitely, invariant and controllable

[CM91, WG91, SUL00, TG99, MG00]. A predicate is said to be possibly true in

a computation if there exists a consistent cut of the computation for which the

predicate evaluates to true. On the other hand, a predicate definitely holds in a

computation if it eventually becomes true in all possible runs of the computation.

The modalities invariant and controllable are duals of the modalities possibly and

definitely, respectively. That is, a predicate is invariant in a computation if every

consistent cut of the computation satisfies the predicate, whereas it is controllable

19

Concept Description Notation

local computation sequence of events on a process

distributed computation
(or simply computation)

irreflexive partial order on set of
events

〈E,→〉

run/interleaving total order on events consistent with
the partial order of a distributed
computation

process order order of events on processes
P→

cut an event is in the cut only if its
predecessor is also in the cut

C, D

frontier subset of events in the cut whose
successors do not belong to the cut

frontier(C)

passes through event is contained in the frontier of
the cut

consistent cut an event is in the cut only if all its
preceding events (with respect to the
partial order) are also in the cut

consistent events some consistent cut passes through
both the events

independent events events are incomparable with respect
to the given partial order

global predicate
(or simply predicate)

boolean-valued function on variables
of processes

b

safe run every consistent of the run satisfies
the global predicate

local predicate global predicate that depends on
variables of only a single process

true event event satisfies the local predicate

Table 2.1: A summary of the various concepts.

20

Notation Description

proc(e) process on which event e occurs

pred(e) predecessor of event e (on proc(e))

succ(e) successor of event e (on proc(e))

⊥i initial event on process pi

⊤i final event on process pi

⊥ set of initial events

⊤ set of final events

→, , 7→ irreflexive partial orders on set of events

→ reflexive closure of →

R+ transitive closure of relation R

C |= b consistent cut C satisfies global predicate b

e |= b event e satisfies local predicate b

〈E,→〉 |= modal : b
global predicate b holds in distributed computation
〈E,→〉 under modal modality

modal ∈ {possibly, definitely, controllable, invariant}

Table 2.2: A summary of the notation.

in a computation if there exists a safe run of the computation with respect to the

predicate. The predicate detection problem [CM91, CG98, SUL00, MG01b] typically

refers to monitoring a predicate under possibly (and sometimes under definitely)

modality, whereas the predicate control problem [TG98b, TG99, MG00] involves

monitoring a predicate under controllable modality.

Given a predicate b and a computation 〈E,→〉, we use 〈E,→〉 |= possibly : b

to denote the fact that b possibly holds in 〈E,→〉. The expressions 〈E,→〉 |=
definitely : b, 〈E,→〉 |= invariant : b and 〈E,→〉 |= controllable : b can be similarly

21

interpreted.

Table 2.1 and Table 2.2 summarize various notations and concepts defined

in this chapter.

22

Chapter 3

Detecting Global Predicates

In this chapter, we describe in detail our results pertaining to the detection

of global predicates in distributed computations primarily under possibly modality.

In particular, we provide solutions to all the open problems proposed in [Gar97].

3.1 Overview

We start by defining the problem formally in Section 3.2. Informally, the problem

of detecting a predicate typically refers to monitoring it under possibly or definitely

modality.

Chase and Garg [CG95] prove that it is in general NP-complete to detect a

3-CNF predicate under possibly modality. Stoller and Schneider [SS95] show that

detecting a 2-local conjunctive predicate under possibly modality is NP-complete

in general as well. A 2-local conjunctive predicate is a conjunction of clauses such

that each clause depends on variables of at most two processes. In Section 3.3, we

introduce a new class of predicates called “singular k-CNF predicates”. Informally,

a k-CNF predicate is singular if no two clauses contain variables from the same

23

process. We show that detecting even a singular 2-CNF predicate under possibly

modality is NP-complete in general. Our NP-completeness result subsumes the two

aforementioned NP-completeness results [CG95, SS95]. It also bridges the wide gap

between the known tractability [GW94] and intractability [CG95, SS95] results that

existed until now. Further, the NP-completeness result can be used to establish

the intractability of detecting other “interesting” singular predicates under possibly

modality.

It is, however, possible to devise an efficient polynomial-time algorithm for

detecting a singular k-CNF predicate under possibly modality provided that the

computation satisfies certain property, namely it is either receive-ordered or send-

ordered [TG98a]. The algorithm is based on Tarafdar and Garg’s algorithm for

detecting a conjunctive predicate under possibly modality for the strong causality

model which is an extension of the Lamport’s happened-before model [Lam78] in

the sense that it allows events on a process to be only partially ordered [TG98a].

The time-complexity of the algorithm is O(|E|2), where E is the set of events. We

also discuss techniques that can be used to achieve an exponential reduction in time

over existing techniques for the solving the general version. However, note that the

time-complexity of the algorithm for the general version will be exponential in the

worst case.

In Section 3.4, we extend the definition of “relational predicate” introduced

in [TG97] to include the equality operator. A relational predicate is of the form

x1+x2+ · · ·+xn relop k, where each xi is an integer variable on process pi, k is some

constant and relop ∈ {=, <,6, >,>}. Chase and Garg [CG95] gave polynomial-

time algorithm to detect a relational predicate under possibly modality when relop

∈ {<,6, >,>} based on the notion of max-flow/min-cut. We prove that it is in

general NP-complete to detect a relational predicate under possibly modality when

relop =′=′. However, an efficient polynomial-time algorithm can be developed for

24

the case when each xi is incremented or decremented by at most one at each step.

The time-complexity of the algorithm is O(|E|2 log(|E|)), where E is the set of

events. As a corollary, the above algorithm can be used to detect any “symmetric

predicate” on boolean variables under possibly modality. A symmetric predicate is

invariant under any permutation of its variables. Examples of symmetric predicates

include “absence of two-third majority”, “exclusive-or of local predicates” and “not

all local predicates have the same value”.

Although the computation that we construct to prove the NP-completeness

result for singular 2-CNF predicates may contain events that send and/or receive

multiple messages, it is relatively easy to modify the computation such that each

event sends or receives at most one message while ensuring that the NP-completeness

result still holds. The basic idea is to replace each event by a contiguous sequence of

events such that each event in the sequence sends or receives at most one message

(but not both) and the resultant computation satisfies the desired property.

Tarafdar and Garg [TG98b] proved that it is in general NP-complete to

monitor a predicate under controllable modality. Since the problem of monitoring a

predicate under definitely modality is dual of the problem of monitoring a predicate

under controllable modality, it is in general coNP-complete to detect a predicate

under definitely modality. For their NP-completeness proof, Tarafdar and Garg

transformed an arbitrary instance of the problem of detecting a predicate b under

possibly modality to an instance of monitoring the predicate x∨b under controllable

modality [TG98b]. Using their construction and our NP-completeness result for

singular 2-CNF predicates, it can be established that controlling a singular 3-CNF

predicate in a computation is also intractable in general. This in turn implies that

detecting a singular 3-DNF predicate (dual of singular 3-CNF predicate) under

definitely modality is coNP-complete in general.

25

3.2 Problem Statement

The predicate detection problem typically refers to monitoring a predicate under

possibly or definitely modality [CM91, WG91]. In this chapter, we mainly focus on

detecting a predicate under possibly modality and make possibly modality explicit

only when we need to distinguish it from definitely modality.

3.3 Singular k-CNF Predicates

A predicate of boolean variables in conjunctive normal form (CNF) is called singular

if no two clauses contain variables from the same process. Roughly speaking, a

predicate in CNF is singular if it is possible to rewrite the predicate such that each

variable occurs in at most one clause and each process hosts at most one variable. For

convenience, we write a singular predicate in k-CNF (exactly k literals per clause)

as singular k-CNF predicate. A singular 1-CNF predicate is also called conjunctive

predicate [GW94]. For example, let xi be a boolean variable on process pi. Then the

predicate (x1∨x2)∧ (x3∨x4∨x5) is a singular CNF predicate whereas the predicate

(x1 ∨ x2) ∧ (x2 ∨ x3) is not.

We first prove that the problem of detecting a singular k-CNF predicate

is intractable in general even when k is two. Efficient algorithms for detecting

the predicate, however, exist when k is one [CG98]. Our NP-completeness result

subsumes the two earlier known NP-completeness results [CG98, SS95]. We next

present a polynomial-time algorithm for solving the problem for two special cases,

namely when the computation is either receive-ordered or send-ordered [TG98a];

the two notions are defined later in Section 3.3.2. We also discuss techniques that

can be used to achieve an exponential reduction in time over existing techniques for

solving the general version. The following observation comes in useful for achieving

the aforementioned results.

26

Observation 3.1 Consider a singular k-CNF predicate b with m clauses ci = x1
i ∨

x2
i ∨· · ·∨xk

i , 1 6 i 6 m, where xj
i is a boolean variable on process pj

i . Let grpi denote

the subset of processes that host the variables in ci, that is, grpi = {pj
i | 1 6 j 6 k}.

A necessary and sufficient condition for the existence of a consistent cut that satisfies

b is the existence of m pairwise consistent true events ei, 1 6 i 6 m, such that each

ei is an event on some process in grpi.

The above observation follows from the fact that, given a set of pairwise

consistent events—not necessarily from all processes, it is always possible to find a

consistent cut that passes through all the events in the set. More precisely, given an

event e, let Cleast.e denote the least consistent cut of the computation that passes

through e. Now, given a subset of events F , consider the consistent cut C(F) defined

as follows:

C(F) ,
⋃

e∈F

(Cleast.e)

It can be verified that C(F) is not only a consistent cut but also passes

through every event in F .

3.3.1 NP-Completeness Result

The problem is in NP because the general problem of detecting an arbitrary

boolean expression is in NP [CG98]. To establish its NP-hardness, we transform

an arbitrary instance of a variant of the satisfiability problem [CLR91], which we

call non-monotone 3-SAT problem, to an instance of detecting a singular 2-CNF

predicate.

Definition 3.1 (non-monotone 3-SAT problem) Given a formula in CNF

such that (1) each clause has at most three literals, and (2) each clause with exactly

three literals has at least one positive literal and one negative literal, does there exist

a satisfying truth assignment for the formula?

27

The NP-completeness of the non-monotone 3-SAT problem follows from the

intractability of the 3-SAT problem. Specifically, given a formula in 3-CNF, it can

be easily transformed into a formula that satisfies the above-mentioned conditions;

we call such a formula non-monotone 3-CNF formula. Consider a clause in a 3-CNF

formula containing only positive literals, say ci = y1
i ∨y2

i ∨y3
i . We replace the clause

ci with three clauses y1
i ∨ y2

i ∨ ¬z3
i , y3

i ∨ z3
i and ¬y3

i ∨ ¬z3
i . The last two clauses

ensure that, in any satisfying truth assignment, y3
i and z3

i are logical negation of

each other. A similar substitution can be made for clauses containing only negative

literals. It is easy to verify that the resultant formula is a non-monotone 3-CNF

formula. Furthermore, the new formula is satisfiable if and only if the original

formula is satisfiable. Thus we have the following theorem.

Theorem 3.1 The non-monotone 3-SAT problem is NP-complete in general.

We now prove the NP-hardness of detecting a singular 2-CNF predicate.

Observe that finding a satisfying truth assignment for a non-monotone 3-CNF

formula is equivalent to finding a subset of literals, one from each clause, that are

mutually non-conflicting. Consequently, it follows from Observation 3.1 that if the

computation and the singular 2-CNF predicate satisfy the properties: (1) for each

clause in the formula there is a clause in the predicate and vice versa, (2) there is a

one-to-one correspondence between the literals in the formula and the true events in

the computation, and (3) two literals conflict if and only if the corresponding true

events are inconsistent, then the formula is satisfiable if and only if the predicate

possibly holds in the computation.

Given a non-monotone 3-CNF formula with clauses ci, 1 6 i 6 m, we

construct a computation and a singular 2-CNF predicate as follows. Without loss of

generality, assume that each clause has at least two literals—a lone literal in a clause

has to be assigned value true in any satisfying assignment—and no clause contains

conflicting literals. For each clause ci in the formula, we add two processes p1
i and p2

i

28

t

: true event : false event

(a)

(b)

f f

ftf

t

f t f

ftf

l 3
i

x1
i

x2
i

1p
i

l 1
i l 2

i

l 2
i

x1
i

l 1
i

x2
i

1p
i

p
i

p
i

2

2

Figure 3.1: The local computation when the clause has (a) two literals and (b) three
literals.

to the computation hosting boolean variables x1
i and x2

i , respectively. Initially, all

variables evaluate to false. We also add the clause x1
i ∨ x2

i to the (singular 2-CNF)

predicate. We next describe the local computations of the two processes. There is

one true event for each literal in the formula. Depending on the number of literals

in the clause, there are two possible cases to consider:

Case 1 (|ci| = 2): Let ci = l1i ∨ l2i . The local computations of processes p1
i and p2

i

consist of a true event, corresponding to literals l1i and l2i , respectively, followed by

a false event. For an illustration refer to Figure 3.1(a).

Case 2 (|ci| = 3): Let ci = l1i ∨ l2i ∨ l3i . Without loss of generality, assume that

l1i is a positive literal and l2i is a negative literal. The local computation of the

process p1
i consists of a true event, corresponding to the literal l1i , followed by a false

event, finally followed by a true event, corresponding to the literal l2i . The local

29

: true event : false event

f t f

ftf

f f

ftf

t

f f

ftf

t

t

t

e f

g

x1
1

x2
1

1p
1

x1
2

x2
2

1p
2

x1
3

x2
3

1p
3

y
1

y
2

y
3

y
1

y
1

y
2

y
3

p
2

p
3

p
1
2

2

2

y
2

Figure 3.2: An illustration of the transformation (for the non-monotone 3-CNF
formula (y1 ∨ y2) ∧ (y2 ∨ ¬y1 ∨ y3) ∧ (y1 ∨ ¬y3 ∨ ¬y2)).

computation of the process p2
i consists of a true event, corresponding to the literal

l3i , followed by a false event. For an example see Figure 3.1(b).

Now, given a satisfying truth assignment, the required subset of mutually

consistent true events (see Observation 3.1) can be constructed by selecting, for

each clause in the predicate, the true event corresponding to the literal with value

true (each clause must contain at least one such literal because the truth assignment

satisfies the formula). Conversely, given a consistent cut that satisfies the predicate,

for each clause in the formula, we can assign the value true to that literal for which

the corresponding true event in contained in the cut’s frontier. However, in the

computation constructed so far, it is possible for two true events to be consistent

30

even if the corresponding literals are conflicting. Thus we may end up assigning

true values to conflicting literals. To prevent this from happening, we make the

true events corresponding to the conflicting literals inconsistent by adding an arrow

(that is, a message) from the successor of the true event corresponding to the positive

literal to the true event corresponding to the negative literal as shown in Figure 3.2.

For example, e is a true event corresponding to the positive literal y2 and g is the true

event corresponding to the negative literal ¬y2 which conflicts with y2. Therefore

we add an arrow from the successor of e, namely f , to g.

It remains to be shown that the arrows do not create any cycle and two true

events are consistent if and only if the corresponding literals are non-conflicting. It

suffices to show that there is no causal chain in the computation involving more than

one message (or arrow) or, in other words, no dependency is created between true

events due to transitivity. Observe that the true event corresponding to a negative

literal is always at the receiving end of an arrow, if at all, and the successor of the

true event corresponding to the positive literal, which is a false event, is always

at the sending end of an arrow, if at all. Since there are no other arrows in the

computation, each external event in the computation is either a send event or a

receive event but not both. Furthermore, if a process contains more than one true

event, the true event for the negative literal occurs after the true event for the

positive literal. This ensures that if a process has both send and receive events then

the receive event occurs after the send event. Thus any causal chain, on reaching

a process via a message, cannot subsequently follow any more messages, thereby

limiting the size of the causal chain to at most one message.

It is easy to see that the reduction takes polynomial-time and the

non-monotone 3-CNF formula is satisfiable if and only if some consistent cut of

the computation satisfies the singular 2-CNF predicate.

Theorem 3.2 Detecting a singular 2-CNF predicate is NP-complete in general.

31

Using the above theorem, it can be proved that even detecting predicates such

as (x1 < x2) ∧ (x3 < x4) ∧ · · · ∧ (xn−1 < xn), where each xi is an integer variable on

process pi, is NP-complete in general. More precisely,

Corollary 3.3 Detecting a conjunction of clauses of the form xi relop xj, where

each xi is an integer variable and relop ∈ {<,6, >,>, 6=}, such that no two clauses

contain variables from the same process is NP-complete in general.

Proof: The proof involves a simple reduction from a singular 2-CNF predicate.

Consider a clause yi ∨ yj in a singular 2-CNF predicate. We define integer variables

xi and xj such that xi is 0 whenever yi is false and is −1 otherwise. Similarly, xj is

0 whenever yj is false and is 1 otherwise. It can be easily verified that yi ∨ yj holds

if and only if xi is less than xj. Similar reductions can be given for other relational

operators. �

Although the computation that we construct assumes that an event can send

or receive multiple messages, it can be easily modified to ensure that an event sends

or receives at most one message while maintaining the property that the formula is

satisfiable if and only if the predicate holds in the computation.

3.3.2 Efficient Algorithm for Special Cases

Tarafdar and Garg [TG98a] consider extension of the Lamport’s happened-before

model [Lam78] for predicate detection that allows events on a process to be partially

ordered. They call it the strong causality model. For this model, they present an

algorithm for detecting a conjunctive predicate when either all receive events on

every process are totally ordered or all send events on every process are totally

ordered. We denote this algorithm by CPDSC—Conjunctive Predicate Detection

in Strong Causality Model. Observation 3.1 enables us to view each group grpi

as a meta-process with events on it as partially ordered. Thus CPDSC algorithm

32

can be applied to solve our problem in a straightforward fashion. However, as in

their case, either all receive events on every meta-process are totally ordered, that

is, the computation is receive-ordered, or all send events on every meta-process are

totally ordered, that is, the computation is send-ordered. We only give an overview

of the algorithm here assuming that the computation is receive-ordered. The proof

of correctness and other details can be found elsewhere [TG98a].

For the happened-before model, Garg and Waldecker [GW94] give a

polynomial-time algorithm for detecting a conjunctive predicate. We denote

their algorithm by CPDHB—Conjunctive Predicate Detection in Happened-Before

Model. Note that, given a set of true events, one from each process, either events

in the set are pairwise consistent or there exist events e and f in the set such that

succ(e) happened-before f . Since events on a process are totally ordered in the

happened-before model, e is also inconsistent with every event on the process that

occurs after f . This allows us to eliminate e from consideration in a scan of the

computation from left to right, thereby giving an efficient algorithm for detecting a

conjunctive predicate.

Since events on a meta-process are, in general, not totally ordered, CPDHB

algorithm cannot be applied directly. However, if the computation is receive-ordered

then it satisfies Property 3.1 that enables a polynomial-time algorithm to be devised.

Consider a computation 〈E,→〉. We first extend the partial order → as follows: for

two independent events e and f on a meta-process such that f is a receive event,

add an arrow from e to f . It can be proved that the added arrows do not create any

cycle [TG98a]. We then linearize the new partial order thus generated to obtain a

total order on all events, say . It can be verified that the computation satisfies

the following property:

33

Property 3.1 Given events e, f and g such that events f and g are on the same

meta-process but events e and f are on different meta-processes, we have,

(e → f) ∧ (f g) ⇒ e → g

Thus, given events e and f on different meta-processes such that succ(e) → f ,

by virtue of Property 3.1, e is also inconsistent (with respect to →) with every

event g that occurs after f (with respect to) on the same meta-process (as

f). Since events on a meta-process are totally ordered with respect to , we can

eliminate e from consideration in a scan of 〈E, 〉 from left to right. This gives us

an efficient algorithm to detect a singular k-CNF predicate when the computation

is receive-ordered. The time complexity of the above algorithm is O(|E|2).

3.3.3 Algorithms for the General Case

For the general case, when the computation is neither receive-ordered nor

send-ordered, we can form subsets of processes with each subset containing exactly

one process from each meta-process. The CPDHB algorithm can then be applied to

each subset [SS95]. Alternatively, we can divide events on each meta-process into

a set of chains of events that cover all true events in that meta-process—each true

event belongs to at least one chain. We then construct subsets of chains with each

subset containing exactly one chain from each meta-process. The CPDHB algorithm

can then be applied to each subset. The minimum number of chains needed to cover

all true events in a meta-process is upper-bounded by k.

3.4 Relational Predicates: x1 + x2 + · · · + xn = k

A relational predicate [TG97] is of the form x1 + x2 + · · · + xn relop k, where each

xi is an integer variable on process pi and relop ∈ {=, <,>,6,>}. Note that

34

our definition of relational predicates includes equality which was excluded in the

definition by Tomlinson and Garg [TG97]. For convenience, we abbreviate the

predicate possibly : (x1 + x2 + · · · + xn relop k) by possibly : (relop k). For example,

possibly : (= k) is a shorthand for possibly : (x1 + x2 + · · · + xn = k). Likewise, we

obtain definitely : (relop k).

We first establish the NP-completeness of evaluating possibly : (= k) in

general. We next present a polynomial-time algorithm for the special case when

each xi is incremented or decremented by at most one at each step.

3.4.1 NP-Completeness Result

The problem is in NP because the general problem of detecting an arbitrary boolean

expression is in NP [CG98]. To prove its NP-hardness, we reduce an arbitrary

instance of the subset sum problem [GJ91, problem SP13] to an instance of detecting

possibly : (= k). The subset sum problem is defined as follows:

Definition 3.2 (subset sum problem [GJ91]) Given a finite set A, size s(ai) ∈
Z+ for each ai ∈ A and a positive integer B, does there exist a subset A′ ⊆ A such

that the sum of the sizes of the elements in A′ is exactly B?

The reduction is as follows. There is a process pi that hosts variable xi for

each element ai in the set A. The initial value of each xi is set to zero. Each process

has exactly one event ei; the final value of xi, after executing ei, is s(ai). Finally,

k is set to B. It is easy to see that the reduction takes polynomial-time and the

required subset exists if and only if possibly : (= k) holds.

Theorem 3.4 Detecting possibly :(= k) when each xi can be modified (incremented

or decremented) by an arbitrary amount at each step is NP-complete in general.

35

3.4.2 Efficient Algorithm for the Special Case

It is possible to devise an efficient algorithm for detecting possibly : (= k) in a

computation provided that each xi is incremented or decremented by at most one

at each step. The algorithm is based on monitoring predicates possibly : (6 k)

and possibly : (> k). Efficient algorithms to observe these predicates can be found

elsewhere [CG95, TG97].

A consistent cut C ′ is reachable from a consistent cut C if it is possible to

attain C ′ from C by executing zero or more events. It can be verified that C ′ is

reachable from C if and only if C ⊆ C ′. If C ′ can be obtained from C by executing

exactly one event then C ′ immediately succeeds C. Furthermore, C immediately

precedes C ′.

A sequence of consistent cuts {Ci}i>0 forms a path in a computation if each

Ci+1 immediately succeeds Ci. Observe that if C ′ is reachable from C then there is

a path from C to C ′ and vice versa. Moreover, every run corresponds to a path in

the computation.

Observation 3.2 Let C and C ′ be consistent cuts such that C ′ is obtained from C

by executing at most one event. Then |sum(C ′) − sum(C)| 6 1.

Given a consistent cut C, let sum(C) denote the value of the sum

x1 + x2 + · · · + xn evaluated at C. Given a pair of integers u and v, let range(u, v)

denote the set [min{u, v} . . . max{u, v}]. For example, range(3, 8) = [3 . . . 8] =

{3, 4, 5, 6, 7, 8} and range(6, 2) = [2 . . . 6] = {2, 3, 4, 5, 6}.

Theorem 3.5 Let C and C ′ be consistent cuts such that there is a path s from C

to C ′ in the computation. Then, for each v,

v ∈ range(sum(C), sum(C ′)) ⇒ 〈∃ D : D ∈ s : sum(D) = v〉

36

Proof: Without loss of generality, assume that sum(C) 6 sum(C ′). The proof

for the other case, when sum(C) > sum(C ′), is similar and has been omitted.

Assume that v ∈ range(sum(C), sum(C ′)), that is, sum(C) 6 v 6 sum(C ′). If

v = sum(C ′) then C ′ is the required consistent cut. Thus assume that v < sum(C ′).

Starting from C we follow the path s by executing, one-by-one, zero or more events

in C ′ \ C until we reach a consistent cut H such that sum(H) > v for the first

time. We claim that sum(H) = v. Assume, by the way of contradiction, that

sum(H) 6= v, that is, sum(H) > v. Note that H exists since sum(C ′) > v. Let

G be the consistent cut that immediately precedes H along the path. Note that G

exists since sum(C) 6 v. Moreover, sum(G) < v because H is the first consistent

cut with sum at least v. Thus (1) sum(H) > v implying that sum(H) > v + 1,

and (2) sum(G) < v implying that sum(G) 6 v − 1. Combining the two, we have

sum(H) − sum(G) > 2, a contradiction. Therefore sum(H) = v and H is the

required consistent cut. �

The central idea behind the algorithm for detecting possibly : (= k) is to find

a pair of consistent cuts C and C ′, if they exist, such that C ′ is reachable from C

and k lies in range(sum(C), sum(C ′)). Theorem 3.5 then guarantees the existence

of a consistent cut that satisfies x1 + x2 + · · · + xn = k. The consistent cut C is

always set to the initial consistent cut ⊥. The advantage is that every consistent

cut of the computation is reachable from the initial consistent cut. The next lemma

furnishes sufficient conditions for possibly : (= k) to hold in a computation.

Lemma 3.6 We have,

(sum(⊥) 6 k) ∧ (possibly : (> k)) ⇒ possibly : (= k), and

(sum(⊥) > k) ∧ (possibly : (6 k)) ⇒ possibly : (= k)

Proof: Assume that the conjunction (sum(⊥) 6 k)∧ (possibly :(> k)) holds. Since

possibly :(> k) is true, there exists a consistent cut with C ′ with sum(C ′) > k. Thus,

37

from Theorem 3.5, there exists a consistent cut D such that sum(D) = k implying

that possibly : (= k) holds. Likewise, (sum(⊥) > k) ∧ (possibly : (6 k)) implies

possibly : (= k). �

The following lemma presents sufficient conditions for definitely : (= k) to

hold in a computation. The proof is similar to the proof of Lemma 3.6 and has been

omitted.

Lemma 3.7 We have,

(sum(⊥) 6 k) ∧ (definitely : (> k)) ⇒ definitely : (= k), and

(sum(⊥) > k) ∧ (definitely : (6 k)) ⇒ definitely : (= k)

Finally, the following theorem gives the necessary and sufficient conditions

for predicates possibly : (= k) and definitely : (= k) to hold in a computation.

Theorem 3.8 We have,

(1) possibly : (= k) ≡ (sum(⊥) 6 k) ∧ (possibly : (> k))
∨

(sum(⊥) > k) ∧ (possibly : (6 k))

(2) definitely : (= k) ≡ (sum(⊥) 6 k) ∧ (definitely : (> k))
∨

(sum(⊥) > k) ∧ (definitely : (6 k))

Proof: (1) Follows from the fact that possibly : (= k) implies possibly : (6 k) ∧
possibly : (> k), the disjunction (sum(⊥) 6 k) ∨ (sum(⊥) > k) is a tautology and

Lemma 3.6.

(2) Follows from the fact that definitely : (= k) implies definitely : (6 k) ∧
definitely : (> k), the disjunction (sum(⊥) 6 k) ∨ (sum(⊥) > k) is a tautology

and Lemma 3.7. �

Observe that the final consistent cut is reachable from every consistent cut

of a computation. Thus an alternate set of necessary and sufficient conditions for

38

possibly :(= k) and definitely :(= k) based on final consistent cut can also be derived.

The time-complexity of computing possibly : (6 k) or possibly : (> k) [TG97, CG95]

is O(|E|2 log(|E|)). Thus the time-complexity of computing possibly : (= k) is also

O(|E|2 log(|E|)).
Since possibly distributes over disjunction, the following predicates,

expressed as disjunction of predicates of the form x1 + x2 + · · · + xn exactly equals

k, can be easily detected using Theorem 3.8.

• absence of simple majority: v1 + v2 + · · · + vn = n/2, n even

• absence of two-third majority:

(v1 +v2 + · · · vn > ⌊n
3 ⌋)∧(v1 +v2 + · · · vn < ⌈2n

3 ⌉) ≡ ∨

k∈A

(v1 +v2 + · · ·+vn = k),

where A = [⌊n
3 ⌋ + 1 . . . ⌈2n

3 ⌉ − 1]

• exactly k tokens: token1 + token2 + · · · + tokenn = k

Additionally, the symmetric predicates, defined as follows, can now be

efficiently monitored.

Definition 3.3 (symmetric predicate [Koh78]) A predicate b(x1, x2, . . . , xn)

defined on n boolean variables is called symmetric if it is invariant under any

permutation of its variables.

Some examples of symmetric predicates are x ∧ y, x ∨ y, x ⊕ y and

(x ∧ y) ∨ (¬x ∧ ¬y). The necessary and sufficient condition for a predicate

b(x1, x2, . . . , xn) to be symmetric is that it may be specified by a set of numbers

{a1, a2, . . . , am}, where 0 6 ai 6 n and m 6 n + 1, such that it assumes value true

when and only when, for some i, exactly ai of the variables are true. For example,

the symmetric predicate (x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ ¬z) is logically equivalent to the

predicate (x + y + z = 1) ∨ (x + y + z = 2), where false and true are represented

39

by 0 and 1, respectively, for the purpose of evaluating x + y + z. The proof of this

result can be found elsewhere [Koh78, page 174]. Since, possibly distributes over

disjunction, possibly : b when b is a symmetric predicate can be efficiently computed

using Theorem 3.8. Some examples of symmetric predicates that arise in distributed

systems are:

• exclusive-or of local predicates:

x1 ⊕ x2 ⊕ · · · ⊕ xn ≡ ∨

k is odd
(x1 + x2 + · · · + xn = k)

• not all local predicates have the same value:

(x1 ∨ x2 ∨ · · · ∨ xn) ∧ (¬x1 ∨ ¬x2 ∨ · · · ∨ ¬xn) ≡ ∨

k∈A

(x1 + x2 + · · · + xn = k),

where A = [1 . . . (n − 1)]

40

Chapter 4

Controlling Global Predicates

In this chapter, we discuss in detail our results pertaining to controlling

global predicates in distributed computations.

