Copyright

by
Neeraj Mittal
2002

Techniques for Analyzing Distributed Computations

Committee:

Vijay K. Garg, Supervisor

Anish Arora

Craig M. Chase

Mohamed G. Gouda

Aloysius K. Mok

Harrick Vin

Techniques for Analyzing Distributed Computations

by

Neeraj Mittal, B.Tech., M.S.

Dissertation
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements
for the Degree of
Doctor of Philosophy

The University of Texas at Austin

May 2002

To my parents

Acknowledgments

I consider myself to have been an extremely fortunate Ph.D. student in having Vijay K. Garg as my Ph.D. supervisor. It is impossible to fully express the many ways in which he has helped to make my Ph.D. experience a fulfilling and enjoyable phase of my life. He has been a constant source of inspiration, encouragement, and guidance in my research work and, thanks to him, I have been able to freely explore new ideas and work on what is fun. Moreover, he has been a friend, encouraging me in my non-Ph.D. related endeavours as well.

This dissertation has been shaped by discussions that I have had at various times with fellow students. I am indebted to Om Damani and Ashis Tarafdar for discussions early in my Ph.D., which inspired me to follow up on my early ideas. Alper Sen has helped me at various times by reviewing my papers and providing me with valuable criticism that has greatly improved my work. My committee members, Mohamed G. Gouda, Anish Arora, Aloysius K. Mok, Craig M. Chase, and Harrick Vin, have also helped to shape my Ph.D. into its current form through their valuable comments and criticisms. Their varied expertise has provided me with different perspectives from which to re-evaluate my work.

I am grateful to my friends in Austin for making my Ph.D. a very enjoyable experience. Fun evenings, weekend trekking trips, late-night discussions, intense workouts are but some of the memorable experiences that I have variously shared with Subramanyam Gooty, Santanu Sinha, Vipin Gupta, Gokul Rajaram, Ravi P.

Bulusu, Praveen K. Jaini, Parminder S. Chhabra, Vineet Kahlon, and Subramanian Iyer. The biggest credit goes to my family for their love and support. My parents, Suresh C. Mittal and Shakuntla Mittal, have kept me going by their never-ending confidence in me. My sisters, Amita Gupta, Vanita Gupta, and Neelima Kumar, have helped me with practical advice at various stages. Without my family, this dissertation would never have been written.

Neeraj Mittal

The University of Texas at Austin
May 2002

Techniques for Analyzing Distributed Computations

Publication No.

\qquad

Neeraj Mittal, Ph.D.
The University of Texas at Austin, 2002

Supervisor: Vijay K. Garg

Inherent non-determinism in distributed programs and presence of multiple threads of control makes it difficult to write correct distributed software. Not surprisingly, distributed systems are particularly vulnerable to software faults. To build a distributed system capable of tolerating software faults, two important problems need to be addressed: fault detection and fault recovery.

The fault detection problem requires finding a (consistent) global state of the computation that satisfies certain predicate (e.g., violation of mutual exclusion). To prevent a fault from causing any serious damage such as corrupting stable storage, it is essential that it be detected in a timely manner. However, we prove that detecting a predicate in 2-CNF, even when no two clauses contain variables from the same process, is an NP-complete problem. We develop a technique, based on computation slicing, to reduce the size of the computation and thus the number of global states to be examined for detecting a predicate. Slicing can be used to throw away the extraneous global states of the computation in an efficient manner, and focus on only those that are currently relevant for our purpose. To detect a fault, therefore, rather than searching the state-space of the computation, it is much more efficient
to search the state-space of the slice. We identify several useful classes of predicates for which the slice can be computed efficiently. Our experimental results indicate that slicing can lead to an exponential reduction over existing techniques both in terms of time as well as space for fault detection.

To recover from faults, we consider rollback recovery approach, which involves restoring the system to a previous state and then re-executing. We focus on rollback recovery using controlled re-execution, which is useful and effective for tolerating synchronization faults. Unlike other approaches which depend on chance and do not ensure that the re-execution is fault-free, the controlled re-execution method avoids synchronization faults during re-execution in a deterministic fashion. Specifically, it selectively adds synchronization dependencies during re-execution to ensure that the previously detected synchronization faults do not occur again. We provide efficient algorithms to solve the problem for two important classes of synchronization faults.

Contents

Acknowledgments ix
Abstract xi
Chapter 1 Introduction 1
1.1 Detecting Global Predicates 6
1.2 Controlling Global Predicates 8
1.3 Slicing Distributed Computations 10
1.4 Overview of the Dissertation 13
Chapter 2 System Model 15
2.1 Distributed Computations 15
2.2 Cuts, Consistent Cuts and Frontiers 17
2.3 Global Predicates 18
Chapter 3 Detecting Global Predicates 23
3.1 Overview 23
3.2 Problem Statement 26
3.3 Singular k-CNF Predicates 26
3.3.1 NP-Completeness Result 27
3.3.2 Efficient Algorithm for Special Cases 32
3.3.3 Algorithms for the General Case 34
3.4 Relational Predicates: $x_{1}+x_{2}+\cdots+x_{n}=k$ 34
3.4.1 NP-Completeness Result 35
3.4.2 Efficient Algorithm for the Special Case 35
Chapter 4 Controlling Global Predicates 41
4.1 Overview 41
4.2 Problem Statement 43
4.3 Region Predicates 44
4.3.1 Finding a Controlling Synchronization 47
4.4 Disjunctive Predicates 62
4.4.1 Admissible Sequences 62
4.4.2 Finding a Controlling Synchronization 75
4.4.3 Finding a Minimum Controlling Synchronization 80
Chapter 5 Slicing Distributed Computations 91
5.1 Overview 91
5.2 Extending the Model 94
5.2.1 Directed Graphs: Path- and Cut-Equivalence 94
5.2.2 Distributed Computations as Directed Graphs 95
5.3 Problem Statement 97
5.4 Regular Predicates 98
5.5 Establishing the Existence and Uniqueness of Slice 104
5.5.1 Regular Predicates 104
5.5.2 General Predicates 109
5.6 Representing a Slice 113
5.7 Slicing for Regular Predicates 117
5.7.1 Computing the Slice for Regular Predicates 118
5.7.2 Optimizing for the Special Case: Computing the Slice for De- composable Regular Predicates 121
5.7.3 Optimal Algorithms for Special Cases 129
5.7.4 Applications of Slicing 133
5.8 Slicing for General Predicates 136
5.8.1 NP-Hardness Result 137
5.8.2 Computing the Slice for Linear Predicates and their Dual 137
5.8.3 Grafting Two Slices 139
5.8.4 Computing the Slice for Co-Regular Predicates 142
5.8.5 Computing the Slice for k-Local Predicates for Constant k 145
5.8.6 Computing Approximate Slices 146
5.9 Detecting Global Predicates using Slicing: An Experimental Study 149
Chapter 6 Related Work 159
6.1 Detecting Global Predicates 159
6.2 Controlling Global Predicates 162
6.3 Slicing Distributed Computations 163
Chapter 7 Conclusions and Future Work 165
Bibliography 169
Vita 181

Chapter 1

Introduction

Recent advances in communication technology have led to a rapid proliferation of distributed systems. For example, a cluster of servers provided Web coverage of the Sydney Summer Olympics. As another example, massdistributed computing was recently used to discover the largest known prime number. As distributed systems evolve from the special case to commonplace, ensuring their reliable operation has emerged as an important and challenging problem. With distributed systems being increasingly employed in safety-critical environments, a failure in one of these systems could have irreparable, if not tragic, consequences. There have been several examples of serious systems failures (e.g., Ariane 5, Therac 25, Mars Observer) caused at least in part by critical defects in the software.

Inherent non-determinism in distributed programs and presence of multiple threads of control make it difficult to write correct distributed software. Not surprisingly, distributed systems are especially vulnerable to software faults. Dealing with software faults requires efforts at multiple levels [TP00]. Early in the software cycle, design methodologies, technologies and techniques that are aimed at
preventing the introduction of faults into the design can be used (fault prevention). Later, the implementation can be verified using testing, and the faults thereby exposed can be removed using debugging (fault removal). In spite of extensive testing and debugging, software faults may persist even in production quality software. Fault tolerance can be used as an extra layer of protection to provide acceptable level of performance and safety at runtime after a fault becomes active. In this dissertation, we focus on fault removal and fault tolerance techniques to improve the reliability of distributed software.

Fault Removal

The correctness of a program is often expressed using a combination of safety and liveness properties. A safety property specifies what the program must not do (ensures "nothing bad will ever happen"). An example of a safety property is mutual exclusion which demands that at no time should there be more than one process in its critical section. A liveness property, on the other hand, specifies what the program must eventually do (guarantees "something good will eventually happen"). An example of a liveness property is that every process which is trying to acquire a resource will succeed eventually.

Testing and debugging has been widely used for developing traditional sequential programs. Testing involves executing the program for a specific input sequence and then validating the output obtained with respect to the given safety and liveness properties. Specifically, when testing for safety property, the objective is to verify that the system always stayed in a safe state throughout the execution, or, in other words, the system did not traverse through an unsafe state. Similarly, when testing for liveness property, the aim is to ascertain that some desired condition eventually became true in the execution. In case testing reveals that the program behaved erroneously (it violated either safety or liveness property), debugging is the
process of tracking down the bug that caused the program to exhibit the faulty behaviour.

The state of a distributed system, commonly referred to as global state, is given by the set of events that have been executed so far (on all processes). In an asynchronous distributed system, however, it is not possible for an external observer to determine the exact order in which the events generated by the system were executed in real-time. The events can only be partially ordered; the partial order is referred to as the Lamport's happened-before relation [Lam78] and the corresponding partially ordered set (or poset) is called a distributed computation. Each interleaving of events that respects the happened-before relation corresponds to an order in which the events could have been executed. Testing a computation with respect to safety and liveness properties, therefore, translates into answering the following queries: "Does there exist an interleaving of events in which the system passes through an unsafe global state?" and "Does a liveness property eventually become true in all possible interleavings of events?" The two problems correspond to the predicate detection problem under possibly and definitely modalities [CM91, GW91], respectively.

On discovering a fault in the computation during testing phase, the next step is to analyze the computation to locate the source of the fault. While the skill and intuition of the programmer play an important role in debugging, tools that provide an effective environment for debugging are indispensable. For example, on detecting a violation of safety property, a programmer can gain considerable insight into the bug, that caused the violation, by learning whether all possible interleavings of events are unsafe in the sense that they all pass through a global state that is unsafe. In that case, the bug cannot be fixed by adding or removing synchronization alone. On the other hand, if it is possible to eliminate all unsafe interleavings by adding synchronization to the computation, without creating a deadlock, then too
little synchronization is likely to be the problem. Furthermore, the knowledge of the exact synchronization needed to maintain a safety property can facilitate the localization of the bug in the program. The problem of finding a synchronization required to maintain a safety property in a computation is referred to as the predicate control problem [TG98b].

Analyzing an erroneous computation in order to track down the source of the fault is complicated by the fact that the computation in general contains exponential number of global states. Therefore it is helpful and desirable to focus on only those global states that are likely to be involved in the fault. For example, to locate the bug, it may suffice to examine only transitless global states, the ones in which all sent messages have been received. To that end, we define the notion of computation slice. Intuitively, slice is a concise representation of those global states of the computation that satisfy certain property. More precisely, the slice of a computation with respect to a predicate is the computation satisfying the following two conditions. First, it contains all global states for which the predicate evaluates to true. Second, among all computations that fulfill the first condition, it contains the least number of global states. A slice may contain exponentially fewer number of global states than the computation, thereby substantially reducing the size of the computation to be analyzed.

Fault Tolerance

A production quality software which has been extensively tested and debugged contains around 3 bugs per 1,000 lines of code [GR93]. Many systems, especially those employed in safety-critical environments, should be able to operate properly even in the presence of these bugs. An overwhelming majority of the bugs tend to be non-deterministic in nature and are often caused by transient conditions such as timing and synchronization. Therefore they do not manifest themselves in every

Figure 1.1: A software fault tolerance system.
program execution with the same input sequence and it is possible to tolerate them at runtime using rollback recovery [GR93]. A system capable of tolerating software faults can be built using a monitor that continuously observes the system execution to detect an occurrence of a fault. On detecting a fault, it rolls back the program to a state before the fault occurred and re-executes it hoping that the previously detected fault does not occur again. To prevent the fault from causing any serious damage such as corrupting stable storage, it is essential that the monitor be able to detect the fault in a timely manner. This requires the fault detection algorithm to be fast and efficient. Further, to minimize the disruption in service caused by the fault, it is desirable that during re-execution the fault be avoided in a deterministic fashion instead of relying on chance [$\mathrm{WHF}^{+} 97$]. Tarafdar and Garg [TG99] proposed the controlled re-execution approach which assumes some knowledge about the fault (e.g., fault occurred because of improper synchronization) but provides a guarantee that the previously detected fault will not recur during re-execution. Therefore to build a software fault tolerant system, two issues need to be addressed: (1) fault detection which gives rise to the problem of detecting a predicate under possibly modality, and (2) fault recovery which in the case of synchronization faults gives rise to the predicate control problem.

To summarize, our goals are:

- To investigate the problem of detecting a predicate in a computation.
- To investigate the problem of controlling a predicate in a computation.
- To formulate and investigate the notion of slice of a computation with respect to a predicate.

In the next three sections, we give an introduction to our work towards each of these goals. This is followed by an overview of the dissertation.

1.1 Detecting Global Predicates

Verifying the correctness of an observed behaviour of a program, for a specific input sequence, gives rise to the problem of detecting a predicate in a computation under possibly and definitely modalities. When detecting a predicate under possibly modality, the objective is to find a global state in the computation that violates the safety property. For example, consider the computation in Figure 1.2 with three processes p_{1}, p_{2} and p_{3}. The safety property is mutual exclusion which demands that no two processes are in critical sections (labeled $C S_{1}, C S_{2}, C S_{3}$ and $C S_{4}$) at the same time. Clearly, the given computation does not maintain mutual exclusion at all times. Specifically, mutual exclusion is violated for global state C in which processes p_{1} and p_{3} are in their respective critical sections.

Detecting a predicate under definitely modality requires verifying that the liveness property eventually becomes true in all interleavings of events. For example, consider the computation in Figure 1.3 with two processes p_{1} and p_{2}. The liveness property requires that the system always passes through a state in which both

Figure 1.2: Detecting a predicate under possibly modality.
processes are in the second round. Clearly, if the events are interleaved in the order $a e b c f d g h$, the desired condition never becomes true.

It can be proved that detecting a predicate in a computation under definitely modality is the dual of controlling a predicate in a computation. Thus our results in solving the predicate control problem are applicable to the predicate detection problem under definitely modality as well. Hereafter, the default modality for predicate detection is possibly. Moreover, we do not specify possibly modality unless we need to distinguish it from definitely modality.

Contributions

It is always useful and desirable to know for what classes of predicates an efficient polynomial-time detection algorithm is unlikely to exist. To that end, Chase and Garg prove in [CG95] that detecting a predicate in 3-CNF is an NP-complete problem. Also, Stoller and Schneider [SS95] show that it is computationally hard to detect a 2-local conjunctive predicate (a predicate expressed as conjunction of clauses where each clause depends on variables of at most two processes). We demonstrate that detecting a predicate in 2-CNF even when no two clauses contain variables from the same process is an NP-complete problem as well. It may be noted that our intractability result subsumes the two aforementioned NP-completeness results. Nevertheless, computation slicing, discussed later, can be used to achieve

Figure 1.3: Detecting a predicate under definitely modality.
an exponential improvement in time as well as space for detecting a predicate that is otherwise computationally hard to detect.

Additionally, we establish that detecting a relational predicate of the form $x_{1}+x_{2}+\cdots+x_{n}=k$ for constant k, where x_{i} is an integer variable on process p_{i}, is an NP-complete problem. This is somewhat surprising because a relational predicate of the form $x_{1}+x_{2}+\cdots+x_{n} \leqslant k$, for constant k, can be detected efficiently. (This is true even when \leqslant is replaced with \geqslant.) However, for certain restricted but useful class of general computations, it is indeed possible to provide an efficient polynomial-time algorithm to detect the former relational predicate. This class corresponds to computations in which each x_{i} is incremented or decremented by at most one at each step. Such computations are generated, for example, when each x_{i} is a binary variable and can assume values 0 or 1 . As a corollary, any symmetric predicate-predicate composed from boolean variables that is invariable under any permutation of its variables - can be efficiently detected.

1.2 Controlling Global Predicates

The problem of controlling a predicate in a computation involves adding synchronization to the computation, without creating a cycle, such that the given predicate is never falsified in the resultant computation. As an example, consider the computation in Figure 1.4(a) with three processes p_{1}, p_{2} and p_{3}. Suppose the stated predicate is the mutual exclusion predicate which requires that no two processes are

Figure 1.4: Controlling a predicate in a computation: (a) original computation, and (b) controlled computation.
in critical sections (labeled $C S_{1}, C S_{2}, C S_{3}$ and $C S_{4}$) at the same time. Clearly, the computation does not maintain mutual exclusion at all times. Figure 1.4(b) depicts the same computation with added synchronization that ensures that mutual exclusion is maintained at all times. We call such a computation as "controlled computation" and the added synchronization as "controlling synchronization". The main difficulty in determining such a controlling synchronization lies in adding the synchronization dependencies in such a manner as to maintain the given property without causing deadlock with existing synchronization dependencies.

Contributions

Tarafdar and Garg prove in [TG98b] that it is in general NP-complete to compute a controlling synchronization for a predicate. We therefore focus on two useful classes of predicates for which polynomial-time algorithms can be provided.

The first class of predicates we consider is the class of "region predicates". Informally, a region predicate partitions the set of global states of the computation that satisfy the predicate into bounded convex regions, one for each event. Some examples of region predicates include "the virtual clocks of all processes are approximately synchronized", and channel predicates such as "all request messages
have been received". We give an $O\left(n|E|^{2}\right)$ algorithm for computing a controlling synchronization for a region predicate, where n is the number of processes and E is the set of events. We also show that the controlling synchronization generated by the algorithm is optimal in the sense that it permits the maximum possible concurrency in the controlled computation.

The other class of predicates we study is the class of "disjunctive predicates". A disjunctive predicate can be expressed as disjunction of local predicates. Some examples include "at least one server is not busy", "at least one philosopher does not have a fork", and ($n-1$)-mutual exclusion with n processes in the system. Intuitively, a disjunctive predicate ensures that a bad combination of local conditions does not occur. We provide an $O(n|E|)$ algorithm for computing a controlling synchronization for a disjunctive predicate, where n is the number of processes and E is the set of events. We further modify the algorithm to compute a controlling synchronization with the least number of synchronization dependencies. The modified algorithm has $O\left(|E|^{2}\right)$ time-complexity.

1.3 Slicing Distributed Computations

The slice of a computation with respect to a predicate is the computation with the least number of global states such that it contains all global states of the original computation satisfying the given predicate. As an illustration, consider the computation in Figure 1.5(a). In the figure, the first event on each process initializes the state of the process. The initial global state is therefore obtained by executing the events a, e and u. Suppose we wish to examine only those global states for which $\left(x_{1} \geqslant 1\right) \wedge\left(x_{3} \leqslant 3\right)$. A concise representation of such global states-referred to as slice - is shown in Figure 1.5(b). Informally, in the slice, the partial order is specified on subsets of events rather than events. Intuitively, all events in a subset are executed atomically, that is, either none of them is executed or all of them are

(a)

(b)

Figure 1.5: (a) A computation, and (b) its slice with respect to the predicate $\left(x_{1} \geqslant 1\right) \wedge\left(x_{3} \leqslant 3\right)$.
executed. For instance, the global state of the computation obtained by executing the events a, b, e and u is not a global state of the slice because only some of the events in the subset $\{a, e, f, u, v\}$ have been executed. The computation contains twenty eight global states whereas the slice contains only six global states.

Now, suppose we want to find a global state of the computation for which the predicate $\left(x_{1} * x_{2}+x_{3}<5\right) \wedge\left(x_{1} \geqslant 1\right) \wedge\left(x_{3} \leqslant 3\right)$ evaluates to true. Without computation slicing, we are forced to examine all global states of the computation to ascertain whether some global state satisfies the predicate. With computation slicing, however, we can restrict our search to the global states of the slice, thereby resulting in substantial savings.

Contributions

We first establish that slice exists and is uniquely defined for all predicates. The slice for a predicate may contain global states that do not satisfy the predicate. We identify the class of "regular predicates" for which the slice is "lean". In other words, the slice for a regular predicate contains precisely those global states for which the predicate evaluates to true. The set of global states that satisfy a regular predicate forms a sublattice, that is, it is closed under intersection and union. Some examples of regular predicates are: conjunction of local predicates like "no process has the
token", and channel predicates such as "all request messages have been received". We prove that the class of regular predicates is closed under conjunction, that is, the conjunction of two regular predicates is also a regular predicate. We devise an efficient algorithm to compute the slice for a regular predicate. The time-complexity of the algorithm is $O\left(n^{2}|E|\right)$, where n is the number of processes and E is the set of events. Additionally, for special cases of regular predicates such as conjunction of local predicates, we develop optimal algorithms for computing the slice which have $O(|E|)$ time-complexity. In addition to regular predicates, we also provide efficient algorithms to compute the slice for many classes of non-regular predicates including "linear predicates" and "post-linear predicates".

We prove that it is intractable in general to compute the slice for a predicate. Nonetheless, it is still useful to be able to compute an approximate slice for such a predicate efficiently. An approximate slice may be bigger than the actual slice but will be much smaller than the computation itself. To that end, we develop efficient algorithms to compose two slices using "grafting". Specifically, given two slices, grafting involves computing either (1) the smallest slice that contains all global states common to both the slices, or (2) the smallest slice that contains all global states that belong to at least one of the slices. We apply grafting to efficiently compute the slice for the complement of a regular predicate - referred to as "co-regular predicate". The algorithm has $O\left(n^{2}|E|^{2}\right)$ time-complexity, where n is the number of processes and E is the set of events. We also employ grafting to compute the slice for a " k-local predicate" with constant k in polynomial-time. More importantly, we use grafting to compute an approximate slice - in polynomialtime - for a predicate composed using \wedge and \vee operators from predicates for which the slice can be computed efficiently (e.g., regular predicates, linear predicates). Example of such predicate is: $\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{3} \vee \neg x_{1}\right) \wedge\left(x_{2} \vee x_{3}\right)$, where each x_{i} is a linear predicate. We conduct simulation tests to experimentally measure the
effectiveness of computation slicing in pruning the search space when detecting a predicate. Our results indicate that computation slicing can lead to an exponential reduction over existing techniques both in terms of time as well as space.

1.4 Overview of the Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2, we define our model. Next, we have three main chapters of the dissertation. Chapter 3 discusses our results in detecting global predicates, Chapter 4 investigates the problem of controlling global predicates, and Chapter 5 describes our study of the computation slicing technique. In Chapter 6, we give a summary of the related work. Finally, we draw conclusions and describe future directions in Chapter 7.

Chapter 2

System Model

In this chapter we formally describe the model and notation used in this dissertation. Our model is based on the Lamport's happened-before model [Lam78]. The model is further extended in Chapter 5 where we discuss computation slicing in detail.

2.1 Distributed Computations

We assume an asynchronous distributed system with the set of processes $P=$ $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$. Each process executes a predefined program. Processes do not share any clock or memory; they communicate and synchronize with each other by sending messages over a set of channels. We assume that channels are reliable, that is, messages are not lost, altered or spuriously introduced into a channel. We do not assume FIFO channels.

The local computation of a process is given by the sequence of events that transforms the initial state of the process into the final state. At each step, the local state is captured by the initial state together with the sequence of events that have
been executed up to that step. Each event is either an interval event or an external event. An external event could be a send event or a receive event or both. An event causes the local state of a process to be updated. Additionally, a send event causes a message or a set of messages to be sent and a receive event causes a message or a set of messages to be received. We assume the presence of fictitious initial events on each process p_{i}, denoted by \perp_{i}. The initial event occurs before any other event on the process and initializes the state of that process. We denote the last event on process p_{i}, called the final event, by \top_{i}. Let \perp and \top denote the set of all initial events and final events, respectively.

Let $\operatorname{proc}(e)$ denote the process on which event e occurs. The predecessor and successor events of e on $\operatorname{proc}(e)$ are denoted by $\operatorname{pred}(e)$ and $\operatorname{succ}(e)$, respectively, if they exist. Observe that an initial event does not have a predecessor and a final event does not have a successor.

We model a distributed computation (or simply a computation) by an irreflexive partial order on a set of events. We use $\langle E, \rightarrow\rangle$ to denote a distributed computation with the set of events E and the partial order \rightarrow. The partial order \rightarrow is given by the Lamport's happened-before relation (or causality relation) [Lam78] which is defined as the smallest transitive relation satisfying the following properties:

1. if events e and f occur on the same process, and e occurred before f in real time then e happened-before f, and
2. if events e and f correspond to the send and receive, respectively, of a message then e happened-before f.

Given a computation $\langle E, \rightarrow\rangle$, we denote the order of events on processes by \xrightarrow{P} which is referred to as process order. Note that the projection of \xrightarrow{P} onto the events of a single process is a total order. The reflexive closure of an irreflexive partial order \rightsquigarrow is represented by \rightsquigarrow and its transitive closure is denoted by $\rightsquigarrow+$. A

Figure 2.1: An example of a computation.
run or interleaving of a computation $\langle E, \rightarrow\rangle$ is some total order on events E that is consistent with the partial order \rightarrow.

Example 2.1 Figure 2.1 depicts a computation involving two processes, namely p_{1} and p_{2}. The local computation of each process advances from left to right as shown in the figure. The circles represent events and the arrows denote messages. The local computation of p_{1} is given by the sequence abcd. The event b is a send event, the event f is a receive event and the event d is an internal event. Here, $\perp_{1}=a$ and $\perp_{2}=e$ whereas $\top_{1}=c$ and $\top_{2}=h$. Also, $\operatorname{proc}(b)=p_{1}, \operatorname{pred}(b)=a$ and $\operatorname{succ}(e)=c$. The set of events $E=\{a, b, c, d, e, f, g, h\}$ and the happened-before order $\rightarrow=\{(a, b),(b, c),(c, d),(e, f),(f, g),(g, h),(b, f),(g, c)\}^{+}$. The process order \xrightarrow{P} is given by $\{(a, b),(b, c),(c, d),(e, f),(f, g),(g, h)\}^{+}$. Finally, aebfghcd is a run of the computation.

2.2 Cuts, Consistent Cuts and Frontiers

The state of a distributed system, called the global state, is given by the collective state of processes. The equivalent notion based on events is called cut and is defined as a subset of events that contains all initial events such that it contains an event only if its predecessor, if it exists, also belongs to the subset. Formally,

$$
C \text { is a cut } \triangleq(\perp \subseteq C) \wedge\langle\forall e: e \in C: e \notin \perp \Rightarrow \operatorname{pred}(e) \in C\rangle
$$

The frontier of a cut C is defined as the set of those events in C whose successors are not in C. Formally,

$$
\text { frontier }(C) \triangleq\{e \in C \mid e \notin \top \Rightarrow \operatorname{succ}(e) \notin C\}
$$

We say that a cut passes through an event if the event is included in its frontier. Not every cut can occur during system execution. A cut is said to be consistent if it contains an event only if it also contains all events that happened-before it. Formally,
C is a consistent cut $\triangleq(C$ is a cut $) \wedge\langle\forall e, f: e \rightarrow f: f \in C \Rightarrow e \in C\rangle$
In particular, only those cuts which are consistent can possibly occur during an execution. The equivalent notion based on state is called consistent global state. We denote the set of consistent cuts of a computation $\langle E, \rightarrow\rangle$ by $\mathcal{C}(\langle E, \rightarrow\rangle)$.

Two events are consistent if there exists a consistent cut that passes through both the events, otherwise they are inconsistent. It can be verified that events e and f are inconsistent if and only if either $\operatorname{succ}(e) \rightrightarrows f$ or $\operatorname{succ}(f) \rightrightarrows e$. Finally, two events e and f are independent if they are incomparable with respect to \rightarrow.

Example 2.2 Consider the computation in Figure 2.1. Pictorially, we represent a cut by a line drawn from top to bottom passing through exactly one event on each process; an event belongs to the cut if and only if it either lies on the line or lies on the left of the line. The cut $C=\{a, e, f\}$. The cut D is consistent whereas C is not. Here, frontier $(C)=\{a, f\}$ and frontier $(D)=\{b, g\}$. The events b and f are consistent whereas events a and f are not. Finally, events c and h are independent but b and f are not.

2.3 Global Predicates

A global predicate (or simply a predicate) is defined as a boolean-valued function on variables of processes. Given a consistent cut, a predicate is evaluated with respect
to the values of variables resulting after executing all events in the cut. If a predicate b evaluates to true for a consistent cut C, we say that " C satisfies b " and denote it by $C \models b$.

A global predicate is local if it depends on variables of a single process. Note that it is possible to evaluate a local predicate with respect to an event on the appropriate process. In case the predicate evaluates to true, the event is called a true event; otherwise, it is called a false event. We use $e \models b$ to denote the fact that the event e satisfies the local predicate b.

A run is called safe with respect to a predicate if every consistent cut of the run satisfies the predicate; otherwise, the run is unsafe.

Remark 2.1 We assume that the time-complexity of evaluating a predicate for a consistent cut is polynomial in input size. However, for convenience, throughout this dissertation, we specify the time-complexity of our algorithms assuming that the time-complexity of evaluating a predicate is linear in number of processes whose variables the predicate depends on. In case the time-complexity is actually higher, the time-complexity of the algorithms will increase correspondingly.

The value of a predicate is defined with respect to a consistent cut. So, what does it mean to evaluate a predicate for a computation which may consist of several consistent cuts? Given a computation, it is possible to evaluate a predicate under various modalities, namely possibly, definitely, invariant and controllable [CM91, WG91, SUL00, TG99, MG00]. A predicate is said to be possibly true in a computation if there exists a consistent cut of the computation for which the predicate evaluates to true. On the other hand, a predicate definitely holds in a computation if it eventually becomes true in all possible runs of the computation. The modalities invariant and controllable are duals of the modalities possibly and definitely, respectively. That is, a predicate is invariant in a computation if every consistent cut of the computation satisfies the predicate, whereas it is controllable

Concept	Description	Notation
local computation	sequence of events on a process	
distributed computation (or simply computation)	irreflexive partial order on set of events	$\langle E, \rightarrow\rangle$
run/interleaving	total order on events consistent with the partial order of a distributed computation	
process order	order of events on processes	\xrightarrow{P}
cut	an event is in the cut only if its predecessor is also in the cut	C, D
frontier	subset of events in the cut whose successors do not belong to the cut	frontier (C)
passes through	event is contained in the frontier of the cut	
consistent cut	an event is in the cut only if all its preceding events (with respect to the partial order) are also in the cut	
consistent events	some consistent cut passes through both the events	
independent events	events are incomparable with respect to the given partial order	
global predicate (or simply predicate)	boolean-valued function on variables of processes	b
safe run	every consistent of the run satisfies the global predicate	
local predicate	global predicate that depends on variables of only a single process	
true event	event satisfies the local predicate	

Table 2.1: A summary of the various concepts.

Notation	Description
$\operatorname{proc}(e)$	process on which event e occurs
pred(e)	predecessor of event e (on $\operatorname{proc}(e)$)
$\operatorname{succ}(e)$	successor of event e (on $\operatorname{proc}(e)$)
\perp_{i}	initial event on process p_{i}
T_{i}	final event on process p_{i}
\perp	set of initial events
T	set of final events
$\rightarrow, \rightsquigarrow, \mapsto$	irreflexive partial orders on set of events
$\overrightarrow{ }$	reflexive closure of \rightarrow
R^{+}	transitive closure of relation R
$C \models b$	consistent cut C satisfies global predicate b
$e \models b$	event e satisfies local predicate b
$\langle E, \rightarrow\rangle \models$ modal $: b$	global predicate b holds in distributed computation $\langle E, \rightarrow\rangle$ under modal modality modal $\in\{$ possibly, definitely, controllable, invariant $\}$

Table 2.2: A summary of the notation.
in a computation if there exists a safe run of the computation with respect to the predicate. The predicate detection problem [CM91, CG98, SUL00, MG01b] typically refers to monitoring a predicate under possibly (and sometimes under definitely) modality, whereas the predicate control problem [TG98b, TG99, MG00] involves monitoring a predicate under controllable modality.

Given a predicate b and a computation $\langle E, \rightarrow\rangle$, we use $\langle E, \rightarrow\rangle \models$ possibly: b to denote the fact that b possibly holds in $\langle E, \rightarrow\rangle$. The expressions $\langle E, \rightarrow\rangle \models$ definitely: $b,\langle E, \rightarrow\rangle \vDash$ invariant: b and $\langle E, \rightarrow\rangle \models$ controllable: b can be similarly
interpreted.
Table 2.1 and Table 2.2 summarize various notations and concepts defined in this chapter.

Chapter 3

Detecting Global Predicates

In this chapter, we describe in detail our results pertaining to the detection of global predicates in distributed computations primarily under possibly modality. In particular, we provide solutions to all the open problems proposed in [Gar97].

3.1 Overview

We start by defining the problem formally in Section 3.2. Informally, the problem of detecting a predicate typically refers to monitoring it under possibly or definitely modality.

Chase and Garg [CG95] prove that it is in general NP-complete to detect a 3-CNF predicate under possibly modality. Stoller and Schneider [SS95] show that detecting a 2-local conjunctive predicate under possibly modality is NP-complete in general as well. A 2-local conjunctive predicate is a conjunction of clauses such that each clause depends on variables of at most two processes. In Section 3.3, we introduce a new class of predicates called "singular k-CNF predicates". Informally, a k-CNF predicate is singular if no two clauses contain variables from the same
process. We show that detecting even a singular 2-CNF predicate under possibly modality is NP-complete in general. Our NP-completeness result subsumes the two aforementioned NP-completeness results [CG95, SS95]. It also bridges the wide gap between the known tractability [GW94] and intractability [CG95, SS95] results that existed until now. Further, the NP-completeness result can be used to establish the intractability of detecting other "interesting" singular predicates under possibly modality.

It is, however, possible to devise an efficient polynomial-time algorithm for detecting a singular k-CNF predicate under possibly modality provided that the computation satisfies certain property, namely it is either receive-ordered or sendordered [TG98a]. The algorithm is based on Tarafdar and Garg's algorithm for detecting a conjunctive predicate under possibly modality for the strong causality model which is an extension of the Lamport's happened-before model [Lam78] in the sense that it allows events on a process to be only partially ordered [TG98a]. The time-complexity of the algorithm is $O\left(|E|^{2}\right)$, where E is the set of events. We also discuss techniques that can be used to achieve an exponential reduction in time over existing techniques for the solving the general version. However, note that the time-complexity of the algorithm for the general version will be exponential in the worst case.

In Section 3.4, we extend the definition of "relational predicate" introduced in [TG97] to include the equality operator. A relational predicate is of the form $x_{1}+x_{2}+\cdots+x_{n}$ relop k, where each x_{i} is an integer variable on process p_{i}, k is some constant and relop $\in\{=,<, \leqslant,>, \geqslant\}$. Chase and Garg [CG95] gave polynomialtime algorithm to detect a relational predicate under possibly modality when relop $\in\{<, \leqslant\rangle,, \geqslant\}$ based on the notion of max-flow/min-cut. We prove that it is in general NP-complete to detect a relational predicate under possibly modality when relop $=^{\prime}=^{\prime}$. However, an efficient polynomial-time algorithm can be developed for
the case when each x_{i} is incremented or decremented by at most one at each step. The time-complexity of the algorithm is $O\left(|E|^{2} \log (|E|)\right)$, where E is the set of events. As a corollary, the above algorithm can be used to detect any "symmetric predicate" on boolean variables under possibly modality. A symmetric predicate is invariant under any permutation of its variables. Examples of symmetric predicates include "absence of two-third majority", "exclusive-or of local predicates" and "not all local predicates have the same value".

Although the computation that we construct to prove the NP-completeness result for singular 2-CNF predicates may contain events that send and/or receive multiple messages, it is relatively easy to modify the computation such that each event sends or receives at most one message while ensuring that the NP-completeness result still holds. The basic idea is to replace each event by a contiguous sequence of events such that each event in the sequence sends or receives at most one message (but not both) and the resultant computation satisfies the desired property.

Tarafdar and Garg [TG98b] proved that it is in general NP-complete to monitor a predicate under controllable modality. Since the problem of monitoring a predicate under definitely modality is dual of the problem of monitoring a predicate under controllable modality, it is in general coNP-complete to detect a predicate under definitely modality. For their NP-completeness proof, Tarafdar and Garg transformed an arbitrary instance of the problem of detecting a predicate b under possibly modality to an instance of monitoring the predicate $x \vee b$ under controllable modality [TG98b]. Using their construction and our NP-completeness result for singular 2-CNF predicates, it can be established that controlling a singular 3-CNF predicate in a computation is also intractable in general. This in turn implies that detecting a singular 3-DNF predicate (dual of singular 3-CNF predicate) under definitely modality is coNP-complete in general.

3.2 Problem Statement

The predicate detection problem typically refers to monitoring a predicate under possibly or definitely modality [CM91, WG91]. In this chapter, we mainly focus on detecting a predicate under possibly modality and make possibly modality explicit only when we need to distinguish it from definitely modality.

3.3 Singular k-CNF Predicates

A predicate of boolean variables in conjunctive normal form (CNF) is called singular if no two clauses contain variables from the same process. Roughly speaking, a predicate in CNF is singular if it is possible to rewrite the predicate such that each variable occurs in at most one clause and each process hosts at most one variable. For convenience, we write a singular predicate in k-CNF (exactly k literals per clause) as singular $k-C N F$ predicate. A singular 1-CNF predicate is also called conjunctive predicate [GW94]. For example, let x_{i} be a boolean variable on process p_{i}. Then the predicate $\left(x_{1} \vee x_{2}\right) \wedge\left(x_{3} \vee x_{4} \vee x_{5}\right)$ is a singular CNF predicate whereas the predicate $\left(x_{1} \vee x_{2}\right) \wedge\left(x_{2} \vee x_{3}\right)$ is not.

We first prove that the problem of detecting a singular k-CNF predicate is intractable in general even when k is two. Efficient algorithms for detecting the predicate, however, exist when k is one [CG98]. Our NP-completeness result subsumes the two earlier known NP-completeness results [CG98, SS95]. We next present a polynomial-time algorithm for solving the problem for two special cases, namely when the computation is either receive-ordered or send-ordered [TG98a]; the two notions are defined later in Section 3.3.2. We also discuss techniques that can be used to achieve an exponential reduction in time over existing techniques for solving the general version. The following observation comes in useful for achieving the aforementioned results.

Observation 3.1 Consider a singular k-CNF predicate b with m clauses $c_{i}=x_{i}^{1} \vee$ $x_{i}^{2} \vee \cdots \vee x_{i}^{k}, 1 \leqslant i \leqslant m$, where x_{i}^{j} is a boolean variable on process p_{i}^{j}. Let grp p_{i} denote the subset of processes that host the variables in c_{i}, that is, $\operatorname{grp}_{i}=\left\{p_{i}^{j} \mid 1 \leqslant j \leqslant k\right\}$. A necessary and sufficient condition for the existence of a consistent cut that satisfies b is the existence of m pairwise consistent true events $e_{i}, 1 \leqslant i \leqslant m$, such that each e_{i} is an event on some process in grp.$^{.}$

The above observation follows from the fact that, given a set of pairwise consistent events-not necessarily from all processes, it is always possible to find a consistent cut that passes through all the events in the set. More precisely, given an event e, let $C_{\text {least }}$.e denote the least consistent cut of the computation that passes through e. Now, given a subset of events F, consider the consistent cut $C(F)$ defined as follows:

$$
C(F) \triangleq \bigcup_{e \in F}\left(C_{\text {least }} \cdot e\right)
$$

It can be verified that $C(F)$ is not only a consistent cut but also passes through every event in F.

3.3.1 NP-Completeness Result

The problem is in NP because the general problem of detecting an arbitrary boolean expression is in NP [CG98]. To establish its NP-hardness, we transform an arbitrary instance of a variant of the satisfiability problem [CLR91], which we call non-monotone 3-SAT problem, to an instance of detecting a singular 2-CNF predicate.

Definition 3.1 (non-monotone 3-SAT problem) Given a formula in CNF such that (1) each clause has at most three literals, and (2) each clause with exactly three literals has at least one positive literal and one negative literal, does there exist a satisfying truth assignment for the formula?

The NP-completeness of the non-monotone 3-SAT problem follows from the intractability of the 3-SAT problem. Specifically, given a formula in 3-CNF, it can be easily transformed into a formula that satisfies the above-mentioned conditions; we call such a formula non-monotone 3-CNF formula. Consider a clause in a 3-CNF formula containing only positive literals, say $c_{i}=y_{i}^{1} \vee y_{i}^{2} \vee y_{i}^{3}$. We replace the clause c_{i} with three clauses $y_{i}^{1} \vee y_{i}^{2} \vee \neg z_{i}^{3}, y_{i}^{3} \vee z_{i}^{3}$ and $\neg y_{i}^{3} \vee \neg z_{i}^{3}$. The last two clauses ensure that, in any satisfying truth assignment, y_{i}^{3} and z_{i}^{3} are logical negation of each other. A similar substitution can be made for clauses containing only negative literals. It is easy to verify that the resultant formula is a non-monotone 3-CNF formula. Furthermore, the new formula is satisfiable if and only if the original formula is satisfiable. Thus we have the following theorem.

Theorem 3.1 The non-monotone 3-SAT problem is NP-complete in general.

We now prove the NP-hardness of detecting a singular 2-CNF predicate. Observe that finding a satisfying truth assignment for a non-monotone 3-CNF formula is equivalent to finding a subset of literals, one from each clause, that are mutually non-conflicting. Consequently, it follows from Observation 3.1 that if the computation and the singular 2-CNF predicate satisfy the properties: (1) for each clause in the formula there is a clause in the predicate and vice versa, (2) there is a one-to-one correspondence between the literals in the formula and the true events in the computation, and (3) two literals conflict if and only if the corresponding true events are inconsistent, then the formula is satisfiable if and only if the predicate possibly holds in the computation.

Given a non-monotone 3-CNF formula with clauses $c_{i}, 1 \leqslant i \leqslant m$, we construct a computation and a singular 2-CNF predicate as follows. Without loss of generality, assume that each clause has at least two literals - a lone literal in a clause has to be assigned value true in any satisfying assignment-and no clause contains conflicting literals. For each clause c_{i} in the formula, we add two processes p_{i}^{1} and p_{i}^{2}

Figure 3.1: The local computation when the clause has (a) two literals and (b) three literals.
to the computation hosting boolean variables x_{i}^{1} and x_{i}^{2}, respectively. Initially, all variables evaluate to false. We also add the clause $x_{i}^{1} \vee x_{i}^{2}$ to the (singular 2-CNF) predicate. We next describe the local computations of the two processes. There is one true event for each literal in the formula. Depending on the number of literals in the clause, there are two possible cases to consider:

Case $1\left(\left|c_{i}\right|=2\right)$: Let $c_{i}=l_{i}^{1} \vee l_{i}^{2}$. The local computations of processes p_{i}^{1} and p_{i}^{2} consist of a true event, corresponding to literals l_{i}^{1} and l_{i}^{2}, respectively, followed by a false event. For an illustration refer to Figure 3.1(a).

Case $2\left(\left|c_{i}\right|=3\right)$: Let $c_{i}=l_{i}^{1} \vee l_{i}^{2} \vee l_{i}^{3}$. Without loss of generality, assume that l_{i}^{1} is a positive literal and l_{i}^{2} is a negative literal. The local computation of the process p_{i}^{1} consists of a true event, corresponding to the literal l_{i}^{1}, followed by a false event, finally followed by a true event, corresponding to the literal l_{i}^{2}. The local

Figure 3.2: An illustration of the transformation (for the non-monotone 3-CNF formula $\left.\left(y_{1} \vee y_{2}\right) \wedge\left(y_{2} \vee \neg y_{1} \vee y_{3}\right) \wedge\left(y_{1} \vee \neg y_{3} \vee \neg y_{2}\right)\right)$.
computation of the process p_{i}^{2} consists of a true event, corresponding to the literal l_{i}^{3}, followed by a false event. For an example see Figure 3.1(b).