4.1 Overview

We first define the problem formally in Section 4.2. Informally, a predicate is said to

be controllable in a computation if it is possible to add synchronization dependencies,

without creating a deadlock (that is, a cycle), such that every consistent cut of the

resulting computation satisfies the predicate. In case the predicate can indeed be

controlled in the computation, the set of synchronization dependencies required to

control the predicate is referred to as “controlling synchronization”. The resultant

computation is called “controlled computation”. A synchronization dependency

from an event e to an event f means that f cannot be executed until e has been

executed and can be implemented using a control message.

Tarafdar and Garg [TG98b] establish that it is in general NP-complete to

control a predicate in a computation. However, efficient polynomial-time algorithms

41

can be developed for many useful classes of predicates [TG98b, TG99].

In Section 4.3, we introduce a new class of predicates called “region

predicates”. A region predicate is a conjunction of p-region predicates, where p

is a process, with possibly different p’s. Roughly speaking, a p-region predicate

partitions the set of consistent cuts that satisfy the predicate into a set of “convex

regions”, one for each event on process p, such that the set of consistent cuts that

lie in a region forms a lattice under set containment. Intuitively, on reaching an

event on process p, once the p-region predicate is falsified (that is, becomes false

from true), it does not become true again until the computation advances beyond

the event. The class of p-region predicates is closed under conjunction and hence

the class of region predicates is closed under conjunction. Some examples of region

predicates are termination, conjunctive predicates and monotonic channel predicates

such as “at most (or at least) k messages in transit in any channel”.

We present an efficient polynomial-time algorithm to control a region

predicate in a computation. The time-complexity of our algorithm is O(n|E|2),
where n is the number of processes and E is the set of events. We also prove that

the controlling synchronization generated by our algorithm is optimal in the sense

that it not only eliminates all unsafe runs but also retains all safe runs.

In Section 4.4, we introduce the notion of an “admissible sequence” of events

with respect to a predicate. Specifically, we identify four properties that characterize

an admissible sequence. Roughly speaking, an admissible sequence imposes a total

order on “certain” events in the computation such that executing those events in

that order ensures that the predicate is never falsified. We show that the existence

of an admissible sequence of events with respect to a predicate is a necessary and

sufficient condition for a predicate to be controllable in a computation. Further,

given an admissible sequence, the controlling synchronization can be easily obtained

and vice versa.

42

Based on the notion of admissible sequence, we devise a polynomial-time

algorithm for controlling a “disjunctive predicate” in a computation. A disjunctive

predicate is a disjunction of local predicates. Intuitively, a disjunctive predicate

states that at least one local condition must be met at all times, or, in other words,

a bad combination of local conditions does not occur. Examples of disjunctive

predicates include “at least one server is available” and “at least one philosopher

does not have any fork”.

To control a disjunctive predicate in a computation, we construct a directed

graph on “true-intervals” (maximal contiguous sequence of true events on a process)

of the computation such that the problem of determining an admissible sequence

reduces to finding an appropriate shortest path in the graph. The time-complexity

of the algorithm is O(n|T |), where n is the number of processes and T is the set of

true-intervals, which is same as that of Tarafdar and Garg’s algorithm [TG98b]. We

further modify the algorithm to compute a minimum controlling synchronization—

with the least number of synchronization dependencies—for a disjunctive predicate.

Clearly, a minimum controlling synchronization minimizes the number of control

messages required to maintain a disjunctive predicate in a computation. The time-

complexity of the modified algorithm is O(|E|2), where E is the set of events.

4.2 Problem Statement

The predicate control problem refers to monitoring a predicate under controllable

modality [TG98b]. Intuitively, a predicate is controllable in a computation if it

is possible to make the computation “stricter” such that every consistent cut of

the resulting computation satisfies the predicate. More precisely, a predicate b

is controllable in a computation 〈E,→〉 if there exists a set of synchronization

dependencies
S→ such that (1)

S→ does not interfere with →, that is, (→ ∪ S→)

is acyclic, and (2) every consistent cut of 〈E, 〉, where = (→ ∪ S→)
+
, satisfies b.

43

1 2 3 4 5

3

C .emin

f u w

x

round

round

round3

2

1

yvg

e

D C

Cmax.e

p3

p1

p2

Figure 4.1: An example of a p-region predicate.

We call the synchronization
S→ as a controlling synchronization and the computation

〈E, 〉 as the controlled computation. This definition of controllable : b is slightly

different from the definition provided in Chapter 2. It can be verified that both

definitions are actually equivalent.

Note that a synchronization dependency from an event e to an event f means

that f cannot be executed until e has been executed and can be implemented using

a control message.

4.3 Region Predicates

We first define a region predicate with respect to a process, called p-region predicate.

Informally, a p-region predicate partitions the set of consistent cuts satisfying the

predicate into a set of regions, one for each event on process p, satisfying certain

properties. Firstly, the set of consistent cuts that lie in a region (that is, all events

in the frontier of the cut belong to the region) forms a lattice. Secondly, each region

is convex or, equivalently, a consistent cut that lies between two consistent cuts

contained in the region also belongs to the region.

44

Example 4.1 Consider the computation shown in Figure 4.1 and the predicate

“processes p1 and p2 are approximately synchronized” expressed mathematically as

|round1 − round2| 6 ∆12 with ∆12 set to 1. Consider the event e on p2 depicted in

the figure. Immediately after executing e, the value of round2 is 3. Since round1

is monotonically non-decreasing, there exist earliest and latest events on p1, in this

case f and u, respectively, such that the predicate holds. Furthermore, the predicate

holds for every event on p1 that lies between f and u. The region corresponding

to e (the shaded area resembling the cross-section of an hourglass in the figure) is

bounded on the left by the least consistent cut passing through e and f and on the

right by the greatest consistent cut passing through e and u. The consistent cut C

lies in the region whereas the consistent cut D does not. It can be verified that the

region is actually convex and the set of consistent cuts that belong to the region forms

a lattice.

A p-region predicate is formally defined as follows:

Definition 4.1 (p-region predicate) A predicate b is a p-region predicate if it

satisfies the following properties. For each event e on process p,

• (weak lattice) If two consistent cuts that pass through e satisfy the predicate

then so do the consistent cuts given by their set intersection and set union.

Formally,

(e ∈ frontier(C1) ∩ frontier(C2)) ∧ (C1 |= b) ∧ (C2 |= b)

⇒
(C1 ∩ C2 |= b) ∧ (C1 ∪ C2 |= b)

• (weak convexity) If two consistent cuts that pass through e satisfy the

predicate then so does the consistent cut that lies between the two. Formally,

(e ∈ frontier(C1) ∩ frontier(C2)) ∧ (C1 |= b) ∧ (C2 |= b) ∧
(C1 ⊆ C ⊆ C2)

⇒
C |= b

45

We call the two properties “weak” because they are only satisfied by those

consistent cuts that satisfy the predicate and pass through a given event, and not by

all consistent cuts that satisfy the predicate. Some examples of pi-region predicates

encountered in distributed systems are as follows:

• any local predicate on pi

• “bounded” number of messages in transit from pi to pj : sendij − recvij 6 ∆ij

• “almost” fair resource allocation between pi and pj , when the system is heavily

loaded: |alloci − allocj | 6 ∆ij

• “bounded” drift between the clocks of pi and pj: |clocki − clockj | 6 ∆ij

• pi and pj are “approximately” synchronized: |roundi − roundj| 6 ∆ij

• xi < min{yj, yk}, where xi, yj and zk are variables on pi, pj and pk,

respectively, with yj and yk monotonically non-decreasing

Given two p-region predicates, their conjunction is also a p-region predicate

as established by the next theorem.

Theorem 4.1 The class of p-region predicates is closed under conjunction.

Proof: We have to prove that if b1 and b2 are p-region predicates then so is b1 ∧ b2.

We first prove that b1 ∧ b2 satisfies the weak lattice property. Consider consistent

cuts C1 and C2 passing through an event e on process p that satisfy b1 ∧ b2. By

semantics of conjunction, both C1 and C2 satisfy b1 as well as b2. Applying the weak

lattice property twice, we obtain C1 ∩ C2 satisfies b1 and b2. Again, by semantics

of conjunction, C1 ∩ C2 satisfies b1 ∧ b2. Likewise, C1 ∪ C2 satisfies b1 ∧ b2. Thus

b1 ∧ b2 satisfies the weak lattice property.

46

We now prove that b1 ∧ b2 satisfies the weak convexity property. Consider

consistent cuts C1 and C2 passing through e that satisfy b1 ∧ b2 and let C be any

consistent cut that lies between the two. By semantics of conjunction, both C1 and

C2 satisfy b1 as well as b2. Applying the weak convexity property twice, we obtain

C satisfies b1 and b2. This implies that C satisfies b1∧ b2. Therefore b1 ∧ b2 satisfies

the weak convexity property. �

A region predicate is a conjunction of p-region predicates with possibly

different p’s. It can be verified that the predicate representing termination is actu-

ally a region predicate. Note that, for each p, true is a p-region predicate. Thus a

region predicate b can be written as conjunction of n predicates such that the ith

conjunct, denoted by b(i), is a pi-region predicate.

Given an event e on process pi, we denote the least consistent cut passing

through e that satisfies b(i) by Cmin.e. Similarly, we denote the greatest consistent

cut passing through e that satisfies b(i) by Cmax.e. If there does not exist a consistent

cut that passes through e and satisfies b(i) then neither Cmin.e nor Cmax.e exists.

Additionally, trivially, b(i) (and hence b) cannot be controlled in the computation.

However, if there exists at least one consistent cut passing through e that satisfies

b(i) then both Cmin.e and Cmax.e exist and are well-defined. This is because, from

the weak lattice property, the set of such consistent cuts forms a lattice under set

containment (⊆) implying that the set has a minimum (corresponds to Cmin.e) and

a maximum (corresponds to Cmax.e).

4.3.1 Finding a Controlling Synchronization

In order to find the synchronization necessary to control a region predicate in a

computation, we first compute the synchronizations sufficient to control each of its

conjunct (recall that the ith conjunct corresponds to a pi-region predicate). If it turns

out that one or more of these conjuncts is not controllable then, trivially, the region

47

predicate itself cannot be controlled. Further, in case the various synchronizations

(corresponding to different conjuncts) do not interfere with each other and, in

addition, the collective synchronization does not interfere with the happened-before

relation of the computation then, clearly, the collective synchronization constitutes

a controlling synchronization for the given region predicate. Unfortunately, the

converse does not hold in general.

Example 4.2 Suppose we wish to control the predicate (x1 ∨x2) ∧ (x3 ∨ x4) in the

computation shown in Figure 4.2(a), where each xi is a boolean variable on process

pi. It can be verified that the arrow from event h to event e constitutes a controlling

synchronization for the first conjunct x1 ∨ x2. Similarly, the arrow from event v to

event u constitutes a controlling synchronization for the second conjunct x3 ∨ x4.

However, the collective synchronization given by {(h, e), (v, u)} interferes with the

happened-before relation of the computation. In other words, it creates a cycle as

shown in Figure 4.2(b). The first conjunct has another controlling synchronization,

namely the arrow from event f to event g. In this case, the collective synchronization

given by {(f, g), (v, u)} neither interferes with itself nor with the happened-before

relation of the computation, thereby constituting a controlling synchronization for

the predicate (x1 ∨ x2) ∧ (x3 ∨ x4).

However, if the computed synchronization for each conjunct is smallest in

the sense that it is contained in every possible controlling synchronization for the

respective conjunct then the converse also holds. That is, if the region predicate

is controllable in a computation then the various synchronizations not only do not

interfere with each other but, additionally, the collective synchronization does not

interfere with the happened-before relation of the computation. Intuitively, this is

because a controlling synchronization for a region predicate also acts as a controlling

48

: true event : false event

(a) (b)

f t

tft

t f

tf

f t

tft

t f

tf

(c)

f t

tft

t f

tf

p4

x4

p1
1x

p2

x2

p3

x3

p4

x4

p1
1x

p2

x2

p3

x3

p4

x4

p1
1x

p2

x2

p3

x3

v

e f

g h

u

t

v

e f

g h

u

t

v

e f

g h

u

t

Figure 4.2: An example to illustrate that the interference of some collective
synchronization with the happened-before relation does not imply that the predicate
cannot be controlled.

49

: true event : false event

(c)

t

t f

f t

t

(b)(a)

t

t f

f t

t

t

t f

f t

t

p2

p1

x2

1x

p2

p1

x2

1x

p2

p1

x2

1x

e f

g h

e f

g h

e f

g h

Figure 4.3: An example to illustrate that the smallest controlling synchronization
may not always exist.

synchronization for each of its conjunct.

Definition 4.2 (smallest controlling synchronization) We call a controlling

synchronization smallest if it is contained in every possible controlling

synchronization for the predicate. Formally, given a controlling synchronization

S→ for a predicate b in a computation 〈E,→〉,

S→ is smallest , 〈∀ : extends → :

〈E, 〉 |= invariant : b ≡ contains
S→〉

A smallest controlling synchronization may not always exist as illustrated by

the following example.

Example 4.3 Consider the computation in Figure 4.3(a). Suppose we desire to

control the predicate x1 ∨ x2 in the computation, where each xi is a boolean variable

50

on process pi. Since the predicate x1 ∨ x2 is not invariant in the computation to

begin with, the smallest controlling synchronization, if it exists, must be non-empty.

It can be verified that the arrow from event f to event g constitutes a controlling

synchronization for the predicate x1 ∨ x2, as shown in Figure 4.3(b), as does the

arrow from event h to event e, as depicted in Figure 4.3(c). Moreover, the two

synchronizations are mutually disjoint implying that the predicate x1 ∨ x2 does not

have a smallest controlling synchronization.

As it happens, the smallest controlling synchronization in fact exists for a

p-region predicate (and therefore also exists for a region predicate). Thus in order to

find a controlling synchronization for a region predicate, from the above discussion,

it suffices to devise an algorithm to compute the smallest controlling synchronization

for a p-region predicate.

Consider a computation 〈E,→〉 and a region predicate b. What does it entail

to control the pi-region predicate b(i), 1 6 i 6 n, in 〈E,→〉? Consider an event e on

process pi. As we know, the computation progresses from the initial consistent cut

⊥ to the final consistent cut E by executing, one-by-one, the events in E. For b(i) to

hold when it first reaches e, it must be the case that no event in the frontier of the

computation lies on the left of the frontier of Cmin.e. That is, when e is executed, all

other events in the frontier of Cmin.e must have already been executed. This entails

adding synchronization dependencies from each event in the frontier of Cmin.e that

is different from e to e. We denote this synchronization by
e(1)

→ and formally define

it as follows:

e(1)

→ , { (f, e) | f ∈ frontier(Cmin.e) \ {e} and e 6∈ ⊥ }

For an example refer to Figure 4.4. Furthermore, for b(i) to hold as long

as the computation stays at e (equivalently, until the successor of e, if it exists, is

executed), the frontier of the computation cannot advance beyond Cmax.e. That

51

1 2 3 4 5

C .emin

f u w

x

round

round

round3

2

1

yvg

e
3

Cmax.e

p3

p1

p2

Figure 4.4: An illustration of the synchronization
e(1)

→ (denoted by dotted arrows).

is, the successor of any event in the frontier of Cmax.e that is different from e, if it

exists, cannot be executed until the computation advances beyond e. This involves

adding synchronization dependencies from the successor of e, if it exists, to the

successor of every other event in the frontier of Cmax.e, if it exists. We denote this

synchronization by
e(2)

→ and formally define it as follows:

e(2)

→ , { (succ(e), succ(f)) | f ∈ frontier(Cmax.e) \ {e} and {e, f} ∩ ⊤ = ∅ }

For an illustration see Figure 4.5. The overall synchronization needed for

controlling b(i) in 〈E,→〉 is given by the union of (
e(1)

→ ∪ e(2)

→), where e ranges over

the events on process pi. Finally, the synchronization required to control b in 〈E,→〉,
denoted by

S→, is given by:

S→ ,
⋃

e∈E

(
e(1)

→ ∪ e(2)

→) (4.1)

For convenience, we use
C→ to denote the transitive closure of the relation

obtained by adding
S→ to →. Formally,

C→ , (→ ∪ S→)
+

The next lemma describes the sufficient condition under which a region

predicate is controllable in a computation. Informally, this happens when each

52

1

round2

round1

round3

2 3 4 5

C .emin

f u w

x

3

yvg

e

Cmax.e

p3

p1

p2

Figure 4.5: An illustration of the synchronization
e(2)

→ (denoted by dotted arrows).

of its conjunct is controllable and the collective synchronization neither interferes

with itself nor with the happened-before relation of the computation—which can be

succinctly represented as: (→ ∪ S→) is acyclic.

Lemma 4.2 (sufficient condition) If (1) the initial and final consistent cuts of

a computation 〈E,→〉 satisfy a region predicate b, and (2)
C→ is an irreflexive partial

order then b is invariant in 〈E,
C→〉.

Proof: Consider a consistent cut C of 〈E,
C→〉 and an event e contained in its

frontier. We show that C lies between Cmin.e and Cmax.e. We first prove that

Cmin.e ⊆ C. If e ∈ ⊥ then Cmin.e = ⊥ because, trivially, ⊥ is the least consistent

cut of 〈E,→〉 that passes through e and ⊥ |= b. Furthermore, by definition of

consistent cut, C ⊇ ⊥. Thus Cmin.e ⊆ C. The more interesting case is when

e 6∈ ⊥. We want to prove that,

Cmin.e ⊆ C

≡ { definition of consistent cut and its frontier }
〈∀ f : f ∈ frontier(Cmin.e) : f ∈ C〉

≡ { by definition, Cmin.e passes through e }

53

(e ∈ C) ∧ 〈∀ f : f ∈ frontier(Cmin.e) \ {e} : f ∈ C〉
⇐ { C is a consistent cut of 〈E,

C→〉 }
(e ∈ C) ∧ 〈∀ f : f ∈ frontier(Cmin.e) \ {e} : f

C→ e〉
⇐ { C passes through e }

〈∀ f : f ∈ frontier(Cmin.e) \ {e} : (f
C→ e)〉

⇐ { S→⊆ C→ }
〈∀ f : f ∈ frontier(Cmin.e) \ {e} : (f

S→ e)〉
⇐ { e(1)

→ ⊆ S→ }
〈∀ f : f ∈ frontier(Cmin.e) \ {e} : (f

e(1)

→ e)〉
{ e 6∈ ⊥ and definition of

e(1)

→ }

Likewise, C ⊆ Cmax.e. Let proc(e) = pi. By definition, both Cmin.e and

Cmax.e satisfy b(i). Thus, from the weak convexity property, C satisfies b(i). Since

e was chosen arbitrarily, for each i, we can infer that C satisfies b(i). This implies

that C satisfies b. �

The next lemma proves that the synchronization given by
S→ is indeed the

smallest controlling synchronization for b in 〈E,→〉. In other words, any other

controlling synchronization for b in 〈E,→〉, if it exists, must contain
S→.

Theorem 4.3 If a region predicate b is controllable in a computation 〈E,→〉 then

the synchronization
S→ defined in (4.1) is the smallest controlling synchronization.

Proof: Since b is controllable in 〈E,→〉, there exists an irreflexive partial order

that extends → such that b is invariant in 〈E, 〉. We need to prove that
S→ is

contained in . It is sufficient to prove that, for each event e, both
e(1)

→ and
e(2)

→ are

contained in .

We first show that, for each event e, includes
e(1)

→ . Consider an event e,

e 6∈ ⊥, on process pi. Note that if e ∈ ⊥ then
e(1)

→ is an empty set. In the proof

54

we use the notion of the least consistent cut of 〈E, 〉 that contains e, denoted by

Cleast.e. By definition, Cleast.e passes through e and an event other than e belongs

to Cleast.e if and only if it happened-before e in 〈E, 〉. Formally,

(e ∈ frontier(Cleast.e)) ∧ 〈∀ f : f 6= e : f ∈ Cleast.e ≡ f e〉 (4.2)

We want to prove that,

e(1)

→ ⊆
≡ { definition of

e(1)

→ }
〈∀ f : f ∈ frontier(Cmin.e) \ {e} : f e〉

≡ { using (4.2) }
〈∀ f : f ∈ frontier(Cmin.e) \ {e} : f ∈ Cleast.e〉

⇐ { definition of consistent cut and its frontier }
Cmin.e ⊆ Cleast.e

⇐







Cleast.e is a consistent cut of 〈E,→〉 that passes through e and

satisfies b(i) and Cmin.e is the least such cut







(Cleast.e is a consistent cut of 〈E,→〉) ∧ (e ∈ frontier(Cleast.e)) ∧
(Cleast.e |= b(i))

⇐ { Cleast.e is a consistent cut of 〈E, 〉 and →⊆ }
(e ∈ frontier(Cleast.e)) ∧ (Cleast.e |= b(i))

⇐ { using (4.2) }
Cleast.e |= b(i)

⇐ { b(i) is a conjunct of b }
Cleast.e |= b

{ since b is invariant in 〈E, 〉, Cleast.e satisfies b }

Similarly, it can be proved that, for each event e, includes
e(2)

→. �

The necessary condition for a region predicate to be controllable in a

computation can now be easily derived.

55

Lemma 4.4 (necessary condition) If a region predicate b is controllable in a

computation 〈E,→〉 then (1) the initial and final consistent cuts of 〈E,→〉 satisfy

b, and (2)
C→ is an irreflexive partial order.

Proof: Since b is controllable in 〈E,→〉, there exists an irreflexive partial order

that extends → such that b is invariant in 〈E, 〉. Since ⊥ and E are also the

consistent cuts of 〈E, 〉, they satisfy b. Furthermore, from Theorem 4.3,
S→ is the

smallest controlling synchronization implying that contains
S→. Thus contains

(→ ∪ S→). Since is an irreflexive partial order, (→ ∪ S→)
+

(=
C→) is also an

irreflexive partial order. �

Finally, the next theorem combines the previous two lemmas and furnishes

the necessary and sufficient condition for a region predicate to be controllable in a

computation.

Theorem 4.5 (necessary and sufficient condition) A region predicate b is

controllable in a computation 〈E,→〉 if and only if (1) the initial and final consistent

cuts of 〈E,→〉 satisfy b, and (2)
C→ is an irreflexive partial order.

It turns out that the controlling synchronization
S→ defined in (4.1) is minimal

in another sense. It not only eliminates all unsafe runs of the computation but also

does not suppress any safe run. We call such a synchronization optimal.

Definition 4.3 (optimal controlling synchronization) We call a controlling

synchronization optimal if it does not suppress any safe run of the computation.

Formally, given a controlling synchronization
S→ for a predicate b in a computation

〈E,→〉, where
C→ = (→ ∪ S→)

+
,

S→ is optimal , 〈∀ : is a total order on E that extends →:

〈E, 〉 |= invariant : b ≡ extends
C→〉

56

In fact, the two aforementioned notions of minimality, namely the smallest

and the optimal controlling synchronization, turn out to be identical. We establish

their equivalence in the next theorem.

Theorem 4.6 (smallest versus optimal) A smallest controlling synchronization

is also optimal and vice versa.

Proof: Consider a controlling synchronization
S→ for a predicate b in a

computation 〈E,→〉 and let
C→ be (→ ∪ S→)

+
.

(optimal ⇒ smallest) Assume that
S→ is the optimal controlling synchronization.

Consider an irreflexive partial order that extends → such that b is invariant in

〈E, 〉. Our obligation is to establish that contains
S→. Let 7→ be a total order

on E that extends . Since extends →, 7→ also extends → implying that 〈E, 7→〉
is a run of 〈E,→〉. Moreover, 〈E, 7→〉 is a safe run of 〈E,→〉 because b is invariant

in 〈E, 〉 and therefore also invariant in 〈E, 7→〉. Since
S→ is the optimal controlling

synchronization, by definition, 7→ extends
C→ or, in other words, 7→ includes

S→. Since

7→ was chosen arbitrarily, we can infer that every total order on E that extends

contains
S→ implying that also contains

S→.

(smallest ⇒ optimal) Assume that
S→ is the smallest controlling synchronization.

Consider a safe run 〈E, 〉 of 〈E,→〉. Our obligation is to establish that 〈E, 〉
is also a run of 〈E,

C→〉, that is, contains
C→. Note that b is invariant in 〈E, 〉.

Since
S→ is the smallest controlling synchronization, by definition, contains

S→.

This implies that extends
C→ or 〈E, 〉 is a run of 〈E,

C→〉. �

From Theorem 4.3 and Theorem 4.6, we obtain,

57

Theorem 4.7 If a region predicate b is controllable in a computation 〈E,→〉 then

the synchronization
S→ defined in (4.1) is the optimal controlling synchronization.

Theorem 4.7 implies that the controlling synchronization
S→ defined in (4.1)

is not too restrictive and, in fact, admits the maximum possible concurrency in the

controlled computation.

From the earlier discussion, it follows that a controlling synchronization for a

region predicate can be easily computed provided, for each event e, we can efficiently

compute Cmin.e and Cmax.e, if they exist. To that end, given a p-region predicate b

and an event e on process p, we define a predicate be to be true for a consistent cut

if it passes through e and satisfies b. Formally,

C |= be , (e ∈ frontier(C)) ∧ (C |= b)

It can be verified easily, using the weak lattice property, that if two consistent

cuts satisfy be then so does the consistent cut given by their set intersection. Chase

and Garg [CG98] call such predicates linear. Likewise, if two consistent cuts satisfy

be then the consistent cut given by their set union also satisfies be. Such predicates

are called post-linear [CG98].

Observation 4.1 The predicate be is linear and post-linear.

The consistent cuts Cmin.e and Cmax.e can be reinterpreted as the least and

greatest consistent cut, respectively, that satisfy be. Chase and Garg [CG98] also

provide algorithms to find the least consistent cut that satisfies a linear predicate

and the greatest consistent cut that satisfies a post-linear predicate. Here, we focus

on the former and give the basic idea behind the algorithm. The correctness proof

and other details can be found elsewhere [CG98]. The algorithm is based on the

linearity property which is defined as follows:

58

Algorithm Algo 4.1 :

Input: (1) a computation 〈E,→〉, (2) a p-region predicate b, and

(3) an event e on process p

Output: Cmin.e, if it exists

1 C := least consistent cut of 〈E,→〉 that passes through e;

2 done := false;

3 while not(done) do

4 if there exists an event f in frontier(C)

such that succ(e) → f then

5 exit(“Cmin.e does not exist”);

endif;

6 if there exist events f and g, f 6= e, in frontier(C)

such that succ(f) → g then // C is not a consistent cut

7 C := C ∪ succ(f); // advance beyond f

else // C is a consistent cut

8 if C |= b then done := true;

else

9 f := forbidden be
(C); // invoke the linearity property

10 if f = e or f ∈ ⊤ then // cannot advance beyond f

11 exit(“Cmin.e does not exist”);

12 else C := C ∪ succ(f); // advance beyond f

endif;

endif;

endif;

endwhile;

13 Cmin.e := C;

Figure 4.6: The algorithm Algo 4.1 to compute Cmin.e for an event e.

59

Algorithm Algo 4.2 :

Input: a computation 〈E,→〉 and a region predicate b

Output: synchronization necessary to control b in 〈E,→〉, if possible

1 if either ⊥ or E does not satisfy b then

2 exit(“b cannot be controlled in 〈E,→〉”);

endif;

3 for each event e do

4 compute Cmin.e and Cmax.e;

5 if either Cmin.e or Cmax.e does not exist then

6 exit(“b cannot be controlled in 〈E,→〉”);

endfor;

endfor;

7 compute the synchronization
S→ defined in (4.1);

8 if (→ ∪ S→) is acyclic then

9 exit(
S→);

else

10 exit(“b cannot be controlled in 〈E,→〉”);

endif;

Figure 4.7: The algorithm Algo 4.2 to compute the synchronization necessary to
control a region predicate in a computation.

Definition 4.4 (linearity property [CG98]) A predicate satisfies the linearity

property if, given a consistent cut that does not satisfy the predicate, there exists

an event in its frontier, called the forbidden event, such that there does not exist

a consistent cut containing the given consistent cut that satisfies the predicate and

also passes through the forbidden event. Formally, given a computation 〈E,→〉, a

linear predicate b and a consistent cut C,

C 6|= b ⇒ 〈∃ f : f ∈ frontier(C) : 〈∀ D : D ⊇ C : D |= b ⇒ succ(f) ∈ D〉〉

60

It is assumed that, given a linear predicate b, there is an efficient partial

function forbidden b : C(〈E,→〉) −→ E that can be used to compute the event f

mentioned in the definition of the linearity property. It is hard to provide a general

algorithm to compute the function that works for any linear predicate. Nevertheless,

for the linear predicates encountered in practice, an efficient algorithm can indeed be

given. For example, for a conjunctive predicate—a conjunction of local predicates—

the forbidden event corresponds to that event in the cut’s frontier for which the

local predicate evaluates to false. Throughout this dissertation, we assume that a

linear predicate also satisfies the advancing property which guarantees the existence

of an efficient function to compute the forbidden event.

Figure 4.6 describes the algorithm Algo 4.1 to compute Cmin.e using the

linearity property. Informally, starting from the least consistent cut that passes

through e—which basically corresponds to the Fidge/Mattern’s vector timestamp

for e [Mat89, Fid91], the algorithm scans the computation from left to right adding

events to the cut constructed so far one-by-one, using the linearity property, until

the desired consistent cut is reached.

The time-complexity analysis of the algorithm Algo 4.1 is as follows. Each

iteration of the while loop at line 3 has O(n) time complexity assuming that the time-

complexity of invoking forbidden be
at line 9 once is O(n). Thus the time-complexity

of the algorithm Algo4.1 for computing Cmin.e is O(n|E|). The algorithm to compute

Cmax.e, based on the post-linearity property [CG98], is similar and has been omitted.

Figure 4.7 depicts the algorithm Algo4.2 that computes a synchronization for

controlling a region predicate in a computation. The correctness of the algorithm

follows from Theorem 4.5. Its time-complexity analysis is as follows. The time-

complexity of executing the if statement at line 1 is O(n). Each iteration of the

for loop at line 3 has O(n|E|) time-complexity giving the for loop an overall time-

complexity of O(n|E|2). The synchronization at line 7 can be computed in O(n|E|)

61

time. Finally, the if statement at line 8 can be executed in O(|E|2) time. Thus the

overall time-complexity of the algorithm Algo 4.2 is O(n|E|2).

4.4 Disjunctive Predicates

A predicate is said to be disjunctive if it can be expressed as disjunction of local

predicates. Some examples of disjunctive predicates are:

• at least one server is available: avail1 ∨ avail2 ∨ · · · ∨ availn

• at least one philosopher has no fork: ¬fork1 ∨ ¬fork2 ∨ · · · ∨ ¬forkn

Intuitively, a disjunctive predicate states that at least one local condition

must be met at all times, or, in other words, a bad combination of local conditions

does not occur. Our algorithm for computing a controlling synchronization for a

disjunctive predicate utilizes the notion of admissible sequence defined next.

4.4.1 Admissible Sequences

In this section, we establish that the notion of controllability is actually identical

to the notion of admissible sequence whose motivation in turn lies in the control

algorithm for a disjunctive predicate. We make the following observation:

Observation 4.2 A consistent cut satisfies a disjunctive predicate if and only if it

contains at least one true event in its frontier.

Suppose we wish to control a disjunctive predicate in a computation. As the

computation proceeds from the initial consistent cut to the final consistent cut, from

the above observation it follows that it is both necessary and sufficient to ensure that

throughout there exists at least one true event in the frontier of the computation.

Thus at least one initial event must be a true event. To start with, one such initial

62

: true event : false event

C1

C4

C2

C3

(b)

(d) (c)

(a)

fftf

t f f t

e

f

g

fftf

t f f t

e

f

g

fftf

t f f t

e

f

g

fftf

t f f t

e

f

g

p2

p1

x2

1x

p2

p1

x2

1x

p2

p1

x2

1x

p2

p1

x2

1x

Figure 4.8: A strategy for controlling a disjunctive predicate.

event bears the responsibility for ensuring that the predicate stays true—by acting

as an anchor—until the burden can be passed on to some other true event. This

transference of burden continues until the computation reaches the final consistent

cut.

Example 4.4 We want to control the disjunctive predicate x1 ∨ x2 in the

computation depicted in Figure 4.8. The initial event e is a true event. Hence,

using e as an anchor, the computation advances from the initial consistent cut C1,

shown in Figure 4.8(a), to the consistent cut C2, portrayed in Figure 4.8(b). Next,

using the true event f as an anchor, it advances to the consistent cut C3 as shown

in Figure 4.8(c). Finally, using the true event g as an anchor—which is also a

final event, it reaches the final consistent cut C4 as depicted in Figure 4.8(d). Since

throughout the frontier of the computation passes through at least one true event,

the predicate is never falsified.

63

: true event : false event

f ft

f f f

tft

f

t

e

f

g

h

C
1x

p3

p1

p2

x

x

3

2

Figure 4.9: An example to illustrate the difficulty in choosing the next anchor event.

A natural question to ask is: “If there are more than one possible candidates

for the next anchor event, which one should we choose?”. The answer is non-trivial

as illustrated by the following example.

Example 4.5 Consider the computation shown in Figure 4.9. It has four true

events, namely e, f , g and h. After using e as an anchor, the computation has two

possible choices of events for the next anchor. They are the events f and g. The

event h is unavailable because the computation has to advance beyond e before it

can execute h. Clearly, f is a bad choice for anchor because once the computation

reaches the consistent cut C, using f as an anchor, neither g nor h can be used as

the next anchor without falsifying the predicate.

The notion of admissible sequence attempts to answer the above question in a

more general setting. In the next section, we formalize the aforementioned algorithm

for controlling a disjunctive predicate using the notion of admissible sequence. We

first define a legal cut as follows:

Definition 4.5 (legal cut) A consistent cut is legal with respect to a sequence of

events if it contains an event from the sequence only if it contains all its preceding

64

events from the sequence too. Formally, given a consistent cut C and an event si

from a sequence of events s,

si ∈ C ⇒ 〈∀ j : j 6 i : sj ∈ C〉

Roughly speaking, the notion of legal cut helps to capture those runs of a

computation that respect the order of the events in a sequence. More precisely,

given a sequence of events, if every consistent cut of a run is legal then the run

and the sequence do not disagree on relative order of any pair of events and vice

versa. We next define the notion of admissible sequence. Informally, every event

in an admissible sequence acts as an anchor in the order given by the sequence.

To be able to do so, the sequence must respect the happened-before order between

events. This constraint is captured by the agreement property. The continuity

property ensures that the transfer of burden from one event in the sequence to the

next occurs “smoothly” in a single step. In other words, the computation does not

advance beyond the current anchor event until it reaches the next anchor event.

The weak safety property ascertains that, on reaching an anchor event, at least as

long as the computation does not advance beyond the event the predicate is not

falsified. Finally, the boundary condition captures the fact that the initial and final

consistent cuts satisfy the predicate. Formally,

Definition 4.6 (admissible sequence) A sequence of events s = s1s2 · · · sl−1sl

is admissible with respect to a predicate b and a computation 〈E,→〉 if it satisfies

the following properties:

• (boundary condition) The sequence starts with an initial event ends with a

final event of the computation. Formally,

(s1 ∈ ⊥) ∧ (sl ∈ ⊤)

• (agreement) The sequence respects the partial order (that is, happened-before

relation) of the computation. Formally,

65

e f

g h

u v w

C D

p3

p1

p2

Figure 4.10: An example to illustrate the notion of legal cut and admissible sequence.

〈∀ i, j : i < j : sj 6→ si〉

• (continuity) The successor of each event in the sequence, if it exists, did not

happen-before the next event in the sequence. Formally,

〈∀ i : si 6∈ ⊤ : succ(si) 6→ si+1〉

• (weak safety) Any consistent cut of the computation that is legal with respect

to the sequence and contains at least one event from the sequence in its frontier

satisfies the predicate. Formally,

〈∀ C : C is legal with respect to s : (s ∩ frontier(C)) 6= ∅ ⇒ C |= b〉

Example 4.6 Consider the computation depicted in Figure 4.10. The consistent

cut C is not legal with respect to the sequence of events efuvh because it contains u

but does not contain f which occurs before u in the sequence. On the other hand, the

consistent cut D is legal with respect to the same sequence. The sequence fuvh does

not satisfy the boundary condition because the first event in the sequence, in this

case f , is not an initial event. The sequence egfh does not satisfy the agreement

property because although f happened-before g in the computation, it occurs after g

in the sequence. Finally, the sequence egh does not satisfy the continuity property

as the successor of e, namely f , happened-before g, the next event in the sequence

after e.

66

The following theorem proves that existence of an admissible sequence is

necessary for a predicate to be controllable in a computation. Specifically, we prove

that any safe run of a computation constitutes an admissible sequence.

Theorem 4.8 (necessary condition) If a predicate b can be controlled in a

computation 〈E,→〉 then there exists an admissible sequence with respect to b and

〈E,→〉.

Proof: Since b is controllable in 〈E,→〉, there exists a total order that extends

→ such that b is invariant in 〈E, 〉. Let s be the sequence of events corresponding

to 〈E, 〉. We prove that s is admissible with respect to b and 〈E,→〉. Clearly, s

satisfies the boundary condition and the agreement property. We next prove that s

satisfies the continuity property. Assume the contrary. Then,

〈∃ i :: succ(si) → si+1〉
≡ { si → succ(si) }

〈∃ i :: si → succ(si) → si+1〉
⇒ { succ(si) ∈ s because s corresponds to 〈E, 〉—a run of 〈E,→〉 }

〈∃ i, j :: si → sj → si+1〉
⇒ { s satisfies the agreement property }

〈∃ i, j :: i < j < i + 1〉
⇒ { i and j are integers }

a contradiction

Finally, we show that s satisfies the weak safety property. Consider a

consistent cut C of 〈E,→〉 that is legal with respect to s. We prove that C is

also a consistent cut of 〈E, 〉. Consider events e and f . We have,

{ assumption }
(e f) ∧ (f ∈ C)

67

≡ { let e = si and f = sj }
(si sj) ∧ (sj ∈ C)

⇒ { definition of s }
(i < j) ∧ (sj ∈ C)

⇒ { C is legal with respect to s }
si ∈ C

≡ { si = e }
e ∈ C

Thus C is a consistent cut of 〈E, 〉. Since b is invariant in 〈E, 〉, C

satisfies b. This establishes that s satisfies the weak safety property. �

Our next step is to prove that the existence of an admissible sequence is also

a sufficient condition for a predicate to be controllable in a computation. To achieve

that it suffices to give the synchronization necessary to control the predicate. Of

course the synchronization will depend on the particular sequence. Observe that not

all events in the sequence may be ordered by the happened-before relation. Thus,

to ensure that they are executed in the order they occur in the sequence, we need to

add synchronization dependencies from an event in the sequence to all other events

that occur later in the sequence. This synchronization is denoted by
S(1)

→ and is

formally defined as follows:

S(1)

→ , { (si, sj) | 1 6 i < j 6 n } (4.3)

For an example please refer to Figure 4.11. In the following lemma we show

that if the sequence is admissible, in particular if it satisfies the agreement property,

the above synchronization does not interfere with the happened-before relation of

the computation. For convenience, we define
C(1)

→ as the transitive closure of → ∪ S(1)

→ .

Formally,

C(1)

→ , (→ ∪ S(1)

→)
+

68

s
1

s
2

s
3

p3

p1

p2

Figure 4.11: An illustration of the synchronization
S(1)

→ (denoted by dotted arrows).

Lemma 4.9
C(1)

→ is an irreflexive partial order.

Proof: It suffices to prove that → ∪ S(1)

→ does not contain any cycle. Since → is an

irreflexive partial order, a cycle, if it exists, must contain at least one pair of events

ordered by
S(1)

→ . Moreover, since both → and
S(1)

→ are transitive, the pairs of events

in the cycle must be alternately ordered by → and
S(1)

→ . We first prove that there is

no cycle containing exactly one pair of events ordered by
S(1)

→ . Assume the contrary.

Then,

〈∃ i, j :: si
S(1)

→ sj → si〉
⇒ { definition of

S(1)

→ }
〈∃ i, j :: (i < j) ∧ (sj → si)〉

⇒ { s satisfies the agreement property }
〈∃ i, j :: (sj 6→ si) ∧ (sj → si)〉

⇒ { predicate calculus }
a contradiction

We now prove that if there is a cycle that contains m, m > 2, pairs of events

ordered by
S(1)

→ then there is a cycle that contains strictly fewer than m pairs of

events ordered by
S(1)

→ . Let the cycle be si
S(1)

→ sj → su
S(1)

→ sv
C(1)

→ si, where the path

from sv to si contains exactly m − 2 pair(s) of events ordered by
S(1)

→ . Since
S(1)

→ is a

69

total order, either si
S(1)

→ sv or sv
S(1)

→ si. We have,

Case 1: si
S(1)

→ sv

(si
S(1)

→ sj → su
S(1)

→ sv
C(1)

→ si) ∧ (si
S(1)

→ sv)

⇒ { simplifying }
si

S(1)

→ sv
C(1)

→ si

⇒ { simplifying }
a cycle with at most m − 1 pair(s) of events ordered by

S(1)

→

Case 2: sv
S(1)

→ si

(si
S(1)

→ sj → su
S(1)

→ sv
C(1)

→ si) ∧ (sv
S(1)

→ si)

⇒ { simplifying }
si

S(1)

→ sj → su
S(1)

→ sv
S(1)

→ si

≡ { rewriting }
sj → su

S(1)

→ sv
S(1)

→ si
S(1)

→ sj

⇒ { S(1)

→ is transitive }
sj → su

S(1)

→ sj

⇒ { simplifying }
a cycle with at most one pair of events ordered by

S(1)

→

This establishes that there is no cycle in → ∪ S(1)

→ and thus
C(1)

→ is an irreflexive

partial order. �

After adding the synchronization
S(1)

→ to the computation 〈E,→〉, the

resulting computation 〈E,
C(1)

→〉 retains only those consistent cuts—not necessarily

all—that are legal. From the weak safety property, a sufficient condition for a legal

cut to satisfy the predicate is that it should contain at least one event from the

sequence in its frontier. To ensure this, given an event in the sequence, we add a

70

s
1

s
2

s
3

p3

p1

p2

Figure 4.12: An illustration of the synchronization
S(2)

→ (denoted by dotted arrows).

synchronization arrow from the event next to it in the sequence, if it exists and

is on a different process, to its succeeding event on the process, if it exists. This

synchronization, denoted by
S(2)

→ , ascertains that the computation does not advance

beyond an event in the sequence until it reaches the next event in the sequence.

S(2)

→ , { (si+1, succ(si)) | 1 6 i < n, si 6∈ ⊤ and proc(si+1) 6= proc(si) } (4.4)

For an illustration please see Figure 4.12. In the next lemma we establish

that if the sequence is admissible, in particular if it satisfies the agreement and

continuity properties, the above synchronization
S(2)

→ does not interfere with
C(1)

→ .

For convenience, we define
C(2)

→ as the transitive closure of
C(1)

→ ∪ S(3)

→ . Formally,

C(2)

→ , (
C(1)

→ ∪ S(2)

→)
+

Lemma 4.10
C(2)

→ is an irreflexive partial order.

Proof: It suffices to prove that
C(1)

→ ∪ S(2)

→ does not contain any cycle. Since, from

Lemma 4.9,
C(1)

→ is an irreflexive partial order, a cycle, if it exists, must contain

at least one pair of events ordered by
S(2)

→ . We first prove that there is no cycle

containing exactly one pair of events ordered by
S(2)

→ . Assume the contrary. We

have,

〈∃ i :: si+1
S(2)

→ succ(si)
C(1)

→ si+1〉

71

⇒ { by definition of
S(2)

→ , proc(si+1) 6= proc(si) implying si+1 6= succ(si) }
〈∃ i :: si+1

S(2)

→ succ(si)
C(1)

→ si+1〉
⇒ { since s satisfies the continuity property, succ(si) 6→ si+1 }

〈∃ i, j, k :: si+1
S(2)

→ succ(si) → sj
S(1)

→ sk
C(1)

→ si+1〉
⇒ { S(1)

→ is a total order on s }
〈∃ i, j ::(si+1

S(2)

→ succ(si) → sj
C(1)

→ si+1)
∧

((si+1
S(1)

→ sj) ∨ (sj
S(1)

→ si+1))〉
⇒ { si+1

S(1)

→ sj implies si+1
S(1)

→ sj
C(1)

→ si+1—contradicting Lemma 4.9 }
〈∃ i, j :: (si+1

S(2)

→ succ(si) → sj
C(1)

→ si+1) ∧ (sj
S(1)

→ si+1)〉
⇒ { si

P→ succ(si) and
P→⊆→ }

〈∃ i, j :: (si → sj) ∧ (sj
S(1)

→ si+1)〉
⇒ { S(1)

→ is a total order on s and s satisfies the agreement property }
〈∃ i, j :: (si

S(1)

→ sj) ∧ (sj
S(1)

→ si+1)〉
⇒ { s satisfies the agreement property }

〈∃ i, j :: i < j < i + 1〉
⇒ { i and j are integers }

a contradiction

We now prove that if there is a cycle that contains m, m > 2, pairs of events

ordered by
S(2)

→ then there is a cycle that contains strictly fewer than m pairs of events

ordered by
S(2)

→ . Let the cycle be si+1
S(2)

→ succ(si)
C(1)

→ sj+1
S(2)

→ succ(sj)
C(2)

→ si+1,

where the path from succ(sj) to si+1 contains exactly m−2 pair(s) of events ordered

by
S(2)

→ . Since
S(1)

→ is a total order, either si+1
S(1)

→ sj+1 or sj+1
S(1)

→ si+1. We have,

Case 1: si+1
S(1)

→ sj+1

(si+1
S(2)

→ succ(si)
C(1)

→ sj+1
S(2)

→ succ(sj)
C(2)

→ si+1) ∧ (si+1
S(1)

→ sj+1)

⇒ { simplifying }
si+1

S(1)

→ sj+1
S(2)

→ succ(sj)
C(2)

→ si+1

72

⇒ { simplifying }
a cycle with at most m − 1 pair(s) of events ordered by

S(2)

→

Case 2: sj+1
S(1)

→ si+1

(si+1
S(2)

→ succ(si)
C(1)

→ sj+1
S(2)

→ succ(sj)
C(2)

→ si+1) ∧ (sj+1
S(1)

→ si+1)

⇒ { simplifying }
si+1

S(2)

→ succ(si)
C(1)

→ sj+1
S(1)

→ si+1

⇒ { simplifying }
a cycle with at most one pair of events ordered by

S(2)

→

This establishes that there is no cycle in
C(1)

→ ∪ S(2)

→ and thus
C(2)

→ is an irreflexive

partial order. �

The final step is to prove that the combined synchronization, given by

S(1)

→ ∪ S(2)

→ , indeed ensures that the predicate is invariant in the resulting computation.

Specifically, we show that if the sequence is admissible then every consistent of the

resultant computation satisfies the antecedent of the weak safety property. We

denote the controlled computation by 〈E,
C→〉, where

C→ is same as
C(2)

→ .

Lemma 4.11 Every consistent cut of 〈E,
C→〉 satisfies b.

Proof: Consider a consistent cut C of 〈E,
C→〉. We first prove that C is legal with

respect to s. Consider events si and sj. We have,

{ assumption }
(sj ∈ C) ∧ (i < j)

≡ { definition of
S(1)

→ }
(sj ∈ C) ∧ (si

S(1)

→ sj)

⇒ { S(1)

→ ⊆ C→ }
(sj ∈ C) ∧ (si

C→ sj)

73

⇒ { C is a consistent cut of 〈E,
C→〉 }

si ∈ C

This establishes that C is legal with respect to s. We now prove that the

frontier of C contains at least one event from s. To that end, we first prove that,

for each i, si 6∈ ⊤ implies si+1
C→ succ(si). Clearly, if proc(si+1) 6= proc(si) then,

by definition of
S(2)

→ , si+1
S(2)

→ succ(si). Since
S(2)

→ ⊆ C→, si+1
C→ succ(si). The more

interesting case is when proc(si+1) = proc(si). Since proc(si) = proc(succ(si)),

proc(si+1) = proc(succ(si)). Then,

{ events on a process are totally ordered by
P→ }

(si+1
P→ succ(si)) ∨ (succ(si)

P→ si+1)

⇒ { P→⊆→ }
(si+1 → succ(si)) ∨ (succ(si) → si+1)

⇒ { since s satisfies the continuity property, succ(si) 6→ si+1 }
si+1 → succ(si)

⇒ { →⊆ C→ }
si+1

C→ succ(si)

Assume, on the contrary, that the frontier of C does not contain any event

from s. We prove by induction on i that, for each i, si ∈ C. Clearly, since s satisfies

the boundary condition and ⊥ ⊆ C, s1 ∈ C. We have,

{ induction hypothesis }
si ∈ C

≡ { since si 6∈ frontier(C), succ(si) exists and it belongs to C }
succ(si) ∈ C

⇒ { si+1
C→ succ(si) }

(si+1
C→ succ(si)) ∧ (succ(si) ∈ C)

74

⇒ { C is a consistent cut of 〈E,
C→〉 }

si+1 ∈ C

This establishes that sl ∈ C. Since, since s satisfies the boundary condition,

sl ∈ ⊤. Thus, trivially, sl ∈ frontier(C)—a contradiction. This implies that the

frontier of C contains at least one event from s. Finally, since s satisfies the weak

safety property, C satisfies b. �

Combining Lemma 4.9, Lemma 4.10 and Lemma 4.11, we obtain,

Theorem 4.12 (sufficient condition) If there exists an admissible sequence with

respect to a predicate b and a computation 〈E,→〉 then b is controllable in 〈E,→〉.

Finally, from Theorem 4.8 and Theorem 4.12, it follows that,

Theorem 4.13 (necessary and sufficient condition) It is possible to control a

predicate b in a computation 〈E,→〉 if and only if there exists an admissible sequence

with respect to b and 〈E,→〉.

Although the motivation for defining the notion of admissible sequence was

to devise a control algorithm for a disjunctive predicate, nonetheless the preceding

theorem holds for any global predicate.

4.4.2 Finding a Controlling Synchronization

In this section, we derive an efficient algorithm for controlling a disjunctive predicate

in a computation by using the notion of admissible sequence defined before. Since

false is a local predicate of any process, a disjunctive predicate b can be written

as disjunction of n predicates such that the ith disjunct, denoted by b(i), is a local

predicate of process pi. The algorithm involves constructing a directed graph G,

75

called the true event graph, as follows:

V(G) , { e | e |= b(i), where pi = proc(e) }

E(G) , {(e, f) | e, f ∈ V(G), e 6= f and e 6∈ ⊤ ⇒ succ(e) 6→ f }

Here, V(G) and E(G) refer to the set of vertices and edges, respectively, of

the graph G. We now define the notion of permissible path which is almost identical

to the notion of admissible sequence except that a permissible path consists of true

events only and may not satisfy the agreement property.

Definition 4.7 (permissible path) A path in a true event graph (TEG) is

permissible if it starts with an initial event and ends with a final event of the

computation.

Clearly, a permissible path satisfies the boundary condition as well as the

continuity property. Furthermore, any consistent cut that contains a true event

in its frontier, due to the semantics of disjunction, satisfies the predicate. Thus,

a permissible path satisfies the weak safety property also. However, in general, a

permissible may not satisfy the agreement property. But if a path besides being

permissible is also the shortest one then it satisfies the agreement property too.

Example 4.7 The true event graph for the computation shown in Figure 4.13(a)

and the disjunctive predicate x1∨x2 is depicted in Figure 4.13(b). The path eghfu is

permissible but does not satisfy the agreement property because although f happened-

before g in the computation, it occurs after g in the path. The path egu is the shortest

permissible path. It can be verified that it indeed satisfies the agreement property.

Lemma 4.14 The shortest permissible path in a true event graph, if it exists,

satisfies the agreement property.

76

initial

e

f

h

final
u

g

(b)

f f

f f

f

: true event : false event

(a)

e

t

f

t

f

t

u

g

t

h

t

1x

p3

p1

p2

x

x

2

3

Figure 4.13: An algorithm to compute a controlling synchronization for a disjunctive
predicate (edges to initial events and from final events have been omitted).

Proof: Assume that the true event graph does contain a permissible path. Consider

the shortest permissible path s = s1s2 · · · sl. Assume, on the contrary, that s does

not satisfy the agreement property. Then,

〈∃ i, j : i < j : sj → si〉
⇒ { sj 6∈ ⊥, otherwise sjsj+1 · · · sl is a shorter permissible path than s }

〈∃ i, j : i < j : (sj → si) ∧ (sj 6∈ ⊥)〉
⇒ { i > 2, otherwise si ∈ ⊥ implying si → sj—creating a cycle in → }

〈∃ i, j : 2 6 i < j : (sj → si) ∧ (sj 6∈ ⊥)〉
⇒ { since s is the shortest permissible path, (si−1, sj) 6∈ E(G) }

〈∃ i, j : 2 6 i < j : (succ(si−1) → sj) ∧ (sj → si)〉
⇒ { → is transitive }

〈∃ i : i > 2 : succ(si−1) → si〉
≡ { definition of an edge }

〈∃ i : i > 2 : (si−1, si) 6∈ E(G)〉
⇒ { s is a path implying 〈∀ i : i > 2 : (si−1, si) ∈ E(G)〉 }

a contradiction

77

This establishes that s satisfies the agreement property. �

The sufficient condition for a disjunctive predicate to be controllable in a

computation can now be given as follows.

Theorem 4.15 (sufficient condition) Given a disjunctive predicate b and a

computation 〈E,→〉, if there exists a permissible path in the corresponding true

event graph G then b is controllable in 〈E,→〉.

Proof: Assume that G contains a permissible path. Clearly, each permissible

path satisfies the boundary condition, the continuity property and the weak safety

property. From Lemma 4.14, the shortest path among all permissible paths—

not necessarily unique—also satisfies the agreement property. Thus the shortest

permissible path in G constitutes an admissible sequence with respect to b and

〈E,→〉. Using Theorem 4.13, b is controllable in 〈E,→〉. �

We next prove that the existence of a permissible path in the true event

graph is also a necessary condition for a disjunctive predicate to be controllable in

a computation.

Theorem 4.16 (necessary condition) If a disjunctive predicate b is controllable

in a computation 〈E,→〉 then there exists a permissible path in the corresponding

true event graph G.

Proof: Assume that b is controllable in 〈E,→〉. We inductively construct a path

in the graph G that is permissible. Since b is controllable in 〈E,→〉, there exists a

total order that extends the partial order → such that b is invariant in 〈E, 〉.
The initial consistent cut of the computation 〈E, 〉, given by ⊥, satisfies b. Thus

there exists a true initial event. We call it s1. Starting from s1, we construct a path

s by adding events to the path constructed as yet until we reach a final event.

78

Let si denote the last event added to the path so far. If si is a final event

then the path we have assembled so far is permissible. The more interesting case is

when si is not a final event. Consider the least consistent cut of 〈E, 〉 that contains

succ(si), say Ci. Note that Ci is well-defined because the set of consistent cuts of

a computation that contain a given event forms a lattice [JZ88, Mat89]. Since b is

invariant in 〈E, 〉, Ci satisfies b. Thus the frontier of Ci contains a true event. We

call it si+1. We still have to show that there is an edge from si to si+1 in the graph

G, that is, succ(si) 6→ si+1. By definition of Ci, for each e ∈ Ci, e succ(si). Since

si+1 ∈ Ci, si+1 succ(si). Since is an irreflexive partial order, succ(si) 6 si+1.

Thus succ(si) 6→ si+1 because →⊆ .

Finally, we prove that a final event is eventually added to the path. Assume

that si+1 6∈ ⊤. Since si+1 ∈ frontier(C), succ(si+1) 6∈ Ci. By definition of Ci,

succ(si+1) 6 succ(si). Since is a total order, succ(si) succ(si+1). This implies

that Ci (Ci+1, that is, si+1 is different from every event already in the path. Thus

no event is added to the path being built more than once, thereby establishing that

a final event is eventually added to the path. �

From Theorem 4.15 and Theorem 4.16, it follows that,

Theorem 4.17 (necessary and sufficient condition) A disjunctive predicate b

is controllable in a computation 〈E,→〉 if and only if there exists a permissible path

in the corresponding true event graph G.

The true event graph has O(|E|) vertices and O(|E|2) edges. The shortest

permissible path in the graph can be determined using breadth first search in O(|E|2)
time. Thus the algorithm has the overall time-complexity of O(|E|2). To improve

the time-complexity, we attempt to reduce the number of edges in the graph. To

that end, the following observation proves to be helpful.

Observation 4.3 If there is an edge from a true event e to a true event f then

79

there is an edge from every true event that occurs after e on proc(e) to every true

event that occurs before f on proc(f). Formally,

(e, f) ∈ E(G) ⇒ 〈∀ g, h ∈ V(G) : (e
P→ g) ∧ (h

P→ f) : (g, h) ∈ E(G)〉

It can be verified that, given a true event e and a process p, if we only

put an edge from e to the last true event f on p such that succ(e) 6→ f , in case

succ(e) exists, then Theorem 4.17 still holds. In particular, it can be proved that

existence of a permissible path of length l in the true event graph implies existence

of a permissible path in the “reduced” true event graph (RTEG) of length at most

l. The reduced true event graph has at most O(n|E|) edges, thereby reducing the

time-complexity to O(n|E|).
To reduce the time-complexity further, we define the notion of true-interval—

a maximal contiguous sequence of true event on a process. Rather than find a

sequence of true event that satisfy certain properties, we can find a sequence of

true-intervals satisfying “similar” properties. The details are left to the reader. This

algorithm for computing a controlling synchronization for a disjunctive predicate—

based on true-intervals—has the time-complexity of O(n|T |+|E|), where T is the set

of true-intervals of the computation, which is same as that of Tarafdar and Garg’s

algorithm [TG98b].

4.4.3 Finding a Minimum Controlling Synchronization

We modify our algorithm for computing a controlling synchronization for a

disjunctive predicate to compute a minimum controlling synchronization, that is,

a synchronization with least number of dependencies that are not subsumed by the

happened-before relation. We take advantage of the fact that the predicate to be

controlled is disjunctive. As a result, a sequence of true events satisfies a stronger

property than the weak safety property: “a consistent cut that contains at least one

80

event from the sequence in its frontier satisfies the predicate”. In particular, the cut

is not required to be legal. Therefore the following holds:

Observation 4.4 Let s be an admissible sequence with respect to b and 〈E,→〉. If

b is a disjunctive predicate then the synchronization given by
S(2)

→ defined in (4.4) in

Section 4.4.1 is sufficient to control b in 〈E,→〉.