Now, given a satisfying truth assignment, the required subset of mutually consistent true events (see Observation 3.1) can be constructed by selecting, for each clause in the predicate, the true event corresponding to the literal with value true (each clause must contain at least one such literal because the truth assignment satisfies the formula). Conversely, given a consistent cut that satisfies the predicate, for each clause in the formula, we can assign the value true to that literal for which the corresponding true event in contained in the cut's frontier. However, in the computation constructed so far, it is possible for two true events to be consistent
even if the corresponding literals are conflicting. Thus we may end up assigning true values to conflicting literals. To prevent this from happening, we make the true events corresponding to the conflicting literals inconsistent by adding an arrow (that is, a message) from the successor of the true event corresponding to the positive literal to the true event corresponding to the negative literal as shown in Figure 3.2. For example, e is a true event corresponding to the positive literal y_{2} and g is the true event corresponding to the negative literal $\neg y_{2}$ which conflicts with y_{2}. Therefore we add an arrow from the successor of e, namely f, to g.

It remains to be shown that the arrows do not create any cycle and two true events are consistent if and only if the corresponding literals are non-conflicting. It suffices to show that there is no causal chain in the computation involving more than one message (or arrow) or, in other words, no dependency is created between true events due to transitivity. Observe that the true event corresponding to a negative literal is always at the receiving end of an arrow, if at all, and the successor of the true event corresponding to the positive literal, which is a false event, is always at the sending end of an arrow, if at all. Since there are no other arrows in the computation, each external event in the computation is either a send event or a receive event but not both. Furthermore, if a process contains more than one true event, the true event for the negative literal occurs after the true event for the positive literal. This ensures that if a process has both send and receive events then the receive event occurs after the send event. Thus any causal chain, on reaching a process via a message, cannot subsequently follow any more messages, thereby limiting the size of the causal chain to at most one message.

It is easy to see that the reduction takes polynomial-time and the non-monotone 3-CNF formula is satisfiable if and only if some consistent cut of the computation satisfies the singular 2-CNF predicate.

Theorem 3.2 Detecting a singular 2-CNF predicate is NP-complete in general.

Using the above theorem, it can be proved that even detecting predicates such as $\left(x_{1}<x_{2}\right) \wedge\left(x_{3}<x_{4}\right) \wedge \cdots \wedge\left(x_{n-1}<x_{n}\right)$, where each x_{i} is an integer variable on process p_{i}, is NP-complete in general. More precisely,

Corollary 3.3 Detecting a conjunction of clauses of the form x_{i} relop x_{j}, where each x_{i} is an integer variable and relop $\in\{<, \leqslant,>, \geqslant, \neq\}$, such that no two clauses contain variables from the same process is NP-complete in general.

Proof: The proof involves a simple reduction from a singular 2-CNF predicate. Consider a clause $y_{i} \vee y_{j}$ in a singular 2-CNF predicate. We define integer variables x_{i} and x_{j} such that x_{i} is 0 whenever y_{i} is false and is -1 otherwise. Similarly, x_{j} is 0 whenever y_{j} is false and is 1 otherwise. It can be easily verified that $y_{i} \vee y_{j}$ holds if and only if x_{i} is less than x_{j}. Similar reductions can be given for other relational operators.

Although the computation that we construct assumes that an event can send or receive multiple messages, it can be easily modified to ensure that an event sends or receives at most one message while maintaining the property that the formula is satisfiable if and only if the predicate holds in the computation.

3.3.2 Efficient Algorithm for Special Cases

Tarafdar and Garg [TG98a] consider extension of the Lamport's happened-before model [Lam78] for predicate detection that allows events on a process to be partially ordered. They call it the strong causality model. For this model, they present an algorithm for detecting a conjunctive predicate when either all receive events on every process are totally ordered or all send events on every process are totally ordered. We denote this algorithm by CPDSC- $\underline{\text { Conjunctive Predicate Detection }}$ in \underline{S} trong Causality Model. Observation 3.1 enables us to view each group grp i_{i} as a meta-process with events on it as partially ordered. Thus CPDSC algorithm
can be applied to solve our problem in a straightforward fashion. However, as in their case, either all receive events on every meta-process are totally ordered, that is, the computation is receive-ordered, or all send events on every meta-process are totally ordered, that is, the computation is send-ordered. We only give an overview of the algorithm here assuming that the computation is receive-ordered. The proof of correctness and other details can be found elsewhere [TG98a].

For the happened-before model, Garg and Waldecker [GW94] give a polynomial-time algorithm for detecting a conjunctive predicate. We denote their algorithm by CPDHB- $\underline{\text { Conjunctive Predicate Detection in Happened-Before }}$ Model. Note that, given a set of true events, one from each process, either events in the set are pairwise consistent or there exist events e and f in the set such that $\operatorname{succ}(e)$ happened-before f. Since events on a process are totally ordered in the happened-before model, e is also inconsistent with every event on the process that occurs after f. This allows us to eliminate e from consideration in a scan of the computation from left to right, thereby giving an efficient algorithm for detecting a conjunctive predicate.

Since events on a meta-process are, in general, not totally ordered, CPDHB algorithm cannot be applied directly. However, if the computation is receive-ordered then it satisfies Property 3.1 that enables a polynomial-time algorithm to be devised. Consider a computation $\langle E, \rightarrow\rangle$. We first extend the partial order \rightarrow as follows: for two independent events e and f on a meta-process such that f is a receive event, add an arrow from e to f. It can be proved that the added arrows do not create any cycle [TG98a]. We then linearize the new partial order thus generated to obtain a total order on all events, say \rightsquigarrow. It can be verified that the computation satisfies the following property:

Property 3.1 Given events e, f and g such that events f and g are on the same meta-process but events e and f are on different meta-processes, we have,

$$
(e \rightarrow f) \wedge(f \rightsquigarrow g) \Rightarrow e \rightarrow g
$$

Thus, given events e and f on different meta-processes such that $\operatorname{succ}(e) \rightarrow f$, by virtue of Property 3.1 , e is also inconsistent (with respect to \rightarrow) with every event g that occurs after f (with respect to \rightsquigarrow) on the same meta-process (as $f)$. Since events on a meta-process are totally ordered with respect to \rightsquigarrow, we can eliminate e from consideration in a scan of $\langle E, \rightsquigarrow\rangle$ from left to right. This gives us an efficient algorithm to detect a singular k-CNF predicate when the computation is receive-ordered. The time complexity of the above algorithm is $O\left(|E|^{2}\right)$.

3.3.3 Algorithms for the General Case

For the general case, when the computation is neither receive-ordered nor send-ordered, we can form subsets of processes with each subset containing exactly one process from each meta-process. The CPDHB algorithm can then be applied to each subset [SS95]. Alternatively, we can divide events on each meta-process into a set of chains of events that cover all true events in that meta-process-each true event belongs to at least one chain. We then construct subsets of chains with each subset containing exactly one chain from each meta-process. The CPDHB algorithm can then be applied to each subset. The minimum number of chains needed to cover all true events in a meta-process is upper-bounded by k.

3.4 Relational Predicates: $\mathrm{x}_{1}+\mathrm{x}_{2}+\cdots+\mathrm{x}_{\mathrm{n}}=\mathrm{k}$

A relational predicate [TG97] is of the form $x_{1}+x_{2}+\cdots+x_{n}$ relop k, where each x_{i} is an integer variable on process p_{i} and relop $\in\{=,<,>, \leqslant, \geqslant\}$. Note that
our definition of relational predicates includes equality which was excluded in the definition by Tomlinson and Garg [TG97]. For convenience, we abbreviate the predicate possibly: $\left(x_{1}+x_{2}+\cdots+x_{n}\right.$ relop $\left.k\right)$ by possibly: (relop k). For example, possibly: $(=k)$ is a shorthand for possibly: $\left(x_{1}+x_{2}+\cdots+x_{n}=k\right)$. Likewise, we obtain definitely: (relop k).

We first establish the NP-completeness of evaluating possibly: $(=k)$ in general. We next present a polynomial-time algorithm for the special case when each x_{i} is incremented or decremented by at most one at each step.

3.4.1 NP-Completeness Result

The problem is in NP because the general problem of detecting an arbitrary boolean expression is in NP [CG98]. To prove its NP-hardness, we reduce an arbitrary instance of the subset sum problem [GJ91, problem SP13] to an instance of detecting possibly: $(=k)$. The subset sum problem is defined as follows:

Definition 3.2 (subset sum problem [GJ91]) Given a finite set A, size $s\left(a_{i}\right) \in$ Z^{+}for each $a_{i} \in A$ and a positive integer B, does there exist a subset $A^{\prime} \subseteq A$ such that the sum of the sizes of the elements in A^{\prime} is exactly B ?

The reduction is as follows. There is a process p_{i} that hosts variable x_{i} for each element a_{i} in the set A. The initial value of each x_{i} is set to zero. Each process has exactly one event e_{i}; the final value of x_{i}, after executing e_{i}, is $s\left(a_{i}\right)$. Finally, k is set to B. It is easy to see that the reduction takes polynomial-time and the required subset exists if and only if possibly: $(=k)$ holds.

Theorem 3.4 Detecting possibly: $(=k)$ when each x_{i} can be modified (incremented or decremented) by an arbitrary amount at each step is NP-complete in general.

3.4.2 Efficient Algorithm for the Special Case

It is possible to devise an efficient algorithm for detecting possibly: $(=k)$ in a computation provided that each x_{i} is incremented or decremented by at most one at each step. The algorithm is based on monitoring predicates possibly: $(\leqslant k)$ and possibly: $(\geqslant k)$. Efficient algorithms to observe these predicates can be found elsewhere [CG95, TG97].

A consistent cut C^{\prime} is reachable from a consistent cut C if it is possible to attain C^{\prime} from C by executing zero or more events. It can be verified that C^{\prime} is reachable from C if and only if $C \subseteq C^{\prime}$. If C^{\prime} can be obtained from C by executing exactly one event then C^{\prime} immediately succeeds C. Furthermore, C immediately precedes C^{\prime}.

A sequence of consistent cuts $\left\{C_{i}\right\}_{i>0}$ forms a path in a computation if each C_{i+1} immediately succeeds C_{i}. Observe that if C^{\prime} is reachable from C then there is a path from C to C^{\prime} and vice versa. Moreover, every run corresponds to a path in the computation.

Observation 3.2 Let C and C^{\prime} be consistent cuts such that C^{\prime} is obtained from C by executing at most one event. Then $\left|\operatorname{sum}\left(C^{\prime}\right)-\operatorname{sum}(C)\right| \leqslant 1$.

Given a consistent cut C, let $\operatorname{sum}(C)$ denote the value of the sum $x_{1}+x_{2}+\cdots+x_{n}$ evaluated at C. Given a pair of integers u and v, let range (u, v) denote the set $[\min \{u, v\} \ldots \max \{u, v\}]$. For example, range $(3,8)=[3 \ldots 8]=$ $\{3,4,5,6,7,8\}$ and range $(6,2)=[2 \ldots 6]=\{2,3,4,5,6\}$.

Theorem 3.5 Let C and C^{\prime} be consistent cuts such that there is a path s from C to C^{\prime} in the computation. Then, for each v,

$$
v \in \operatorname{range}\left(\operatorname{sum}(C), \operatorname{sum}\left(C^{\prime}\right)\right) \Rightarrow\langle\exists D: D \in s: \operatorname{sum}(D)=v\rangle
$$

Proof: Without loss of generality, assume that $\operatorname{sum}(C) \leqslant \operatorname{sum}\left(C^{\prime}\right)$. The proof for the other case, when $\operatorname{sum}(C) \geqslant \operatorname{sum}\left(C^{\prime}\right)$, is similar and has been omitted. Assume that $v \in \operatorname{range}\left(\operatorname{sum}(C), \operatorname{sum}\left(C^{\prime}\right)\right)$, that is, $\operatorname{sum}(C) \leqslant v \leqslant \operatorname{sum}\left(C^{\prime}\right)$. If $v=\operatorname{sum}\left(C^{\prime}\right)$ then C^{\prime} is the required consistent cut. Thus assume that $v<\operatorname{sum}\left(C^{\prime}\right)$. Starting from C we follow the path s by executing, one-by-one, zero or more events in $C^{\prime} \backslash C$ until we reach a consistent cut H such that $\operatorname{sum}(H) \geqslant v$ for the first time. We claim that $\operatorname{sum}(H)=v$. Assume, by the way of contradiction, that $\operatorname{sum}(H) \neq v$, that is, $\operatorname{sum}(H)>v$. Note that H exists since $\operatorname{sum}\left(C^{\prime}\right)>v$. Let G be the consistent cut that immediately precedes H along the path. Note that G exists since $\operatorname{sum}(C) \leqslant v$. Moreover, $\operatorname{sum}(G)<v$ because H is the first consistent cut with sum at least v. Thus (1) $\operatorname{sum}(H)>v$ implying that $\operatorname{sum}(H) \geqslant v+1$, and (2) $\operatorname{sum}(G)<v$ implying that $\operatorname{sum}(G) \leqslant v-1$. Combining the two, we have $\operatorname{sum}(H)-\operatorname{sum}(G) \geqslant 2$, a contradiction. Therefore $\operatorname{sum}(H)=v$ and H is the required consistent cut.

The central idea behind the algorithm for detecting possibly: $(=k)$ is to find a pair of consistent cuts C and C^{\prime}, if they exist, such that C^{\prime} is reachable from C and k lies in $\operatorname{range}\left(\operatorname{sum}(C)\right.$, sum $\left.\left(C^{\prime}\right)\right)$. Theorem 3.5 then guarantees the existence of a consistent cut that satisfies $x_{1}+x_{2}+\cdots+x_{n}=k$. The consistent cut C is always set to the initial consistent cut \perp. The advantage is that every consistent cut of the computation is reachable from the initial consistent cut. The next lemma furnishes sufficient conditions for possibly: $(=k)$ to hold in a computation.

Lemma 3.6 We have,

$$
\begin{aligned}
& (\operatorname{sum}(\perp) \leqslant k) \wedge(\text { possibly }:(\geqslant k)) \Rightarrow \text { possibly: }(=k), \text { and } \\
& (\operatorname{sum}(\perp) \geqslant k) \wedge(\text { possibly }:(\leqslant k)) \Rightarrow \text { possibly: }(=k)
\end{aligned}
$$

Proof: Assume that the conjunction $(\operatorname{sum}(\perp) \leqslant k) \wedge($ possibly $:(\geqslant k))$ holds. Since possibly: $(\geqslant k)$ is true, there exists a consistent cut with C^{\prime} with $\operatorname{sum}\left(C^{\prime}\right) \geqslant k$. Thus,
from Theorem 3.5, there exists a consistent cut D such that $\operatorname{sum}(D)=k$ implying that possibly: $(=k)$ holds. Likewise, $(\operatorname{sum}(\perp) \geqslant k) \wedge($ possibly $:(\leqslant k))$ implies possibly: $(=k)$.

The following lemma presents sufficient conditions for definitely: $(=k)$ to hold in a computation. The proof is similar to the proof of Lemma 3.6 and has been omitted.

Lemma 3.7 We have,

$$
\begin{aligned}
& (\text { sum }(\perp) \leqslant k) \wedge(\text { definitely }:(\geqslant k)) \Rightarrow \text { definitely }:(=k), \text { and } \\
& (\text { sum }(\perp) \geqslant k) \wedge(\text { definitely }:(\leqslant k)) \Rightarrow \text { definitely }:(=k)
\end{aligned}
$$

Finally, the following theorem gives the necessary and sufficient conditions for predicates possibly: $(=k)$ and definitely $:(=k)$ to hold in a computation.

Theorem 3.8 We have,

$$
\begin{aligned}
\text { (1) possibly: }(=k) \equiv & (\operatorname{sum}(\perp) \leqslant k) \wedge(\text { possibly }:(\geqslant k)) \vee \\
& (\operatorname{sum}(\perp) \geqslant k) \wedge(\text { possibly }:(\leqslant k)) \\
\text { (2) definitely: }(=k) \equiv & (\operatorname{sum}(\perp) \leqslant k) \wedge(\text { definitely }:(\geqslant k)) \vee \\
& (\operatorname{sum}(\perp) \geqslant k) \wedge(\text { definitely }:(\leqslant k))
\end{aligned}
$$

Proof: (1) Follows from the fact that possibly: $(=k)$ implies possibly: $(\leqslant k) \wedge$ possibly: $(\geqslant k)$, the disjunction $(\operatorname{sum}(\perp) \leqslant k) \vee(\operatorname{sum}(\perp) \geqslant k)$ is a tautology and Lemma 3.6.
(2) Follows from the fact that definitely: $(=k)$ implies definitely: $(\leqslant k) \wedge$ definitely: $(\geqslant k)$, the disjunction $(\operatorname{sum}(\perp) \leqslant k) \vee(\operatorname{sum}(\perp) \geqslant k)$ is a tautology and Lemma 3.7.

Observe that the final consistent cut is reachable from every consistent cut of a computation. Thus an alternate set of necessary and sufficient conditions for
possibly:(=k) and definitely:(=k) based on final consistent cut can also be derived. The time-complexity of computing possibly: $(\leqslant k)$ or possibly: $(\geqslant k)$ [TG97, CG95] is $O\left(|E|^{2} \log (|E|)\right)$. Thus the time-complexity of computing possibly: $(=k)$ is also $O\left(|E|^{2} \log (|E|)\right)$.

Since possibly distributes over disjunction, the following predicates, expressed as disjunction of predicates of the form $x_{1}+x_{2}+\cdots+x_{n}$ exactly equals k, can be easily detected using Theorem 3.8.

- absence of simple majority: $v_{1}+v_{2}+\cdots+v_{n}=n / 2, n$ even
- absence of two-third majority:
$\left(v_{1}+v_{2}+\cdots v_{n}>\left\lfloor\frac{n}{3}\right\rfloor\right) \wedge\left(v_{1}+v_{2}+\cdots v_{n}<\left\lceil\frac{2 n}{3}\right\rceil\right) \equiv \bigvee_{k \in A}\left(v_{1}+v_{2}+\cdots+v_{n}=k\right)$, where $A=\left[\left\lfloor\frac{n}{3}\right\rfloor+1 \ldots\left\lceil\frac{2 n}{3}\right\rceil-1\right]$
- exactly k tokens: token $_{1}+$ token $_{2}+\cdots+$ token $_{n}=k$

Additionally, the symmetric predicates, defined as follows, can now be efficiently monitored.

Definition 3.3 (symmetric predicate [Koh78]) A predicate $b\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ defined on n boolean variables is called symmetric if it is invariant under any permutation of its variables.

Some examples of symmetric predicates are $x \wedge y, x \vee y, x \oplus y$ and $(x \wedge y) \vee(\neg x \wedge \neg y)$. The necessary and sufficient condition for a predicate $b\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ to be symmetric is that it may be specified by a set of numbers $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$, where $0 \leqslant a_{i} \leqslant n$ and $m \leqslant n+1$, such that it assumes value true when and only when, for some i, exactly a_{i} of the variables are true. For example, the symmetric predicate $(x \vee y \vee z) \wedge(\neg x \vee \neg y \vee \neg z)$ is logically equivalent to the predicate $(x+y+z=1) \vee(x+y+z=2)$, where false and true are represented
by 0 and 1 , respectively, for the purpose of evaluating $x+y+z$. The proof of this result can be found elsewhere [Koh78, page 174]. Since, possibly distributes over disjunction, possibly: b when b is a symmetric predicate can be efficiently computed using Theorem 3.8. Some examples of symmetric predicates that arise in distributed systems are:

- exclusive-or of local predicates:

$$
x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n} \equiv \underset{k \text { is odd }}{\bigvee}\left(x_{1}+x_{2}+\cdots+x_{n}=k\right)
$$

- not all local predicates have the same value:
$\left(x_{1} \vee x_{2} \vee \cdots \vee x_{n}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \cdots \vee \neg x_{n}\right) \equiv \bigvee_{k \in A}\left(x_{1}+x_{2}+\cdots+x_{n}=k\right)$, where $A=[1 \ldots(n-1)]$

Chapter 4

Controlling Global Predicates

In this chapter, we discuss in detail our results pertaining to controlling global predicates in distributed computations.

4.1 Overview

We first define the problem formally in Section 4.2. Informally, a predicate is said to be controllable in a computation if it is possible to add synchronization dependencies, without creating a deadlock (that is, a cycle), such that every consistent cut of the resulting computation satisfies the predicate. In case the predicate can indeed be controlled in the computation, the set of synchronization dependencies required to control the predicate is referred to as "controlling synchronization". The resultant computation is called "controlled computation". A synchronization dependency from an event e to an event f means that f cannot be executed until e has been executed and can be implemented using a control message.

Tarafdar and Garg [TG98b] establish that it is in general NP-complete to control a predicate in a computation. However, efficient polynomial-time algorithms
can be developed for many useful classes of predicates [TG98b, TG99].
In Section 4.3, we introduce a new class of predicates called "region predicates". A region predicate is a conjunction of p-region predicates, where p is a process, with possibly different p 's. Roughly speaking, a p-region predicate partitions the set of consistent cuts that satisfy the predicate into a set of "convex regions", one for each event on process p, such that the set of consistent cuts that lie in a region forms a lattice under set containment. Intuitively, on reaching an event on process p, once the p-region predicate is falsified (that is, becomes false from true), it does not become true again until the computation advances beyond the event. The class of p-region predicates is closed under conjunction and hence the class of region predicates is closed under conjunction. Some examples of region predicates are termination, conjunctive predicates and monotonic channel predicates such as "at most (or at least) k messages in transit in any channel".

We present an efficient polynomial-time algorithm to control a region predicate in a computation. The time-complexity of our algorithm is $O\left(n|E|^{2}\right)$, where n is the number of processes and E is the set of events. We also prove that the controlling synchronization generated by our algorithm is optimal in the sense that it not only eliminates all unsafe runs but also retains all safe runs.

In Section 4.4, we introduce the notion of an "admissible sequence" of events with respect to a predicate. Specifically, we identify four properties that characterize an admissible sequence. Roughly speaking, an admissible sequence imposes a total order on "certain" events in the computation such that executing those events in that order ensures that the predicate is never falsified. We show that the existence of an admissible sequence of events with respect to a predicate is a necessary and sufficient condition for a predicate to be controllable in a computation. Further, given an admissible sequence, the controlling synchronization can be easily obtained and vice versa.

Based on the notion of admissible sequence, we devise a polynomial-time algorithm for controlling a "disjunctive predicate" in a computation. A disjunctive predicate is a disjunction of local predicates. Intuitively, a disjunctive predicate states that at least one local condition must be met at all times, or, in other words, a bad combination of local conditions does not occur. Examples of disjunctive predicates include "at least one server is available" and "at least one philosopher does not have any fork".

To control a disjunctive predicate in a computation, we construct a directed graph on "true-intervals" (maximal contiguous sequence of true events on a process) of the computation such that the problem of determining an admissible sequence reduces to finding an appropriate shortest path in the graph. The time-complexity of the algorithm is $O(n|T|)$, where n is the number of processes and T is the set of true-intervals, which is same as that of Tarafdar and Garg's algorithm [TG98b]. We further modify the algorithm to compute a minimum controlling synchronizationwith the least number of synchronization dependencies-for a disjunctive predicate. Clearly, a minimum controlling synchronization minimizes the number of control messages required to maintain a disjunctive predicate in a computation. The timecomplexity of the modified algorithm is $O\left(|E|^{2}\right)$, where E is the set of events.

4.2 Problem Statement

The predicate control problem refers to monitoring a predicate under controllable modality [TG98b]. Intuitively, a predicate is controllable in a computation if it is possible to make the computation "stricter" such that every consistent cut of the resulting computation satisfies the predicate. More precisely, a predicate b is controllable in a computation $\langle E, \rightarrow\rangle$ if there exists a set of synchronization dependencies \xrightarrow{S} such that $(1) \xrightarrow{S}$ does not interfere with \rightarrow, that is, $(\rightarrow \cup \xrightarrow{S})$ is acyclic, and (2) every consistent cut of $\langle E, \rightsquigarrow\rangle$, where $\rightsquigarrow=(\rightarrow \cup \xrightarrow{S})^{+}$, satisfies b.

Figure 4.1: An example of a p-region predicate.
We call the synchronization \xrightarrow{S} as a controlling synchronization and the computation $\langle E, \rightsquigarrow\rangle$ as the controlled computation. This definition of controllable: b is slightly different from the definition provided in Chapter 2. It can be verified that both definitions are actually equivalent.

Note that a synchronization dependency from an event e to an event f means that f cannot be executed until e has been executed and can be implemented using a control message.

4.3 Region Predicates

We first define a region predicate with respect to a process, called p-region predicate. Informally, a p-region predicate partitions the set of consistent cuts satisfying the predicate into a set of regions, one for each event on process p, satisfying certain properties. Firstly, the set of consistent cuts that lie in a region (that is, all events in the frontier of the cut belong to the region) forms a lattice. Secondly, each region is convex or, equivalently, a consistent cut that lies between two consistent cuts contained in the region also belongs to the region.

Example 4.1 Consider the computation shown in Figure 4.1 and the predicate "processes p_{1} and p_{2} are approximately synchronized" expressed mathematically as \mid round $_{1}-$ round $_{2} \mid \leqslant \Delta_{12}$ with Δ_{12} set to 1 . Consider the event e on p_{2} depicted in the figure. Immediately after executing e, the value of round ${ }_{2}$ is 3 . Since round ${ }_{1}$ is monotonically non-decreasing, there exist earliest and latest events on p_{1}, in this case f and u, respectively, such that the predicate holds. Furthermore, the predicate holds for every event on p_{1} that lies between f and u. The region corresponding to e (the shaded area resembling the cross-section of an hourglass in the figure) is bounded on the left by the least consistent cut passing through e and f and on the right by the greatest consistent cut passing through e and u. The consistent cut C lies in the region whereas the consistent cut D does not. It can be verified that the region is actually convex and the set of consistent cuts that belong to the region forms a lattice.

A p-region predicate is formally defined as follows:
Definition 4.1 (p-region predicate) A predicate b is a p-region predicate if it satisfies the following properties. For each event e on process p,

- (weak lattice) If two consistent cuts that pass through e satisfy the predicate then so do the consistent cuts given by their set intersection and set union. Formally,

$$
\left.\begin{array}{c}
\left(e \in \operatorname{frontier}\left(C_{1}\right) \cap \text { frontier }\left(C_{2}\right)\right) \wedge\left(C_{1} \models b\right) \wedge\left(C_{2} \models b\right) \\
\Rightarrow \\
\left(C_{1} \cap C_{2} \models b\right)
\end{array}\right)\left(C_{1} \cup C_{2} \models b\right), ~ \$
$$

- (weak convexity) If two consistent cuts that pass through e satisfy the predicate then so does the consistent cut that lies between the two. Formally,

$$
\begin{gathered}
\left(e \in \operatorname{frontier}\left(C_{1}\right) \cap \text { frontier }\left(C_{2}\right)\right) \wedge\left(C_{1} \models b\right) \wedge\left(C_{2} \models b\right) \wedge \\
\left(C_{1} \subseteq C \subseteq C_{2}\right) \\
\Rightarrow \\
C \models b
\end{gathered}
$$

We call the two properties "weak" because they are only satisfied by those consistent cuts that satisfy the predicate and pass through a given event, and not by all consistent cuts that satisfy the predicate. Some examples of p_{i}-region predicates encountered in distributed systems are as follows:

- any local predicate on p_{i}
- "bounded" number of messages in transit from p_{i} to $p_{j}: \operatorname{send}_{i j}-$ recv $_{i j} \leqslant \Delta_{i j}$
- "almost" fair resource allocation between p_{i} and p_{j}, when the system is heavily loaded: \mid alloc $_{i}-$ alloc $_{j} \mid \leqslant \Delta_{i j}$
- "bounded" drift between the clocks of p_{i} and $p_{j}:\left|c l o c k_{i}-\operatorname{clock}_{j}\right| \leqslant \Delta_{i j}$
- p_{i} and p_{j} are "approximately" synchronized: \mid round $_{i}-\operatorname{round}_{j} \mid \leqslant \Delta_{i j}$
- $x_{i}<\min \left\{y_{j}, y_{k}\right\}$, where x_{i}, y_{j} and z_{k} are variables on p_{i}, p_{j} and p_{k}, respectively, with y_{j} and y_{k} monotonically non-decreasing

Given two p-region predicates, their conjunction is also a p-region predicate as established by the next theorem.

Theorem 4.1 The class of p-region predicates is closed under conjunction.

Proof: We have to prove that if b_{1} and b_{2} are p-region predicates then so is $b_{1} \wedge b_{2}$. We first prove that $b_{1} \wedge b_{2}$ satisfies the weak lattice property. Consider consistent cuts C_{1} and C_{2} passing through an event e on process p that satisfy $b_{1} \wedge b_{2}$. By semantics of conjunction, both C_{1} and C_{2} satisfy b_{1} as well as b_{2}. Applying the weak lattice property twice, we obtain $C_{1} \cap C_{2}$ satisfies b_{1} and b_{2}. Again, by semantics of conjunction, $C_{1} \cap C_{2}$ satisfies $b_{1} \wedge b_{2}$. Likewise, $C_{1} \cup C_{2}$ satisfies $b_{1} \wedge b_{2}$. Thus $b_{1} \wedge b_{2}$ satisfies the weak lattice property.

We now prove that $b_{1} \wedge b_{2}$ satisfies the weak convexity property. Consider consistent cuts C_{1} and C_{2} passing through e that satisfy $b_{1} \wedge b_{2}$ and let C be any consistent cut that lies between the two. By semantics of conjunction, both C_{1} and C_{2} satisfy b_{1} as well as b_{2}. Applying the weak convexity property twice, we obtain C satisfies b_{1} and b_{2}. This implies that C satisfies $b_{1} \wedge b_{2}$. Therefore $b_{1} \wedge b_{2}$ satisfies the weak convexity property.

A region predicate is a conjunction of p-region predicates with possibly different p 's. It can be verified that the predicate representing termination is actually a region predicate. Note that, for each p, true is a p-region predicate. Thus a region predicate b can be written as conjunction of n predicates such that the $i^{t h}$ conjunct, denoted by $b^{(i)}$, is a p_{i}-region predicate.

Given an event e on process p_{i}, we denote the least consistent cut passing through e that satisfies $b^{(i)}$ by $C_{\min } . e$. Similarly, we denote the greatest consistent cut passing through e that satisfies $b^{(i)}$ by $C_{\max }$.e. If there does not exist a consistent cut that passes through e and satisfies $b^{(i)}$ then neither $C_{\min } \cdot e$ nor $C_{\max } \cdot e$ exists. Additionally, trivially, $b^{(i)}$ (and hence b) cannot be controlled in the computation. However, if there exists at least one consistent cut passing through e that satisfies $b^{(i)}$ then both $C_{\min } . e$ and $C_{\text {max }}$.e exist and are well-defined. This is because, from the weak lattice property, the set of such consistent cuts forms a lattice under set containment (\subseteq) implying that the set has a minimum (corresponds to $C_{\text {min }} . e$) and a maximum (corresponds to $C_{\max } . e$).

4.3.1 Finding a Controlling Synchronization

In order to find the synchronization necessary to control a region predicate in a computation, we first compute the synchronizations sufficient to control each of its conjunct (recall that the $i^{t h}$ conjunct corresponds to a p_{i}-region predicate). If it turns out that one or more of these conjuncts is not controllable then, trivially, the region
predicate itself cannot be controlled. Further, in case the various synchronizations (corresponding to different conjuncts) do not interfere with each other and, in addition, the collective synchronization does not interfere with the happened-before relation of the computation then, clearly, the collective synchronization constitutes a controlling synchronization for the given region predicate. Unfortunately, the converse does not hold in general.

Example 4.2 Suppose we wish to control the predicate $\left(x_{1} \vee x_{2}\right) \wedge\left(x_{3} \vee x_{4}\right)$ in the computation shown in Figure 4.2(a), where each x_{i} is a boolean variable on process p_{i}. It can be verified that the arrow from event h to event e constitutes a controlling synchronization for the first conjunct $x_{1} \vee x_{2}$. Similarly, the arrow from event v to event u constitutes a controlling synchronization for the second conjunct $x_{3} \vee x_{4}$. However, the collective synchronization given by $\{(h, e),(v, u)\}$ interferes with the happened-before relation of the computation. In other words, it creates a cycle as shown in Figure 4.2(b). The first conjunct has another controlling synchronization, namely the arrow from event f to event g. In this case, the collective synchronization given by $\{(f, g),(v, u)\}$ neither interferes with itself nor with the happened-before relation of the computation, thereby constituting a controlling synchronization for the predicate $\left(x_{1} \vee x_{2}\right) \wedge\left(x_{3} \vee x_{4}\right)$.

However, if the computed synchronization for each conjunct is smallest in the sense that it is contained in every possible controlling synchronization for the respective conjunct then the converse also holds. That is, if the region predicate is controllable in a computation then the various synchronizations not only do not interfere with each other but, additionally, the collective synchronization does not interfere with the happened-before relation of the computation. Intuitively, this is because a controlling synchronization for a region predicate also acts as a controlling

Figure 4.2: An example to illustrate that the interference of some collective synchronization with the happened-before relation does not imply that the predicate cannot be controlled.

Figure 4.3: An example to illustrate that the smallest controlling synchronization may not always exist.
synchronization for each of its conjunct.

Definition 4.2 (smallest controlling synchronization) We call a controlling synchronization smallest if is contained in every possible controlling synchronization for the predicate. Formally, given a controlling synchronization \xrightarrow{S} for a predicate b in a computation $\langle E, \rightarrow\rangle$,

$$
\begin{aligned}
\xrightarrow{S} \text { is smallest } \triangleq\langle\forall \rightsquigarrow: & \rightsquigarrow \text { extends } \rightarrow: \\
& \langle E, \rightsquigarrow\rangle \models \text { invariant }: b \equiv \rightsquigarrow \text { contains } \xrightarrow{s}\rangle
\end{aligned}
$$

A smallest controlling synchronization may not always exist as illustrated by the following example.

Example 4.3 Consider the computation in Figure 4.3(a). Suppose we desire to control the predicate $x_{1} \vee x_{2}$ in the computation, where each x_{i} is a boolean variable
on process p_{i}. Since the predicate $x_{1} \vee x_{2}$ is not invariant in the computation to begin with, the smallest controlling synchronization, if it exists, must be non-empty. It can be verified that the arrow from event f to event g constitutes a controlling synchronization for the predicate $x_{1} \vee x_{2}$, as shown in Figure 4.3(b), as does the arrow from event h to event e, as depicted in Figure 4.3(c). Moreover, the two synchronizations are mutually disjoint implying that the predicate $x_{1} \vee x_{2}$ does not have a smallest controlling synchronization.

As it happens, the smallest controlling synchronization in fact exists for a p-region predicate (and therefore also exists for a region predicate). Thus in order to find a controlling synchronization for a region predicate, from the above discussion, it suffices to devise an algorithm to compute the smallest controlling synchronization for a p-region predicate.

Consider a computation $\langle E, \rightarrow\rangle$ and a region predicate b. What does it entail to control the p_{i}-region predicate $b^{(i)}, 1 \leqslant i \leqslant n$, in $\langle E, \rightarrow\rangle$? Consider an event e on process p_{i}. As we know, the computation progresses from the initial consistent cut \perp to the final consistent cut E by executing, one-by-one, the events in E. For $b^{(i)}$ to hold when it first reaches e, it must be the case that no event in the frontier of the computation lies on the left of the frontier of $C_{\min } . e$. That is, when e is executed, all other events in the frontier of $C_{\min } . e$ must have already been executed. This entails adding synchronization dependencies from each event in the frontier of $C_{\min } . e$ that is different from e to e. We denote this synchronization by $\xrightarrow{e^{(1)}}$ and formally define it as follows:

$$
\xrightarrow{e^{(1)}} \triangleq\left\{(f, e) \mid f \in \text { frontier }\left(C_{\min } \cdot e\right) \backslash\{e\} \text { and } e \notin \perp\right\}
$$

For an example refer to Figure 4.4. Furthermore, for $b^{(i)}$ to hold as long as the computation stays at e (equivalently, until the successor of e, if it exists, is executed), the frontier of the computation cannot advance beyond $C_{\max } . e$. That

Figure 4.4: An illustration of the synchronization $\xrightarrow{e^{(1)}}$ (denoted by dotted arrows). is, the successor of any event in the frontier of $C_{\max } . e$ that is different from e, if it exists, cannot be executed until the computation advances beyond e. This involves adding synchronization dependencies from the successor of e, if it exists, to the successor of every other event in the frontier of $C_{\max } . e$, if it exists. We denote this synchronization by $\xrightarrow{e^{(2)}}$ and formally define it as follows:

$$
\xrightarrow{e^{(2)}} \triangleq\left\{(\operatorname{succ}(e), \operatorname{succ}(f)) \mid f \in \operatorname{frontier}\left(C_{\max } \cdot e\right) \backslash\{e\} \text { and }\{e, f\} \cap \top=\emptyset\right\}
$$

For an illustration see Figure 4.5. The overall synchronization needed for controlling $b^{(i)}$ in $\langle E, \rightarrow\rangle$ is given by the union of $\left(\xrightarrow{e^{(1)}} \cup \xrightarrow{e^{(2)}}\right)$, where e ranges over the events on process p_{i}. Finally, the synchronization required to control b in $\langle E, \rightarrow\rangle$, denoted by \xrightarrow{S}, is given by:

$$
\begin{equation*}
\xrightarrow{S} \triangleq \bigcup_{e \in E}\left(\xrightarrow{e^{(1)}} \cup \xrightarrow{e^{(2)}}\right) \tag{4.1}
\end{equation*}
$$

For convenience, we use \xrightarrow{C} to denote the transitive closure of the relation obtained by adding \xrightarrow{S} to \rightarrow. Formally,

$$
\xrightarrow{C} \triangleq(\rightarrow \cup \xrightarrow{S})^{+}
$$

The next lemma describes the sufficient condition under which a region predicate is controllable in a computation. Informally, this happens when each

Figure 4.5: An illustration of the synchronization $\xrightarrow{e^{(2)}}$ (denoted by dotted arrows).
of its conjunct is controllable and the collective synchronization neither interferes with itself nor with the happened-before relation of the computation-which can be succinctly represented as: $(\rightarrow \cup \xrightarrow{S})$ is acyclic.

Lemma 4.2 (sufficient condition) If (1) the initial and final consistent cuts of a computation $\langle E, \rightarrow\rangle$ satisfy a region predicate b, and (2) \xrightarrow{C} is an irreflexive partial order then b is invariant in $\langle E, \xrightarrow{C}\rangle$.

Proof: Consider a consistent cut C of $\langle E, \xrightarrow{C}\rangle$ and an event e contained in its frontier. We show that C lies between $C_{\min } . e$ and $C_{\max } . e$. We first prove that $C_{\text {min }} . e \subseteq C$. If $e \in \perp$ then $C_{\text {min }} . e=\perp$ because, trivially, \perp is the least consistent cut of $\langle E, \rightarrow\rangle$ that passes through e and $\perp \models b$. Furthermore, by definition of consistent cut, $C \supseteq \perp$. Thus $C_{\min } \cdot e \subseteq C$. The more interesting case is when $e \notin \perp$. We want to prove that,

$$
\begin{aligned}
& C_{\min } \cdot e \subseteq C \\
\equiv & \{\text { definition of consistent cut and its frontier }\} \\
& \left\langle\forall f: f \in \operatorname{frontier}\left(C_{\min } \cdot e\right): f \in C\right\rangle \\
\equiv & \left\{\text { by definition, } C_{\min } \cdot e \text { passes through } e\right\}
\end{aligned}
$$

$$
\begin{aligned}
& (e \in C) \wedge\left\langle\forall f: f \in \text { frontier }\left(C_{\min } \cdot e\right) \backslash\{e\}: f \in C\right\rangle \\
\Leftarrow & \{C \text { is a consistent cut of }\langle E, \xrightarrow{C}\rangle\} \\
& (e \in C) \wedge\left\langle\forall f: f \in \text { frontier }\left(C_{\min } \cdot e\right) \backslash\{e\}: f \xrightarrow{C} e\right\rangle \\
\Leftarrow & \{C \text { passes through } e\} \\
& \left\langle\forall f: f \in \text { frontier }\left(C_{\min } \cdot e\right) \backslash\{e\}:(f \xrightarrow{C} e)\right\rangle \\
\Leftarrow & \{\xrightarrow{S} \subseteq \xrightarrow{C}\} \\
& \left\langle\forall f: f \in \text { frontier }\left(C_{\min } \cdot e\right) \backslash\{e\}:(f \xrightarrow{S} e)\right\rangle \\
\Leftarrow & \left\{\xrightarrow{\left.e^{(1)} \subseteq \xrightarrow{S}\right\}}\right. \\
& \left\langle\forall f: f \in \text { frontier }\left(C_{\min } \cdot e\right) \backslash\{e\}:\left(f \xrightarrow{e^{(1)}} e\right)\right\rangle \\
& \left\{e \notin \perp \text { and definition of } \xrightarrow{e^{(1)}}\right\}
\end{aligned}
$$

Likewise, $C \subseteq C_{\max } . e$. Let $\operatorname{proc}(e)=p_{i}$. By definition, both $C_{\min } . e$ and $C_{\max }$.e satisfy $b^{(i)}$. Thus, from the weak convexity property, C satisfies $b^{(i)}$. Since e was chosen arbitrarily, for each i, we can infer that C satisfies $b^{(i)}$. This implies that C satisfies b.

The next lemma proves that the synchronization given by \xrightarrow{S} is indeed the smallest controlling synchronization for b in $\langle E, \rightarrow\rangle$. In other words, any other controlling synchronization for b in $\langle E, \rightarrow\rangle$, if it exists, must contain \xrightarrow{S}.

Theorem 4.3 If a region predicate b is controllable in a computation $\langle E, \rightarrow\rangle$ then the synchronization \xrightarrow{S} defined in (4.1) is the smallest controlling synchronization.

Proof: Since b is controllable in $\langle E, \rightarrow\rangle$, there exists an irreflexive partial order \rightsquigarrow that extends \rightarrow such that b is invariant in $\langle E, \rightsquigarrow\rangle$. We need to prove that \xrightarrow{S} is contained in \rightsquigarrow. It is sufficient to prove that, for each event e, both $\xrightarrow{e^{(1)}}$ and $\xrightarrow{e^{(2)}}$ are contained in \rightsquigarrow.