Although the synchronization dependencies given by
S(1)

→ can be omitted, the

sequence is still required to satisfy the agreement property. This is to ensure that

the synchronization
S(2)

→ does not interfere with the happened-before relation of the

computation. To count the number of synchronization dependencies in
S(2)

→ that are

not covered by →, we assign weight to each edge as follows:

w(e, f) ,







(0, 1) : if f → succ(e)

(1, 1) : otherwise

Two weights are added by adding their respective components and are

compared lexicographically. As before in the case of true event graph, the shortest

permissible path in a weighted true event graph not only satisfies the boundary

condition, the continuity property and the weak safety property but also satisfies

the agreement property.

Lemma 4.18 The shortest permissible path in a weighted true event graph, if it

exists, satisfies the agreement property.

Proof: Assume that the weighted true event graph does contain a permissible

path. Consider the shortest permissible path s = s1s2 · · · sl. Assume, on the

contrary, that s does not satisfy the agreement property. Then there exist integers

i and j, where i < j, such that sj → si. Since s is the shortest permissible path,

sj 6∈ ⊥; if otherwise, the path sjsj+1 · · · sl is a shorter permissible path than s—a

contradiction. Furthermore, i > 2; if otherwise, si ∈ ⊥ which implies that si → sj,

81

thereby creating a cycle in →. Two possible cases arise depending on whether there

is an edge from si−1 to sj.

Case 1: (si−1, sj) 6∈ E(G)

{ definition of an edge }
(succ(si−1) → sj) ∧ (sj → si)

⇒ { → is transitive }
succ(si−1) → si

≡ { definition of an edge }
(si−1, si) 6∈ E(G)

⇒ { s is a path implying (si−1, si) ∈ E(G) }
a contradiction

In the second case, two possible sub-cases arise depending on the weight of

the edge from si−1 to sj. If w(si−1, sj) = (0, 1) then the path s1s2 · · · si−1sj · · · sl

is permissible and has lesser weight than s—a contradiction. The more interesting

case is when w(si−1, sj) = (1, 1). Then,

Case 2.2: w(si−1, sj) = (1, 1)

{ definition of the weight function }
sj 6→ succ(si−1)

⇒ { sj → si implying si → succ(si−1) ⇒ sj → succ(si−1) }
si 6→ succ(si−1)

≡ { (si−1, si) ∈ E(G) and definition of the weight function }
w(si−1, si) = (1, 1)

82

Thus the path s1s2 · · · si−1sj · · · sl is permissible and has lesser weight than

s—a contradiction. This establishes that s satisfies the agreement property. �

For a path s with weight w(s), let wf (s) and ws(s) denote the first and

second entries, respectively, of the tuple w(s). The rank of a weighted true event

graph G, denoted by rank(G), is given by,

rank(G) ,







⊥ : if there is no permissible path in G

wf (s) : s is the shortest permissible path in G

Intuitively, the rank gives the cardinality of a minimum controlling

synchronization. We show that rank behaves in a continuous fashion by proving

that adding a single synchronization dependency to a computation cannot reduce

the rank of its weighted true event graph substantially. Consider a computation

〈E, 〉 such that (1) extends →, and (2) the two computations 〈E,→〉 and

〈E, 〉 differ by at most one message. Formally,

〈∃ e, f :: = (→ ∪ (e, f)+)〉

Let H be the weighted true event graph corresponding to b and 〈E, 〉.

Lemma 4.19 (bounded reduction) If b is controllable in 〈E, 〉 then rank(G)

is at most one more than rank(H).

Proof: Since 〈E, 〉 |= controllable : b, by virtue of Theorem 4.16, there exists

a permissible path in H. Consider the shortest permissible path in H, say s =

s1s2 · · · sl. For convenience, let wG and wH be the weight functions for the graphs

G and H, respectively. Since →⊆ , succ(e) 6 f implies succ(e) 6→ f . Thus each

edge of H is also an edge of G which implies that s is a path in G. The following

can be easily verified.

rank(G) 6 wG
f (s) (4.5)

83

rank(H) = wH
f (s) (4.6)

〈∀ e, f : (e, f) ∈ E(H) : wG(e, f) = (0, 1) ⇒ wH(e, f) = (0, 1)〉 (4.7)

We first prove that wG
f (s) − wH

f (s) 6 1. Assume the contrary. Thus, from

(4.7), there exist at least two distinct edges in the path s such that their weight in

G is (1, 1) but in H is (0, 1). Let the edges be (si, si+1) and (sj , sj+1), where i 6= j.

Equivalently,

si+1 6→ succ(si) and sj+1 6→ succ(sj) (4.8)

si+1 succ(si) and sj+1 succ(sj) (4.9)

Let the additional message in 〈E, 〉 be from e to f . From (4.8) and (4.9),

we can deduce that there exists a path from si+1 to succ(si) in 〈E, 〉 that involves

the message from e to f . Likewise, there exists a path from sj+1 to succ(sj) in

〈E, 〉 that involves the message from e to f . Then,

si+1 e and f succ(si) (4.10)

sj+1 e and f succ(sj) (4.11)

Without loss of generality, assume that i < j. Two possible cases arise

depending on whether there is an edge from si to sj+1 in H. We have,

Case 1: (si, sj+1) 6∈ E(H)

{ definition of an edge }
succ(si) sj+1

⇒ { using (4.11) }
succ(si) e

⇒ { using (4.10) }
f e

⇒ { definition of implies e f }
a contradiction

84

In the second case, when there is an edge from si to sj+1, from (4.10)

and (4.11), sj+1 succ(si). Thus wH(si, sj+1) = (0, 1) implying that the

path s1s2 · · · sisj+1 · · · sl is permissible in H and has smaller weight than s—a

contradiction. Thus,

wG
f (s) − wH

f (s) 6 1 (4.12)

Finally,

{ using (4.5) }
rank(G) 6 wG

f (s)

≡ { using (4.12) }
rank(G) 6 wH

f (s) + 1

≡ { using (4.6) }
rank(G) 6 rank(H) + 1

This establishes the lemma. �

Now, assume that rank(G) 6= 0. Let RCH denote the subset of true events

that are reachable from some initial true event in the weighted true event graph G

via edges with weight (0, 1) only. Since rank(G) 6= 0, RCH does not contain any

final event; if otherwise, there is a path from an initial event to a final event via

edges with weight (0, 1) only, thereby forcing rank(G) to be zero. For each process

pi, we identify an interval of contiguous events on pi that we denote by Ii. The first

event of Ii, denoted by Ii.lo, is given by the successor of the last event on pi that

belongs to RCH. In case there is no such event, Ii.lo is set to ⊥i, the initial event

on pi. The last event of Ii, denoted by Ii.hi, is given by the earliest event on pi

that did not occur before Ii.lo such that its successor, if it exists, is a true event.

Clearly, Ii is non-empty and all events in Ii are false events. For convenience,

I ,
⋃

16i6n

Ii

85

f f

f f

f

x

w

final
g

y
initial

e

: true event : false event

(a)

e

t

f

t

tt

t

(b)

I.lo

I.hi

(0,1)
(0,1)

gf

x z

wu

RCH

y

v

1x

p3

p1

p2

x

x

2

3

Figure 4.14: An example to illustrate I.

I.lo , { Ii.lo | 1 6 i 6 n }

I.hi , { Ii.hi | 1 6 i 6 n }

succ(I.hi) , { succ(e) | e ∈ I.hi and e 6∈ ⊤ }

Example 4.8 Consider the computation portrayed in Figure 4.14(a) and the

disjunctive predicate x1 ∨ x2 ∨ x3. The corresponding weighted true event graph

is depicted in Figure 4.14(b). The incoming edges to the initial event e and the

outgoing edges from the final event g have been omitted for obvious reasons. All

edges except the edges (e, x) and (x, y) have weight (1, 1). For clarity, we have only

labeled those edges that have weight (0, 1) because they are fewer in number. Thus

the set RCH is given by {e, x, y}. Further, I1.lo = succ(e) = f , I2.lo = ⊥2 = u

and I3.lo = succ(y) = z. Also, I1.hi = f , I2.hi = v and I3.hi = ⊤3 = z.

Finally, succ(I) = {succ(f), succ(v)} = {g,w}. The shaded region in Figure 4.14(a)

corresponds to the space spanned by the events of I.

Observe that if all events in the frontier of a consistent cut belong to I then

the cut will not satisfy the given disjunctive predicate. We make two observations

about the set succ(I.hi). First, all events in the set are true events. Second, no

86

event in the set belongs to RCH. The following lemma proves that the computation

must contain a consistent cut that does not satisfy the disjunctive predicate.

Lemma 4.20 If the rank of a weighted true event graph is not zero then there exists

a consistent cut of the computation that does not satisfy the disjunctive predicate.

Proof: Our approach is to add enough synchronization dependencies to the

computation 〈E,→〉, without creating any deadlock (or cycle), to obtain another

computation, say 〈E, 〉, that satisfies the required property. Specifically, we show

that the computation 〈E, 〉 contains a consistent cut whose frontier is completely

contained in I. Since all events in I are false events, we obtain the desired result.

The required set of dependencies, denoted by
I→, is given by,

I→ , { (e, f) | e ∈ I.lo and f ∈ succ(I.hi) }

We first prove that adding dependencies from
I→ to → does not create any

cycle. Consider a path e
I→ f →g

I→ h (events e, f , g and h need not all be distinct,

that is, an event or a sequence of events may be repeated in the path). By definition

of
I→, f ∈ succ(I.hi) and g ∈ I.lo. Clearly, f 6∈ ⊥. This implies that g 6∈ ⊥; if

otherwise, g → f , thereby creating a cycle in →. Thus pred(g) exists. Furthermore,

both f and pred(g) are true events such that pred(g) ∈ RCH but f 6∈ RCH. Note,

however, that f → succ(pred(g))(= g) implying that there is an edge from pred(g)

to f with weight (0, 1). Thus f is reachable from an initial event via edges with

weight (0, 1) only because pred(g) ∈ RCH and w(pred(g), f) = (0, 1). This implies

that f belongs to RCH—a contradiction. Thus there is no path in → ∪ I→ of the

form e
I→ f → g

I→ h, thereby ensuring that → ∪ I→ is acyclic.

Now, = (→ ∪ I→)
+
. Consider the least consistent cut of 〈E, 〉, say

Cleast.(I.lo), that contains I.lo. By definition of Cleast.(I.lo), we have,

〈∀ e :: e ∈ Cleast.(I.lo) ⇒ 〈∃ f : f ∈ I.lo : e f〉〉 (4.13)

87

We prove that the frontier of Cleast.(I.lo) lies wholly within I. To that end,

it suffices to show that Cleast.(I.lo) does not contain any event from succ(I.hi).

Assume the contrary. Then,

〈∃ e : e ∈ succ(I.hi) : e ∈ Cleast.(I.lo)〉
⇒ { using (4.13) }

〈∃ e, f : (e ∈ succ(I.hi)) ∧ (f ∈ I.lo) : e f〉
⇒ { by definition of

I→, f
I→ e and

I→⊆ }
〈∃ e, f : (e ∈ succ(I.hi)) ∧ (f ∈ I.lo) : (e f) ∧ (f e)〉

⇒ { is an irreflexive partial order }
a contradiction

This establishes the lemma. �

The necessary and sufficient condition for the rank of a weighted true event

graph to be zero can now be furnished easily.

Theorem 4.21 The rank of a weighted true event graph is zero if and only if the

disjunctive predicate is invariant in the computation. Formally,

〈E,→〉 |= invariant : b ⇐⇒ rank(G) = 0

Proof: (⇒) Follows from Lemma 4.20.

(⇐) From Lemma 4.18, the shortest permissible path, say s—which exists because

rank(G) 6= ⊥—corresponds to an admissible sequence of events with respect to b

and 〈E,→〉. Since b is a disjunctive predicate, by Observation 4.4,
S(2)

→ is sufficient

to control b in 〈E,→〉. Let
C→= (→ ∪ S(2)

→)
+

. By definition of controllability, b is

invariant in 〈E,
C→〉. Furthermore, by definition of the weight function,

S(2)

→ ⊆ →
which implies that

C→ = →. �

We now present the main result of this section.

88

Theorem 4.22 (minimum controlling synchronization) The shortest permis-

sible path in a weighted true event graph, if it exists, corresponds to a minimum

controlling synchronization for the disjunctive predicate in the computation.

Proof: Assume that the weighted true event graph G does contain a permissible

path. From Theorem 4.17, b is controllable in 〈E,→〉. Let
min→ denote a mini-

mum controlling synchronization for b in 〈E,→〉. Further, let {G(k)} represent

the sequence of weighted true event graphs generated by adding synchronization

dependencies from
min→ one-by-one, where G(0) = G. Note that b is invariant in the

computation obtained by adding all synchronization dependencies from
min→. From

the bounded reduction lemma,

rank(G(i)) − rank(G(i+1)) 6 1, 0 6 i < | min→ |

Adding the above inequality for all values of i, we obtain,

rank(G(0)) − rank(G|
min
→ |) 6 | min→ |

≡ { using Theorem 4.21 }
rank(G) − 0 6 | min→ |

≡ { simplifying }
rank(G) 6 | min→ |

≡ { min→ corresponds to a minimum controlling synchronization }
rank(G) = | min→ |

This establishes the theorem. �

The algorithm to compute a minimum controlling synchronization has

O(|E|2) time-complexity because the weighted true event graph has O(|E|) vertices,

O(|E|2) edges, and the shortest permissible path in the graph can be determined

using Dijkstra’s shortest path algorithm [CLR91] in O(|E|2) time.

89

Chapter 5

Slicing Distributed

Computations

In this chapter, we discuss in detail our results pertaining to slicing

distributed computations with respect to global predicates.

5.1 Overview

We first extend the model of distributed computation, described in Chapter 2, in

Section 5.2. Specifically, we relax the restriction that events can only be partially

ordered and allow cycles to be present in the computation. The reason is because

whereas, in the traditional model, a computation specifies the “observable” order

of execution of events, in the extended model, it captures the set of “possible”

consistent cuts that are currently relevant for our purpose. The extended model

enables us to model both computation and slice in a uniform and coherent fashion.

We formally define the notion of “slice” in Section 5.3. Informally, the slice

of a computation with respect to a predicate is the “smallest” computation that

91

contains all consistent cuts of the original computation that satisfy the predicate.

In case the slice contains only those consistent cuts of the computation that satisfy

the predicate, it is referred to as “lean”.

A natural question to ask is: “Is such a smallest computation uniquely defined

for every predicate?” To prove that it is indeed the case, we define a new class

of predicates in Section 5.4 called “regular predicates”. Informally, a predicate is

regular if the set of consistent cuts that satisfy the predicate is closed under set union

and set intersection. Some examples of regular predicates are conjunctive predicates

such as “no process is in red state” and certain monotonic channel predicates such

as “all channels are empty” and “all green messages have been acknowledged”. The

class of regular predicates is closed under conjunction. We prove in Section 5.5

that the slice for a predicate is lean if and only if the predicate is regular. For the

general case, when the predicate may not be regular, we define a closure operator

that returns the “strongest” regular predicate weaker than the given predicate. We

show that such a predicate exists and is uniquely defined for every predicate. This

in turn proves that the slice exists and is uniquely defined for every predicate.

In Section 5.7, we develop a polynomial-time algorithm for computing the

slice for a regular predicate. The algorithm has an overall time-complexity of

O(n2|E|), where n is the number of processes and E is the set of events. In case

the regular predicate can be decomposed into a conjunction of clauses, where each

clause itself is a regular predicate, however, depending on variables of only a small

subset of processes, we given an optimized salgorithm for computing the slice. The

optimized version may yield a speedup of as much as n for many regular predicates.

We also provide optimal algorithms for special cases of regular predicates, namely

conjunctive predicates and monotonic channel predicates of the form “
∧

i,j

(at most

kij messages in transit from process pi to process pj)” and “
∧

i,j

(at least kij messages

in transit from process pi to process pj)”, which have the time-complexity of O(|E|).

92

We demonstrate how slicing can be used to monitor a regular predicate under various

modalities. Furthermore, we argue that many results pertaining to consistent global

checkpoints [NX95, Wan97] can be derived as special cases of slicing.

We establish in Section 5.8 that it is intractable in general to compute the

slice for an arbitrary predicate. Nevertheless, polynomial-time algorithms can be

developed for certain special classes of predicates. In particular, we provide an

efficient algorithm to compute the slice for a linear predicate and its dual—a post-

linear predicate [CG98]. We next introduce the notion of “grafting” which is useful

in composing two slices. Given two slices, grafting can be used to either compute

the smallest slice that contains all consistent cuts common to both slices or compute

the smallest slice that contains consistent cuts of both slices. As a corollary, the slice

for a predicate in disjunctive normal form (DNF) can now be easily obtained. We

demonstrate how grafting can be employed to compute the slice for a “co-regular

predicate” (that is, complement of a regular predicate) in polynomial-time. We

also use grafting to efficiently compute the slice for a “k-local predicate” (depends

on at most k processes) for constant k [SS95]. Furthermore, grafting can also be

applied to compute an “approximate” slice—in polynomial-time—for a predicate

composed from linear predicates, post-linear predicates, co-regular predicates and

k-local predicates for constant k using ∧ and ∨ operators.

Finally, in Section 5.9, we discuss our experimental results in evaluating the

effectiveness of slicing in reducing the search-space for detecting a predicate under

possibly modality. Our results indicate that computation slicing can lead to an

exponential improvement over existing techniques both in terms of time as well as

space.

93

5.2 Extending the Model

In this section, we extend the model of distributed computation and related notions

that we described in Chapter 2. In this chapter, we relax the restriction that the

order on events must be a partial order. More precisely, we use directed graphs to

model distributed computations as well as slices. Directed graphs allow us to handle

both of them in a uniform and convenient manner.

Given a directed graph G, let V(G) and E(G) denote its set of vertices and

edges, respectively. A subset of vertices of a directed graph forms a consistent cut

if the subset contains a vertex only if it also contains all its incoming neighbours.

Formally,

C is a consistent cut of G , 〈∀e, f ∈ V(G) : (e, f) ∈ E(G) : f ∈ C ⇒ e ∈ C〉

Observe that a consistent cut either contains all vertices in a cycle or none

of them. This observation can be generalized to a strongly connected component.

Traditionally, the notion of consistent cut (down-set or order ideal) is defined for

partially ordered sets [DP90]. Here, we extend the notion to sets with arbitrary

orders. Let C(G) denote the set of consistent cuts of a directed graph G. Observe

that the empty set ∅ and the set of vertices V(G) trivially belong to C(G). We call

them trivial consistent cuts. Let P(G) denote the set of paths in a directed graph

G, that is, the set of pairs of vertices (u, v) such that there is a path from u to v in

G. We assume that each vertex has a path to itself.

5.2.1 Directed Graphs: Path- and Cut-Equivalence

A directed graph G is cut-equivalent to a directed graph H, denoted by G
C∼= H, if

they have the same set of consistent cuts. Formally,

G
C∼= H , C(G) = C(H)

94

Likewise, a directed graph G is path-equivalent to a directed graph H,

denoted by G
P∼= H, if a path from vertex u to vertex v in G implies a path from

vertex u to vertex v in H and vice versa. Formally,

G
P∼= H , P(G) = P(H)

The next lemma explores the relation between the two notions.

Lemma 5.1 Let G and H be directed graphs with the same set of vertices. Then,

P(G) ⊆ P(H) ≡ C(G) ⊇ C(H)

Evidently, Lemma 5.1 implies that two directed graphs are cut-equivalent if

and only if they are path-equivalent. In other words, in order to determine whether

two directed graphs are cut-equivalent, it is necessary and sufficient to ascertain

that they are path-equivalent. This is significant because, whereas path-equivalence

can be verified in polynomial-time (|P(G)| = O(|V(G)|2)), cut-equivalence is

computationally expensive to ascertain in general (|C(G)| = O(2|V(G)|)). In the

rest of the chapter, we use ∼= to denote both
C∼= and

P∼=.

5.2.2 Distributed Computations as Directed Graphs

We model a distributed computation 〈E,→〉 as a directed graph with vertices as the

set of events E and edges as →. To limit our attention to only those consistent cuts

that can actually occur during an execution, we assume that P(〈E,→〉) contains at

least the Lamport’s happened-before relation [Lam78].

We assume the presence of a fictitious final event on each process which

occurs after all other events on the process. Recall that a final event on process pi is

denoted by ⊤i which now refers to the aforementioned fictitious event. We assume

that all initial events belong to the same strongly connected component. Similarly,

95

all final events belong to the same strongly connected component. This ensures that

any non-trivial consistent cut will contain all initial events and none of the final

events. As a result, every consistent cut of a computation in the traditional model

is a non-trivial consistent cut of the corresponding computation in the extended

model and vice versa. Only non-trivial consistent cuts are of real interest to us. As

we will see later, the extended model allows us to capture empty slices in a very

convenient fashion.

A distributed computation in the extended model can contain cycles. This is

because whereas a computation in the traditional (happened-before) model captures

the observable order of execution of events, a computation in the extended model

captures the set of possible consistent cuts.

Although, given a computation 〈E,→〉, the relation → may contain cycles,

the order of events on a process, that in turn refers to the sequence in which the

events on a process were executed in real-time, is still a total order. Thus the notion

of predecessor and successor events of an event defined in Chapter 2 is well-defined

and so are the notions that depend on it such as “frontier” and “passes through”.

Recall that two events are said to be consistent if they are contained in the

frontier of some consistent cut, otherwise they are inconsistent. More precisely, it

can be verified that events e and f are consistent if and only if there is no path in

the computation from succ(e), if it exists, to f and from succ(f), if it exists, to e.

Note that, in the extended model, in contrast to the traditional model, an event can

be inconsistent with itself.

As before, a predicate is evaluated with respect to the values of variables

resulting after executing all events in the cut. We leave the predicate undefined for

the trivial consistent cuts.

96

5.3 Problem Statement

Informally, a computation slice (or simply a slice) is a concise representation of all

those consistent cuts of the computation that satisfy the predicate. Formally,

Definition 5.1 (slice) The slice of a computation with respect to a predicate is the

smallest directed graph—with the least number of consistent cuts—that contains all

consistent cuts of the given computation for which the predicate evaluates to true.

We will later show that the notion of smallest directed graph in the definition

is well-defined for every predicate. The slice of computation 〈E,→〉 with respect

to a predicate b is denoted by 〈E,→〉b. Note that 〈E,→〉 = 〈E,→〉true. In the

rest of the paper, we use the terms “computation”, “slice” and “directed graph”

interchangeably.

Note that every slice derived from the computation 〈E,→〉 will have the

trivial consistent cuts (∅ and E) among its set of consistent cuts. Thus a slice

is empty if it has no non-trivial consistent cuts. In the rest of the paper, unless

otherwise stated, a consistent cut refers to a non-trivial consistent cut. In general,

a slice will contain consistent cuts that do not satisfy the predicate (besides trivial

consistent cuts). In case a slice does not contain any such cut, it is called lean.

Formally,

Definition 5.2 (lean slice) The slice of a computation with respect to a predicate

is lean if every consistent cut of the slice satisfies the predicate.

An interesting question to ask is for what class of predicates is the slice

always lean? To answer this question, we introduce the class of regular predicates.

97

5.4 Regular Predicates

A global predicate is called regular if the set of consistent cuts that satisfy the

predicate is closed under set intersection and set union. Formally, given a regular

predicate b and consistent cuts C1 and C2,

(C1 |= b) ∧ (C2 |= b) ⇒ (C1 ∩ C2 |= b) ∧ (C1 ∪ C2 |= b)

Remark 5.1 More precisely, given a set of elements that forms a lattice under some

partial order, a subset of elements forms a sublattice of the lattice if the subset is

closed under the meet and join operators of the lattice. In our case, the meet and

join operators are set intersection and set union, respectively.

If the set of consistent cuts that satisfy a predicate is closed under set

intersection then the predicate is said to be linear [CG98]. Dually, if the set of

consistent cuts that satisfy a predicate is closed under set union then the predicate is

said to be post-linear [CG98]. The class of regular predicates is, therefore, given by

the intersection of the class of linear predicates and the class of post-linear predicates.

It can be verified that a local predicate is a regular predicate. Therefore the

following predicates are regular.

• process pi is in “red” state

• the leader has sent all “prepare to commit” messages

We now provide more examples of regular predicates. Consider a function

f(x, y) with two arguments such that it is monotonic in its first argument x but

anti-monotonic in its second argument y. Some examples of the function f are:

x − y, 3x − 5y, x/y when x, y > 0, and logy x when x, y > 1. We establish that

the predicates of the form f(x, y) < c and f(x, y) 6 c, where c is some constant,

are regular when either both x and y are monotonically non-decreasing variables or

both x and y are monotonically non-increasing variables.

98

Lemma 5.2 Let x and y be monotonically non-decreasing variables. Then the

predicates f(x, y) < c and f(x, y) 6 c are regular predicates.

Proof: We show that the predicate f(x, y) < c is regular. The proof for the other

predicate is similar and has been omitted. For a consistent C, let x(C) and y(C)

denote the values of variables x and y, respectively, immediately after all events

in C are executed. Consider consistent cuts C1 and C2 that satisfy the predicate

f(x, y) < c. Note that, by definition of C1 ∩C2, y(C1 ∩C2) is either y(C1) or y(C2).

Without loss of generality, assume that y(C1 ∩ C2) = y(C1). Then,

f(x(C1 ∩ C2), y(C1 ∩ C2))

= { assumption }
f(x(C1 ∩ C2), y(C1))

6







x is monotonically non-decreasing implies x(C1 ∩ C2) 6 x(C1),

and f is monotonic in x







f(x(C1), y(C1))

< { C1 satisfies the predicate f(x, y) < c }
c

Thus C1∩C2 satisfies the predicate f(x, y) < c. Also, note that, by definition

of C1 ∪ C2, x(C1 ∪ C2) is either x(C1) or x(C2). Without loss of generality, assume

that x(C1 ∪ C2) = x(C1). Then,

f(x(C1 ∪ C2), y(C1 ∪ C2))

= { assumption }
f(x(C1), y(C1 ∪ C2))

6







y is monotonically non-decreasing implies y(C1 ∪ C2) > y(C1),

and f is anti-monotonic in y







f(x(C1), y(C1))

99

< { C1 satisfies the predicate f(x, y) < c }
c

Thus C1 ∪ C2 also satisfies the predicate f(x, y) < c. �

We now establish that Lemma 5.2 holds even when both x and y are

monotonically non-increasing variables.

Lemma 5.3 Let x and y be monotonically non-increasing variables. Then the

predicates f(x, y) < c and f(x, y) 6 c are regular predicates.

Proof: We show that the predicate f(x, y) < c is regular. The proof for the other

predicate is similar and has been omitted. For a consistent C, let x(C) and y(C)

denote the values of variables x and y, respectively, immediately after all events

in C are executed. Consider consistent cuts C1 and C2 that satisfy the predicate

f(x, y) < c. Note that, by definition of C1 ∩C2, x(C1 ∩C2) is either x(C1) or x(C2).

Without loss of generality, assume that x(C1 ∩ C2) = x(C1). Then,

f(x(C1 ∩ C2), y(C1 ∩ C2))

= { assumption }
f(x(C1), y(C1 ∩ C2))

6







y is monotonically non-increasing implies y(C1 ∩ C2) > y(C1),

and f is anti-monotonic in y







f(x(C1), y(C1))

< { C1 satisfies the predicate f(x, y) < c }
c

Thus C1∩C2 satisfies the predicate f(x, y) < c. Also, note that, by definition

of C1 ∪ C2, y(C1 ∪ C2) is either y(C1) or y(C2). Without loss of generality, assume

that y(C1 ∪ C2) = y(C1). Then,

100

f(x(C1 ∪ C2), y(C1 ∪ C2))

= { assumption }
f(x(C1 ∪ C2), y(C1))

6







x is monotonically non-decreasing implies x(C1 ∪ C2) 6 x(C1),

and f is monotonic in x







f(x(C1), y(C1))

< { C1 satisfies the predicate f(x, y) < c }
c

Thus C1 ∪ C2 also satisfies the predicate f(x, y) < c. �

Combining the above two lemmas, we obtain the following:

Lemma 5.4 The predicates of the form f(x, y) < c and f(x, y) 6 c, where c is some

constant, are regular when either both x and y are monotonically non-decreasing

variables or both x and y are monotonically non-increasing variables.

As a corollary of Lemma 5.4, it can be proved that Lemma 5.4 still holds

when < and 6 are replaced by > and >, respectively.

Corollary 5.5 Let x and y be monotonically non-decreasing variables. Then the

predicates f(x, y) > c and f(x, y) > c are regular predicates.

Proof: Define g(y, x) = −f(x, y) and d = −c. Observe that the predicate

f(x, y) > c is equivalent to the predicate g(y, x) < d. Furthermore, the function

g is monotonic in its first argument y and anti-monotonic in its second argument

x. From Lemma 5.4, the predicate g(y, x) < d is regular and hence the predicate

f(x, y) > c is also regular. Similarly, the predicate f(x, y) > c is regular. �

Similarly, it follows that:

101

Corollary 5.6 Let x and y be monotonically non-increasing variables. Then the

predicates f(x, y) > c and f(x, y) > c are regular predicates.

The following theorem combines all the above results.

Theorem 5.7 Let f be a function with two arguments such that it is monotonic in

its first argument and anti-monotonic in its second argument. Then the predicate

of the form f(x, y) relop c, where relop ∈ {<,6, >,>} and c is some constant, is

regular when either both x and y are monotonically non-decreasing variables or both

x and y are monotonically non-increasing variables.

Remark 5.2 Let xi and yi be variables on process pi, where 1 6 i 6 n. Consider

j ∈ [1 . . . n], I ⊆ {1, 2, . . . , n} and some constant c.