We first show that, for each event e, \rightsquigarrow includes $\xrightarrow{e^{(1)}}$. Consider an event e, $e \notin \perp$, on process p_{i}. Note that if $e \in \perp$ then $\xrightarrow{e^{(1)}}$ is an empty set. In the proof
we use the notion of the least consistent cut of $\langle E, \rightsquigarrow\rangle$ that contains e, denoted by $C_{\text {least }}$.e. By definition, $C_{\text {least }}$. passes through e and an event other than e belongs to $C_{\text {least }} . e$ if and only if it happened-before e in $\langle E, \rightsquigarrow\rangle$. Formally,

$$
\begin{equation*}
\left(e \in \operatorname{frontier}\left(C_{\text {least }} . e\right)\right) \wedge\left\langle\forall f: f \neq e: f \in C_{\text {least }} . e \equiv f \rightsquigarrow e\right\rangle \tag{4.2}
\end{equation*}
$$

We want to prove that,

$$
\begin{aligned}
& \xrightarrow{e^{(1)} \subseteq \rightsquigarrow} \\
\equiv & \left\{\text { definition of } \stackrel{e^{(1)}}{\rightarrow}\right\} \\
& \left\langle\forall f: f \in \text { frontier }\left(C_{\text {min }} \cdot e\right) \backslash\{e\}: f \rightsquigarrow e\right\rangle \\
\equiv & \{\text { using }(4.2)\} \\
& \left\langle\forall f: f \in \text { frontier }\left(C_{\text {min }} \cdot e\right) \backslash\{e\}: f \in C_{\text {least }} \cdot e\right\rangle \\
\Leftarrow & \{\text { definition of consistent cut and its frontier }\} \\
& C_{\min } \cdot e \subseteq C_{\text {least }} \cdot e \\
\Leftarrow & \left\{\begin{array}{l}
C_{\text {least }} \cdot e \text { is a consistent cut of }\langle E, \rightarrow\rangle \text { that passes through } e \text { and } \\
\text { satisfies } b^{(i)} \text { and } C_{\min } \cdot e \text { is the least such cut }
\end{array}\right\}
\end{aligned}
$$

$$
\left(C_{\text {least }} . e \text { is a consistent cut of }\langle E, \rightarrow\rangle\right) \wedge\left(e \in \operatorname{frontier}\left(C_{\text {least }} . e\right)\right) \wedge
$$

$$
\left(C_{\text {least }} . e \models b^{(i)}\right)
$$

$$
\Leftarrow\left\{C_{\text {least }} . e \text { is a consistent cut of }\langle E, \rightsquigarrow\rangle \text { and } \rightarrow \subseteq \rightsquigarrow\right\}
$$

$$
\left(e \in \operatorname{frontier}\left(C_{\text {least }} . e\right)\right) \wedge\left(C_{\text {least }} \cdot e \models b^{(i)}\right)
$$

$$
\Leftarrow\{\operatorname{using}(4.2)\}
$$

$$
C_{\text {least }} \cdot e \models b^{(i)}
$$

$$
\Leftarrow\left\{b^{(i)} \text { is a conjunct of } b\right\}
$$

$$
C_{\text {least }} . e \models b
$$

$\left\{\right.$ since b is invariant in $\langle E, \rightsquigarrow\rangle, C_{\text {least }}$.e satisfies $\left.b\right\}$
Similarly, it can be proved that, for each event e, \rightsquigarrow includes $\xrightarrow{e^{(2)}}$.
The necessary condition for a region predicate to be controllable in a computation can now be easily derived.

Lemma 4.4 (necessary condition) If a region predicate b is controllable in a computation $\langle E, \rightarrow\rangle$ then (1) the initial and final consistent cuts of $\langle E, \rightarrow\rangle$ satisfy b, and (2) \xrightarrow{C} is an irreflexive partial order.

Proof: Since b is controllable in $\langle E, \rightarrow\rangle$, there exists an irreflexive partial order \rightsquigarrow that extends \rightarrow such that b is invariant in $\langle E, \rightsquigarrow\rangle$. Since \perp and E are also the consistent cuts of $\langle E, \rightsquigarrow\rangle$, they satisfy b. Furthermore, from Theorem $4.3, \xrightarrow{S}$ is the smallest controlling synchronization implying that \rightsquigarrow contains \xrightarrow{S}. Thus \rightsquigarrow contains $(\rightarrow \cup \stackrel{S}{\rightarrow})$. Since \rightsquigarrow is an irreflexive partial order, $(\rightarrow \cup \xrightarrow{S})^{+}(=\xrightarrow{C})$ is also an irreflexive partial order.

Finally, the next theorem combines the previous two lemmas and furnishes the necessary and sufficient condition for a region predicate to be controllable in a computation.

Theorem 4.5 (necessary and sufficient condition) A region predicate b is controllable in a computation $\langle E, \rightarrow\rangle$ if and only if (1) the initial and final consistent cuts of $\langle E, \rightarrow\rangle$ satisfy b, and (2) \xrightarrow{C} is an irreflexive partial order.

It turns out that the controlling synchronization \xrightarrow{S} defined in (4.1) is minimal in another sense. It not only eliminates all unsafe runs of the computation but also does not suppress any safe run. We call such a synchronization optimal.

Definition 4.3 (optimal controlling synchronization) We call a controlling synchronization optimal if it does not suppress any safe run of the computation. Formally, given a controlling synchronization \xrightarrow{S} for a predicate b in a computation $\langle E, \rightarrow\rangle$, where $\xrightarrow{C}=(\rightarrow \cup \xrightarrow{S})^{+}$,

$$
\begin{array}{r}
\stackrel{S}{\rightarrow} \text { is optimal } \triangleq\langle\forall \rightsquigarrow: \rightsquigarrow \text { is a total order on } E \text { that extends } \rightarrow \text { : } \\
\langle E, \rightsquigarrow\rangle \vDash \text { invariant }: b \equiv \rightsquigarrow \text { extends } \xrightarrow{C}\rangle
\end{array}
$$

In fact, the two aforementioned notions of minimality, namely the smallest and the optimal controlling synchronization, turn out to be identical. We establish their equivalence in the next theorem.

Theorem 4.6 (smallest versus optimal) A smallest controlling synchronization

 is also optimal and vice versa.Proof: Consider a controlling synchronization \xrightarrow{S} for a predicate b in a computation $\langle E, \rightarrow\rangle$ and let \xrightarrow{C} be $(\rightarrow \cup \xrightarrow{S})^{+}$.
(optimal \Rightarrow smallest) Assume that \xrightarrow{S} is the optimal controlling synchronization. Consider an irreflexive partial order \rightsquigarrow that extends \rightarrow such that b is invariant in $\langle E, \rightsquigarrow\rangle$. Our obligation is to establish that \rightsquigarrow contains \xrightarrow{S}. Let \mapsto be a total order on E that extends \rightsquigarrow. Since \rightsquigarrow extends \rightarrow, \mapsto also extends \rightarrow implying that $\langle E, \mapsto\rangle$ is a run of $\langle E, \rightarrow\rangle$. Moreover, $\langle E, \mapsto\rangle$ is a safe run of $\langle E, \rightarrow\rangle$ because b is invariant in $\langle E, \rightsquigarrow\rangle$ and therefore also invariant in $\langle E, \mapsto\rangle$. Since \xrightarrow{S} is the optimal controlling synchronization, by definition, \mapsto extends \xrightarrow{C} or, in other words, \mapsto includes \xrightarrow{S}. Since \mapsto was chosen arbitrarily, we can infer that every total order on E that extends \rightsquigarrow contains \xrightarrow{S} implying that \rightsquigarrow also contains \xrightarrow{S}.
(smallest \Rightarrow optimal) Assume that \xrightarrow{S} is the smallest controlling synchronization. Consider a safe run $\langle E, \rightsquigarrow\rangle$ of $\langle E, \rightarrow\rangle$. Our obligation is to establish that $\langle E, \rightsquigarrow\rangle$ is also a run of $\langle E, \xrightarrow{C}\rangle$, that is, \rightsquigarrow contains \xrightarrow{C}. Note that b is invariant in $\langle E, \rightsquigarrow\rangle$. Since \xrightarrow{S} is the smallest controlling synchronization, by definition, \rightsquigarrow contains \xrightarrow{S}. This implies that \rightsquigarrow extends \xrightarrow{C} or $\langle E, \rightsquigarrow\rangle$ is a run of $\langle E, \xrightarrow{C}\rangle$.

From Theorem 4.3 and Theorem 4.6, we obtain,

Theorem 4.7 If a region predicate b is controllable in a computation $\langle E, \rightarrow\rangle$ then the synchronization \xrightarrow{S} defined in (4.1) is the optimal controlling synchronization.

Theorem 4.7 implies that the controlling synchronization \xrightarrow{S} defined in (4.1) is not too restrictive and, in fact, admits the maximum possible concurrency in the controlled computation.

From the earlier discussion, it follows that a controlling synchronization for a region predicate can be easily computed provided, for each event e, we can efficiently compute $C_{\min } . e$ and $C_{\text {max }} . e$, if they exist. To that end, given a p-region predicate b and an event e on process p, we define a predicate b_{e} to be true for a consistent cut if it passes through e and satisfies b. Formally,

$$
C \models b_{e} \triangleq(e \in \operatorname{frontier}(C)) \wedge(C \models b)
$$

It can be verified easily, using the weak lattice property, that if two consistent cuts satisfy b_{e} then so does the consistent cut given by their set intersection. Chase and Garg [CG98] call such predicates linear. Likewise, if two consistent cuts satisfy b_{e} then the consistent cut given by their set union also satisfies b_{e}. Such predicates are called post-linear [CG98].

Observation 4.1 The predicate b_{e} is linear and post-linear.

The consistent cuts $C_{\text {min }} . e$ and $C_{\text {max }}$.e can be reinterpreted as the least and greatest consistent cut, respectively, that satisfy b_{e}. Chase and Garg [CG98] also provide algorithms to find the least consistent cut that satisfies a linear predicate and the greatest consistent cut that satisfies a post-linear predicate. Here, we focus on the former and give the basic idea behind the algorithm. The correctness proof and other details can be found elsewhere [CG98]. The algorithm is based on the linearity property which is defined as follows:

```
Algorithm Algo 4.1:
    Input: (1) a computation \(\langle E, \rightarrow\rangle\), (2) a \(p\)-region predicate \(b\), and
        (3) an event \(e\) on process \(p\)
    Output: \(C_{\text {min }} \cdot e\), if it exists
    \(C:=\) least consistent cut of \(\langle E, \rightarrow\rangle\) that passes through \(e\);
    done := false;
    while not(done) do
    if there exists an event \(f\) in frontier \((C)\)
        such that \(\operatorname{succ}(e) \rightarrow f\) then
        exit( " \(C_{\text {min }} . e\) does not exist");
    endif;
    if there exist events \(f\) and \(g, f \neq e\), in frontier \((C)\)
        such that \(\operatorname{succ}(f) \rightarrow g\) then \(\quad / / C\) is not a consistent cut
        \(C:=C \cup \operatorname{succ}(f) ; \quad / /\) advance beyond \(f\)
        else \(\quad / / C\) is a consistent cut
        if \(C \models b\) then done \(:=\) true;
        else
            \(f:=\) forbidden \(_{b_{e}}(C) ; \quad / /\) invoke the linearity property
            if \(f=e\) or \(f \in \top\) then // cannot advance beyond \(f\)
                    exit(" \(C_{\min } . e\) does not exist");
                else \(C:=C \cup \operatorname{succ}(f) ; \quad / /\) advance beyond \(f\)
                endif;
        endif;
        endif;
    endwhile;
\(13 \quad C_{\min } \cdot e:=C\);
```

Figure 4.6: The algorithm Algo 4.1 to compute $C_{\min } . e$ for an event e.

```
Algorithm Algo 4.2:
    Input: a computation }\langleE,->\rangle\mathrm{ and a region predicate b
    Output: synchronization necessary to control b in }\langleE,->\rangle\mathrm{ , if possible
    if either }\perp\mathrm{ or E does not satisfy b then
    exit(" b cannot be controlled in \langleE,->\rangle");
    endif;
    for each event e do
        compute C Cmin}.e and C Cmax . .
        if either }\mp@subsup{C}{\textrm{min}}{}.e\mathrm{ or }\mp@subsup{C}{\textrm{max}}{}.e does not exist then
            exit(" b cannot be controlled in \langleE,->\rangle");
        endfor;
    endfor;
    compute the synchronization }\xrightarrow{}{S}\mathrm{ defined in (4.1);
    if}(->\cup\xrightarrow{}{S})\mathrm{ is acyclic then
    exit(\xrightarrow{}{S});
    else
    exit("b cannot be controlled in \langleE,->\rangle");
    endif;
```

Figure 4.7: The algorithm Algo 4.2 to compute the synchronization necessary to control a region predicate in a computation.

Definition 4.4 (linearity property [CG98]) A predicate satisfies the linearity property if, given a consistent cut that does not satisfy the predicate, there exists an event in its frontier, called the forbidden event, such that there does not exist a consistent cut containing the given consistent cut that satisfies the predicate and also passes through the forbidden event. Formally, given a computation $\langle E, \rightarrow\rangle, a$ linear predicate b and a consistent cut C,

$$
C \not \models b \Rightarrow\langle\exists f: f \in \text { frontier }(C):\langle\forall D: D \supseteq C: D \vDash b \Rightarrow \operatorname{succ}(f) \in D\rangle\rangle
$$

It is assumed that, given a linear predicate b, there is an efficient partial function forbidden ${ }_{b}: \mathcal{C}(\langle E, \rightarrow\rangle) \longrightarrow E$ that can be used to compute the event f mentioned in the definition of the linearity property. It is hard to provide a general algorithm to compute the function that works for any linear predicate. Nevertheless, for the linear predicates encountered in practice, an efficient algorithm can indeed be given. For example, for a conjunctive predicate - a conjunction of local predicatesthe forbidden event corresponds to that event in the cut's frontier for which the local predicate evaluates to false. Throughout this dissertation, we assume that a linear predicate also satisfies the advancing property which guarantees the existence of an efficient function to compute the forbidden event.

Figure 4.6 describes the algorithm Algo 4.1 to compute $C_{\text {min }}$.e using the linearity property. Informally, starting from the least consistent cut that passes through e-which basically corresponds to the Fidge/Mattern's vector timestamp for $e[\operatorname{Mat} 89, \operatorname{Fid} 91]$, the algorithm scans the computation from left to right adding events to the cut constructed so far one-by-one, using the linearity property, until the desired consistent cut is reached.

The time-complexity analysis of the algorithm Algo 4.1 is as follows. Each iteration of the while loop at line 3 has $O(n)$ time complexity assuming that the timecomplexity of invoking forbidden ${ }_{b_{e}}$ at line 9 once is $O(n)$. Thus the time-complexity of the algorithm $\mathrm{Algo}_{4.1}$ for computing $C_{\text {min }} . e$ is $O(n|E|)$. The algorithm to compute $C_{\max }$.e, based on the post-linearity property [CG98], is similar and has been omitted.

Figure 4.7 depicts the algorithm Algo $_{4.2}$ that computes a synchronization for controlling a region predicate in a computation. The correctness of the algorithm follows from Theorem 4.5. Its time-complexity analysis is as follows. The timecomplexity of executing the if statement at line 1 is $O(n)$. Each iteration of the for loop at line 3 has $O(n|E|)$ time-complexity giving the for loop an overall timecomplexity of $O\left(n|E|^{2}\right)$. The synchronization at line 7 can be computed in $O(n|E|)$
time. Finally, the if statement at line 8 can be executed in $O\left(|E|^{2}\right)$ time. Thus the overall time-complexity of the algorithm Algo 4.2 is $O\left(n|E|^{2}\right)$.

4.4 Disjunctive Predicates

A predicate is said to be disjunctive if it can be expressed as disjunction of local predicates. Some examples of disjunctive predicates are:

- at least one server is available: avail $_{1} \vee$ avail $_{2} \vee \cdots \vee$ avail $_{n}$
- at least one philosopher has no fork: \neg for $_{1} \vee \neg$ for $_{1} \vee \vee \cdots \vee \neg$ for $_{2} k_{n}$

Intuitively, a disjunctive predicate states that at least one local condition must be met at all times, or, in other words, a bad combination of local conditions does not occur. Our algorithm for computing a controlling synchronization for a disjunctive predicate utilizes the notion of admissible sequence defined next.

4.4.1 Admissible Sequences

In this section, we establish that the notion of controllability is actually identical to the notion of admissible sequence whose motivation in turn lies in the control algorithm for a disjunctive predicate. We make the following observation:

Observation 4.2 A consistent cut satisfies a disjunctive predicate if and only if it contains at least one true event in its frontier.

Suppose we wish to control a disjunctive predicate in a computation. As the computation proceeds from the initial consistent cut to the final consistent cut, from the above observation it follows that it is both necessary and sufficient to ensure that throughout there exists at least one true event in the frontier of the computation. Thus at least one initial event must be a true event. To start with, one such initial

Figure 4.8: A strategy for controlling a disjunctive predicate.
event bears the responsibility for ensuring that the predicate stays true - by acting as an anchor-until the burden can be passed on to some other true event. This transference of burden continues until the computation reaches the final consistent cut.

Example 4.4 We want to control the disjunctive predicate $x_{1} \vee x_{2}$ in the computation depicted in Figure 4.8. The initial event e is a true event. Hence, using e as an anchor, the computation advances from the initial consistent cut C_{1}, shown in Figure 4.8(a), to the consistent cut C_{2}, portrayed in Figure 4.8(b). Next, using the true event f as an anchor, it advances to the consistent cut C_{3} as shown in Figure 4.8(c). Finally, using the true event g as an anchor-which is also a final event, it reaches the final consistent cut C_{4} as depicted in Figure 4.8(d). Since throughout the frontier of the computation passes through at least one true event, the predicate is never falsified.

Figure 4.9: An example to illustrate the difficulty in choosing the next anchor event.

A natural question to ask is: "If there are more than one possible candidates for the next anchor event, which one should we choose?". The answer is non-trivial as illustrated by the following example.

Example 4.5 Consider the computation shown in Figure 4.9. It has four true events, namely e, f, g and h. After using e as an anchor, the computation has two possible choices of events for the next anchor. They are the events f and g. The event h is unavailable because the computation has to advance beyond e before it can execute h. Clearly, f is a bad choice for anchor because once the computation reaches the consistent cut C, using f as an anchor, neither g nor h can be used as the next anchor without falsifying the predicate.

The notion of admissible sequence attempts to answer the above question in a more general setting. In the next section, we formalize the aforementioned algorithm for controlling a disjunctive predicate using the notion of admissible sequence. We first define a legal cut as follows:

Definition 4.5 (legal cut) A consistent cut is legal with respect to a sequence of events if it contains an event from the sequence only if it contains all its preceding
events from the sequence too. Formally, given a consistent cut C and an event s_{i} from a sequence of events s,

$$
s_{i} \in C \Rightarrow\left\langle\forall j: j \leqslant i: s_{j} \in C\right\rangle
$$

Roughly speaking, the notion of legal cut helps to capture those runs of a computation that respect the order of the events in a sequence. More precisely, given a sequence of events, if every consistent cut of a run is legal then the run and the sequence do not disagree on relative order of any pair of events and vice versa. We next define the notion of admissible sequence. Informally, every event in an admissible sequence acts as an anchor in the order given by the sequence. To be able to do so, the sequence must respect the happened-before order between events. This constraint is captured by the agreement property. The continuity property ensures that the transfer of burden from one event in the sequence to the next occurs "smoothly" in a single step. In other words, the computation does not advance beyond the current anchor event until it reaches the next anchor event. The weak safety property ascertains that, on reaching an anchor event, at least as long as the computation does not advance beyond the event the predicate is not falsified. Finally, the boundary condition captures the fact that the initial and final consistent cuts satisfy the predicate. Formally,

Definition 4.6 (admissible sequence) A sequence of events $s=s_{1} s_{2} \cdots s_{l-1} s_{l}$ is admissible with respect to a predicate b and a computation $\langle E, \rightarrow\rangle$ if it satisfies the following properties:

- (boundary condition) The sequence starts with an initial event ends with a final event of the computation. Formally,

$$
\left(s_{1} \in \perp\right) \wedge\left(s_{l} \in \top\right)
$$

- (agreement) The sequence respects the partial order (that is, happened-before relation) of the computation. Formally,

Figure 4.10: An example to illustrate the notion of legal cut and admissible sequence.

$$
\left\langle\forall i, j: i<j: s_{j} \nsupseteq s_{i}\right\rangle
$$

- (continuity) The successor of each event in the sequence, if it exists, did not happen-before the next event in the sequence. Formally,

$$
\left\langle\forall i: s_{i} \notin \top: \operatorname{succ}\left(s_{i}\right) \nrightarrow s_{i+1}\right\rangle
$$

- (weak safety) Any consistent cut of the computation that is legal with respect to the sequence and contains at least one event from the sequence in its frontier satisfies the predicate. Formally,
$\langle\forall C: C$ is legal with respect to $s:(s \cap \operatorname{frontier}(C)) \neq \emptyset \Rightarrow C \models b\rangle$

Example 4.6 Consider the computation depicted in Figure 4.10. The consistent cut C is not legal with respect to the sequence of events efuvh because it contains u but does not contain f which occurs before u in the sequence. On the other hand, the consistent cut D is legal with respect to the same sequence. The sequence fuvh does not satisfy the boundary condition because the first event in the sequence, in this case f, is not an initial event. The sequence egfh does not satisfy the agreement property because although f happened-before g in the computation, it occurs after g in the sequence. Finally, the sequence egh does not satisfy the continuity property as the successor of e, namely f, happened-before g, the next event in the sequence after e.

The following theorem proves that existence of an admissible sequence is necessary for a predicate to be controllable in a computation. Specifically, we prove that any safe run of a computation constitutes an admissible sequence.

Theorem 4.8 (necessary condition) If a predicate b can be controlled in a computation $\langle E, \rightarrow\rangle$ then there exists an admissible sequence with respect to b and $\langle E, \rightarrow\rangle$.