Let x(I) = { xi | i ∈ I } and let f be a function on the variables in x(I) and

yj such that it is monotonic in each xi ∈ x(I) but anti-monotonic in yj. If each

xi ∈ x(I) is a monotonically non-decreasing variable then it can be established that

the predicates f(x(I), yj) < c and f(x(I), yj) 6 c are linear predicates. Similarly, if

each xi ∈ x(I) is a monotonically non-increasing variable then it can be proved that

the predicates f(x(I), yj) > c and f(x(I), yj) > c are also linear predicates. None

of the predicates mentioned above is regular in general.

Dually, let y(I) = {yi | i ∈ I } and let f be a function on xj and the variables

in y(I) such that it is monotonic in xj but anti-monotonic in each yi ∈ y(I). If

each yi ∈ x(I) is a monotonically non-decreasing variable then it can be established

that the predicates f(xj,y(I)) < c and f(xj,y(I)) 6 c are post-linear predicates.

Similarly, if each yi ∈ y(I) is a monotonically non-increasing variable then it can

be proved that the predicates f(xj,y(I)) > c and f(xj,y(I)) > c are also post-linear

predicates. As before, none of the predicates mentioned above is regular in general.

Theorem 5.7 therefore corresponds to the case when I is a singleton set.

Further, observe that Theorem 5.7 holds not only for scalar variables, but also for

102

vector variables. As in the case of scalars, in the case of vectors, the variable should

either be monotonically non-decreasing, that is, the value of the variable for the

successor event either stays the same or strictly increases, or monotonically non-

increasing, that is, the value of the variable for the successor event either stays the

same or strictly decreases, as the case may be.

By substituting f(x, y) with x − y, x with “the number of messages that

process pi has sent to process pj so far” and y with “the number of messages sent by

process pi that process pj has received so far”, it can be verified that the following

predicates are regular.

• no outstanding message in the channel from process pi to process pj

• the channel from process pi to process pj is non-empty

• at most k messages in transit from process pi to process pj

• at least k messages in transit from process pi to process pj

We next show that the conjunction of two regular predicates is also a regular

predicate.

Theorem 5.8 The class of regular predicates is closed under conjunction.

Proof: We have to prove that if b1 and b2 are regular predicates then so is b1 ∧ b2.

Consider consistent cuts C1 and C2 that satisfy b1∧ b2. By semantics of conjunction,

both C1 and C2 satisfy b1 as well as b2. Since b1 and b2 are regular predicates, C1∩C2

satisfies b1 and b2. Again, by semantics of conjunction, C1 ∩ C2 satisfies b1 ∧ b2.

Likewise, C1 ∪ C2 satisfies b1 ∧ b2. Thus b1 ∧ b2 is a regular predicate. �

The closure under conjunction implies that the following predicates are also

regular.

103

• any conjunction of local predicates

• no process has the token and no channel has the token

• every “request” message has been “acknowledged” in the system

5.5 Establishing the Existence and Uniqueness of Slice

In this section, we show that the slice exists and is uniquely defined for all predicates.

Our approach is to first prove that the slice not only exists for a regular predicate,

but is also lean. Using this fact we next establish that the slice exists even for a

predicate that is not regular.

5.5.1 Regular Predicates

It is well known in distributed systems that the set of all consistent cuts of a

computation forms a lattice under the subset relation [JZ88, Mat89]. We ask the

question does the lattice of consistent cuts satisfy any additional property? It turns

out that the answer to this question is in affirmative. Specifically, we show that

the set of consistent cuts of a directed graph not only forms a lattice but that the

lattice is distributive. A lattice is said to be distributive if meet distributes over join

[DP90]. Formally,

a ⊓ (b ⊔ c) ≡ (a ⊓ b) ⊔ (a ⊓ c)

where ⊓ and ⊔ denote the meet (infimum) and join (supremum) operators,

respectively. (It can be proved that meet distributes over join if and only if join

distributes over meet.)

Theorem 5.9 Given a directed graph G, 〈C(G);⊆〉 forms a distributive lattice.

104

Proof: Let C1 and C2 be consistent cuts of G. We define their meet and join as

follows:

C1 ⊓ C2 , C1 ∩ C2

C1 ⊔ C2 , C1 ∪ C2

It is sufficient to establish that C1 ∩C2 and C1 ∪C2 are consistent cuts of G

which can be easily verified. �

The above theorem is a generalization of the result in lattice theory that the

set of down-sets of a partially ordered set forms a distributive lattice [DP90]. We

further prove that the set of consistent cuts (of a directed graph) does not satisfy any

additional structural property. To that end, we need the notion of join-irreducible

element defined as follows.

Definition 5.3 (join-irreducible element [DP90]) An element of a lattice is

join-irreducible if (1) it is not the least element of the lattice, and (2) it cannot

be expressed as join of two distinct elements, both different from itself. Formally,

a ∈ L is join-irreducible if

〈∃ x :: x < a〉
∧

〈∀ x, y ∈ L : a = x ⊔ y : (a = x) ∨ (a = y)〉

Pictorially, an element of a lattice is join-irreducible if and only if it has

exactly one lower cover, that is, it has exactly one incoming edge in the corresponding

Hasse diagram. The notion of meet-irreducible element can be similarly defined. It

turns out that a distributive lattice is uniquely characterized by the set of its join-

irreducible elements. In particular, every element of the lattice can be written as

join of some subset of its join-irreducible elements and vice versa. This is formally

captured by the next theorem.

Theorem 5.10 (Birkhoff’s Representation Theorem for Finite

Distributive Lattices [DP90]) Let L be a finite distributive lattice and

105

(3,3,3)

(3,2,2)

(2,2,2)

(4,4,4)

(3,3,2)

(3,3,1) (2,3,2)

(2,1,2)

(3,3,3)

(0,0,0)

(4,4,4)

(2,3,3)

(1,1,2)

(2,2,1)

(2,2,2)(3,2,1)

(3,2,2)

(2,1,1)

(3,1,1)

(2,3,1)

(1,1,1)

(3,1,2)

(d)

V

W
Y

X ZU

components
strongly connected

: trivial consistent cut

: consistent cut that satisfies the predicate

: non−trivial consistent cut

: join−irreducible element

(0,0,0)

(2,2,1)

(1,1,1)

(1,1,2)

(2,3,3)

(3,2,1)
(b)

U

WV

X

Y

Z

(c)

(a)

T V

W

D

C

p3

p2

p1

g1 g2 g3 g4

1e 2e 3e 4e

f1 f2 f3 f4

p3

p2

p1

g1 g2 g3 g4

1e 2e 3e 4e

f1 f2 f3 f4

Figure 5.1: (a) A computation, (b) the lattice of its consistent cuts, (c) the sublattice
of the consistent cuts that satisfy the regular predicate “all channels are empty”,
and (d) the poset induced on the set of join-irreducible elements of the sublattice.

106

JI(L) be the set of its join-irreducible elements. Then the map f : L −→ C(J I(L))

defined by

f(a) = { x ∈ JI(L) | x 6 a }

is an isomorphism of L onto C(JI(L)). Dually, let P be a finite poset. Then the map

g : P −→ JI(C(P)) defined by

g(a) = { x ∈ P | x 6 a }

is an isomorphism of P onto J I(C(P)).

Note that the above theorem can also be stated in terms of meet-irreducible

elements.

Example 5.1 Consider the computation shown in Figure 5.1(a). Figure 5.1(b)

depicts the lattice of consistent cuts of the computation. In the figure, the label of

a consistent cut indicates the number of events that have to be executed on each

process to reach the cut. For example, the label of the consistent cut C is (3, 2, 1)

implying that to reach C, three events have to executed on process p1, two on p2 and

one on p3. Mathematically, C = {e1, e2, e3, f1, f2, g1}.
In Figure 5.1(b), the consistent cuts of the computation corresponding to

the join-irreducible elements of the lattice have been drawn in thick lines. There

are exactly eight join-irreducible elements which is same as the number of strongly

connected components of the computation. Note that the poset induced on the set of

strongly connected components of the computation is isomorphic to the poset induced

on the set of join-irreducible elements of the lattice. It can be verified that every

consistent cut of the computation can be expressed as the join of some subset of

these join-irreducible elements. For example, the consistent cut C can be written as

the join of the consistent cuts T and V . Moreover, the join of every subset of these

join-irreducible elements is a consistent cut of the computation. For instance, the

join of the consistent cuts T , V and W is given by the consistent cut D.

107

In this chapter, we are concerned with only a subset of consistent cuts and

not the entire set of consistent cuts. To that end, the notion of sublattice of a lattice

comes in useful [DP90]. Given a lattice, a subset of its elements forms a sublattice

if the subset is closed under the meet and join operators of the given lattice. In our

case, the meet and join operators are set intersection and set union, respectively.

Clearly, the set of consistent cuts satisfying a regular predicate forms a sublattice of

the lattice of consistent cuts. Finally, we make an important observation regarding

a sublattice which will help us prove the desired result.

Lemma 5.11 ([DP90]) A sublattice of a distributive lattice is also a distributive

lattice.

Example 5.2 In Figure 5.1(b), the consistent cuts for which the regular predicate

“all channels are empty” evaluates to true have been shaded. Figure 5.1(c) depicts

the poset induced on these consistent cuts. It can be verified that the poset forms

a sublattice of the lattice in Figure 5.1(b). Moreover, the sublattice is, in fact, a

distributive lattice.

We now prove that the slice for a predicate is lean if and only if the predicate

is regular.

Theorem 5.12 The slice of a computation with respect to a predicate is lean if and

only if the predicate is regular.

Proof: (if) Assume that the predicate, say b, is regular. Thus the set of consistent

cuts that satisfy the predicate, denoted by Cb, forms a sublattice of the lattice of

consistent cuts (of the computation). From Lemma 5.11, Cb is in fact a distributive

lattice. Let J I(Cb) denote the set of join-irreducible elements of Cb. From Birkhoff’s

Representation Theorem, Cb is isomorphic to C(J I(Cb)). Thus the required slice is

108

given by the poset induced on JI(Cb) by ⊆. Moreover, every consistent cut of the

slice satisfies the predicate and therefore the slice is lean.

(only if) Assume that the slice of a computation with respect to a predicate is lean.

From the proof of Theorem 5.9, the set of consistent cuts of the slice is closed under

set union and set intersection. This in turn implies that the set of consistent cuts

that satisfy the predicate is closed under set union and set intersection. Thus the

predicate is regular. �

Example 5.3 The sublattice shown in Figure 5.1(c) has exactly six join-irreducible

elements, namely U , V , W , X, Y and Z. These elements or consistent cuts have

been drawn in thick lines. It can be ascertained that every consistent cut in the

sublattice can be written as the join of some subset of the consistent cuts in J =

{U, V,W,X, Y,Z}. In other words, every consistent cut of the computation that

satisfies the regular predicate “all channels are empty” can be represented as the join

of some subset of the elements in J . Moreover, the join of every subset of elements

in J yields a consistent cut contained in the sublattice and hence a cut that satisfies

the regular predicate. The poset induced on the elements of J by the relation ⊆ is

shown in Figure 5.1(d). This poset corresponds to the slice of the computation shown

in Figure 5.1(a) with respect to the regular predicate “all channels are empty”.

5.5.2 General Predicates

To prove that the slice exists even for a predicate that is not a regular predicate,

we define a closure operator, denoted by reg, which, given a computation, converts

an arbitrary predicate into a regular predicate satisfying certain properties. Given

a computation 〈E,→〉, let R(E) denote the set of predicates that are regular with

respect to the computation (→ is implicit).

109

Definition 5.4 (reg) Given a predicate b, we define reg (b) as the predicate that

satisfies the following conditions:

1. it is regular, that is, reg (b) ∈ R(E),

2. it is weaker than b, that is, b ⇒ reg (b), and

3. it is stronger than any other predicate that satisfies (1) and (2), that is,

〈∀ b′ : b′ ∈ R(E) : (b ⇒ b′) ⇒ (reg (b) ⇒ b′)〉.

Informally, reg (b) is the strongest regular predicate weaker than b. In general,

reg (b) not only depends on the predicate b, but also on the computation under

consideration. We assume the dependence on computation to be implicit and make

it explicit only when necessary. The next theorem establishes that reg (b) exists for

every predicate b. Observe that the slice for b is given by the slice for reg (b). Thus

slice exists and is uniquely defined for all predicates.

Theorem 5.13 Given a predicate b, reg (b) exists and is uniquely defined.

Proof: Let Rb(E) be the set of regular predicates in R(E) weaker than b. Observe

that Rb(E) is non-empty because true is a regular predicate weaker than b and

therefore contained in Rb(E). We set reg (b) to the conjunction of all predicates in

Rb(E). Formally,

reg (b) ,
∧

q ∈Rb(E)

q

It remains to be shown that reg (b) as defined satisfies the three required

conditions. Now, condition (1) holds because the class of regular predicates is closed

under conjunction. Condition (2) holds because every predicate in Rb(E) is weaker

than b and hence their conjunction is weaker than b. Finally, let b′ be a predicate

that satisfies conditions (1) and (2). Note that b′ ∈ Rb(E). Since conjunction of

110

dcba

e f g

t f

t f f

(a)

{b,f}

{b,f}

{c,f}

\/

(d)(c)

(b)

{a,e}

{b,e} {a,f}

{}

{d,g}

{d,g}

{a,e}

{b,e} {a,f}

{}

: trivial consistent cut : non−trivial consistent cut

: consistent cut that satisfies

dcba

e f g

t f

t f f

X

Y Z

p1

p2

x1

x2

p1

p2

x1

x2

x1 x2

Figure 5.2: (a) A computation, (b) the lattice of its consistent cuts, (c) the sublattice
of its consistent cuts that satisfy reg (x1 ∨ x2), and (d) its slice with respect to
reg (x1 ∨ x2) (and therefore also with respect to x1 ∨ x2).

predicates is stronger than any of its conjunct, reg (b) is stronger than b′. Thus

reg (b) satisfies condition (3). �

Thus, given a computation 〈E,→〉 and a predicate b, the slice of 〈E,→〉 with

respect to b can be obtained by first applying reg operator to b to get reg (b) and

111

then computing the slice of 〈E,→〉 with respect to reg (b).

Example 5.4 Consider the computation shown in Figure 5.2(a). The lattice of its

consistent cuts is depicted in Figure 5.2(b). Each consistent cut is labeled with its

frontier. The consistent cuts for which the predicate x1 ∨ x2 evaluates to true have

been shaded in the figure. Clearly, the set of consistent cuts that satisfy x1 ∨x2 does

not form a sublattice. The smallest sublattice that contains the subset is shown in

Figure 5.2(c); the sublattice corresponds to the predicate reg (x1 ∨ x2). The slice for

the regular predicate reg (x1 ∨ x2) and hence for the predicate x1 ∨ x2 is portrayed

in Figure 5.2(d).

Theorem 5.14 reg is a closure operator. Formally,

1. reg (b) is weaker than b, that is, b ⇒ reg (b),

2. reg is monotonic, that is, (b ⇒ b′) ⇒ (reg (b) ⇒ reg (b′)), and

3. reg is idempotent, that is, reg (reg (b)) ≡ reg (b).

Proof: (reg (b) is weaker than b) Follows from the definition.

(reg is monotonic) Since reg (b′) is weaker than b′, it is also weaker than b. That is,

reg (b′) is a regular predicate weaker than b. By definition, reg (b) is the strongest

regular predicate weaker than b. Therefore reg (b) is stronger than reg (b′) or, in

other words, reg (b) ⇒ reg (b′).

(reg is idempotent) Follows from the fact that reg (b) is a regular predicate and is

weaker than reg (b). �

From the above theorem it follows that [DP90, Theorem 2.21],

Corollary 5.15 〈R(E);⇒〉 forms a lattice.

112

The meet and join of two regular predicates b1 and b2 is given by

b1 ⊓ b2 , b1 ∧ b2

b1 ⊔ b2 , reg (b1 ∨ b2)

The dual notion of reg (b), the weakest regular predicate stronger than b, is

also conceivable. However, such a predicate may not always be unique.

Example 5.5 In the previous example, three consistent cuts satisfy the predicate

x1 ∨ x2, namely X, Y and Z, as shown in Figure 5.2(b). Two distinct subsets of

the set S = {X,Y,Z}, given by {X,Y } and {X,Z}, form maximal sublattices of S
implying that there is no weakest regular predicate that is stronger than x1 ∨ x2.

5.6 Representing a Slice

Any directed graph that is cut-equivalent to a slice constitutes a valid representation

of the slice. However, for computational purposes, it is preferable to select those

graphs to represent a slice that have fewer edges and can be constructed cheaply. In

this section, we show that every slice can be represented by a directed graph with

O(|E|) vertices and O(n|E|) edges.

Consider a regular predicate b and a computation 〈E,→〉. Recall that

C(〈E,→〉b) denote the set of consistent cuts of 〈E,→〉b, or, in other words, the

set of consistent cuts of 〈E,→〉 that satisfy b. For reasons of clarity, we abbreviate

C(〈E,→〉b) by Cb(E). From Birkhoff’s Representation Theorem, the poset induced

on JI(Cb(E)) by the relation ⊆ is cut-equivalent to the slice 〈E,→〉b. It can be

proved that |J I(Cb(E))| is upper-bounded by |E|. Therefore the directed graph

corresponding to 〈J I(Cb(E));⊆〉 may have Ω(|E|2).
In order to reduce the number of edges, we exploit properties of join-

irreducible elements. For an event e, let Jb(e) denote the least consistent cut of

113

〈E,→〉 that satisfies b and contains e. In case no consistent cut containing e that

also satisfies b exists or when e ∈ ⊤, Jb(e) is set to E—one of the trivial consistent

cuts. Here, we use E as a sentinel cut. We first show that Jb(e) is uniquely defined.

Let ie be the predicate defined as follows:

C |= ie , (e ∈ C)

It can be proved that ie is a regular predicate. Next, consider the predicate be

defined as the conjunction of b and ie. Since the class of regular predicates is closed

under conjunction, be is also a regular predicate. The consistent cut Jb(e) can now be

reinterpreted as the least consistent that satisfies be. Since be is regular, the notion of

least consistent cut that satisfies be is uniquely defined, thereby implying that Jb(e)

is uniquely defined. For purposes of computing the slice only, we assume that both

trivial consistent cuts satisfy the given regular predicate. That is, {∅, E} ⊆ Cb(E).

The next lemma establishes that Jb(e) is a join-irreducible element of Cb(E).

Lemma 5.16 Jb(e) is a join-irreducible element of the distributive lattice

〈Cb(E);⊆〉.

Proof: Suppose Jb(e) can be expressed as the join (in our case, set union) of two

consistent cuts in Cb(E), say C and D. That is, Jb(e) = C∪D, where both C and D

satisfy b. Our obligation is to show that either Jb(e) = C or Jb(e) = D. Since Jb(e)

contains e, either C or D must contain e. Without loss of generality, assume that

e belongs to C. By definition of union, C ⊆ Jb(e). Further, since C is a consistent

cut containing e that satisfies b and Jb(e) is the least such cut, Jb(e) ⊆ C. Thus

Jb(e) = C. �

It is possible that Jb(e)s are not all distinct. Let Jb(E) denote the set

{Jb(e) | e ∈ E }. Does Jb(e) capture all join-irreducible elements of Cb(E)? The

following lemma provides the answer.

114

Lemma 5.17 Every consistent cut in Cb(E) can be expressed as the join of some

subset of consistent cuts in Jb(E).

Proof: Consider a consistent cut C in Cb(E). Let D(C) be the consistent cut

defined as follows:

D(C) =
⋃

e∈C

Jb(e)

We prove that D(C) is actually equal to C. Since, by definition, e ∈ Jb(e),

each event in C is also present in D(C). Thus C ⊆ D(C). To prove that D(C) ⊆ C,

consider an event e ∈ C. Since C is a consistent cut containing e that satisfies b

and Jb(e) is the least such cut, Jb(e) ⊆ C. More precisely, for each event e ∈ C,

Jb(e) ⊆ C. This implies that D(C) ⊆ C. �

From the previous two lemmas, it follows that Jb(E) = J I(Cb(E)).

Combining it with Birkhoff’s Representation Theorem, we can deduce that:

Theorem 5.18 Given a computation 〈E,→〉 and a regular predicate b, the poset

〈Jb(E);⊆〉 is cut-equivalent to the slice 〈E,→〉b.

Next, to reduce the number of edges, rather than constructing a directed

graph with join-irreducible elements as vertices, we construct a directed graph with

events as vertices. Theorem 5.18 implies that:

Observation 5.1 The directed graph Gb(E) with the set of vertices as E and an

edge from an event e to an event f if and only if Jb(e) ⊆ Jb(f) is cut-equivalent to

the slice 〈E,→〉b.

Whereas the poset representation of a slice is better for presentation purposes,

the graph representation is more suited for slicing algorithms. From the way the

graph Gb(E) is constructed, clearly, two events e and f belong to the same strongly

connected component of Gb(E) if and only if Jb(e) = Jb(f). As a result, there is

115

a b c d

ge h

{a,e}
{d,h}

{b,c,f,g}

a b c d

gfe h

f

p1

p2

p1

p2

(c)

(b)(a)

Figure 5.3: (a) A computation, (b) its slice with respect to the predicate “all channels
are empty”, and (c) the skeletal representation of the slice.

a one-to-one correspondence between the strongly connected components of Gb(E)

and the join-irreducible elements of Cb(E).

Now, let Fb(e) be a vector whose ith entry denotes the earliest event f on

process pi such that Jb(e) ⊆ Jb(f). Informally, Fb(e)[i] is the earliest event on pi

that is reachable from e in the slice 〈E,→〉b. Using Fb(e)s, we construct a directed

graph we call the skeletal representation of the slice and denote it by Sb(E). The

graph Sb(E) has E as the set of vertices and the following edges:

1. for each event e 6∈ ⊤, there is an edge from e to succ(e), and

2. for each event e and process pi, there is an edge from e to Fb(e)[i].

Example 5.6 Consider the computation shown in Figure 5.3(a) and the predicate

“all channels are empty”. The slice with respect to the predicate is depicted in

Figure 5.3(b). Here, Jb(c) = {a, b, c, e, f, g} and Jb(g) = {a, b, c, e, f, g} = Jb(c).

116

Also, Fb(c) = [b, f] and Fb(g) = [b, f]. The skeletal representation of the slice is

shown in Figure 5.3(c).

To prove that Sb(E) faithfully captures the slice 〈E,→〉b, we prove the fol-

lowing two lemmas. The first lemma establishes that Jb is order-preserving.

Lemma 5.19 (Jb is order-preserving) Given events e and f ,

e → f ⇒ Jb(e) ⊆ Jb(f)

Proof: Consider Jb(f). Since e → f and f ∈ Jb(f), e ∈ Jb(f). Thus Jb(f) is

a consistent cut that contains e and satisfies b. Since Jb(e) is the least such cut,

Jb(e) ⊆ Jb(f). �

The second lemma shows that if Jb(e) ⊆ Jb(f) then there is a path from

event e to event f in Sb(E) and vice versa.

Lemma 5.20 Given events e and f ,

Jb(e) ⊆ Jb(f) ≡ (e, f) ∈ P(Sb(E))

Proof: (⇒) Assume that Jb(e) ⊆ Jb(f). Let proc(f) = pi and g = Fb(e)[i]. Since,

by definition, g is the earliest event on pi such that Jb(e) ⊆ Jb(g), g
P→ f . This

implies that (g, f) ∈ P(Sb(E)). Further, by construction, (e, g) ∈ P(Sb(E)). Thus

(e, f) ∈ P(Sb(E)).

(⇐) It suffices to show that for each edge (u, v) in Sb(E), Jb(u) ⊆ Jb(v). If

v = succ(u) then Jb(u) ⊆ Jb(v) follows from Lemma 5.19. If v = Fb(u)[i], where

pi = proc(v), then Jb(u) ⊆ Jb(v) follows from the definition of Fb(u). �

Finally, from Observation 5.1 and Lemma 5.20, we can conclude that:

Theorem 5.21 Given a computation 〈E,→〉 and a regular predicate b, Sb(E) is

cut-equivalent to 〈E,→〉b.

117

It is easy to see that Sb(E) has O(|E|) vertices and O(n|E|) edges. In the

next section we give efficient polynomial-time algorithms to compute Jb(e) and Fb(e)

for each event e when b is a regular predicate.

5.7 Slicing for Regular Predicates

In this section, we discuss our results on slicing with respect to a regular predicate.

They are discussed here separately from our results on slicing with respect to a

general predicate because, as proved in Section 5.5.1, the slice for a regular predicate

is lean and therefore furnishes more information than the slice for a general predicate.

First, we present an efficient O(n2|E|) algorithm to compute the slice for a regular

predicate. The algorithm is then optimized for the case when a regular predicate can

be decomposed into a conjunction of clauses, where each clause itself is a regular

predicate but depends on variables of only a small subset of processes. We also

provide optimal algorithms for special cases of regular predicates such as conjunctive

predicates and certain monotonic channel predicates. Next, we show how a regular

predicate can be monitored under various modalities [CM91, GW91, TG99, MG00,

SUL00], specifically possibly, invariant and controllable, using slicing. Finally, we

demonstrate that results pertaining to consistent global checkpoints can be derived

as special cases of slicing.

5.7.1 Computing the Slice for Regular Predicates

In this section, given a computation 〈E,→〉 and a regular predicate b, we describe

an efficient O(n2|E|) algorithm to compute the slice 〈E,→〉b. In particular, we

construct Sb(E)—the skeletal representation of 〈E,→〉b. To that end, it suffices to

give an algorithm to compute Fb(e) for each event e.

Our approach is to first compute Jb(e) for each event e. To that end, consider

the predicate be defined in Section 5.6. Since be is a regular predicate, it is also a

118

Algorithm Algo 5.1 :

Input: (1) a computation 〈E,→〉, (2) a regular predicate b, and

(3) a process pi

Output: Jb(e) for each event e on pi

1 C := ⊥;

2 for each event e on pi do // visited in the order given by
P→

3 done := false;

4 if C = E then done := true;

5 while not(done) do

6 if there exist events f and g in frontier(C)

such that succ(f) → g then // C is not a consistent cut

7 C := C ∪ {succ(f)}; // advance beyond f

else // C is a consistent cut

8 if C = E or C |= be then done := true;

else

9 f := forbidden be
(C); // invoke the linearity property

10 C := C ∪ {succ(f)}; // advance beyond f

endif;

endif;

endwhile;

11 Jb(e) := C;

endfor;

Figure 5.4: The algorithm Algo 5.1 to compute Jb(e) for each event e on process pi.

linear predicate. (A predicate is said to be linear if, given two consistent cuts that

satisfy the predicate, the consistent cut given by their set intersection also satisfies

the predicate.) Chase and Garg [CG98] give an efficient algorithm to find the least

consistent cut that satisfies a linear predicate. Their algorithm is based on the

linearity property defined in Chapter 4. Please refer to the chapter for details.

Figure 5.4 describes the algorithm Algo 5.1 to compute Jb(e) for each event e

on process pi, using the linearity property, in a single scan of the computation from

119

Algorithm Algo 5.2 :

Input: (1) a computation 〈E,→〉, (2) Jb(e) for each event e, and

(3) a process pi

Output: Fb(e) for each event e on pi

1 for each process pj do

2 f := ⊥j ;

3 for each event e on pi do // visited in the order given by
P→

4 while Jb(e) 6⊆ Jb(f) do f := succ(f); endwhile;

5 Fb(e)[j] := f ;

endfor;

endfor;

Figure 5.5: The algorithm Algo 5.2 to compute Fb(e) for each event e on process pi.

left to right. This is possible because, from Lemma 5.19, once we have computed

Jb(e), we do not need to start all over again to determine Jb(succ(e)) but can rather

continue on from Jb(e) itself. The algorithm basically adds events one-by-one to the

cut constructed so far until either all events are exhausted or the desired consistent

cut is reached.

The time-complexity analysis of the algorithm Algo 5.1 is as follows. Each

iteration of the while loop at line 5 has O(n) time-complexity assuming that the

time-complexity of invoking forbidden be
at line 9 once is O(n). Moreover, the while

loop is executed at most O(|E|) times because in each iteration either we succeed in

finding the required consistent cut or we add a new event to C. Since there are at

most |E| events in the computation, the while loop cannot be executed more than

O(|E|) times. Thus the overall time-complexity of the algorithm Algo 5.1 is O(n|E|)
implying that Jb(e) for each event e can be computed in O(n2|E|) time.

Finally, we give an algorithm to compute Fb(e) for each event e provided Jb(e)

120

for each event e is given to us. We first establish a lemma similar to Lemma 5.19

for Fb. The lemma allows us to compute the jth entry of Fb(e) for each event e on

process pi in a single scan of the events on process pj from left to right.

Lemma 5.22 Given events e and f and a process pi,

e → f ⇒ Fb(e)[i]
P→ Fb(f)[i]

Proof: Assume that e → f . Let g = Fb(e)[i] and h = Fb(f)[i]. Note that proc(g) =

proc(h) = pi. By definition of Fb(f), Jb(f) ⊆ Jb(h). Since, from Lemma 5.19,

Jb(e) ⊆ Jb(f), Jb(e) ⊆ Jb(h). Again, by definition of Fb(e), g is the earliest event

on pi such that Jb(e) ⊆ Jb(g). Therefore g
P→ h. �

Figure 5.5 depicts the algorithm Algo 5.2 to compute Fb(e) for each event e

on process pi. The algorithm is self-explanatory and its time-complexity analysis

is as follows. Let Ej denote the set of events on process pj. The outer for loop at

line 1 is executed exactly n times. For jth iteration of the outer for loop, the while

loop at line 4 is executed at most O(|Ei| + |Ej |) times. Each iteration of the while

loop has O(1) time-complexity because whether Jb(e) ⊆ Jb(f) can be ascertained

by performing only a single comparison. Thus the overall time-complexity of the

algorithm Algo 5.2 is O(n|Ei| + |E|). Summing up over all processes, Fb(e) for each

event e can be determined in O(n|E|) time. A summary of the overall algorithm is

presented in Figure 5.6.

5.7.2 Optimizing for the Special Case: Computing the Slice for

Decomposable Regular Predicates

In this section, we explore the possibility of a faster algorithm for the case when a

regular predicate can be expressed as a conjunction of clauses such that each clause

is again a regular predicate but spans a small fraction of processes. An example of

121

Algorithm Algo 5.3 :

Input: (1) a computation 〈E,→〉, and (2) a regular predicate b

Output: the slice 〈E,→〉b

1 compute Jb(e) for each event e using Algo 5.1;

2 compute Fb(e) for each event e using Algo 5.2;

3 construct Sb(E) the skeletal representation of 〈E,→〉b;

Figure 5.6: The algorithm Algo 5.3 to compute the slice for a regular predicate.

such a predicate is
∧

16i,j6n(|counteri − counterj | 6 △ij), where each counteri is a

monotonically non-decreasing variable on process pi. In this example, each clause

depends on variables of at most two processes. We describe the algorithm in two

steps. In the first step, we give a fast algorithm to compute the slice for each clause.

In the second step, we describe how to combine the slices for all clauses efficiently

to obtain the slice for the desired regular predicate.

Step 1

Consider a computation 〈E,→〉 and a regular predicate b that depends on variables

of a subset Q of the set of processes P . Without loss of generality, assume that →
is a transitive relation. We denote the projection of E on Q by E(Q) and that of →
on Q × Q by →(Q). Thus the projection of the computation 〈E,→〉 on Q is given

by 〈E(Q),→(Q)〉.
We first show that the slice 〈E,→〉b of the computation 〈E,→〉 can be

recovered exactly from the slice 〈E(Q),→(Q)〉b of the projected computation

〈E(Q),→(Q)〉. To that end, we extend the definition of Fb(e) and define Fb(e,Q)

to be a vector whose ith entry represents the earliest event on process pi that is

reachable from e in the slice 〈E(Q),→(Q)〉b. Thus Fb(e) = Fb(e, P), F(e,Q) =

122

Ftrue(e,Q) and F(e) = Ftrue(e). We next define Kb(e) as follows:

Kb(e)[i] =







Fb(e,Q)[i] : (e ∈ E(Q)) ∧ (pi ∈ Q)

F(e)[i] : otherwise

We claim that it suffices to know Kb(e) for each event e to be able to compute

the slice 〈E,→〉b. Before we establish our claim, we define some notation. When

events e and f occur on the same process and e occurred before f in real-time, then

we write e
P→ f , and let

P→ be the reflexive closure of
P→. We now build a graph

Hb(E) that is similar to the skeletal representation Sb(E) of 〈E,→〉b except that we

use Kb instead of Fb in its construction. The next lemma proves that every path in

Hb(E) is also a path in Sb(E).

Lemma 5.23 For each event e and process pi, Fb(e)[i]
P→ Kb(e)[i].

Proof: Clearly, for each event e and process pi, Fb(e)[i]
P→ F(e)[i]. Thus we only

need to prove that Fb(e)[i]
P→ Fb(e,Q)[i] when e ∈ E(Q) and pi ∈ Q .

Assume, on the contrary, that, for some event e ∈ E(Q) and process pi ∈
Q, Fb(e,Q)[i]

P→ Fb(e)[i]. For convenience, let f = Fb(e,Q)[i] and g = Fb(e)[i].

Consider the least consistent cut C of the slice 〈E,→〉b that contains f . Note that

C does not contain e. This is because, by definition of Fb(e)[i], g is the earliest

event on pi that is reachable from e in 〈E,→〉b. Since f occurs before g on pi, f is

not reachable from e in 〈E,→〉b and therefore e is not contained in C. Let C(Q)

denote the projection of C on Q. Since C satisfies b and b depends only on variables

of processes in Q, C(Q) satisfies b. However, any consistent cut of 〈E(Q),→(Q)〉b
that contains f must contain e. This is because, by definition of Fb(e,Q)[i], there

is a path from e to f in 〈E(Q),→(Q)〉b. Thus C(Q) is not a consistent cut of

〈E(Q),→(Q)〉b which contradicts the fact that 〈E(Q),→(Q)〉b contains all consistent

cuts of 〈E(Q),→(Q)〉 that satisfy b. This establishes the lemma. �

We now prove the converse, that is, every path in Sb(E) is also a path in

123

Algorithm Algo 5.4 :

Input: (1) a computation 〈E,→〉, (2) a subset of processes Q, and

(3) a regular predicate b that depends only on variables of Q

Output: the slice 〈E,→〉b

1 compute F(e) for each event e;

2 compute the projected computation 〈E(Q),→(Q)〉;
3 compute the slice of the projected computation 〈E(Q),→(Q)〉b using the

algorithm Algo 5.3;

Also, compute Fb(e, Q) for each event e;

4 compute Kb(e) for each event e as follows:

Kb(e)[i] =

{

Fb(e, Q)[i] : (e ∈ E(Q)) ∧ (pi ∈ Q)

F(e)[i] : otherwise

5 construct the directed graph Hb(E) with E as its set of vertices and

edges as follows:

1. for each event e 6∈ ⊤, there is an edge from e to succ(e), and

2. for each event e and process pi, there is an edge from e to Kb(e)[i].

Figure 5.7: The algorithm Algo 5.4 to compute the slice for a regular predicate that
depends on variables of only a subset of processes.

Hb(E). To that end, by virtue of Lemma 5.1, it suffices to show that every consistent

cut of Hb(E) is also a consistent cut of Sb(E) or, equivalently, every consistent cut

of Hb(E) satisfies b.

Lemma 5.24 Every consistent cut of Hb(E) satisfies b.

Proof: Consider a consistent cut C of Hb(E). It is sufficient to prove that the

projection of C on Q, denoted by C(Q), is a consistent cut of 〈E(Q),→(Q)〉b.
Assume, on the contrary, that C(Q) is not a consistent cut of 〈E(Q),→(Q)〉b. Thus

there exist events e and f such that there is a path from e to f in 〈E(Q),→(Q)〉b,

124

f is in C(Q) but e is not. Let pi denote the process on which f occurs. Clearly,

Fb(e,Q)[i]
P→ f . This implies that there is a path from e to f in Hb(E) or, in other

words, C is not a consistent cut of Hb(E)—a contradiction. �

Finally, the previous two lemmas can be combined to give the following

theorem:

Theorem 5.25 Hb(E) is cut-equivalent to Sb(E).

Note that the graph Hb(E) may in fact be different from the skeletal

representation Sb(E). However, the above theorem guarantees that the two will

be path-equivalent. Figure 5.7 describes the algorithm Algo 5.4 to compute the slice

for a regular predicate that depends on variables of only a subset of processes in

detail. We assume that the computation is given to us as n queues of events—one

for each process. Further, the Fidge/Mattern’s timestamp ts(e) for each event e is

also available to us. The algorithm Algo 5.2 can be used to compute F(e) for each

event e in O(n|E|) (b is true in this case). The projected computation can then be

computed at line 2 in a straightforward fashion. The slice of the projected com-

putation can be computed at line 3 in O(|Q|2|E(Q)|) time. The vector Kb(e) for

each event e can be determined at line 4 in O(n|E|) time. Finally, the graph Hb(E)

can be constructed at line 5 in O(n|E|) time. Thus the overall time-complexity of

the algorithm is O(|Q|2|E(Q)| + n|E|). If |Q| is small, say at most
√

n, then the

time-complexity of the algorithm is O(n|E|)—a factor of n faster than computing

the slice directly using the algorithm Algo 5.3.

A natural question to ask is: “Can this technique of taking a projection of

a computation on a subset of processes, then computing the slice of the projection

and finally mapping the slice back to the original set of processes be used for a non-

regular predicate as well?” The answer is no in general as the following example

suggests.

125

(c) (d)

(b)(a) strongly connected
components

x f f

(e)

ff t

t

x

e 4e

f1 ff 42

3e2

f

f2

e1
1p

2p

3f

3

p

p1
1e 2e 4e

f

e

4f2

3e

f3

3

2g 3g

2

p3

p2

p1

g1 g4

1e 2e 4e

f1 f4f2

1

3g2

3e

f3

4f1f

e4e2e1

4g1g

1p

f

2

g
p3

g1 g4
g3g2

1e 2e 4e

f1 f4f2

3e

f3

p

3p

1

p2

p1

2

Figure 5.8: (a) A computation, (b) its slice with respect to the predicate x1 ∨ x2,
(c) its projection on processes p1 and p2, (d) the slice of the projected computation
with respect to the predicate x1 ∨ x2, and (e) the slice computed in (d) mapped to
the original set of processes.

Example 5.7 Consider the computation shown in Figure 5.8(a) involving three

processes p1, p2 and p3. Let x1 and x2 be boolean variables on processes p1 and p2,

respectively. In the figure, the solid events, namely e3 and f3, satisfy the respective

boolean variable. The slice of the computation for the (non-regular) predicate x1∨x2

is depicted in Figure 5.8(b). Figure 5.8(c) displays the projection of the computation

126

on processes on which the predicate x1 ∨ x2 depends, namely p1 and p2. The slice

of the projected computation is shown in Figure 5.8(d) and its mapping back to the

original set of processes is depicted in Figure 5.8(e). As it can be seen, the slice

computed using the algorithm Algo 5.4 (Figure 5.8(e)) is different from the actual

slice (Figure 5.8(b)). For instance, events g2 and g3 belong to the same meta-event

in the actual slice but not in the slice computed using the algorithm Algo 5.4. The

reason for this difference is as follows. Since the predicate x1 ∨ x2 is non-regular,

the slice of the projected computation shown in Figure 5.8(d) contains the consistent

cut X = {e1, e2, f1, f2} which does not satisfy x1 ∨x2 but has to be included anyway

so as to complete the sublattice. Now, on mapping this slice back to the original set

of processes, the resulting slice depicted in Figure 5.8(e) will contain all consistent

cuts of the original computation whose projection on {p1, p2} is X. There are three

such consistent cuts, namely X ∪ {g1}, X ∪ {g1, g2} and X ∪ {g1, g2, g3}. However,

only one of these consistent cuts, given by X ∪ {g1, g2, g3}, is required to complete

the sublattice for the actual slice.

It can be verified that the slice computed using the algorithm Algo 5.4 for

a non-regular predicate will, in general, be bigger than the actual slice. Thus the

algorithm Algo5.4 gives a fast way to compute an approximate slice for a non-regular

predicate (e.g., linear predicate).

Step 2

We use the above algorithm to devise a faster algorithm for computing the slice

for a regular predicate b that can be expressed as conjunction of regular predicates

b(j), 1 6 j 6 m, such that each b(j) is a function of variables on a subset of at

most k processes Qj . Let l denote the maximum number of subsets from the set

{Qj |1 6 j 6 m}, that contain a given process. For example, for the regular predicate
∧

16i,j6n(|counteri − counterj| 6 △ij), where each counteri is a monotonically non-

127

for each event e ∈ E do

Kb(e) := F(e);

endfor;

for each conjunct b(j) do

for each event e ∈ E(Qj) do

for each process pi ∈ Qj do

Kb(e)[i] := min{ Kb(e)[i], Fb(j) (e, Qj)[i] };
endfor;

endfor;

endfor;

Figure 5.9: Computing Kb(e) for each event e.

decreasing variable on process pi, k = 2 and l = n.

To obtain the slice with respect to b, we first compute the slice

〈E(Qj),→(Qj)〉b(j) with respect to each conjunct b(j) using the algorithm in [GM01],

thereby giving us the vector Fb(j)(e,Qj) for each event e ∈ Qj. We next compute

the vector Kb(e) for each event e as shown in Figure 5.9.

Intuitively, among all slices for clauses that contain some variable on process

pi, Kb(e)[i] is the earliest event on pi reachable from e in some slice. Formally, let

Cli denote the set of clauses that depend on some variable on pi. Then,

Kb(e)[i] = min
b(j)∈Cli

{Fb(j)(e,Qj)[i]}

It can be easily verified that the graph Hb(E) then constructed using Kb(e)

for each event e (in a similar fashion as in Step 1) is actually cut-equivalent to the

slice 〈E,→〉b. The proof is similar to the proof in Step 1 and has been omitted. The

overall time-complexity of the algorithm is given by:

O(n|E|) +
∑

16j6m

O(|Qj |2|E(Qj)|)

128

= { for each Qj, |Qj| 6 k }
O(n|E| + k2

∑

16j6m

|E(Qj)|)

= { simplifying }
O(n|E| + k2l|E|) = O((n + k2l)|E|)

If k is constant and l is O(n) then the overall time-complexity is O(n|E|)
which is a factor of n less than computing the slice directly using the algorithm

Algo 5.3.

5.7.3 Optimal Algorithms for Special Cases

We now present optimal algorithms for computing the slice for special cases of

regular predicates, namely conjunctive predicates and certain monotonic channel

predicates. Our algorithms have O(|E|) time-complexity.

Computing the Slice for Conjunctive Predicates

Consider a computation 〈E,→〉 and a conjunctive predicate b. The first step is to

partition events on each process into true events and false events. Having done that,

we then construct a graph Hb(E) with vertices as the events in E and the following

edges:

1. from an event, that is not a final event, to its successor,

2. from a send event to the corresponding receive event, and

3. from the successor of a false event to the false event.

For the purpose of building the graph, we assume that all final events are

true events. Therefore every false event has a successor. The first two types of

edges ensure that the Lamport’s happened-before relation [Lam78] is contained in

129

: true event : false event

f

f

f f t

f f t t

f f t

f f t t

p2

p1
1x

x2

p2

p1
1x

x2

(a)

t

t

(b)

Figure 5.10: (a) A computation, and (b) its slice with respect to the conjunctive
predicate x1 ∧ x2.

P(Hb(E)). Consider the computation depicted in Figure 5.10(a) and the conjunctive

predicate x1 ∧ x2. The corresponding graph constructed as described is shown in

Figure 5.10(b). We now establish that the above-mentioned edges are sufficient

to eliminate all those consistent cuts of the computation that do not satisfy the

conjunctive predicate.

Lemma 5.26 Every consistent cut of Hb(E) satisfies b.

Proof: It is sufficient to prove that no consistent cut of Hb(E) contains a false event

in its frontier. Consider a consistent cut C of Hb(E). Assume, on the contrary, that

C contains a false event, say e, in its frontier. Since every false event has a successor,

by construction, there is an edge from the successor of e, say f , to e. Therefore f

also belongs to C. This contradicts the fact that e is the last event on its process

130

to be contained in C. �

We next show that the above constructed graph retains all consistent cuts of

the computation that satisfy the conjunctive predicate.

Lemma 5.27 Every consistent cut of 〈E,→〉 that satisfies b is a consistent cut of

Hb(E).

Proof: Consider a consistent cut C of 〈E,→〉 that satisfies b. Assume, on the

contrary, that C is not a consistent cut of Hb(E). Thus there exist events e and f

such that there is an edge from e to f in Hb(E), f belongs to C but e does not.

Since C is a consistent cut of 〈E,→〉, the edge from e to f could only of type (3).

Equivalently, e and f occur on the same process, e is the successor of f , and f is

a false event. Again, since f is contained in C but its successor e is not, f belongs

to the frontier of C. However, C satisfies b and therefore cannot contain any false

event in its frontier. �

From the previous two lemmas, it follows that:

Theorem 5.28 Hb(E) is cut-equivalent to 〈E,→〉b.

It is easy to see that the graph Hb(E) has O(|E|) vertices, O(|E|) edges (at

most three edges per event assuming that an event that is not local either sends at

most one message or receives at most one message but not both) and can be built in

O(|E|) time. Thus the algorithm has O(|E|) overall time-complexity. It also gives

us an O(|E|) algorithm to evaluate possibly : b when b is a conjunctive predicate.

Computing the Slice for Monotonic Channel Predicates

We present an optimal algorithm to compute the slice with respect to monotonic

channel predicates such as:

131

• ∧

i,j∈[1..n]

(at most kij messages in transit from process pi to process pj), and

• ∧

i,j∈[1..n]

(at least kij messages in transit from process pi to process pj)

We only provide the slicing algorithm for the former predicate here. The

slicing algorithm for the latter predicate is very similar and has been omitted. Let

snd〈i, j〉(m) denote the send event on process pi that corresponds to the send of

mth message to process pj. Similarly, let rcv〈i, j〉(m) denote the receive event on

process pi that corresponds to the receive of mth message from process pj .

Consider a computation 〈E,→〉 and a monotonic channel predicate b

discussed in the previous paragraph. As in the case of conjunctive predicate, we

construct a graph Hb(E) with vertices as the events in E and the following edges:

1. from an event, that is not a final event, to its successor,

2. from a send event to the corresponding receive event, and

3. from a receive event rcv〈j, i〉(m) to the send event snd〈i, j〉(m + kij), if it

exists.

As before, the first two types of edges ensure that the Lamport’s happened-

before relation [Lam78] is contained in P(Hb(E)). Consider the computation shown

in Figure 5.11(a) and the monotonic channel predicate “at most one message in

transit in any channel”. Here, k12 = k21 = 1. The corresponding graph constructed

as described is shown in Figure 5.11(b). We now establish that the above-mentioned

edges are sufficient to eliminate all those consistent cuts of the computation that do

not satisfy the channel predicate.

Lemma 5.29 Every consistent cut of Hb(E) satisfies b.

Proof: Consider a consistent cut C of Hb(E) and processes pi and pj. Let

snd〈i, j〉(m) be the send event corresponding to the last message sent by pi to

132

snd 1,2 (2)

2,1 (1)rcv

p1

p2

p1

p2

(b)

(a)

Figure 5.11: (a) A computation, and (b) its slice with respect to the monotonic
channel predicate “at most one message in transit in any channel”.

pj such that snd〈i, j〉(m) ∈ C. Since C is a consistent cut of Hb(E) and there is

an edge from rcv〈j, i〉(m − kij) to snd〈i, j〉(m), rcv〈j, i〉(m − kij) also belongs to C.

This implies that there are at most kij messages in transit from pi to pj. �

We next show that the above constructed graph retains all consistent cuts of

the computation that satisfy the channel predicate.

Lemma 5.30 Every consistent cut of 〈E,→〉 that satisfies b is a consistent cut of

Hb(E).

Proof: Consider a consistent cut C of 〈E,→〉 that satisfies b. Assume, on the

contrary, that C is not a consistent cut of Hb(E). Thus there exist events e and

f such that there is a path from e to f in Hb(E), f belongs to C but e does not.

Since C is a consistent cut of 〈E,→〉, the edge from e to f could only of type (3).

Let e be rcv〈j, i〉(m) and f be snd〈i, j〉(m + kij). Since C satisfies b, rcv〈j, i〉(m)

133

or, equivalently, e belongs to C—a contradiction. �

From the previous two lemmas, it follows that:

Theorem 5.31 Hb(E) is cut-equivalent to 〈E,→〉b.

It is easy to see that the graph Hb(E) has O(|E|) vertices, O(|E|) edges (at

most three edges per event assuming that an event that is not local either sends at

most one message or receives at most one message but not both) and can be built

in O(|E|) time. Thus the algorithm has O(|E|) overall time-complexity.

5.7.4 Applications of Slicing

In this section, we show that slicing can be used to solve other problems in dis-

tributed systems.

Monitoring Regular Predicates under Various Modalities

A predicate can be monitored under four modalities, namely possibly, definitely,

invariant and controllable [CM91, GW91, TG99, MG00, SUL00]. A predicate

is possibly true in a computation if there is a consistent cut of the computation

that satisfies the predicate. On the other hand, a predicate definitely holds in a

computation if it eventually becomes true in all runs of the computation (a run

is a path in the lattice of consistent cuts starting from the initial consistent cut

and ending at the final consistent cut). The modalities invariant and controllable

are duals of the predicates possibly and definitely, respectively. Monitoring has

applications in the areas of testing and debugging and software fault tolerance of

distributed programs.

We show how to monitor a regular predicate under possibly : b, invariant : b

and controllable : b modalities using slicing. Given a directed graph G, let scc(G)

denote the number of strongly connected components of G.

134

Theorem 5.32 A regular predicate is

1. possibly true in a computation if and only if the slice of the computation with

respect to the predicate has at least one non-trivial consistent cut, that is, it

has at least two strongly connected components. Formally,

possibly : b ≡ scc(〈E,→〉b) > 2

2. invariant in a computation if and only if the slice of the computation with

respect to the predicate is cut-equivalent to the computation. Formally,

invariant : b ≡ 〈E,→〉b ∼= 〈E,→〉

3. controllable in a computation if and only if the slice of the computation with

respect to the predicate has the same number of strongly connected components

as the computation. Formally,

controllable : b ≡ scc(〈E,→〉b) = scc(〈E,→〉)

Proof: The first two propositions are easy to verify. We only prove the last

proposition. As for the last proposition, it can be verified that a regular predicate is

controllable in a computation if and only if there exists a path from the initial to the

final consistent cut in the lattice (of consistent cuts) such that every consistent cut

along the path satisfies the predicate [TG98b]. Note that the path from the initial

to the final consistent cut actually corresponds to a longest chain in the lattice of

consistent cuts. For a lattice L, let height(L) denote the length of a longest chain in

L. Therefore if b is controllable in 〈E,→〉, then a longest chain in C(E) is contained

in Cb(E) as well and vice versa. This implies that height(C(E)) 6 height(Cb(E)).

However, Cb(E) ⊆ C(E) implying that height(Cb(E)) 6 height(C(E)). Therefore we

have:

controllable : b ≡ height(C(E)) = height(Cb(E))

135

For a finite distributive lattice L, the length of its longest chain is equal to

the number of its join-irreducible elements [DP90]. In other words, height(L) =

JI(L). Also, as observed before in Section 5.6, for a directed graph, the number

of join-irreducible elements of the lattice generated by its set of consistent cuts—

including the two trivial consistent cuts—is same as the number of its strongly

connected components. As a result, height(C(E)) = J I(C(E)) = scc(〈E,→〉) and

height(Cb(E)) = JI(Cb(E)) = scc(〈E,→〉b). �

Zig-Zag Consistency Theorem: A Special Case of Slicing

We now show how slicing relates to some of the well-known results in checkpointing.

Consider a conjunctive predicate such that the local predicate for an event on a

process is true if and only if the event corresponds to a local checkpoint. It can be

verified that there is a zigzag path [NX95, Wan97] from a local checkpoint c to a

local checkpoint c′ in a computation if and only if there is a path from succ(c), if

it exists, to c′ in the corresponding slice—which can be ascertained by comparing

Jb(succ(c)) and Jb(c
′). An alternative formulation of the consistency theorem in

[NX95] can thus be obtained as follows:

Theorem 5.33 A set of local checkpoints can belong to the same consistent global

snapshot if and only if the local checkpoints in the set are mutually consistent

(including with itself) in the corresponding slice.

Moreover, the R-graph (rollback-dependency graph) [Wan97] is path-

equivalent to the slice when each contiguous sequence of false events on a process is

merged with the nearest true event that occurs later on the process. The minimum

consistent global checkpoint that contains a set of local checkpoints [Wan97] can be

computed by taking the set union of Jb’s for each local checkpoint in the set. The

maximum consistent global checkpoint can be similarly obtained by using the dual

of Jb.

136

5.8 Slicing for General Predicates

In this section, we describe our results on slicing for general predicates. We first

prove that it is in general NP-hard to compute the slice for an arbitrary predicate.

Nonetheless, polynomial-time algorithms can be developed for certain special classes

of predicates. In particular, we provide efficient algorithm to compute the slice for a

linear predicate and its dual—a post-linear predicate [CG98]. We next present the

notion of grafting which can be used to compose two slices; grafting can be done with

respect to meet or join operator as explained later. We provide efficient algorithms

for grafting two slices. Grafting can be used to compute the slice for a predicate

in DNF (disjunctive normal form). We further give three more applications of

grafting. First, we demonstrate how grafting can be employed to compute the slice

for a co-regular predicate—complement of a regular predicate—in polynomial-time.

Second, using grafting, we derive a polynomial-time algorithm to the compute the

slice for a k-local predicate for constant k; a k-local predicate depends on variables of

at most k processes [SS95]. Lastly, we employ grafting to compute an approximate

slice—in polynomial-time—for a predicate composed from regular and co-regular

predicates, linear predicates and post-linear predicates, and k-local predicates, for

constant k, using ∧ and ∨ operators.

5.8.1 NP-Hardness Result

It is evident from the definition of slice that the following is true:

Observation 5.2 The necessary and sufficient condition for the slice of a

computation with respect to a predicate to be non-empty is that there exists a

consistent cut of the computation that satisfies the predicate.

However, finding out whether some consistent cut of the computation satisfies

a predicate is an NP-complete problem [CG95]. Thus it is in general NP-complete

137

to determine whether the slice for a predicate is non-empty. This further implies

that computing the slice for an arbitrary predicate is an NP-hard problem. From

the results of Chapter 3, it follows that this is the case even when the predicate is

a singular 2-CNF (conjunctive normal form) predicate.

5.8.2 Computing the Slice for Linear Predicates and their Dual

Recall that a predicate is linear if given two consistent cuts that satisfy the predicate,

the cut given by their set intersection also satisfies the predicate [CG98]. A post-

linear predicate can defined dually [CG98]. In this section we prove that the slicing

algorithm Algo 5.3 for a regular predicate described in Section 5.7.1 can be used for

a linear predicate as well. For a post-linear predicate, however, a slightly different

version of the algorithm based on the notion of meet-irreducible element will be

applicable.

Consider a computation 〈E,→〉 and a linear predicate b. First, we extend

the definition of Jb(e) for an event e and a regular predicate b to the case when b

is a linear predicate. It can be easily verified that Jb(e) is uniquely defined for each

event e even when b is a linear predicate. Now, consider the directed graph Gb(E)

with vertices as events in E and an edge from an event e to an event f if and only if

Jb(e) ⊆ Jb(f). We establish that the directed graph Gb(E) is cut-equivalent to the

slice 〈E,→〉b. It suffices to prove that C(Gb(E)) is the smallest sublattice of C(E)

that contains Cb(E). To that end, the following lemma comes in useful. The lemma

basically states that, for each event e, Jb(e) is the least consistent cut of Gb(E) that

contains e. (Note that Jb(e) ⊆ Jb(f) is equivalent to saying that there is an path

from e to f in Gb(E).)

Lemma 5.34 Given events e and f , e ∈ Jb(f) ≡ Jb(e) ⊆ Jb(f).

Proof: (⇒) Assume that e ∈ Jb(f). Let C = Jb(e)∩Jb(f). Since e ∈ Jb(e), e ∈ C.

Note that Jb(e) and Jb(f) are consistent cuts of 〈E,→〉. Moreover, both of them

138

satisfy b. Since b is a linear predicate, their conjunction, given by C, also satisfies

b. This implies that C is a consistent cut of 〈E,→〉 which contains e and satisfies b.

However, Jb(e) is the least such cut. Therefore Jb(e) ⊆ C or Jb(e) ⊆ Jb(e) ∩ Jb(f).

This implies that Jb(e) = Jb(e) ∩ Jb(f). Equivalently, Jb(e) ⊆ Jb(f).

(⇐) Assume that Jb(e) ⊆ Jb(f). Since e ∈ Jb(E), trivially, e ∈ Jb(f). �

Again, as before, let Jb(E) = { Jb(e) | e ∈ E }. Using Lemma 5.34, the

following theorem can be proved in a similar fashion as Lemma 5.16 and Lemma 5.17.

Theorem 5.35 C(Gb(E)) forms a distributive lattice under ⊆. Further, the set of

join-irreducible elements of C(Gb(E)) is given by Jb(E).

The next lemma demonstrates that C(Gb(E)) contains at least Cb(E).

Lemma 5.36 Every consistent cut in Cb(E) can be written as the join of some

subset of elements in Jb(E).

The proof of the above lemma is similar to the proof of Lemma 5.17 and

therefore has been omitted. Observe that, for every event e, by definition, either

Jb(e) satisfies b or is same as E. In either case, Jb(e) ∈ Cb(E). Therefore we have,

Observation 5.3 Jb(E) ⊆ Cb(E).

Finally, the next theorem establishes that C(Gb(E)) is indeed the smallest

sublattice of C(E) that contains all consistent cuts satisfying b.

Theorem 5.37 Any sublattice of C(E) that contains Cb(E) also contains C(Gb(E)).

Proof: Consider a sublattice D of C(E) such that D contains Cb(E). Also, consider

a consistent cut C of C(Gb(E)). From Birkhoff’s Representation Theorem and

Theorem 5.35, C can be expressed as the join of some subset of elements in Jb(E).

139

Since Jb(E) ⊆ Cb(E) and Cb(E) ⊆ D, Jb(E) ⊆ D. This implies that C can be

written as the join of some subset of elements in D. However, D is a sublattice and

thus closed under set union. Therefore C ∈ D. �

The directed graph Gb(E) has |E| vertices and can have as many as Ω(|E|2)
edges. However, by constructing Sb(E), the skeletal representation of 〈E,→〉b,
instead of Gb(E), the number of edges and the time-complexity can be reduced

to O(n|E|) and O(n2|E|), respectively.

5.8.3 Grafting Two Slices

Given two slices, grafting can be used to either compute the smallest slice that

contains all consistent cuts common to both slices—grafting with respect to meet—

or compute the smallest slice that contains consistent cuts of both slices—grafting

with respect to join. In other words, given slices 〈E,→〉b1 and 〈E,→〉b2 , where b1

and b2 are regular predicates, grafting can be used to compute the slice 〈E,→〉b,
where b is either b1 ⊓ b2 = b1∧ b2 or b1 ⊔ b2 = reg (b1∨ b2). Grafting enables us to

compute the exact slice for an arbitrary boolean expression of local predicates—by

rewriting it in DNF—although it may require exponential time in the worst case.