Proof: Since b is controllable in $\langle E, \rightarrow\rangle$, there exists a total order \rightsquigarrow that extends \rightarrow such that b is invariant in $\langle E, \rightsquigarrow\rangle$. Let s be the sequence of events corresponding to $\langle E, \rightsquigarrow\rangle$. We prove that s is admissible with respect to b and $\langle E, \rightarrow\rangle$. Clearly, s satisfies the boundary condition and the agreement property. We next prove that s satisfies the continuity property. Assume the contrary. Then,

$$
\begin{aligned}
& \left\langle\exists i:: \operatorname{succ}\left(s_{i}\right) \rightarrow s_{i+1}\right\rangle \\
\equiv & \left\{s_{i} \rightarrow \operatorname{succ}\left(s_{i}\right)\right\} \\
& \left\langle\exists i:: s_{i} \rightarrow \operatorname{succ}\left(s_{i}\right) \rightarrow s_{i+1}\right\rangle \\
\Rightarrow & \left\{\operatorname{succ}\left(s_{i}\right) \in s \text { because } s \text { corresponds to }\langle E, \rightsquigarrow\rangle-\text { a run of }\langle E, \rightarrow\rangle\right\} \\
& \left\langle\exists i, j:: s_{i} \rightarrow s_{j} \rightarrow s_{i+1}\right\rangle \\
\Rightarrow & \{s \text { satisfies the agreement property }\} \\
& \langle\exists i, j:: i<j<i+1\rangle \\
\Rightarrow & \{i \text { and } j \text { are integers }\} \\
& \text { a contradiction }
\end{aligned}
$$

Finally, we show that s satisfies the weak safety property. Consider a consistent cut C of $\langle E, \rightarrow\rangle$ that is legal with respect to s. We prove that C is also a consistent cut of $\langle E, \rightsquigarrow\rangle$. Consider events e and f. We have,

$$
\begin{aligned}
& \{\text { assumption }\} \\
& (e \rightsquigarrow f) \wedge(f \in C)
\end{aligned}
$$

$$
\begin{aligned}
\equiv & \left\{\text { let } e=s_{i} \text { and } f=s_{j}\right\} \\
& \left(s_{i} \rightsquigarrow s_{j}\right) \wedge\left(s_{j} \in C\right) \\
\Rightarrow & \{\text { definition of } s\} \\
& (i<j) \wedge\left(s_{j} \in C\right) \\
\Rightarrow & \{C \text { is legal with respect to } s\} \\
& s_{i} \in C \\
\equiv & \left\{s_{i}=e\right\} \\
& e \in C
\end{aligned}
$$

Thus C is a consistent cut of $\langle E, \rightsquigarrow\rangle$. Since b is invariant in $\langle E, \rightsquigarrow\rangle, C$ satisfies b. This establishes that s satisfies the weak safety property.

Our next step is to prove that the existence of an admissible sequence is also a sufficient condition for a predicate to be controllable in a computation. To achieve that it suffices to give the synchronization necessary to control the predicate. Of course the synchronization will depend on the particular sequence. Observe that not all events in the sequence may be ordered by the happened-before relation. Thus, to ensure that they are executed in the order they occur in the sequence, we need to add synchronization dependencies from an event in the sequence to all other events that occur later in the sequence. This synchronization is denoted by $\xrightarrow{S^{(1)}}$ and is formally defined as follows:

$$
\begin{equation*}
\xrightarrow{S^{(1)}} \triangleq\left\{\left(s_{i}, s_{j}\right) \mid 1 \leqslant i<j \leqslant n\right\} \tag{4.3}
\end{equation*}
$$

For an example please refer to Figure 4.11. In the following lemma we show that if the sequence is admissible, in particular if it satisfies the agreement property, the above synchronization does not interfere with the happened-before relation of the computation. For convenience, we define $\xrightarrow{C^{(1)}}$ as the transitive closure of $\rightarrow \cup \xrightarrow{S^{(1)}}$. Formally,

$$
\xrightarrow{C^{(1)}} \triangleq\left(\rightarrow \cup \xrightarrow{S^{(1)}}\right)^{+}
$$

Figure 4.11: An illustration of the synchronization $\xrightarrow{S^{(1)}}$ (denoted by dotted arrows).

Lemma $4.9 \xrightarrow{C^{(1)}}$ is an irreflexive partial order.
Proof: It suffices to prove that $\rightarrow \cup \xrightarrow{S^{(1)}}$ does not contain any cycle. Since \rightarrow is an irreflexive partial order, a cycle, if it exists, must contain at least one pair of events ordered by $\xrightarrow{S^{(1)}}$. Moreover, since both \rightarrow and $\xrightarrow{S^{(1)}}$ are transitive, the pairs of events in the cycle must be alternately ordered by \rightarrow and $\xrightarrow{S^{(1)}}$. We first prove that there is no cycle containing exactly one pair of events ordered by $\xrightarrow{S^{(1)}}$. Assume the contrary. Then,

$$
\begin{aligned}
& \left\langle\exists i, j:: s_{i} \xrightarrow{S^{(1)}} s_{j} \not s_{i}\right\rangle \\
\Rightarrow & \left\{\text { definition of } \xrightarrow{S^{(1)}}\right\} \\
& \left\langle\exists i, j::(i<j) \wedge\left(s_{j} \nexists s_{i}\right)\right\rangle \\
\Rightarrow & \{s \text { satisfies the agreement property }\} \\
& \left\langle\exists i, j::\left(s_{j} \nexists s_{i}\right) \wedge\left(s_{j} \nexists s_{i}\right)\right\rangle \\
\Rightarrow & \{\text { predicate calculus }\} \\
& \text { a contradiction }
\end{aligned}
$$

We now prove that if there is a cycle that contains $m, m \geqslant 2$, pairs of events ordered by $\xrightarrow{S^{(1)}}$ then there is a cycle that contains strictly fewer than m pairs of events ordered by $\xrightarrow{S^{(1)}}$. Let the cycle be $s_{i} \xrightarrow{S^{(1)}} s_{j} \rightarrow s_{u} \xrightarrow{S^{(1)}} s_{v} \xrightarrow{C^{(1)}} s_{i}$, where the path from s_{v} to s_{i} contains exactly $m-2$ pair (s) of events ordered by $\xrightarrow{S^{(1)}}$. Since $\xrightarrow{S^{(1)}}$ is a
total order, either $s_{i} \xrightarrow{S^{(1)}} s_{v}$ or $s_{v} \stackrel{S^{(1)}}{\longrightarrow} s_{i}$. We have,
Case 1: $s_{i} \stackrel{S^{(1)}}{\longrightarrow} s_{v}$

$$
\begin{aligned}
& \left(s_{i} \xrightarrow{S^{(1)}} s_{j} \rightarrow s_{u} \xrightarrow{S^{(1)}} s_{v} \stackrel{C^{(1)}}{\longrightarrow} s_{i}\right) \wedge\left(s_{i} \xrightarrow{S^{(1)}} s_{v}\right) \\
\Rightarrow & \{\text { simplifying }\} \\
& s_{i} \stackrel{S^{(1)}}{\longrightarrow} s_{v} \xrightarrow{C^{(1)}} s_{i} \\
\Rightarrow & \{\text { simplifying }\}
\end{aligned}
$$

a cycle with at most $m-1$ pair(s) of events ordered by $\xrightarrow{S^{(1)}}$
Case 2: $s_{v} \xrightarrow{S^{(1)}} s_{i}$

$$
\begin{aligned}
& \left(s_{i} \xrightarrow{S^{(1)}} s_{j} \rightarrow s_{u} \xrightarrow{S^{(1)}} s_{v} \xrightarrow{C^{(1)}} s_{i}\right) \wedge\left(s_{v} \stackrel{S^{(1)}}{\longrightarrow} s_{i}\right) \\
\Rightarrow & \{\text { simplifying }\} \\
& s_{i} \xrightarrow{S^{(1)}} s_{j} \rightarrow s_{u} \xrightarrow{S^{(1)}} s_{v} \stackrel{S^{(1)}}{\longrightarrow} s_{i} \\
\equiv & \{\text { rewriting }\} \\
& s_{j} \rightarrow s_{u} \xrightarrow{S^{(1)}} s_{v} \xrightarrow{S^{(1)}} s_{i} \xrightarrow{S^{(1)}} s_{j} \\
\Rightarrow & \left\{\xrightarrow{S^{(1)}} \text { is transitive }\right\} \\
& s_{j} \rightarrow s_{u} \xrightarrow{S^{(1)}} s_{j} \\
\Rightarrow & \{\text { simplifying }\} \\
& \text { a cycle with at most one pair of events ordered by } \xrightarrow{S^{(1)}}
\end{aligned}
$$

This establishes that there is no cycle in $\rightarrow \cup \xrightarrow{S^{(1)}}$ and thus $\xrightarrow{C^{(1)}}$ is an irreflexive partial order.

After adding the synchronization $\xrightarrow{S^{(1)}}$ to the computation $\langle E, \rightarrow\rangle$, the resulting computation $\left\langle E \xrightarrow{C^{(1)}}\right\rangle$ retains only those consistent cuts-not necessarily all-that are legal. From the weak safety property, a sufficient condition for a legal cut to satisfy the predicate is that it should contain at least one event from the sequence in its frontier. To ensure this, given an event in the sequence, we add a

Figure 4.12: An illustration of the synchronization $\xrightarrow{S^{(2)}}$ (denoted by dotted arrows).
synchronization arrow from the event next to it in the sequence, if it exists and is on a different process, to its succeeding event on the process, if it exists. This synchronization, denoted by $\xrightarrow{S^{(2)}}$, ascertains that the computation does not advance beyond an event in the sequence until it reaches the next event in the sequence.

$$
\begin{equation*}
\xrightarrow{s^{(2)}} \triangleq\left\{\left(s_{i+1}, \operatorname{succ}\left(s_{i}\right)\right) \mid 1 \leqslant i<n, s_{i} \notin \top \text { and } \operatorname{proc}\left(s_{i+1}\right) \neq \operatorname{proc}\left(s_{i}\right)\right\} \tag{4.4}
\end{equation*}
$$

For an illustration please see Figure 4.12. In the next lemma we establish that if the sequence is admissible, in particular if it satisfies the agreement and continuity properties, the above synchronization $\xrightarrow{S^{(2)}}$ does not interfere with $\xrightarrow{C^{(1)}}$. For convenience, we define $\xrightarrow{C^{(2)}}$ as the transitive closure of $\xrightarrow{C^{(1)}} \cup \xrightarrow{S^{(3)}}$. Formally,

$$
\xrightarrow{C^{(2)}} \triangleq\left(\xrightarrow{C^{(1)}} \cup \xrightarrow{S^{(2)}}\right)^{+}
$$

Lemma $4.10 \xrightarrow{C^{(2)}}$ is an irreflexive partial order.
Proof: It suffices to prove that $\xrightarrow{C^{(1)}} \cup \xrightarrow{S^{(2)}}$ does not contain any cycle. Since, from Lemma 4.9, $\xrightarrow{C^{(1)}}$ is an irreflexive partial order, a cycle, if it exists, must contain at least one pair of events ordered by $\xrightarrow{S^{(2)}}$. We first prove that there is no cycle containing exactly one pair of events ordered by $\xrightarrow{S^{(2)}}$. Assume the contrary. We have,

$$
\left\langle\exists i:: s_{i+1} \xrightarrow{S^{(2)}} \operatorname{succ}\left(s_{i}\right) \stackrel{C^{(1)}}{\rightrightarrows} s_{i+1}\right\rangle
$$

$$
\begin{aligned}
\Rightarrow & \left\{\text { by definition of } \xrightarrow{S^{(2)}}, \operatorname{proc}\left(s_{i+1}\right) \neq \operatorname{proc}\left(s_{i}\right) \text { implying } s_{i+1} \neq \operatorname{succ}\left(s_{i}\right)\right\} \\
& \left\langle\exists i:: s_{i+1} \xrightarrow{S^{(2)}} \operatorname{succ}\left(s_{i}\right) \xrightarrow{C^{(1)}} s_{i+1}\right\rangle \\
\Rightarrow & \left\{\text { since } s \text { satisfies the continuity property, } \operatorname{succ}\left(s_{i}\right) \nrightarrow s_{i+1}\right\} \\
& \left\langle\exists i, j, k:: s_{i+1} \xrightarrow{S^{(2)}} \operatorname{succ}\left(s_{i}\right) \rightrightarrows s_{j} \xrightarrow{S^{(1)}} s_{k} \xrightarrow{C^{(1)}} s_{i+1}\right\rangle \\
\Rightarrow & \left\{\xrightarrow{S^{(1)}} \text { is a total order on } s\right\} \\
& \left\langle\exists i, j::\left(s_{i+1} \xrightarrow{S^{(2)}} \operatorname{succ}\left(s_{i}\right) \longrightarrow s_{j} \xrightarrow{C^{(1)}} s_{i+1}\right) \wedge\right. \\
& \left.\left(\left(s_{i+1} \xrightarrow{S^{(1)}} s_{j}\right) \vee\left(s_{j} \xrightarrow{S^{(1)}} s_{i+1}\right)\right)\right\rangle \\
\Rightarrow & \left\{s_{i+1} \xrightarrow{S^{(1)}} s_{j} \text { implies } s_{i+1} \xrightarrow{S^{(1)}} s_{j} \xrightarrow{C^{(1)}} s_{i+1} \text { contradicting Lemma 4.9 }\right\} \\
& \left\langle\exists i, j::\left(s_{i+1} \xrightarrow{S^{(2)}} \operatorname{succ}\left(s_{i}\right) \nsupseteq s_{j} \xrightarrow{C^{(1)}} s_{i+1}\right) \wedge\left(s_{j} \xrightarrow{S^{(1)}} s_{i+1}\right)\right\rangle \\
\Rightarrow & \left\{s_{i} \xrightarrow{P} \operatorname{succ}\left(s_{i}\right) \text { and } \xrightarrow{P} \subseteq \rightarrow\right\} \\
& \left\langle\exists i, j::\left(s_{i} \rightarrow s_{j}\right) \wedge\left(s_{j} \xrightarrow{S^{(1)}} s_{i+1}\right)\right\rangle \\
\Rightarrow & \left\{\xrightarrow{S^{(1)}} \text { is a total order on } s \text { and } s \text { satisfies the agreement property }\right\} \\
& \left\langle\exists i, j::\left(s_{i} \xrightarrow{S^{(1)}} s_{j}\right) \wedge\left(s_{j} \xrightarrow{S^{(1)}} s_{i+1}\right)\right\rangle \\
\Rightarrow & \{s \text { satisfies the agreement property }\} \\
& \langle\exists i, j:: i<j<i+1\rangle \\
\Rightarrow & \{i \text { and } j \text { are integers }\} \\
& \text { a contradiction }
\end{aligned}
$$

We now prove that if there is a cycle that contains $m, m \geqslant 2$, pairs of events ordered by $\xrightarrow{S^{(2)}}$ then there is a cycle that contains strictly fewer than m pairs of events ordered by $\xrightarrow{S^{(2)}}$. Let the cycle be $s_{i+1} \xrightarrow{S^{(2)}} \operatorname{succ}\left(s_{i}\right) \xrightarrow{C^{(1)}} s_{j+1} \xrightarrow{S^{(2)}} \operatorname{succ}\left(s_{j}\right) \xrightarrow{C^{(2)}} s_{i+1}$, where the path from $\operatorname{succ}\left(s_{j}\right)$ to s_{i+1} contains exactly $m-2$ pair(s) of events ordered by $\xrightarrow{S^{(2)}}$. Since $\xrightarrow{S^{(1)}}$ is a total order, either $s_{i+1} \xrightarrow{S^{(1)}} s_{j+1}$ or $s_{j+1} \xrightarrow{S^{(1)}} s_{i+1}$. We have,

Case 1: $s_{i+1} \stackrel{S^{(1)}}{\Longrightarrow} s_{j+1}$

$$
\begin{aligned}
& \left(s_{i+1} \xrightarrow{S^{(2)}} \operatorname{succ}\left(s_{i}\right) \xrightarrow{C^{(1)}} s_{j+1} \xrightarrow{S^{(2)}} \operatorname{succ}\left(s_{j}\right) \xrightarrow{C^{(2)}} s_{i+1}\right) \wedge\left(s_{i+1} \xrightarrow{S^{(1)}} s_{j+1}\right) \\
\Rightarrow & \{\text { simplifying }\} \\
& s_{i+1} \xrightarrow{S^{(1)}} s_{j+1} \xrightarrow{S^{(2)}} \operatorname{succ}\left(s_{j}\right) \stackrel{C^{(2)}}{\longrightarrow} s_{i+1}
\end{aligned}
$$

$$
\Rightarrow \quad\{\text { simplifying }\}
$$

a cycle with at most $m-1$ pair(s) of events ordered by $\xrightarrow{S^{(2)}}$
Case 2: $s_{j+1} \xrightarrow{S^{(1)}} s_{i+1}$

$$
\begin{aligned}
& \left(s_{i+1} \xrightarrow{S^{(2)}} \operatorname{succ}\left(s_{i}\right) \stackrel{C^{(1)}}{\longrightarrow} s_{j+1} \xrightarrow{S^{(2)}} \operatorname{succ}\left(s_{j}\right) \stackrel{C^{(2)}}{\longrightarrow} s_{i+1}\right) \wedge\left(s_{j+1} \stackrel{S^{(1)}}{\longrightarrow} s_{i+1}\right) \\
\Rightarrow & \{\text { simplifying }\} \\
& s_{i+1} \xrightarrow{S^{(2)}} \operatorname{succ}\left(s_{i}\right) \stackrel{C^{(1)}}{\longrightarrow} s_{j+1} \stackrel{S^{(1)}}{\longrightarrow} s_{i+1} \\
\Rightarrow & \{\text { simplifying }\} \\
& \text { a cycle with at most one pair of events ordered by } \xrightarrow{S^{(2)}}
\end{aligned}
$$

This establishes that there is no cycle in $\xrightarrow{C^{(1)}} \cup \xrightarrow{S^{(2)}}$ and thus $\xrightarrow{C^{(2)}}$ is an irreflexive partial order.

The final step is to prove that the combined synchronization, given by $\xrightarrow{S^{(1)}} \cup \xrightarrow{S^{(2)}}$, indeed ensures that the predicate is invariant in the resulting computation. Specifically, we show that if the sequence is admissible then every consistent of the resultant computation satisfies the antecedent of the weak safety property. We denote the controlled computation by $\langle E \xrightarrow{C}\rangle$, where \xrightarrow{C} is same as $\xrightarrow{C^{(2)}}$.

Lemma 4.11 Every consistent cut of $\langle E, \xrightarrow{C}\rangle$ satisfies b.
Proof: Consider a consistent cut C of $\langle E, \xrightarrow{C}\rangle$. We first prove that C is legal with respect to s. Consider events s_{i} and s_{j}. We have,

$$
\begin{aligned}
& \{\text { assumption }\} \\
& \left(s_{j} \in C\right) \wedge(i<j) \\
\equiv & \left\{\text { definition of } \xrightarrow{S^{(1)}}\right\} \\
& \left(s_{j} \in C\right) \wedge\left(s_{i} \xrightarrow{S^{(1)}} s_{j}\right) \\
\Rightarrow & \left\{\xrightarrow{S^{(1)} \subseteq} \subseteq\right. \\
& \left(s_{j} \in C\right) \wedge\left(s_{i} \xrightarrow{C} s_{j}\right)
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & \{C \text { is a consistent cut of }\langle E, \xrightarrow{C}\rangle\} \\
& s_{i} \in C
\end{aligned}
$$

This establishes that C is legal with respect to s. We now prove that the frontier of C contains at least one event from s. To that end, we first prove that, for each $i, s_{i} \notin \top$ implies $s_{i+1} \xrightarrow{C} \operatorname{succ}\left(s_{i}\right)$. Clearly, if $\operatorname{proc}\left(s_{i+1}\right) \neq \operatorname{proc}\left(s_{i}\right)$ then, by definition of $\xrightarrow{S^{(2)}}, s_{i+1} \xrightarrow{S^{(2)}} \operatorname{succ}\left(s_{i}\right)$. Since $\xrightarrow{S^{(2)}} \subseteq \xrightarrow{C}, s_{i+1} \xrightarrow{C} \operatorname{succ}\left(s_{i}\right)$. The more interesting case is when $\operatorname{proc}\left(s_{i+1}\right)=\operatorname{proc}\left(s_{i}\right)$. Since $\operatorname{proc}\left(s_{i}\right)=\operatorname{proc}\left(\operatorname{succ}\left(s_{i}\right)\right)$, $\operatorname{proc}\left(s_{i+1}\right)=\operatorname{proc}\left(\operatorname{succ}\left(s_{i}\right)\right)$. Then,
\{ events on a process are totally ordered by \xrightarrow{P} \}
$\left(s_{i+1} \xrightarrow{P} \operatorname{succ}\left(s_{i}\right)\right) \vee\left(\operatorname{succ}\left(s_{i}\right) \xrightarrow{P} s_{i+1}\right)$
$\Rightarrow \quad\{\xrightarrow{P} \subseteq \rightarrow\}$
$\left(s_{i+1} \not 二 \operatorname{succ}\left(s_{i}\right)\right) \vee\left(\operatorname{succ}\left(s_{i}\right) \not 二 s_{i+1}\right)$
$\Rightarrow \quad\left\{\right.$ since s satisfies the continuity property, $\left.\operatorname{succ}\left(s_{i}\right) \not \geqq s_{i+1}\right\}$
$s_{i+1} \Longrightarrow \operatorname{succ}\left(s_{i}\right)$
$\Rightarrow \quad\{\rightarrow \subseteq \xrightarrow{C}\}$
$s_{i+1} \xrightarrow{C} \operatorname{succ}\left(s_{i}\right)$

Assume, on the contrary, that the frontier of C does not contain any event from s. We prove by induction on i that, for each $i, s_{i} \in C$. Clearly, since s satisfies the boundary condition and $\perp \subseteq C, s_{1} \in C$. We have,

$$
\begin{aligned}
& \{\text { induction hypothesis }\} \\
& s_{i} \in C \\
\equiv & \left\{\operatorname{since} s_{i} \notin \operatorname{frontier}(C), \operatorname{succ}\left(s_{i}\right) \text { exists and it belongs to } C\right\} \\
& \operatorname{succ}\left(s_{i}\right) \in C \\
\Rightarrow & \left\{s_{i+1} \xrightarrow{C} \operatorname{succ}\left(s_{i}\right)\right\} \\
& \left(s_{i+1} \xrightarrow{C} \operatorname{succ}\left(s_{i}\right)\right) \wedge\left(\operatorname{succ}\left(s_{i}\right) \in C\right)
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & \{C \text { is a consistent cut of }\langle E, \xrightarrow{C}\rangle\} \\
& s_{i+1} \in C
\end{aligned}
$$

This establishes that $s_{l} \in C$. Since, since s satisfies the boundary condition, $s_{l} \in \mathrm{~T}$. Thus, trivially, $s_{l} \in$ frontier (C)-a contradiction. This implies that the frontier of C contains at least one event from s. Finally, since s satisfies the weak safety property, C satisfies b.

Combining Lemma 4.9, Lemma 4.10 and Lemma 4.11, we obtain,

Theorem 4.12 (sufficient condition) If there exists an admissible sequence with respect to a predicate b and a computation $\langle E, \rightarrow\rangle$ then b is controllable in $\langle E, \rightarrow\rangle$.