Grafting with respect to Meet: b ≡ b1 ⊓ b2 ≡ b1 ∧ b2

In this case, the slice 〈E,→〉b contains a consistent cut of 〈E,→〉 if and only if the cut

satisfies b1 as well as b2. Given an event e, let Fmin(e) denote the vector obtained

by taking componentwise minimum of Fb1(e) and Fb2(e). We first prove that no

component of Fmin(e) is less than (or occurs before) the corresponding component

of Fb(e).

Lemma 5.38 For each event e and process pi,

Fb(e)[i]
P→ Fmin(e)[i]

140

Proof: It is sufficient to prove that Fb(e)[i]
P→ Fb1(e)[i] and Fb(e)[i]

P→ Fb2(e)[i]

for each event e and process pi. Assume, on the contrary, that Fb1(e)[i]
P→ Fb(e)[i]

for some event e and process pi. For convenience, let Fb1(e)[i] = f . Consider

Jb(f). Observe that Jb(f) contains f and is also a consistent cut of 〈E,→〉b1 .
By definition of Sb1(E), any consistent of 〈E,→〉b1 that contains f also contains e

because f = Fb1(e)[i]. This implies that Jb(f) contains e. Since Jb(f) is the least

consistent cut of 〈E,→〉b that contains f , there is a path from e to f in Sb(E).

Using Lemma 5.20, Jb(e) ⊆ Jb(f) which contradicts our choice of Fb(e)[i]. �

We now construct a directed graph Smin(E) that is similar to Sb(E) except

that we use Fmin instead of Fb in its construction. The following theorem proves

that Smin(E) is in fact cut-equivalent to Sb(E).

Theorem 5.39 Smin(E) is cut-equivalent to Sb(E).

Proof: We have,

{ definition of Fmin }
(

P(Sb1(E)) ⊆ P(Smin(E))
)

∧

(

P(Sb2(E)) ⊆ P(Smin(E))
)

≡ { using Lemma 5.1 }
(

C(Smin(E)) ⊆ C(Sb1(E))
)

∧

(

C(Smin(E)) ⊆ C(Sb2(E))
)

≡ { set calculus }
C(Smin(E)) ⊆

(

C(Sb1(E)) ∩ C(Sb2(E))
)

≡ { b ≡ b1 ∧ b2 }
C(Smin(E)) ⊆ C(Sb(E))

Also, we have,

{ using Lemma 5.38 }
P(Smin(E)) ⊆ P(Sb(E))

≡ { using Lemma 5.1 }

141

C(Sb(E)) ⊆ C(Smin(E))

Thus C(Smin(E)) = C(Sb(E)). �

Roughly speaking, the aforementioned algorithm computes the union of the

sets of edges of each slice. Note that, in general, Fb(e)[i] need not be same as

Fmin(e)[i]. This algorithm can be generalized to conjunction of an arbitrary number

of regular predicates.

Grafting with respect to Join: b ≡ b1 ⊔ b2 ≡ reg (b1 ∨ b2)

In this case, the slice 〈E,→〉b contains a consistent cut of 〈E,→〉 if the cut satisfies

either b1 or b2. Given an event e, let Fmax(e) denote the vector obtained by taking

componentwise maximum of Fb1(e) and Fb2(e). We first prove that no component

of Fb(e) is less than (or occurs before) the corresponding component of Fmax(e).

Lemma 5.40 For each event e and process pi,

Fmax(e)[i]
P→ Fb(e)[i]

The proof of Lemma 5.40 is similar to that of Lemma 5.38 and therefore has

been omitted. We now construct a directed graph Smax(E) that is similar to Sb(E)

except that we use Fmax instead of Fb in its construction. The following theorem

proves that Smax(E) is in fact cut-equivalent to Sb(E).

Theorem 5.41 Smax(E) is cut-equivalent to Sb(E).

Again, the proof of Theorem 5.41 is similar to that of Theorem 5.39 and

hence has been omitted. Intuitively, the above-mentioned algorithm computes the

intersection of the sets of edges of each slice. In this case, in contrast to the former

case, Fb(e)[i] is identical to Fmax(e)[i]. The reason is as follows. Recall that Fb(e)[i]

is the earliest event on pi that is reachable from e in 〈E,→〉b. From Theorem 5.41,

142

at least Fmax(e)[i] is reachable from e in 〈E,→〉b. Thus Fb(e)[i]
P→ Fmax(e)[i].

Combining it with Lemma 5.40, we obtain the required result. This algorithm can

be generalized to disjunction of an arbitrary number of regular predicates.

5.8.4 Computing the Slice for Co-Regular Predicates

Given a regular predicate, we give an algorithm to compute the slice of a

computation with respect to its negation—a co-regular predicate. In particular,

we express the negation as disjunction of polynomial number of regular predicates.

The slice can then be computed by grafting together slices for each disjunct.

Consider a computation 〈E,→〉 and a regular predicate b. For convenience,

let →b be the edge relation for the slice 〈E,→〉b. Without loss of generality, assume

that both → and →b are transitive relations. Our objective is to find a property

that distinguishes the consistent cuts that belong to the slice from the consistent

cuts that do not. Consider events e and f such that e 6→ f but e →b f . Then,

clearly, a consistent cut that contains f but does not contain e cannot belong to

the slice. On the other hand, every consistent cut of the slice that contains f also

contains e. This motivates us to define a predicate prevents(f, e) as follows:

C satisfies prevents(f, e) , (f ∈ C) ∧ (e 6∈ C)

We now prove that the predicate prevents(f, e) is actually a regular

predicate. Specifically, we establish that prevents(f, e) is a conjunctive predicate.

Lemma 5.42 prevents(f, e) is a conjunctive predicate.

Proof: Let proc(e) = pi and proc(f) = pj. We define a local predicate li(e) to be

true for an event g on process pi if g
P→ e. Similarly, we define a local predicate

mj(f) to be true for an event h on process pj if f
P→ h. Clearly, prevents(f, e) is

equivalent to li(e) ∧ mj(f). �

It turns out that every consistent cut that does not belong to the slice satisfies

143

prevents(f, e) for some pair of events (e, f) such that (e 6→ f) ∧ (e →b f) holds.

Formally,

Theorem 5.43 Let C be a consistent cut of 〈E,→〉. Then,

C satisfies ¬b ≡ 〈∃ e, f : (e 6→ f) ∧ (e →b f) : C satisfies prevents(f, e)〉

Proof: We have,

C satisfies ¬b

≡ { b is a regular predicate }
¬

(

C ∈ C(〈E,→〉b)
)

≡ { definition of C(〈E,→〉b) }
¬〈∀ e, f : e →b f : f ∈ C ⇒ e ∈ C〉

≡ { predicate calculus }
〈∃ e, f : e →b f : (f ∈ C) ∧ (e 6∈ C)〉

≡ { definition of prevents(f, e) }
〈∃ e, f : e →b f : C satisfies prevents(f, e)〉

≡ { predicate calculus }
〈∃ e, f : (e →b f)

∧

(

(e → f) ∨ (e 6→ f)
)

: C satisfies prevents(f, e)〉

≡ { e → f implies e →b f }
〈∃ e, f : (e → f)

∨

(

(e →b f) ∧ (e 6→ f)
)

: C satisfies prevents(f, e)〉

≡







since C is a consistent cut of 〈E,→〉, C satisfies prevents(f, e) ⇒
e 6→ f







〈∃ e, f : (e →b f) ∧ (e 6→ f) : C satisfies prevents(f, e)〉

This establishes the theorem. �

Theorem 5.43 can also be derived using the results in lattice theory [Riv74].

We now give the time-complexity of the algorithm. We start by making the following

observation.

144

Observation 5.4 Let e, f and g be events such that f → g. Then,

prevents(g, e) ⇒ prevents(f, e)

Let Kb(e) denote the vector whose ith entry denote the earliest event f on

process pi, if it exists, such that (e 6→ f) ∧ (e →b f) holds. Observation 5.4 implies

that prevents(Kb(e)[i], e), whenever Kb(e)[i] exists, is the weakest predicate among

all predicates prevents(f, e), where proc(f) = pi and (e 6→ f) ∧ (e →b f). Thus

we can ignore all other events on pi for the purpose of computing the slice for a

co-regular predicate. More precisely, Theorem 5.43 can be restated as:

Theorem 5.44 Let C be a consistent cut of 〈E,→〉. Then,

C satisfies ¬b ≡ 〈∃ e, pi :: C satisfies prevents(Kb(e)[i], e)〉

It turns out that Kb(e)[i] and Fb(e)[i] are closely related.

Observation 5.5 Kb(e)[i] exists if and only if e 6→ Fb(e)[i]. Moreover, whenever

Kb(e)[i] exists it is identical to Fb(e)[i].

Note that, to compute the slice for ¬b, we actually compute the slice for

reg (¬b), that is, 〈E,→〉¬b = 〈E,→〉reg (¬b). Theorem 5.44 implies that the number

of disjuncts in the predicate equivalent to the negation of a regular predicate is at

most O(n|E|). Further, these disjuncts can be determined in O(n2|E|) time using

the algorithm Algo 5.2. The slice with respect to each disjunct can be computed in

O(|E|) time using the algorithm given in Section 5.7.3. Moreover, given a disjunct

b(i), Jb(i)(e) for each event e can be computed in O(n|E|) time which in turn can

be used to determine Fb(i)(e) for each event e in O(n|E|) time using the algorithm

Algo 5.2. Finally, these slices can be grafted together to produce the slice for a

co-regular predicate in O(n|E| × n|E|) = O(n2|E|2) time. This is because, given an

145

event e, computing each entry of Fb′(e), where b′ = reg (¬b), requires O(n|E|) time.

Thus the overall time-complexity of the algorithm is O(n2|E|+n2|E|2) = O(n2|E|2).

5.8.5 Computing the Slice for k-Local Predicates for Constant k

A predicate is called k-local if it depends on variables of at most k processes [SS95].

To compute the slice for a k-local predicate, we use the technique developed by

Stoller and Schneider [SS95]. Given a computation, their technique can be used to

transform a k-local predicate into a predicate in k-DNF (disjunctive normal form)

with at most mk−1 clauses, where m is the maximum number of events on a process.

For example, consider the predicate x1 6= x2. Let V denote the set of values that

x1 can take in the given computation. Note that |V | 6 m. Then x1 6= x2 can be

rewritten as:

x1 6= x2 ≡
∨

v∈V

(

(x1 = v) ∧ (x2 6= v)
)

Each clause in the resultant k-DNF predicate will be a conjunctive predicate.

We can use the optimal O(|E|) algorithm given in Section 5.7.3 to compute the

slice for each clause. These slices can then be grafted together with respect to

disjunction to obtain the slice for the given k-local predicate. The time-complexity

of the algorithm is O(mk−1n|E|).

5.8.6 Computing Approximate Slices

Even though it is, in general, NP-hard to compute the slice for an arbitrary predicate,

it is still possible to compute an approximate slice in many cases. The slice is

“approximate” in the sense that it is bigger than the actual slice for the predicate.

Nonetheless, it still contains all consistent cuts of the computation that satisfy the

predicate. In many cases, the approximate slice that we obtain is much smaller than

the computation itself and therefore can be used to prune the search-space for many

intractable problems such as monitoring predicates under various modalities.

146

f

f

(e)

{c,f,w,z}

f

{a,b,d,e,u,v,x}

{c,f.w.z}

f

{v}

f

(d)

{c,e,f,v,w,y,z}

f

{a,d,u,x}

f t

t

{y}

t

(f)

(c)

f

(b)

{b}

{a,b,d,e,u,x,y}

(a)

{a,d,u,x}

{e}

{b,c,f,v,w,y,z}

p

t

4

1x x2 x3

e

x4

zyx

ca b

f

3
v

d

wu

3p

p

x

2x
2

x4

x1
1p

Figure 5.12: (a) A computation, (b) the parse tree for the predicate (x1∨x2)∧ (x3∨
x4), (c) the slice with respect to x1, (d) the slice with respect to x2, (e) the slice
with respect to x3, (f) the slice with respect to x4.

147

{a,b,d,e,u,x} {c,f,v,w,y,z}

(i)

(g)

{e}

{a,b,d,e,u,x}

{b}

{a,d,u,x} {c,f,v,w,y,z}

(h)

{v}

{y}

{c,f,w,z}

Figure 5.13: (continuation of Figure 5.12) (g) the slice with respect to x1∨x2, (h) the
slice with respect to x3 ∨ x4, and (i) the slice with respect to (x1 ∨ x2) ∧ (x3 ∨ x4).

In particular, using grafting and the algorithms for computing the slice for

various classes of predicates, it is possible to efficiently compute an approximate

slice for a predicate derived from linear predicates, post-linear predicates, regular

predicates, co-regular predicates, and k-local predicates for constant k using ∧ and

∨ operators.

To compute an approximate slice, we first build the parse tree for the given

boolean expression; all predicates occupy leaf nodes whereas all operators occupy

non-leaf nodes. We then recursively compute the slice working our way up from leaf

nodes to the root. For a leaf node, we use the algorithm appropriate for the predicate

corresponding to the leaf node. For example, if the leaf node corresponds to a linear

predicate, we use the algorithm described in Section 5.8.2. For the conjunction and

disjunction operators, ∧ and ∨, we use the suitable grafting algorithm depending

on the operator.

Example 5.8 For example, consider the computation depicted in Figure 5.12(a)

and the predicate (x1 ∨x2)∧ (x3 ∨x4). The parse tree corresponding to the predicate

148

is shown in Figure 5.12(b). To compute an approximate slice for the predicate,

we first compute slices for the (local) predicates x1, x2, x3 and x4 as shown in

Figure 5.12(c)-(f). We then graft the first two and the last two slices together with

respect to join to obtain slices for the clauses x1 ∨ x2 and x3 ∨ x4 as portrayed

in Figure 5.13(g) and Figure 5.13(h), respectively. For the ease of understanding,

the events belonging to the same strongly connected component are shown together

in a subset. Finally, we graft the slices for both clauses together with respect to

meet. The slice obtained will contain all consistent cuts that satisfy the predicate

(x1 ∨ x2) ∧ (x3 ∨ x4). The final slice is shown in Figure 5.13(i).

As shown in the figure, the computation has seven non-trivial consistent cuts,

namely {a, d, u, x}, {a, b, d, u, x}, {a, d, e, u, x}, {a, b, d, e, u, x}, {a, b, d, e, u, v, x},
{a, b, d, e, u, x, y} and {a, b, d, e, u, v, x, y}. On the other hand, the slice consists of

only a single non-trivial consistent cut, which is given by {a, b, d, e, u, x}. The final

slice corresponds to the predicate reg
(

reg (x1 ∨ x2) ∧ reg (x3 ∨ x4)
)

and not to the

predicate reg
(

(x1 ∨ x2) ∧ (x3 ∨ x4)
)

as desired. This is expected because detecting

even a predicate in 2-CNF when no two clauses contain variables from the same

process is NP-complete in general (see Chapter 3).

5.9 Detecting Global Predicates using Slicing: An

Experimental Study

In this section, we evaluate the effectiveness of slicing in pruning the search-space

when detecting a predicate under possibly modality. We compare our approach

with that of Stoller, Unnikrishnan and Liu [SUL00], which is based on partial-order

methods [God96]. Intuitively, when searching the state-space, at each consistent

cut, partial-order methods allow only a small subset of enabled transitions to be

explored. In particular, we use partial-order methods employing both persistent and

149

sleep sets for comparison. We consider two examples that were also used by Stoller,

Unnikrishnan and Liu to evaluate their approach [SUL00]. We briefly describe

the main idea behind partial-order methods approach here; details can be found

elsewhere [God96, SUL00].

The material in the next two paragraphs is paraphrased from [SUL00]. In

their full generality, partial-order methods can be used to locate deadlocks in a

concurrent system. A deadlock is a state in which no transitions are enabled. Clearly,

all reachable deadlocks can be identified by exploring all reachable states. This

involves explicitly considering all possible execution orderings of transitions, even if

some transitions are “independent” (that is, executing them in any order leads to

the same state). Exploring one interleaving of independent transitions is sufficient

for finding deadlocks. This causes fewer intermediate states (that is, states in which

some but not all of the independent transitions have been executed) to be explored,

but it does not affect the reachability of deadlocks. This is because the intermediate

states cannot be deadlocks since some of the independent transitions are enabled

in those states. Partial-order methods attempt to eliminate exploration of multiple

interleavings of independent transitions, thereby saving time and space.

Consider a state s. A set T of transitions enabled in s is said to be persistent

in s if, for every sequence of transitions starting from s and not containing any

transitions in T , all transitions in that sequence are independent with all transitions

in T . As shown in [God96], in order to find all reachable deadlocks, it suffices to

explore from each state s a set of transitions that is persistent in s. Note that the set

of all enabled transitions in s trivially constitutes a persistent set in s. To save time

and space, small persistent sets should be used. As further optimization, sleep sets

can be employed to eliminate redundancy caused by exploring multiple interleavings

of independent transitions in a persistent set [God96].

How do partial-order methods apply to detecting a predicate under possibly

150

modality? Consider a predicate b = b(1) ∧ b(2) ∧ · · · ∧ b(l). Let support(b(i)) denote

the subset of processes on which the conjunct b(i) depends. Suppose, when exploring

the state-space of the computation, we reach a consistent cut C that does not satisfy

b. Therefore there exists a conjunct b(i) that evaluates to false for C. A set T of

transitions that constitutes a persistent set in C can be constructed as follows. For

each process pj ∈ support(b(i)), in case the next transition tj of pj, if it exists, is

enabled in C, add tj to T ; otherwise find some enabled transition t that must be

executed before tj and add t to T .

Now, with our approach based on computation slicing, in order to detect a

predicate, we first compute an approximate slice of the computation with respect to

the predicate, and then perform a simple search of the state-space of the resultant

slice. Whereas, with the approach based on partial-order methods, we use persistent

and sleep sets to search the state-space of the computation. To compare the two

approaches, we consider two examples which were also used by Stoller, Unnikrishnan

and Liu to evaluate their approach [SUL00].

The first example, called primary-secondary, concerns an algorithm designed

to ensure that the system always contains a pair of processes acting together as

primary and secondary. The invariant for the algorithm requires that there is a pair

of processes pi and pj such that (1) pi is acting as a primary and correctly thinks

that pj is its secondary, and (2) pj is acting as a secondary and correctly thinks that

pi is its primary.

The first example, called primary-secondary, concerns an algorithm designed

to ensure that the system always contains a pair of processes acting together as

primary and secondary. The invariant for the algorithm requires that there is a pair

of processes pi and pj such that (1) pi is acting as a primary and correctly thinks

that pj is its secondary, and (2) pj is acting as a secondary and correctly thinks that

pi is its primary. Both the primary and the secondary may choose new processes as

151

their successor at any time; the algorithm must ensure that the invariant is never

falsified. Mathematically, the invariant Ips can be written as:

Ips =

∨

i, j ∈ [1 . . . n], i 6= j





isPrimaryi

∧

isSecondaryj

∧

(secondaryi = pj)
∧

(primaryj = pi)





Here, the variable isPrimaryi is true if and only if process pi is acting as the

primary; in that case, the variable secondaryi points to the process that pi thinks is

acting as its secondary. The variables isSecondaryi and primaryi can be interpreted

in a similar fashion. Both the primary and the secondary may choose new processes

as their successor at any time; the algorithm must ensure that the invariant is never

falsified. Stoller, Unnikrishnan and Liu provide an algorithm in [SUL00] to maintain

the above invariant. We describe it here for the sake of completeness.

Initially, process p1 is the primary and process p2 is the secondary. At any

time, the primary may choose a new primary as its successor by first informing the

secondary of its intention, waiting for an acknowledgement, and then multicasting

to the other processes a request for volunteers to be the new primary. It chooses the

first volunteer whose reply it receives and sends message to that process stating that

it is the new primary. The new primary sends a message to the current secondary

which updates its state to reflect the change and then sends a message to the old

primary stating that it can stop being the primary. The secondary can choose a

new secondary using a similar protocol. Before initiating the protocol, however, the

secondary must wait for an acknowledgement from the primary. If the secondary

instead receives a message that the primary is searching for a successor as well, the

secondary aborts its current attempt to find a successor, waits until it receives a

message from the new primary, and then re-starts the protocol. This prevents the

primary and secondary from trying to choose successors concurrently. A global fault

corresponds to the complement of the invariant which can be expressed as:

152

¬Ips =

∧

i, j ∈ [1 . . . n], i 6= j





¬isPrimaryi

∨ ¬isSecondaryj

∨

(secondaryi 6= pj)
∨

(primaryj 6= pi)





Note that ¬Ips is a predicate in CNF where each clause is a disjunction of

two local predicates. An approximate slice for ¬Ips can be computed in O(n3|E|)
time.

In the second example, called database partitioning, a database is partitioned

among processes p2 through pn, while process p1 assigns tasks to these processes

based on the current partition. A process pi, i ∈ [2 . . . n], can suggest a new

partition at any time by setting variable changei to true and broadcasting a message

containing the proposed partition and an appropriate version number. A recipient

of this message accepts the proposed partition if its own version of the partition has

a smaller version number or if its own version of the partition has the same version

number and was proposed by a process with larger index. An invariant that should

be maintained is: if no process is changing the partition, then all processes agree on

the partition. Formally,

Idb = (
∧

i∈[2...n]

¬changei) ⇒ (
∧

16i<j6n

partitioni = partitionj)

Again, the algorithm described above was given by Stoller, Unnikrishnan and

Liu in [SUL00]. The complement of the invariant, given by ¬Idb, can be written as:

¬Idb = (
∧

i∈[2...n]

¬changei)
∧

(

∨

i,j∈[1...n], i6=j

(partitioni 6= partitionj)
)

Note that the first n − 1 clauses of ¬Idb are local predicates and the last

clause, say LC, is a disjunction of 2-local predicates. Thus, using the technique

described in Section 5.8.5, LC can be rewritten as a predicate in DNF with O(n|E|)
clauses. To reduce the number of clauses, we proceed as follows. Let V denote the

set of values that partition1 assumes in the given computation. Then it can be

153

No Faults One Injected Fault

Number of Partial-Order Computation Partial-Order Computation

Processes Methods Slicing Methods Slicing

n T M T M T M T M

6 0.07 0.62 0.36 1.21 0.05 0.41 0.37 1.38

7 0.16 1.11 0.61 1.34 0.11 0.81 0.58 1.41

8 0.37 2.06 0.90 1.54 0.31 1.79 0.91 1.61

9 0.83 4.37 1.24 1.70 0.59 3.05 1.21 1.77

10 1.52 7.26 1.73 1.81 1.12 5.54 1.70 2.00

11 2.99∗ 13.14∗ 2.15 1.93 2.09∗ 9.50∗ 2.13 2.27

12 5.0∗ 21.56∗ 2.85 2.16 3.51∗ 14.13∗ 2.77 2.43

n: number of processes T : amount of time spent (in s)

M : amount of memory used (in MB)

*: does not include the cases in which the technique runs out of memory

Table 5.1: Primary-Secondary example with the number of events on a process
upper-bounded by 90.

verified that LC is logically equivalent to:

∨

v∈V

(

(partition1 = v)∧
(

(partition2 6= v)∨(partition3 6= v)∨· · ·∨(partitionn 6= v)
))

This decreases the number of clauses, when LC is rewritten in a form that

can be used to compute a slice, to O(n|V |). Note that |V | is bounded by the

number of events on the first process, and therefore we expect n|V | to be O(|E|).
We use the simulator implemented in Java by Stoller, Unnikrishnan and Liu to

generate computations of these protocols. Message latencies and other delays (e.g.,

how long to wait before looking for a new successor) are selected randomly using

the distribution 1 + exp(x), where exp(x) is the exponential distribution with mean

x. Further details of the two protocols and the simulator can be found elsewhere

[SUL00]. We consider two different scenarios: fault-free and faulty. The simulator

always produces fault-free computations. A faulty computation is generated by

154

0

1

2

3

4

5

6 7 8 9 10 11 12

am
ou

nt
 o

f t
im

e
sp

en
t (

s)
 -

->

number of processes -->

no faults

computation slicing
partial-order methods

0

5

10

15

20

6 7 8 9 10 11 12

am
ou

nt
 o

f m
em

or
y

us
ed

 (
M

B
)

--
>

number of processes -->

no faults

computation slicing
partial-order methods

(a)

0

0.5

1

1.5

2

2.5

3

3.5

4

6 7 8 9 10 11 12

am
ou

nt
 o

f t
im

e
sp

en
t (

s)
 -

->

number of processes -->

one injected fault

computation slicing
partial-order methods

0

2

4

6

8

10

12

14

6 7 8 9 10 11 12
am

ou
nt

 o
f m

em
or

y
us

ed
 (

M
B

)
--

>

number of processes -->

one injected fault

computation slicing
partial-order methods

(b)

Figure 5.14: Primary-Secondary example with the number of events on a process
upper-bounded by 90 for (a) no faults and (b) one injected fault.

randomly injecting faults into a fault-free computation. Note that in the first (fault-

free) scenario, we know a priori that the computation does not contain a faulty

consistent cut. We cannot, however, assume the availability of such knowledge in

general. Thus it is important to study the behaviour of the two predicate detection

techniques in the fault-free scenario as well. We implement the algorithm for slicing

a computation in Java. We compare the two predicate detection techniques with

respect to two metrics: amount of time spent and amount of memory used. In the

case of the former technique, both metrics also include the overhead of computing

the slice. We run our experiments on a machine with Pentium 4 processor operating

at 1.8GHz clock frequency and 512MB of physical memory.

155

For primary-secondary example, the simulator is run until the number

of events on some process reaches 90. The measurements averaged over 300

computations are displayed in Table 5.1. With computation slicing, for fault-free

computations, the slice is always empty. As the number of processes is increased

from 6 to 12, the amount of time spent increases from 0.36s to 2.85s, whereas the

amount of memory used increases from 1.21M to 2.16M. On the other hand, with

partial-order methods, they increase, almost exponentially, from 0.07s to 5.0s and

0.62M to 21.56M, respectively. Even on injecting a fault, the slice stays quite small.

After computing the slice, in our experiments, we only need to examine at the most

13 consistent cuts to locate a faulty consistent cut, if any. The amount of time spent

and the amount of memory used, with computation slicing, increase from 0.37s to

2.77s and 1.38M to 2.43M, respectively, as the number of processes is increased

from 6 to 12. However, with partial-order methods, they again increase almost

exponentially from 0.05s to 3.51s and 0.41M to 14.13M, respectively. Clearly, with

slicing, both time and space complexities for detecting a global fault, if it exists, in

primary-secondary example are polynomial in input size for the specified range of

parameters. In contrast, with partial-order methods, they are exponential in input

size. Figure 5.14(a) and Figure 5.14(b) plot the variation in the two metrics with

the number of processes for the two approaches.

The worst-case performance of the partial-order methods approach is quite

bad. With 12 processes in the system and the limit on the memory set to 100MB, the

approach runs out of memory in approximately 6% of the cases. In around two-thirds

of such cases, the computation actually contains a consistent cut that does not satisfy

the invariant. It may be noted that we do not include the above-mentioned cases in

computing the average amount of time spent and memory used. Including them will

only make the average performance of the partial-order methods approach worse.

Further, the performance of the partial-order methods approach appears to be very

156

No Faults One Injected Fault

Number of Partial-Order Computation Partial-Order Computation

Processes Methods Slicing Methods Slicing

n T M T M T M T M

4 0.05 0.07 0.24 1.06 0.03 0.05 0.24 0.95

5 0.05 0.09 0.34 1.13 0.03 0.08 0.36 0.99

6 0.05 0.13 0.50 1.22 0.03 0.10 0.48 1.13

7 0.05 0.22 0.59 1.33 0.04 0.16 0.62 1.25

8 0.07 0.31 0.76 1.41 0.04 0.23 0.73 1.57

9 0.07∗ 0.36∗ 0.89 1.56 0.05 0.31 0.92 1.69

10 0.08∗ 0.40∗ 1.09 1 .80 0.05∗ 0.42∗ 1.07 1.80

n: number of processes T : amount of time spent (in s)

M : amount of memory used (in MB)

*: does not include the cases in which the technique runs out of memory

Table 5.2: Database partitioning example with the number of events on a process
upper-bounded by 80.

sensitive to the location of the fault, in particular, whether it occurs earlier during

the search or much later or perhaps does not occur at all. Consequently, the variation

or standard deviation in the two metrics is very large. This has implications when

predicate detection is employed for achieving software fault tolerance. Specifically,

it becomes hard to provision resources (in our case, memory) when using partial-

order methods approach. If too little memory is reserved, then, in many cases, the

predicate detection algorithm will not be able to run successfully to completion.

On the other hand, if too much memory is reserved, the memory utilization will be

sub-optimal.

For database partitioning example, the simulator is run until the number

of events on some process reaches 80. The measurements averaged over 300

computations are shown in Table 5.2. Figure 5.15(c) and Figure 5.15(d) plot the

variation in the two metrics with the number of processes for the two approaches. As

157

0

0.5

1

1.5

2

2.5

3

4 5 6 7 8 9 10

am
ou

nt
 o

f t
im

e
sp

en
t (

s)
 -

->

number of processes -->

no faults

computation slicing
partial-order methods

0

0.5

1

1.5

2

2.5

3

4 5 6 7 8 9 10

am
ou

nt
 o

f m
em

or
y

us
ed

 (
M

B
)

--
>

number of processes -->

no faults

computation slicing
partial-order methods

(a)

0

0.5

1

1.5

2

2.5

3

4 5 6 7 8 9 10

am
ou

nt
 o

f t
im

e
sp

en
t (

s)
 -

->

number of processes -->

one injected fault

computation slicing
partial-order methods

0

0.5

1

1.5

2

2.5

3

4 5 6 7 8 9 10
am

ou
nt

 o
f m

em
or

y
us

ed
 (

M
B

)
--

>

number of processes -->

one injected fault

computation slicing
partial-order methods

(b)

Figure 5.15: Database partitioning example with the number of events on a process
upper-bounded by 80 for (c) no faults and (d) one injected fault.

it can be seen, the average performance of partial-order methods is much better than

computation slicing. This is because substantial overhead is incurred in computing

the slice. The slice itself is quite small. Specifically, for the fault-free scenario, the

slice is always empty. On the other hand, for the faulty scenario, only at most 4

transitions need to be explored after computing the slice to locate a faulty consistent

cut, if any.

Even for database partitioning example, for 10 processes, the partial-order

methods approach runs out of memory in a small fraction—approximately 1%—of

the cases. Therefore the worst-case performance of computation slicing is better

than partial-order methods. To get the best of both worlds, predicate detection

158

can be first done using the partial-order methods approach. In case it turns out

that the approach is using too much memory, say more than cn|E| for some small

constant c, and still has not terminated, it can be aborted and the computation

slicing approach can then be used for predicate detection.

159

Chapter 6

Related Work

In this chapter, we discuss the related research in three sections corresponding

to the topics of each of the previous three chapters: detecting global predicates,

controlling global predicates, and slicing distributed computations.

6.1 Detecting Global Predicates

The results in predicate detection presented in this dissertation were first published

in [MG01b]. The predicate detection problem is known to be intractable in general

under both possibly and definitely modalities [CG95, SS95, TG98b]. Approaches

to detecting global predicates can be broadly classified into three categories. The

first approach [CL85, SK86, Bou87, HJPR87] is based on repeatedly computing a

consistent cut of the system using a global snapshot protocol and verifying whether

the cut satisfies the given predicate until the predicate becomes true. This method

is suitable only for stable predicates—the predicates which stay true once they

become true. Some examples of stable predicates are deadlock and termination.

The approach cannot be used to detect unstable predicates which may become

160

relational predicate

polynomial−time algorithm

[GW94]

conjunctive predicate

< >{<, ,>, }

>NP−complete when k 2

>NP−complete when k 3

>NP−complete when k 2
polynomial−time algorithm for

special cases

[MG01b]

singular k−CNF predicate

NP−complete
[CG95]

arbitrary predicate

NP−complete for arbitrary
increments/decrements

polynomial−time algorithm for
increments/decrements by at most 1

[MG01b]

relop = ’=’

polynomial time algorithm
[TG97,CG95]

relop

[SS95]

k−local conjunctive predicate

[CG95]

predicate in k−CNF

Figure 6.1: Relation of our work to the known results in predicate detection under
possibly modality.

true only between consecutive snapshots. The second approach [CM91, MN91,

AV94, JMN95] enumerates all consistent cuts of the computation to detect a given

predicate. Although this approach is able to detect unstable predicates, it has an

exponential time-complexity of O(kn), where k is the number of “relevant” local

events on each process and n is the number of processes, making it prohibitively

expensive in practice. Partial-order techniques can be employed to avoid examining

many consistent cuts during the search [SUL00]. The third approach [MC88, MI92,

AV93, HPR93, GW94, BR95, FRGT94, JJJR94, CG95, GCKM95, GC95, GTFR95,

TG95, VD95, GW96, HMRS96, BFR96, HR96, GCKM97, TG97] relies on exploiting

161

[TG98b]

arbitrary predicate
coNP−complete

>coNP−complete when k 4

[TG98b]

predicate in k−DNF

>coNP−complete when k 3
Using [TG98b] and [MG01b]

singular k−DNF predicate

polynomial−time algorithm
disjunctive predicate

Figure 6.2: Relation of our work to the known results in detecting predicates under
definitely modality.

the structure of the predicate. Rather than exploring all possible consistent cuts

of the computation, the approach uses the computation directly. Thus efficient

polynomial-time algorithms can be devised which, however, are restricted to certain

special but useful classes of predicates such as conjunctive predicates, observer-

independent predicates, linear and post-linear predicates, and relational predicates.

Surveys of predicate detection may be found in [BM93, SM94, Gar96]. In this

dissertation, our focus has been on the third approach. Within the third approach,

we consider predicates that are defined on a single cut.

The predicate detection problem under possibly modality has been studied

in more setting when events on a process may only be partially ordered [TG98a].

However, detecting even a conjunctive predicate becomes NP-complete in the general

model.

Figure 6.1 and Figure 6.2 depict the relation of our work to the known results

162

in detecting predicates under possibly and definitely modalities, respectively.

6.2 Controlling Global Predicates

The results in predicate control provided in this dissertation were first published

in [MG00]. The predicate control problem is known to be NP-hard in general

[TG98b]. However, as in the case of predicate detection, by exploiting the structure

of the predicate, polynomial-time algorithms have been developed for certain classes

of predicates such as “disjunctive predicates” [TG98b] and “mutual exclusion

predicates” [TG99]. The latter problem becomes intractable when generalized to

“independent mutual exclusion predicates” where critical sections have “types”

associated with them such that no two critical sections of the same type can execute

simultaneously [Tar00]. In contrast to Tarafdar and Garg’s algorithm [TG98b] for

controlling a disjunctive predicate, our algorithm can be modified to generate a

minimum controlling synchronization.

The study in [MSWW81] allows global properties within the class of

conditional elementary restrictions. Unlike our model of a distributed system, their

model uses an off-line specification of pair-wise mutually exclusive states and does

not use causality. [Ray88] and [TG94] study the on-line maintenance of a class of

global predicates based on ensuring that a sum or sum-of-product expression on local

variables does not exceed a threshold. In contrast to these approaches, our focus is

on controlling global predicates off-line with the computation known a priori.

An efficient algorithm for detecting a conjunctive predicate under definitely

modality can be found in [GW96]. Since the problem of detecting a predicate

under definitely modality is dual of the problem of monitoring a predicate under

controllable modality, the above algorithm can be used to determine whether a

disjunctive predicate is controllable in a computation. However, the predicate

detection problem (under definitely modality) is not concerned with finding the

163

actual controlling synchronization, if it exists.

6.3 Slicing Distributed Computations

The results in computation slicing described in this dissertation were first published

in [GM01, MG01a]. Analogous to the notion of computation slice, it is possible to

define the notion of “program slice” [Wei82]. Given a program and a set of variables,

a program slice consists of all statements in the program that may affect the value

of the variables in the set at some given point. A program slice could be “static”

[Wei82] or “dynamic” (for a specific program input) [KR97]. The notion of program

slice has been extended to distributed programs as well [KF92]. Intuitively, program

slicing can be used to perform data flow analysis in a program (static program

slicing) or its trace (dynamic program slicing). The two slicing techniques, namely

computation slicing and program slicing, serve different purposes and can, in fact,

be used in a complimentary fashion. Computation slicing is useful for carrying

out post-mortem analysis of a single execution of a distributed program in order

to spot an incorrect behaviour of the program, if any, possibly involving multiple

processes, in an automated fashion. On detecting a faulty behaviour, dynamic

program slicing can be employed to obtain the relevant subset of the events that

actually influenced the value of the variables under observation, using data flow

analysis, thereby facilitating the localization of the bug. In other words, program

slicing helps to reduce the size of the program that needs to be analyzed for locating

the bug after a faulty behaviour has been observed using computation slicing or

other techniques.

Model checking is an automated technique for verifying the correctness of

concurrent programs [CE81, QS82]. Our technique differs from model checking in

many aspects. First, model checking is concerned with ascertaining correctness of

all computations of a program, whereas we focus on analyzing a single computation.

164

This is because our objective is to develop fast algorithms for the problems that

arise in testing and debugging, and software fault tolerance of distributed programs

in which a single execution trace of a program is observed. Second, even if model

checking algorithms are used on a single computation of a program, their time-

complexity would be, in general, proportional to the size of the state-space which is

still exponential in the number of processes. Whereas, our emphasis is on developing

algorithms that are polynomial in the number of processes. We accomplish this by

exploiting the structure of the computation (specifically, the set of consistent cuts of

a computation forms a distributive lattice) as well as the structure of the predicate

(for example, whether it is a regular predicate or a linear predicate). As a result,

model checking techniques, although more general in their applicability, are much

more expensive in terms of time and space.

165

Chapter 7

Conclusions and Future Work

We give a necessary and sufficient characterization of the set of consistent

cuts of a distributed computation. Specifically, we show that the set of consistent

cuts forms a distributive lattice and, further, it does not satisfy any additional

structural property. We exploit this observation to derive the notion of computation

slice. Intuitively, computation slicing is useful for throwing away the extraneous

consistent cuts of a computation, in an efficient manner, and focusing on only those

that are currently relevant for our purpose. As an application, it can be used

to view a computation at various levels of atomicity, thereby providing a flexible

and powerful framework for visualization of executions of complex distributed

applications [KG95, KBTB97]. Computation slicing can also be used to achieve

an exponential improvement in time and space for locating a faulty consistent cut

in a computation. The reason for the improvement is that other approaches view

the set of consistent cuts simply as a partially ordered set. We, on the other hand,

adopt a more aggressive approach and exploit an important structural property of

the set of consistent cuts, namely that it forms a distributive lattice.

In this dissertation, we focus on a more active approach to software fault

166

tolerance that involves taking corrective rather than reactive measures based on an

understanding of the failure and its causes. The fault handler uses this information

to decide on appropriate corrective actions. In fact, Tarafdar and Garg [Tar00] show

that in the case of synchronization faults, by tracing synchronization information

during normal execution, one can take more effective corrective action during

re-execution. We extend their work in investigating the corresponding off-line

synchronization problem—the predicate control problem. Specifically, we develop

efficient algorithms for solving the predicate control problem for some important

classes of predicates.

Currently, our algorithms for computing the slice of a computation are

off-line and assume that the entire set of events is available to them a priori. While

this is quite acceptable for debugging, for software fault tolerance, however, it is

desirable that the slice be computed in an on-line and incremental manner; upon

generation of an event in the system, the current slice is updated to accommodate

the new event and the resultant slice is checked for an occurrence of a fault. This

accelerates the detection of a fault. Also, some applications may execute indefinitely

and generate computations that are non-terminating. In order to deal with such

computations, mechanism needs to be devised to garbage collect portions of the

slice that can no longer contribute to a fault or otherwise will not be needed in the

future.

In this dissertation, we give polynomial-time algorithms to monitor a regular

predicate under three modalities, namely possibly, invariant and controllable. It

still remains an open question whether a regular predicate can be monitored under

definitely modality in an efficient manner. Note that a conjunctive predicate, which

is a special case of regular predicate, can be monitored efficiently under definitely

modality [GW96]. For the general case, Cooper and Marzullo’s algorithm can be

used which, however, has exponential time-complexity [CM91]. It is possible to

167

improve the time-complexity of their algorithm using computation slicing as follows.

We first compute the slice of the computation with respect to the complement of

the regular predicate. In case the slice has different number of strongly connected

components than the computation, then it can be shown that the regular predicate

definitely holds in the computation. Otherwise, rather than applying Cooper and

Marzullo’s algorithm to the computation, it can now be applied to the slice, which

may have much smaller state-space than the computation.

Our focus so far has been on building systems capable of tolerating software

faults. A distributed system can fail because of other reasons as well including

hardware faults. An interesting question that arises is: “How do we detect software

faults in presence of hardware failures such as crashes?” A common way to model

a crash failure is using the notion of failure detector proposed by Chandra and

Toueg [CT96, GM98b]. A software fault, on the other hand, is modeled using

predicate detection. An interesting research direction is to unify the two models so

as to enable software faults to be detected in the presence of crashes. Gärtner and

Pleisch prove some impossibility results about predicate detection when processes

can fail by crashing [GP01b, GP01a]. Garg and Mitchell present an algorithm to

detect predicates that are both set decreasing and conjunctive using infinitely often

accurate detector [GM98a]. Can their work be extended to detect other important

classes of predicates including regular predicates and relational predicates?

Clearly, it is possible to efficient evaluate whether some consistent cut of a

computation satisfies a predicate given an efficient algorithm to compute the slice

of the computation with respect to the predicate. Does the converse also hold?

Specifically, is it possible to efficiently compute the slice for a predicate given an

efficient algorithm to detect the predicate?

168

Bibliography

[AV93] S. Alagar and S. Venkatesan. Hierarchy in Testing Distributed

Programs. In Proceedings of the International Workshop on

Automated Debugging (AADEBUG), pages 101–116, 1993.

[AV94] S. Alagar and S. Venkatesan. Techniques to Tackle State Explosion in

Global Predicate Detection. In Proceedings of the The Parallel and

Distributed Systems Laboratory, pages 412–417, December 1994.

[BFR96] Ö. Babaoǧlu, E. Fromentin, and M. Raynal. A Unified Framework for

the Specification and Run-time Detection of Dynamic Properties in

Distributed Computations. The Journal of Systems and Software,

33(3):287–298, June 1996.

[BM93] Ö. Babaoǧlu and K. Marzullo. Consistent Global States of Distributed

Systems: Fundamental Concepts and Mechanisms. In S. Mullender,

editor, Distributed Systems, pages 55–96. Addison-Wesley, 1993.

[Bou87] L. Bouge. Repeated Snapshots in Distributed Systems with

Synchronous Communication and their Implementation in CSP.

Theoretical Computer Science, 49:145–169, 1987.

[BR95] Ö. Babaoǧlu and M. Raynal. Specification and Verification of

170

Dynamic Properties in Distributed Computations. Journal of Parallel

and Distributed Computing, 28(2):173–185, 1995.

[CE81] E. M. Clarke and E. A. Emerson. Design and Synthesis of

Synchronization Skeletons using Branching Time Temporal Logic. In

Proceedings of the Workshop on Logics of Programs, volume 131 of

Lecture Notes in Computer Science, Yorktown Heights, New York,

May 1981.

[CG95] C. Chase and V. K. Garg. On Techniques and their Limitations for

the Global Predicate Detection Problem. In Proceedings of

the Workshop on Distributed Algorithms (WDAG), pages 303–317,

France, September 1995.

[CG98] C. Chase and V. K. Garg. Detection of Global Predicates: Techniques

and their Limitations. Distributed Computing, 11(4):191–201, 1998.

[CL85] K. M. Chandy and L. Lamport. Distributed Snapshots: Determining

Global States of Distributed Systems. ACM Transactions on

Computer Systems, 3(1):63–75, February 1985.

[CLR91] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to

Algorithms. The MIT Press, Cambridge, Massachusetts, 1991.

[CM91] R. Cooper and K. Marzullo. Consistent Detection of Global

Predicates. In Proceedings of the ACM/ONR Workshop on Parallel

and Distributed Debugging, pages 163–173, Santa Cruz, California,

1991.

[CT96] T. D. Chandra and S. Toueg. Unreliable Failure Detectors for Reliable

Distributed Systems. Journal of the ACM, 43(2):225–267, 1996.

171

[DP90] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.

Cambridge University Press, Cambridge, UK, 1990.

[Fid91] C. Fidge. Logical Time in Distributed Computing Systems. IEEE

Computer, 24(8):28–33, August 1991.

[FRGT94] E. Fromentin, M. Raynal, V. K. Garg, and A. I. Tomlinson. On the

Fly Testing of Regular Patterns in Distributed Computations. In

Proceedings of the 23rd International Conference on Parallel

Processing, number 2, pages 73–76, Chicago, Illinois, August 1994.

[Gar96] V. K. Garg. Observation of Global Properties in Distributed Systems.

In IEEE International Conference on Software and Knowledge

Engineering, pages 418–425, Lake Tahoe, Nevada, June 1996.

[Gar97] V. K. Garg. Observation and Control for Debugging Distributed

Computations. In Proceedings of the International Workshop on

Automated Debugging (AADEBUG), pages 1–12, Linköping, Sweden,

1997. Keynote Presentation.

[GC95] V. K. Garg and C. Chase. Distributed Algorithms for Detecting

Conjunctive Predicates. In Proceedings of the IEEE International

Conference on Distributed Computing Systems (ICDCS), pages

423–430, Vancouver, Canada, June 1995.

[GCKM95] V. K. Garg, C. Chase, R. Kilgore, and J. R. Mitchell. Detecting

Conjunctive Channel Predicates in a Distributed Programming

Environment. In Proceedings of the International Conference on

System Sciences, volume 2, pages 232–241, Maui, Hawaii, January

1995.

172

[GCKM97] V. K. Garg, C. Chase, R. Kilgore, and J. R. Mitchell. Efficient

Detection of Channel Predicates in Distributed Systems. Journal of

Parallel and Distributed Computing, 45(2):134–147, September 1997.

[GJ91] M. R. Garey and D. S. Johnson. Computer and Intractability: A

Guide to the Theory of NP-Completeness. W. H. Freeman and

Company, New York, 1991.

[GM98a] V. K. Garg and J. R. Mitchell. Distributed Predicate Detection in a

Faulty Environment. In Proceedings of the IEEE International

Conference on Distributed Computing Systems (ICDCS), pages

416–423, Amsterdam, The Netherlands, May 1998.

[GM98b] V. K. Garg and J. R. Mitchell. Implementable Failure Detectors in

Asynchronous Systems. In Proceedings of the Conference on the

Foundations of Software Technology and Theoretical Computer

Science (FSTTCS), pages 158–169, Chennai, India, 1998.

[GM01] V. K. Garg and N. Mittal. On Slicing a Distributed Computation. In

Proceedings of the 21st IEEE International Conference on Distributed

Computing Systems (ICDCS), pages 322–329, Phoenix, Arizona, April

2001.

[God96] P. Godefroid. Partial-Order Methods for the Verification of

Concurrent Systems, volume 1032 of Lecture Notes in Computer

Science. Springer-Verlag, 1996.

[GP01a] F. C. Gärtner and S. Pleisch. (Im)Possibilities of Predicate Detection

in Crash-Affected Systems. In Proceedings of the 5th Workshop on

Self-Stabilizing Systems (WSS), Lecture Notes in Computer

173

Science 2194, pages 98–113, Lisbon, Portugal, October 2001.

Springer-Verlag.

[GP01b] F. C. Gärtner and S. Pleisch. (Im)Possibilities of Predicate Detection

in Crash-Affected Systems using Interrupt-Style Failure Detectors. In

Proceedings of the Symposium on Distributed Computing (DISC),

Lisbon, Portugal, October 2001.

[GR93] J. Gray and A. Reuter. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, 1993.

[GTFR95] V. K. Garg, A. I. Tomlinson, E. Fromentin, and Michel Raynal.

Expressing and Detecting General Control Flow Properties of

Distributed Computations. In Proceedings of the 7th IEEE

Symposium on Parallel and Distributed Processing (SPDP), pages

432–438, San Antonio, Texas, October 1995.

[GW91] V. K. Garg and B. Waldecker. Detection of Unstable Predicates. In

Proceedings of the ACM/ONR Workshop on Parallel and Distributed

Debugging, Santa Cruz, California, May 1991.

[GW94] V. K. Garg and B. Waldecker. Detection of Weak Unstable

Predicates in Distributed Programs. IEEE Transactions on Parallel

and Distributed Systems, 5(3):299–307, March 1994.

[GW96] V. K. Garg and B. Waldecker. Detection of Strong Unstable

Predicates in Distributed Programs. IEEE Transactions on Parallel

and Distributed Systems, 7(12):1323–1333, December 1996.

[HJPR87] J.-M. Helary, C. Jard, N. Plouzeau, and M. Raynal. Detection of

Stable Properties in Distributed Applications. In Proceedings of

174

the ACM Symposium on Principles of Distributed Computing

(PODC), pages 125–136, 1987.

[HMRS96] M. Hurfin, M. Mizuno, M. Raynal, and M. Singhal. Efficient

Distributed Detection of Conjunctions of Local Predicates in

Asynchronous Computations. In Proceedings of the 8th IEEE

Symposium on Parallel and Distributed Processing (SPDP), pages

588–594, New Orleans, October 1996.

[HPR93] M. Hurfin, N. Plouzeau, and M. Raynal. Detecting Atomic Sequences

of Predicates in Distributed Computations. In Proceedings of

the ACM/ONR Workshop on Parallel and Distributed Debugging,

pages 32–42, 1993.

[HR96] M. Hurfin and M. Raynal. Detecting Diamond Necklaces in Labeled

Dags (A Problem from Distributed Debugging. In Proceedings of

the International Workshop on Graph-Theoretic Concepts in

Computer Science (WG), Lecture Notes in Computer Science, pages

211–223. Springer-Verlag, 1996.

[JJJR94] C. Jard, T. Jéron, G.-V. Jourdan, and J.-X. Rampon. A General

Approach to Trace-Checking in Distributed Computing Systems. In

Proceedings of the IEEE International Conference on Distributed

Computing Systems (ICDCS), pages 396–403, 1994.

[JMN95] R. Jegou, R. Medina, and L. Nourine. Linear Space Algorithm for

On-line Detection of Global Predicates. In J. Desel, editor,

Proceedings of the International Workshop on Structures in

Concurrency Theory (STRICT), pages 175–189. Springer-Verlag,

1995.

175

[JZ88] D. B. Johnson and W. Zwaenepoel. Recovery in Distributed Systems

Using Optimistic Message Logging and Checkpointing. In Proceedings

of the 6th ACM Symposium on Principles of Distributed Computing

(PODC), pages 171–181, August 1988.

[KBTB97] T. Kunz, J. P. Black, D. J. Taylor, and T. Basten. POET:

Target-System Independent Visualizations of Complex

Distributed-Applications Executions. The Computer Journal, 40(8),

1997.

[KF92] B. Korel and R. Ferguson. Dynamic Slicing of Distributed Programs.

Applied Mathematics and Computer Science Journal, 2(2):199–215,

1992.

[KG95] J. A. Kohl and G. A. Geist. The PVM 3.4 Tracing Facility and

XPVM 1.1. Computer Science and Mathematics Divison, Oak Ridge

National Laboratory, TN, USA, 1995.

[Koh78] Z. Kohavi. Switching and Finite Automata Theory. McGraw-Hill, 2nd

edition, 1978.

[KR97] B. Korel and J. Rilling. Application of Dynamic Slicing in Program

Debugging. In Mariam Kamkar, editor, Proceedings of

the 3rd International Workshop on Automated Debugging

(AADEBUG), pages 43–57, Linköping, Sweden, May 1997.

[Lam78] L. Lamport. Time, Clocks, and the Ordering of Events in a

Distributed System. Communications of the ACM (CACM),

21(7):558–565, July 1978.

[Mat89] F. Mattern. Virtual Time and Global States of Distributed Systems.

In Parallel and Distributed Algorithms: Proceedings of the Workshop

176

on Distributed Algorithms (WDAG), pages 215–226. Elsevier Science

Publishers B. V. (North-Holland), 1989.

[MC88] B. P. Miller and J. Choi. Breakpoints and Halting in Distributed

Programs. In Proceedings of the 8th IEEE International Conference

on Distributed Computing Systems (ICDCS), pages 316–323, 1988.

[MG00] N. Mittal and V. K. Garg. Debugging Distributed Programs Using

Controlled Re-execution. In Proceedings of the 19th ACM Symposium

on Principles of Distributed Computing (PODC), pages 239–248,

Portland, Oregon, July 2000.

[MG01a] N. Mittal and V. K. Garg. Computation Slicing: Techniques and

Theory. In Proceedings of the Symposium on Distributed Computing

(DISC), pages 78–92, Lisbon, Portugal, October 2001.

[MG01b] N. Mittal and V. K. Garg. On Detecting Global Predicates in

Distributed Computations. In Proceedings of the 21st IEEE

International Conference on Distributed Computing Systems

(ICDCS), pages 3–10, Phoenix, Arizona, April 2001.

[MI92] Y. Manabe and M. Imase. Global Conditions in Debugging

Distributed Programs. Journal of Parallel and Distributed

Computing, 15(1):62–69, 1992.

[MN91] K. Marzullo and G. Neiger. Detection of Global State Predicates. In

Proceedings of the Workshop on Distributed Algorithms (WDAG),

pages 254–272, 1991.

[MSWW81] A. Maggiolo-Schettini, H. Welde, and J. Winkowski. Modeling a

Solution for a Control Problem in Distributed Systems by

177

Restrictions. Theoretical Computer Science, 13(1):61–83, January

1981.

[NX95] R. H. B. Netzer and J. Xu. Necessary and Sufficient Conditions for

Consistent Global Snapshots. IEEE Transactions on Parallel and

Distributed Systems, 6(2):165–169, February 1995.

[QS82] J. P. Queille and J. Sifakis. Specification and Verification of

Concurrent Systems in CESAR. In Proceedings of

the 5th International Symposium in Programming, volume 137 of

Lecture Notes in Computer Science, pages 337–351, New York, 1982.

Springer-Verlag.

[Ray88] M. Raynal. Distributed Algorithms and Protocols. John Wiley and

Sons Limited, 1988.

[Riv74] I. Rival. Maximal Sublattices of Finite Distributive Lattices II.

Proceedings of the American Mathematical Society, 44(2):263–268,

1974.

[SK86] M. Spezialetti and P. Kearns. Efficient Distributed Snapshots. In

Proceedings of the 6th IEEE International Conference on Distributed

Computing Systems (ICDCS), pages 382–388, 1986.

[SM94] R. Schwartz and F. Mattern. Detecting Causal Relationships in

Distributed Computations: In Search of the Holy Grail. Distributed

Computing, 7(3):149–174, 1994.

[SS95] S. D. Stoller and F. Schneider. Faster Possibility Detection by

Combining Two Approaches. In Proceedings of the Workshop on

Distributed Algorithms (WDAG), volume 972 of Lecture Notes in

Computer Science, pages 318–332, France, September 1995.

178

[SUL00] S. D. Stoller, L. Unnikrishnan, and Y. A. Liu. Efficient Detection of

Global Properties in Distributed Systems Using Partial-Order

Methods. In Proceedings of the 12th International Conference on

Computer-Aided Verification (CAV), volume 1855 of Lecture Notes in

Computer Science, pages 264–279. Springer-Verlag, July 2000.

[Tar00] A. Tarafdar. Software Fault Tolerance in Distributed Systems Using

Controlled Re-execution. PhD thesis, The University of Texas at

Austin, August 2000.

[TG94] A. I. Tomlinson and V. K. Garg. Maintaining Global Assertions in

Distributed Systems. In Computer Science and Education, pages

257–272. Tata McGraw-Hill Publishing Company Limited, 1994.

[TG95] A. I. Tomlinson and V. K. Garg. Observation of Software for

Distributed Systems with RCL. In Proceedings of the 15th Conference

on the Foundations of Software Technology and Theoretical Computer

Science (FSTTCS), pages 195–209, 1995.

[TG97] A. I. Tomlinson and V. K. Garg. Monitoring Functions on Global

States of Distributed Programs. Journal of Parallel and Distributed

Computing, 41(2):173–189, March 1997.

[TG98a] A. Tarafdar and V. K. Garg. Addressing False Causality while

Detecting Predicates in Distributed Programs. In Proceedings of

the 9th IEEE International Conference on Distributed Computing

Systems (ICDCS), pages 94–101, Amsterdam, The Netherlands, May

1998.

[TG98b] A. Tarafdar and V. K. Garg. Predicate Control for Active Debugging

of Distributed Programs. In Proceedings of the 9th IEEE Symposium

179

on Parallel and Distributed Processing (SPDP), pages 763–769,

Orlando, 1998.

[TG99] A. Tarafdar and V. K. Garg. Software Fault Tolerance of Concurrent

Programs Using Controlled Re-execution. In Proceedings of

the 13th Symposium on Distributed Computing (DISC), pages

210–224, Bratislava, Slovak Republic, September 1999.

[TP00] W. Torres-Pomales. Software Fault Tolerance: A Tutorial, 2000.

NASA Langley Research Center.

[VD95] S. Venkatesan and B. Dathan. Testing and Debugging Distributed

Programs Using Global Predicates. IEEE Transactions on Software

Engineering, 21(2):163–177, February 1995.

[Wan97] Y.-M. Wang. Consistent Global Checkpoints that Contain a Given

Set of Local Checkpoints. IEEE Transactions on Computers,

46(4):456–468, April 1997.

[Wei82] M. Weiser. Programmers Use Slices when Debugging.

Communications of the ACM (CACM), 25(7):446–452, 1982.

[WG91] B. Waldecker and V. K. Garg. Unstable Predicate Detection in

Distributed Program Debugging. In Proceedings of the ACM/ONR

Workshop on Parallel and Distributed Debugging, pages 276–278,

Santa Cruz, California, May 1991.

[WHF+97] Y.-M. Wang, Y. Huang, W. K. Fuchs, C. Kintala, and G. Suri.

Progressive Retry for Software Failure Recovery in Message-Passing

Applications. IEEE Transactions on Computers, 46(10):1137–1141,

October 1997.

180

Vita

Neeraj Mittal was born on May 07, 1974 in New Delhi, India, the son of Shankuntla

Mittal and Suresh Chandra Mittal. He completed his schooling in New Delhi, India

in June 1991. He received the Bachelor of Technology degree in Computer Science

and Engineering from the Indian Institute of Technology at Delhi in July 1995.

Thereafter, he joined graduate school at the University of Texas at Austin where

he received the Master of Sciences degree in Computer Sciences in May 1997. He

has been employed at Lucent Bell Laboratories and IBM Almaden Research Center

during the summers of 1997 and 1999, respectively. He was awarded the MCD

graduate fellowship in August 1995 by the University of Texas at Austin.

Permanent Address: c/o Mr. Suresh Chandra Mittal

A-2/263 Janakpuri

New Delhi 110058, India

This dissertation was typeset with LATEX2ε
1 by the author.

1LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of

the American Mathematical Society. The macros used in formatting this dissertation were written

by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin.

182