Finally, from Theorem 4.8 and Theorem 4.12, it follows that,

Theorem 4.13 (necessary and sufficient condition) It is possible to control a predicate b in a computation $\langle E, \rightarrow\rangle$ if and only if there exists an admissible sequence with respect to b and $\langle E, \rightarrow\rangle$.

Although the motivation for defining the notion of admissible sequence was to devise a control algorithm for a disjunctive predicate, nonetheless the preceding theorem holds for any global predicate.

4.4.2 Finding a Controlling Synchronization

In this section, we derive an efficient algorithm for controlling a disjunctive predicate in a computation by using the notion of admissible sequence defined before. Since false is a local predicate of any process, a disjunctive predicate b can be written as disjunction of n predicates such that the $i^{\text {th }}$ disjunct, denoted by $b^{(i)}$, is a local predicate of process p_{i}. The algorithm involves constructing a directed graph G,
called the true event graph, as follows:

$$
\begin{gathered}
\mathrm{V}(G) \triangleq\left\{e \mid e \models b^{(i)}, \text { where } p_{i}=\operatorname{proc}(e)\right\} \\
\mathrm{E}(G) \triangleq\{(e, f) \mid e, f \in \mathrm{~V}(G), e \neq f \text { and } e \notin \top \Rightarrow \operatorname{succ}(e) \nrightarrow f\}
\end{gathered}
$$

Here, $\mathrm{V}(G)$ and $\mathrm{E}(G)$ refer to the set of vertices and edges, respectively, of the graph G. We now define the notion of permissible path which is almost identical to the notion of admissible sequence except that a permissible path consists of true events only and may not satisfy the agreement property.

Definition 4.7 (permissible path) A path in a true event graph (TEG) is permissible if it starts with an initial event and ends with a final event of the computation.

Clearly, a permissible path satisfies the boundary condition as well as the continuity property. Furthermore, any consistent cut that contains a true event in its frontier, due to the semantics of disjunction, satisfies the predicate. Thus, a permissible path satisfies the weak safety property also. However, in general, a permissible may not satisfy the agreement property. But if a path besides being permissible is also the shortest one then it satisfies the agreement property too.

Example 4.7 The true event graph for the computation shown in Figure 4.13(a) and the disjunctive predicate $x_{1} \vee x_{2}$ is depicted in Figure 4.13(b). The path eghfu is permissible but does not satisfy the agreement property because although f happenedbefore g in the computation, it occurs after g in the path. The path egu is the shortest permissible path. It can be verified that it indeed satisfies the agreement property.

Lemma 4.14 The shortest permissible path in a true event graph, if it exists, satisfies the agreement property.

Figure 4.13: An algorithm to compute a controlling synchronization for a disjunctive predicate (edges to initial events and from final events have been omitted).

Proof: Assume that the true event graph does contain a permissible path. Consider the shortest permissible path $s=s_{1} s_{2} \cdots s_{l}$. Assume, on the contrary, that s does not satisfy the agreement property. Then,

$$
\begin{aligned}
& \left\langle\exists i, j: i<j: s_{j} \rightarrow s_{i}\right\rangle \\
\Rightarrow & \left\{s_{j} \notin \perp, \text { otherwise } s_{j} s_{j+1} \cdots s_{l} \text { is a shorter permissible path than } s\right\} \\
& \left\langle\exists i, j: i<j:\left(s_{j} \rightarrow s_{i}\right) \wedge\left(s_{j} \notin \perp\right)\right\rangle \\
\Rightarrow & \left\{i \geqslant 2, \text { otherwise } s_{i} \in \perp \text { implying } s_{i} \rightarrow s_{j} \text {-creating a cycle in } \rightarrow\right\} \\
& \left\langle\exists i, j: 2 \leqslant i<j:\left(s_{j} \rightarrow s_{i}\right) \wedge\left(s_{j} \notin \perp\right)\right\rangle \\
\Rightarrow & \left\{\text { since } s \text { is the shortest permissible path, }\left(s_{i-1}, s_{j}\right) \notin \mathrm{E}(G)\right\} \\
& \left\langle\exists i, j: 2 \leqslant i<j:\left(\operatorname{succ}\left(s_{i-1}\right) \rightarrow s_{j}\right) \wedge\left(s_{j} \rightarrow s_{i}\right)\right\rangle \\
\Rightarrow & \{\rightarrow \text { is transitive }\} \\
& \left\langle\exists i: i \geqslant 2: \operatorname{succ}\left(s_{i-1}\right) \rightarrow s_{i}\right\rangle \\
\equiv & \{\text { definition of an edge }\} \\
& \left\langle\exists i: i \geqslant 2:\left(s_{i-1}, s_{i}\right) \notin \mathrm{E}(G)\right\rangle \\
\Rightarrow & \left\{s \text { is a path implying }\left\langle\forall i: i \geqslant 2:\left(s_{i-1}, s_{i}\right) \in \mathrm{E}(G)\right\rangle\right\} \\
& \text { a contradiction }
\end{aligned}
$$

This establishes that s satisfies the agreement property.

The sufficient condition for a disjunctive predicate to be controllable in a computation can now be given as follows.

Theorem 4.15 (sufficient condition) Given a disjunctive predicate b and a computation $\langle E, \rightarrow\rangle$, if there exists a permissible path in the corresponding true event graph G then b is controllable in $\langle E, \rightarrow\rangle$.

Proof: Assume that G contains a permissible path. Clearly, each permissible path satisfies the boundary condition, the continuity property and the weak safety property. From Lemma 4.14, the shortest path among all permissible pathsnot necessarily unique - also satisfies the agreement property. Thus the shortest permissible path in G constitutes an admissible sequence with respect to b and $\langle E, \rightarrow\rangle$. Using Theorem 4.13, b is controllable in $\langle E, \rightarrow\rangle$.

We next prove that the existence of a permissible path in the true event graph is also a necessary condition for a disjunctive predicate to be controllable in a computation.

Theorem 4.16 (necessary condition) If a disjunctive predicate b is controllable in a computation $\langle E, \rightarrow\rangle$ then there exists a permissible path in the corresponding true event graph G.

Proof: Assume that b is controllable in $\langle E, \rightarrow\rangle$. We inductively construct a path in the graph G that is permissible. Since b is controllable in $\langle E, \rightarrow\rangle$, there exists a total order \rightsquigarrow that extends the partial order \rightarrow such that b is invariant in $\langle E, \rightsquigarrow\rangle$. The initial consistent cut of the computation $\langle E, \rightsquigarrow\rangle$, given by \perp, satisfies b. Thus there exists a true initial event. We call it s_{1}. Starting from s_{1}, we construct a path s by adding events to the path constructed as yet until we reach a final event.

Let s_{i} denote the last event added to the path so far. If s_{i} is a final event then the path we have assembled so far is permissible. The more interesting case is when s_{i} is not a final event. Consider the least consistent cut of $\langle E, \rightsquigarrow\rangle$ that contains $\operatorname{succ}\left(s_{i}\right)$, say C_{i}. Note that C_{i} is well-defined because the set of consistent cuts of a computation that contain a given event forms a lattice [JZ88, Mat89]. Since b is invariant in $\langle E, \rightsquigarrow\rangle, C_{i}$ satisfies b. Thus the frontier of C_{i} contains a true event. We call it s_{i+1}. We still have to show that there is an edge from s_{i} to s_{i+1} in the graph G, that is, $\operatorname{succ}\left(s_{i}\right) \nrightarrow s_{i+1}$. By definition of C_{i}, for each $e \in C_{i}, e \rightsquigarrow \operatorname{succ}\left(s_{i}\right)$. Since $s_{i+1} \in C_{i}, s_{i+1} \rightsquigarrow \operatorname{succ}\left(s_{i}\right)$. Since \rightsquigarrow is an irreflexive partial order, $\operatorname{succ}\left(s_{i}\right) \not \psi_{\rightarrow} s_{i+1}$. Thus $\operatorname{succ}\left(s_{i}\right) \nrightarrow s_{i+1}$ because $\rightarrow \subseteq \rightsquigarrow$.

Finally, we prove that a final event is eventually added to the path. Assume that $s_{i+1} \notin \top$. Since $s_{i+1} \in \operatorname{frontier}(C), \operatorname{succ}\left(s_{i+1}\right) \notin C_{i}$. By definition of C_{i}, $\operatorname{succ}\left(s_{i+1}\right) \underline{\downarrow} \operatorname{succ}\left(s_{i}\right)$. Since \rightsquigarrow is a total order, $\operatorname{succ}\left(s_{i}\right) \rightsquigarrow \operatorname{succ}\left(s_{i+1}\right)$. This implies that $C_{i} \subsetneq C_{i+1}$, that is, s_{i+1} is different from every event already in the path. Thus no event is added to the path being built more than once, thereby establishing that a final event is eventually added to the path.

From Theorem 4.15 and Theorem 4.16, it follows that,
Theorem 4.17 (necessary and sufficient condition) A disjunctive predicate b is controllable in a computation $\langle E, \rightarrow\rangle$ if and only if there exists a permissible path in the corresponding true event graph G.

The true event graph has $O(|E|)$ vertices and $O\left(|E|^{2}\right)$ edges. The shortest permissible path in the graph can be determined using breadth first search in $O\left(|E|^{2}\right)$ time. Thus the algorithm has the overall time-complexity of $O\left(|E|^{2}\right)$. To improve the time-complexity, we attempt to reduce the number of edges in the graph. To that end, the following observation proves to be helpful.

Observation 4.3 If there is an edge from a true event e to a true event f then
there is an edge from every true event that occurs after e on proc(e) to every true event that occurs before f on $\operatorname{proc}(f)$. Formally,

$$
(e, f) \in \mathrm{E}(G) \Rightarrow\langle\forall g, h \in \mathrm{~V}(G):(e \xrightarrow{P} g) \wedge(h \xrightarrow{P} f):(g, h) \in \mathrm{E}(G)\rangle
$$

It can be verified that, given a true event e and a process p, if we only put an edge from e to the last true event f on p such that $\operatorname{succ}(e) \nrightarrow f$, in case $\operatorname{succ}(e)$ exists, then Theorem 4.17 still holds. In particular, it can be proved that existence of a permissible path of length l in the true event graph implies existence of a permissible path in the "reduced" true event graph (RTEG) of length at most l. The reduced true event graph has at most $O(n|E|)$ edges, thereby reducing the time-complexity to $O(n|E|)$.

To reduce the time-complexity further, we define the notion of true-intervala maximal contiguous sequence of true event on a process. Rather than find a sequence of true event that satisfy certain properties, we can find a sequence of true-intervals satisfying "similar" properties. The details are left to the reader. This algorithm for computing a controlling synchronization for a disjunctive predicate based on true-intervals-has the time-complexity of $O(n|T|+|E|)$, where T is the set of true-intervals of the computation, which is same as that of Tarafdar and Garg's algorithm [TG98b].

4.4.3 Finding a Minimum Controlling Synchronization

We modify our algorithm for computing a controlling synchronization for a disjunctive predicate to compute a minimum controlling synchronization, that is, a synchronization with least number of dependencies that are not subsumed by the happened-before relation. We take advantage of the fact that the predicate to be controlled is disjunctive. As a result, a sequence of true events satisfies a stronger property than the weak safety property: "a consistent cut that contains at least one
event from the sequence in its frontier satisfies the predicate". In particular, the cut is not required to be legal. Therefore the following holds:

Observation 4.4 Let s be an admissible sequence with respect to b and $\langle E, \rightarrow\rangle$. If b is a disjunctive predicate then the synchronization given by $\xrightarrow{S^{(2)}}$ defined in (4.4) in Section 4.4.1 is sufficient to control b in $\langle E, \rightarrow\rangle$.

Although the synchronization dependencies given by $\xrightarrow{S^{(1)}}$ can be omitted, the sequence is still required to satisfy the agreement property. This is to ensure that the synchronization $\xrightarrow{S^{(2)}}$ does not interfere with the happened-before relation of the computation. To count the number of synchronization dependencies in $\xrightarrow{S^{(2)}}$ that are not covered by \rightarrow, we assign weight to each edge as follows:

$$
w(e, f) \triangleq\left\{\begin{array}{lll}
(0,1) & : & \text { if } f \rightrightarrows \operatorname{succ}(e) \\
(1,1) & : & \text { otherwise }
\end{array}\right.
$$

Two weights are added by adding their respective components and are compared lexicographically. As before in the case of true event graph, the shortest permissible path in a weighted true event graph not only satisfies the boundary condition, the continuity property and the weak safety property but also satisfies the agreement property.

Lemma 4.18 The shortest permissible path in a weighted true event graph, if it exists, satisfies the agreement property.

Proof: Assume that the weighted true event graph does contain a permissible path. Consider the shortest permissible path $s=s_{1} s_{2} \cdots s_{l}$. Assume, on the contrary, that s does not satisfy the agreement property. Then there exist integers i and j, where $i<j$, such that $s_{j} \rightarrow s_{i}$. Since s is the shortest permissible path, $s_{j} \notin \perp$; if otherwise, the path $s_{j} s_{j+1} \cdots s_{l}$ is a shorter permissible path than s-a contradiction. Furthermore, $i \geqslant 2$; if otherwise, $s_{i} \in \perp$ which implies that $s_{i} \rightarrow s_{j}$,
thereby creating a cycle in \rightarrow. Two possible cases arise depending on whether there is an edge from s_{i-1} to s_{j}.

Case 1: $\left(s_{i-1}, s_{j}\right) \notin \mathrm{E}(G)$
\{ definition of an edge \}

$$
\begin{aligned}
& \left(\operatorname{succ}\left(s_{i-1}\right) \rightarrow s_{j}\right) \wedge\left(s_{j} \rightarrow s_{i}\right) \\
\Rightarrow & \{\rightarrow \text { is transitive }\} \\
& \operatorname{succ}\left(s_{i-1}\right) \rightarrow s_{i} \\
\equiv & \{\text { definition of an edge }\} \\
& \left(s_{i-1}, s_{i}\right) \notin \mathrm{E}(G) \\
\Rightarrow & \left\{s \text { is a path implying }\left(s_{i-1}, s_{i}\right) \in \mathrm{E}(G)\right\} \\
& \text { a contradiction }
\end{aligned}
$$

In the second case, two possible sub-cases arise depending on the weight of the edge from s_{i-1} to s_{j}. If $w\left(s_{i-1}, s_{j}\right)=(0,1)$ then the path $s_{1} s_{2} \cdots s_{i-1} s_{j} \cdots s_{l}$ is permissible and has lesser weight than s-a contradiction. The more interesting case is when $w\left(s_{i-1}, s_{j}\right)=(1,1)$. Then,

Case 2.2: $w\left(s_{i-1}, s_{j}\right)=(1,1)$

$$
\begin{aligned}
& \{\text { definition of the weight function }\} \\
& s_{j} \notin \operatorname{succ}\left(s_{i-1}\right) \\
\Rightarrow & \left\{s_{j} \rightarrow s_{i} \text { implying } s_{i} \rightrightarrows \operatorname{succ}\left(s_{i-1}\right) \Rightarrow s_{j} \rightrightarrows \operatorname{succ}\left(s_{i-1}\right)\right\} \\
& s_{i} \nexists \operatorname{succ}\left(s_{i-1}\right) \\
\equiv & \left\{\left(s_{i-1}, s_{i}\right) \in \mathrm{E}(G) \text { and definition of the weight function }\right\} \\
& w\left(s_{i-1}, s_{i}\right)=(1,1)
\end{aligned}
$$

Thus the path $s_{1} s_{2} \cdots s_{i-1} s_{j} \cdots s_{l}$ is permissible and has lesser weight than s-a contradiction. This establishes that s satisfies the agreement property.

For a path s with weight $w(s)$, let $w_{f}(s)$ and $w_{s}(s)$ denote the first and second entries, respectively, of the tuple $w(s)$. The rank of a weighted true event graph G, denoted by $\operatorname{rank}(G)$, is given by,

$$
\operatorname{rank}(G) \triangleq \begin{cases}\perp & : \text { if there is no permissible path in } \mathrm{G} \\ w_{f}(s) & : s \text { is the shortest permissible path in } G\end{cases}
$$

Intuitively, the rank gives the cardinality of a minimum controlling synchronization. We show that rank behaves in a continuous fashion by proving that adding a single synchronization dependency to a computation cannot reduce the rank of its weighted true event graph substantially. Consider a computation $\langle E, \rightsquigarrow\rangle$ such that (1) \rightsquigarrow extends \rightarrow, and (2) the two computations $\langle E, \rightarrow\rangle$ and $\langle E, \rightsquigarrow\rangle$ differ by at most one message. Formally,

$$
\left\langle\exists e, f:: \rightsquigarrow=\left(\rightarrow \cup(e, f)^{+}\right)\right\rangle
$$

Let H be the weighted true event graph corresponding to b and $\langle E, \rightsquigarrow\rangle$.

Lemma 4.19 (bounded reduction) If b is controllable in $\langle E, \rightsquigarrow\rangle$ then $\operatorname{rank}(G)$ is at most one more than $\operatorname{rank}(H)$.

Proof: Since $\langle E, \rightsquigarrow\rangle \vDash$ controllable: b, by virtue of Theorem 4.16, there exists a permissible path in H. Consider the shortest permissible path in H, say $s=$ $s_{1} s_{2} \cdots s_{l}$. For convenience, let w^{G} and w^{H} be the weight functions for the graphs G and H, respectively. Since $\rightarrow \subseteq \rightsquigarrow, \operatorname{succ}(e) \not \nVdash f$ implies $\operatorname{succ}(e) \nrightarrow f$. Thus each edge of H is also an edge of G which implies that s is a path in G. The following can be easily verified.

$$
\begin{equation*}
\operatorname{rank}(G) \leqslant w_{f}^{G}(s) \tag{4.5}
\end{equation*}
$$

$$
\begin{gather*}
\operatorname{rank}(H)=w_{f}^{H}(s) \tag{4.6}\\
\left\langle\forall e, f:(e, f) \in \mathrm{E}(H): w^{G}(e, f)=(0,1) \Rightarrow w^{H}(e, f)=(0,1)\right\rangle \tag{4.7}
\end{gather*}
$$

We first prove that $w_{f}^{G}(s)-w_{f}^{H}(s) \leqslant 1$. Assume the contrary. Thus, from (4.7), there exist at least two distinct edges in the path s such that their weight in G is $(1,1)$ but in H is $(0,1)$. Let the edges be $\left(s_{i}, s_{i+1}\right)$ and $\left(s_{j}, s_{j+1}\right)$, where $i \neq j$. Equivalently,

$$
\begin{align*}
& s_{i+1} \nsupseteq \operatorname{succ}\left(s_{i}\right) \text { and } s_{j+1} \nsupseteq \operatorname{succ}\left(s_{j}\right) \tag{4.8}\\
& s_{i+1} \rightsquigarrow \operatorname{succ}\left(s_{i}\right) \text { and } s_{j+1} \rightsquigarrow \operatorname{succ}\left(s_{j}\right) \tag{4.9}
\end{align*}
$$

Let the additional message in $\langle E, \rightsquigarrow\rangle$ be from e to f. From (4.8) and (4.9), we can deduce that there exists a path from s_{i+1} to $\operatorname{succ}\left(s_{i}\right)$ in $\langle E, \rightsquigarrow\rangle$ that involves the message from e to f. Likewise, there exists a path from s_{j+1} to $\operatorname{succ}\left(s_{j}\right)$ in $\langle E, \rightsquigarrow\rangle$ that involves the message from e to f. Then,

$$
\begin{align*}
& s_{i+1} \rightsquigarrow \supseteq e \text { and } f \rightsquigarrow \rightsquigarrow \operatorname{succ}\left(s_{i}\right) \tag{4.10}\\
& s_{j+1} \rightsquigarrow \supseteq e \text { and } f \rightsquigarrow \operatorname{succ}\left(s_{j}\right) \tag{4.11}
\end{align*}
$$

Without loss of generality, assume that $i<j$. Two possible cases arise depending on whether there is an edge from s_{i} to s_{j+1} in H. We have,

Case 1: $\left(s_{i}, s_{j+1}\right) \notin \mathrm{E}(H)$
\{ definition of an edge \}
$\operatorname{succ}\left(s_{i}\right) \rightsquigarrow s_{j+1}$
$\Rightarrow\{\operatorname{using}(4.11)\}$
$\operatorname{succ}\left(s_{i}\right) \rightsquigarrow e$
$\Rightarrow \quad\{\operatorname{using}(4.10)\}$
$f \rightsquigarrow e$
$\Rightarrow \quad\{$ definition of \rightsquigarrow implies $e \rightsquigarrow f\}$
a contradiction

In the second case, when there is an edge from s_{i} to s_{j+1}, from (4.10) and (4.11), $s_{j+1} \rightsquigarrow \operatorname{succ}\left(s_{i}\right)$. Thus $w^{H}\left(s_{i}, s_{j+1}\right)=(0,1)$ implying that the path $s_{1} s_{2} \cdots s_{i} s_{j+1} \cdots s_{l}$ is permissible in H and has smaller weight than s-a contradiction. Thus,

$$
\begin{equation*}
w_{f}^{G}(s)-w_{f}^{H}(s) \leqslant 1 \tag{4.12}
\end{equation*}
$$

Finally,

$$
\begin{aligned}
& \{\operatorname{using}(4.5)\} \\
& \operatorname{rank}(G) \leqslant w_{f}^{G}(s) \\
\equiv & \{\operatorname{using}(4.12)\} \\
& \operatorname{rank}(G) \leqslant w_{f}^{H}(s)+1 \\
\equiv & \{\operatorname{using}(4.6)\} \\
& \operatorname{rank}(G) \leqslant \operatorname{rank}(H)+1
\end{aligned}
$$

This establishes the lemma.

Now, assume that $\operatorname{rank}(G) \neq 0$. Let $\mathcal{R C H}$ denote the subset of true events that are reachable from some initial true event in the weighted true event graph G via edges with weight $(0,1)$ only. Since $\operatorname{rank}(G) \neq 0, \mathcal{R C H}$ does not contain any final event; if otherwise, there is a path from an initial event to a final event via edges with weight $(0,1)$ only, thereby forcing $\operatorname{rank}(G)$ to be zero. For each process p_{i}, we identify an interval of contiguous events on p_{i} that we denote by \mathcal{I}_{i}. The first event of \mathcal{I}_{i}, denoted by \mathcal{I}_{i}.lo, is given by the successor of the last event on p_{i} that belongs to $\mathcal{R C H}$. In case there is no such event, \mathcal{I}_{i}.lo is set to \perp_{i}, the initial event on p_{i}. The last event of \mathcal{I}_{i}, denoted by $\mathcal{I}_{i} . h i$, is given by the earliest event on p_{i} that did not occur before \mathcal{I}_{i}.lo such that its successor, if it exists, is a true event. Clearly, \mathcal{I}_{i} is non-empty and all events in \mathcal{I}_{i} are false events. For convenience,

$$
\mathcal{I} \triangleq \bigcup_{1 \leqslant i \leqslant n} \mathcal{I}_{i}
$$

Figure 4.14: An example to illustrate \mathcal{I}.

$$
\begin{aligned}
& \mathcal{I} . l o \triangleq\left\{\mathcal{I}_{i} \cdot l o \mid 1 \leqslant i \leqslant n\right\} \\
& \mathcal{I} . h i \triangleq\left\{\mathcal{I}_{i} . h i \mid 1 \leqslant i \leqslant n\right\} \\
& \operatorname{succ}(\mathcal{I} . h i) \triangleq\{\operatorname{succ}(e) \mid e \in \mathcal{I} . h i \text { and } e \notin \top\}
\end{aligned}
$$

Example 4.8 Consider the computation portrayed in Figure 4.14(a) and the disjunctive predicate $x_{1} \vee x_{2} \vee x_{3}$. The corresponding weighted true event graph is depicted in Figure 4.14(b). The incoming edges to the initial event e and the outgoing edges from the final event g have been omitted for obvious reasons. All edges except the edges (e, x) and (x, y) have weight $(1,1)$. For clarity, we have only labeled those edges that have weight $(0,1)$ because they are fewer in number. Thus the set $\mathcal{R C H}$ is given by $\{e, x, y\}$. Further, $\mathcal{I}_{1} \cdot l o=\operatorname{succ}(e)=f, \mathcal{I}_{2}$.lo $=\perp_{2}=u$ and $\mathcal{I}_{3} \cdot l o=\operatorname{succ}(y)=z . \quad$ Also, $\mathcal{I}_{1} \cdot h i=f, \mathcal{I}_{2} \cdot h i=v$ and $\mathcal{I}_{3} \cdot h i=\top_{3}=z$. Finally, $\operatorname{succ}(\mathcal{I})=\{\operatorname{succ}(f), \operatorname{succ}(v)\}=\{g, w\}$. The shaded region in Figure 4.14(a) corresponds to the space spanned by the events of \mathcal{I}.

Observe that if all events in the frontier of a consistent cut belong to \mathcal{I} then the cut will not satisfy the given disjunctive predicate. We make two observations about the set $\operatorname{succ}(\mathcal{I} . h i)$. First, all events in the set are true events. Second, no
event in the set belongs to $\mathcal{R C H}$. The following lemma proves that the computation must contain a consistent cut that does not satisfy the disjunctive predicate.

Lemma 4.20 If the rank of a weighted true event graph is not zero then there exists a consistent cut of the computation that does not satisfy the disjunctive predicate.

Proof: Our approach is to add enough synchronization dependencies to the computation $\langle E, \rightarrow\rangle$, without creating any deadlock (or cycle), to obtain another computation, say $\langle E, \rightsquigarrow\rangle$, that satisfies the required property. Specifically, we show that the computation $\langle E, \rightsquigarrow\rangle$ contains a consistent cut whose frontier is completely contained in \mathcal{I}. Since all events in \mathcal{I} are false events, we obtain the desired result. The required set of dependencies, denoted by $\xrightarrow{\mathcal{I}}$, is given by,

$$
\xrightarrow{\mathcal{I}} \triangleq\{(e, f) \mid e \in \mathcal{I} . l o \text { and } f \in \operatorname{succ}(\mathcal{I} . h i)\}
$$

We first prove that adding dependencies from $\xrightarrow{\mathcal{I}}$ to \rightarrow does not create any cycle. Consider a path $e \xrightarrow{I} f \nrightarrow g \xrightarrow{I} h$ (events e, f, g and h need not all be distinct, that is, an event or a sequence of events may be repeated in the path). By definition of $\xrightarrow{\mathcal{I}}, f \in \operatorname{succ}(\mathcal{I}$.hi) and $g \in \mathcal{I}$.lo. Clearly, $f \notin \perp$. This implies that $g \notin \perp$; if otherwise, $g \rightarrow f$, thereby creating a cycle in \rightarrow. Thus pred (g) exists. Furthermore, both f and $\operatorname{pred}(g)$ are true events such that $\operatorname{pred}(g) \in \mathcal{R C H}$ but $f \notin \mathcal{R C H}$. Note, however, that $f \Longrightarrow \operatorname{succ}(\operatorname{pred}(g))(=g)$ implying that there is an edge from $\operatorname{pred}(g)$ to f with weight $(0,1)$. Thus f is reachable from an initial event via edges with weight $(0,1)$ only because $\operatorname{pred}(g) \in \mathcal{R C H}$ and $w(\operatorname{pred}(g), f)=(0,1)$. This implies that f belongs to $\mathcal{R C H}$-a contradiction. Thus there is no path in $\rightarrow \cup \xrightarrow{\mathcal{I}}$ of the form $e \xrightarrow{\mathcal{I}} f \rightarrow g \xrightarrow{\underline{I}} h$, thereby ensuring that $\rightarrow \cup \xrightarrow{\mathcal{I}}$ is acyclic.

Now, $\rightsquigarrow=(\rightarrow \cup \xrightarrow{I})^{+}$. Consider the least consistent cut of $\langle E, \rightsquigarrow\rangle$, say $C_{\text {least }} .(\mathcal{I} . l o)$, that contains $\mathcal{I} . l o$. By definition of $C_{\text {least }} .(\mathcal{I} . l o)$, we have,

$$
\begin{equation*}
\left\langle\forall e:: e \in C_{\text {least }} .(\mathcal{I} . l o) \Rightarrow\langle\exists f: f \in \mathcal{I} . l o: e \rightsquigarrow \nsupseteq\rangle\right\rangle \tag{4.13}
\end{equation*}
$$

We prove that the frontier of $C_{\text {least }}$.(I.lo) lies wholly within \mathcal{I}. To that end, it suffices to show that $C_{\text {least. }}$ (I.lo) does not contain any event from $\operatorname{succ}(\mathcal{I} . h i)$. Assume the contrary. Then,

$$
\begin{aligned}
& \left\langle\exists e: e \in \operatorname{succ}(\mathcal{I} . h i): e \in C_{\text {least }} .(\mathcal{I} . l o)\right\rangle \\
\Rightarrow & \{\operatorname{using}(4.13)\} \\
& \langle\exists e, f:(e \in \operatorname{succ}(\mathcal{I} . h i)) \wedge(f \in \mathcal{I} . l o): e \rightsquigarrow f\rangle \\
\Rightarrow & \{\text { by definition of } \xrightarrow{\mathcal{I}}, f \xrightarrow{\mathcal{I}} e \text { and } \xrightarrow{\mathcal{I}} \subseteq \rightsquigarrow\} \\
& \langle\exists e, f:(e \in \operatorname{succ}(\mathcal{I} . h i)) \wedge(f \in \mathcal{I} . l o):(e \rightsquigarrow f) \wedge(f \rightsquigarrow e)\rangle \\
\Rightarrow & \{\rightsquigarrow \text { is an irreflexive partial order }\} \\
& \text { a contradiction }
\end{aligned}
$$

This establishes the lemma.

The necessary and sufficient condition for the rank of a weighted true event graph to be zero can now be furnished easily.

Theorem 4.21 The rank of a weighted true event graph is zero if and only if the disjunctive predicate is invariant in the computation. Formally,

$$
\langle E, \rightarrow\rangle \vDash \text { invariant }: b \Longleftrightarrow \operatorname{rank}(G)=0
$$

Proof: (\Rightarrow) Follows from Lemma 4.20.
(\Leftarrow) From Lemma 4.18, the shortest permissible path, say s-which exists because $\operatorname{rank}(G) \neq \perp$-corresponds to an admissible sequence of events with respect to b and $\langle E, \rightarrow\rangle$. Since b is a disjunctive predicate, by Observation 4.4 $\xrightarrow{S^{(2)}}$ is sufficient to control b in $\langle E, \rightarrow\rangle$. Let $\xrightarrow{C}=\left(\rightarrow \cup \xrightarrow{S^{(2)}}\right)^{+}$. By definition of controllability, b is invariant in $\langle E, \xrightarrow{C}\rangle$. Furthermore, by definition of the weight function, $\xrightarrow{S^{(2)}} \subseteq \rightarrow$ which implies that $\xrightarrow{C}=\rightarrow$.

We now present the main result of this section.

Theorem 4.22 (minimum controlling synchronization) The shortest permissible path in a weighted true event graph, if it exists, corresponds to a minimum controlling synchronization for the disjunctive predicate in the computation.

Proof: Assume that the weighted true event graph G does contain a permissible path. From Theorem $4.17, b$ is controllable in $\langle E, \rightarrow\rangle$. Let $\xrightarrow{\text { min }}$ denote a minimum controlling synchronization for b in $\langle E, \rightarrow\rangle$. Further, let $\left\{G^{(k)}\right\}$ represent the sequence of weighted true event graphs generated by adding synchronization dependencies from $\xrightarrow{\text { min }}$ one-by-one, where $G^{(0)}=G$. Note that b is invariant in the computation obtained by adding all synchronization dependencies from $\xrightarrow{\text { min }}$. From the bounded reduction lemma,

$$
\operatorname{rank}\left(G^{(i)}\right)-\operatorname{rank}\left(G^{(i+1)}\right) \leqslant 1, \quad 0 \leqslant i<|\xrightarrow{\min }|
$$

Adding the above inequality for all values of i, we obtain,

$$
\begin{aligned}
& \operatorname{rank}\left(G^{(0)}\right)-\operatorname{rank}(G|\xrightarrow{\text { min }}|) \leqslant|\xrightarrow{\min }| \\
\equiv & \{\text { using Theorem } 4.21\} \\
& \operatorname{rank}(G)-0 \leqslant|\stackrel{\min }{\rightarrow}| \\
\equiv & \{\operatorname{simplifying}\} \\
& \operatorname{rank}(G) \leqslant|\xrightarrow{\min }| \\
\equiv & \{\xrightarrow{\min } \operatorname{corresponds} \text { to a minimum controlling synchronization }\} \\
& \operatorname{rank}(G)=|\xrightarrow{\min }|
\end{aligned}
$$

This establishes the theorem.

The algorithm to compute a minimum controlling synchronization has $O\left(|E|^{2}\right)$ time-complexity because the weighted true event graph has $O(|E|)$ vertices, $O\left(|E|^{2}\right)$ edges, and the shortest permissible path in the graph can be determined using Dijkstra's shortest path algorithm [CLR91] in $O\left(|E|^{2}\right)$ time.

Chapter 5

Slicing Distributed
 Computations

In this chapter, we discuss in detail our results pertaining to slicing distributed computations with respect to global predicates.

5.1 Overview

We first extend the model of distributed computation, described in Chapter 2, in Section 5.2. Specifically, we relax the restriction that events can only be partially ordered and allow cycles to be present in the computation. The reason is because whereas, in the traditional model, a computation specifies the "observable" order of execution of events, in the extended model, it captures the set of "possible" consistent cuts that are currently relevant for our purpose. The extended model enables us to model both computation and slice in a uniform and coherent fashion.

We formally define the notion of "slice" in Section 5.3. Informally, the slice of a computation with respect to a predicate is the "smallest" computation that
contains all consistent cuts of the original computation that satisfy the predicate. In case the slice contains only those consistent cuts of the computation that satisfy the predicate, it is referred to as "lean".

A natural question to ask is: "Is such a smallest computation uniquely defined for every predicate?" To prove that it is indeed the case, we define a new class of predicates in Section 5.4 called "regular predicates". Informally, a predicate is regular if the set of consistent cuts that satisfy the predicate is closed under set union and set intersection. Some examples of regular predicates are conjunctive predicates such as "no process is in red state" and certain monotonic channel predicates such as "all channels are empty" and "all green messages have been acknowledged". The class of regular predicates is closed under conjunction. We prove in Section 5.5 that the slice for a predicate is lean if and only if the predicate is regular. For the general case, when the predicate may not be regular, we define a closure operator that returns the "strongest" regular predicate weaker than the given predicate. We show that such a predicate exists and is uniquely defined for every predicate. This in turn proves that the slice exists and is uniquely defined for every predicate.

In Section 5.7, we develop a polynomial-time algorithm for computing the slice for a regular predicate. The algorithm has an overall time-complexity of $O\left(n^{2}|E|\right)$, where n is the number of processes and E is the set of events. In case the regular predicate can be decomposed into a conjunction of clauses, where each clause itself is a regular predicate, however, depending on variables of only a small subset of processes, we given an optimized salgorithm for computing the slice. The optimized version may yield a speedup of as much as n for many regular predicates. We also provide optimal algorithms for special cases of regular predicates, namely conjunctive predicates and monotonic channel predicates of the form " \wedge (at most ${ }^{i, j}$ $k_{i j}$ messages in transit from process p_{i} to process p_{j})" and " $\bigwedge_{i, j}$ (at least $k_{i j}$ messages in transit from process p_{i} to process $\left.p_{j}\right)^{\prime \prime}$, which have the time-complexity of $O(|E|)$.

We demonstrate how slicing can be used to monitor a regular predicate under various modalities. Furthermore, we argue that many results pertaining to consistent global checkpoints [NX95, Wan97] can be derived as special cases of slicing.

We establish in Section 5.8 that it is intractable in general to compute the slice for an arbitrary predicate. Nevertheless, polynomial-time algorithms can be developed for certain special classes of predicates. In particular, we provide an efficient algorithm to compute the slice for a linear predicate and its dual-a postlinear predicate [CG98]. We next introduce the notion of "grafting" which is useful in composing two slices. Given two slices, grafting can be used to either compute the smallest slice that contains all consistent cuts common to both slices or compute the smallest slice that contains consistent cuts of both slices. As a corollary, the slice for a predicate in disjunctive normal form (DNF) can now be easily obtained. We demonstrate how grafting can be employed to compute the slice for a "co-regular predicate" (that is, complement of a regular predicate) in polynomial-time. We also use grafting to efficiently compute the slice for a " k-local predicate" (depends on at most k processes) for constant k [SS95]. Furthermore, grafting can also be applied to compute an "approximate" slice - in polynomial-time - for a predicate composed from linear predicates, post-linear predicates, co-regular predicates and k-local predicates for constant k using \wedge and \vee operators.

Finally, in Section 5.9, we discuss our experimental results in evaluating the effectiveness of slicing in reducing the search-space for detecting a predicate under possibly modality. Our results indicate that computation slicing can lead to an exponential improvement over existing techniques both in terms of time as well as space.

5.2 Extending the Model

In this section, we extend the model of distributed computation and related notions that we described in Chapter 2. In this chapter, we relax the restriction that the order on events must be a partial order. More precisely, we use directed graphs to model distributed computations as well as slices. Directed graphs allow us to handle both of them in a uniform and convenient manner.

Given a directed graph G, let $\mathrm{V}(G)$ and $\mathrm{E}(G)$ denote its set of vertices and edges, respectively. A subset of vertices of a directed graph forms a consistent cut if the subset contains a vertex only if it also contains all its incoming neighbours. Formally,
C is a consistent cut of $G \triangleq\langle\forall e, f \in \mathrm{~V}(G):(e, f) \in \mathrm{E}(G): f \in C \Rightarrow e \in C\rangle$
Observe that a consistent cut either contains all vertices in a cycle or none of them. This observation can be generalized to a strongly connected component. Traditionally, the notion of consistent cut (down-set or order ideal) is defined for partially ordered sets [DP90]. Here, we extend the notion to sets with arbitrary orders. Let $\mathcal{C}(G)$ denote the set of consistent cuts of a directed graph G. Observe that the empty set \emptyset and the set of vertices $\mathrm{V}(G)$ trivially belong to $\mathcal{C}(G)$. We call them trivial consistent cuts. Let $\mathcal{P}(G)$ denote the set of paths in a directed graph G, that is, the set of pairs of vertices (u, v) such that there is a path from u to v in G. We assume that each vertex has a path to itself.

5.2.1 Directed Graphs: Path- and Cut-Equivalence

A directed graph G is cut-equivalent to a directed graph H, denoted by $G \stackrel{C}{\cong} H$, if they have the same set of consistent cuts. Formally,

$$
G \stackrel{C}{\cong} H \triangleq \mathcal{C}(G)=\mathcal{C}(H)
$$

Likewise, a directed graph G is path-equivalent to a directed graph H, denoted by $G \stackrel{P}{\cong} H$, if a path from vertex u to vertex v in G implies a path from vertex u to vertex v in H and vice versa. Formally,

$$
G \stackrel{P}{\cong} H \triangleq \mathcal{P}(G)=\mathcal{P}(H)
$$

The next lemma explores the relation between the two notions.

Lemma 5.1 Let G and H be directed graphs with the same set of vertices. Then,

$$
\mathcal{P}(G) \subseteq \mathcal{P}(H) \equiv \mathcal{C}(G) \supseteq \mathcal{C}(H)
$$

Evidently, Lemma 5.1 implies that two directed graphs are cut-equivalent if and only if they are path-equivalent. In other words, in order to determine whether two directed graphs are cut-equivalent, it is necessary and sufficient to ascertain that they are path-equivalent. This is significant because, whereas path-equivalence can be verified in polynomial-time $\left(|\mathcal{P}(G)|=O\left(|\mathrm{~V}(G)|^{2}\right)\right)$, cut-equivalence is computationally expensive to ascertain in general $\left(|\mathcal{C}(G)|=O\left(2^{|V(G)|}\right)\right)$. In the rest of the chapter, we use \cong to denote both $\stackrel{C}{\cong}$ and $\stackrel{P}{\cong}$.

5.2.2 Distributed Computations as Directed Graphs

We model a distributed computation $\langle E, \rightarrow\rangle$ as a directed graph with vertices as the set of events E and edges as \rightarrow. To limit our attention to only those consistent cuts that can actually occur during an execution, we assume that $\mathcal{P}(\langle E, \rightarrow\rangle)$ contains at least the Lamport's happened-before relation [Lam78].

We assume the presence of a fictitious final event on each process which occurs after all other events on the process. Recall that a final event on process p_{i} is denoted by T_{i} which now refers to the aforementioned fictitious event. We assume that all initial events belong to the same strongly connected component. Similarly,
all final events belong to the same strongly connected component. This ensures that any non-trivial consistent cut will contain all initial events and none of the final events. As a result, every consistent cut of a computation in the traditional model is a non-trivial consistent cut of the corresponding computation in the extended model and vice versa. Only non-trivial consistent cuts are of real interest to us. As we will see later, the extended model allows us to capture empty slices in a very convenient fashion.

A distributed computation in the extended model can contain cycles. This is because whereas a computation in the traditional (happened-before) model captures the observable order of execution of events, a computation in the extended model captures the set of possible consistent cuts.

Although, given a computation $\langle E, \rightarrow\rangle$, the relation \rightarrow may contain cycles, the order of events on a process, that in turn refers to the sequence in which the events on a process were executed in real-time, is still a total order. Thus the notion of predecessor and successor events of an event defined in Chapter 2 is well-defined and so are the notions that depend on it such as "frontier" and "passes through".

Recall that two events are said to be consistent if they are contained in the frontier of some consistent cut, otherwise they are inconsistent. More precisely, it can be verified that events e and f are consistent if and only if there is no path in the computation from $\operatorname{succ}(e)$, if it exists, to f and from $\operatorname{succ}(f)$, if it exists, to e. Note that, in the extended model, in contrast to the traditional model, an event can be inconsistent with itself.

As before, a predicate is evaluated with respect to the values of variables resulting after executing all events in the cut. We leave the predicate undefined for the trivial consistent cuts.

5.3 Problem Statement

Informally, a computation slice (or simply a slice) is a concise representation of all those consistent cuts of the computation that satisfy the predicate. Formally,

Definition 5.1 (slice) The slice of a computation with respect to a predicate is the smallest directed graph-with the least number of consistent cuts-that contains all consistent cuts of the given computation for which the predicate evaluates to true.

We will later show that the notion of smallest directed graph in the definition is well-defined for every predicate. The slice of computation $\langle E, \rightarrow\rangle$ with respect to a predicate b is denoted by $\langle E, \rightarrow\rangle_{b}$. Note that $\langle E, \rightarrow\rangle=\langle E, \rightarrow\rangle_{\text {true }}$. In the rest of the paper, we use the terms "computation", "slice" and "directed graph" interchangeably.

Note that every slice derived from the computation $\langle E, \rightarrow\rangle$ will have the trivial consistent cuts (\emptyset and E) among its set of consistent cuts. Thus a slice is empty if it has no non-trivial consistent cuts. In the rest of the paper, unless otherwise stated, a consistent cut refers to a non-trivial consistent cut. In general, a slice will contain consistent cuts that do not satisfy the predicate (besides trivial consistent cuts). In case a slice does not contain any such cut, it is called lean. Formally,

Definition 5.2 (lean slice) The slice of a computation with respect to a predicate is lean if every consistent cut of the slice satisfies the predicate.

An interesting question to ask is for what class of predicates is the slice always lean? To answer this question, we introduce the class of regular predicates.

5.4 Regular Predicates

A global predicate is called regular if the set of consistent cuts that satisfy the predicate is closed under set intersection and set union. Formally, given a regular predicate b and consistent cuts C_{1} and C_{2},

$$
\left(C_{1} \models b\right) \wedge\left(C_{2} \models b\right) \Rightarrow\left(C_{1} \cap C_{2} \models b\right) \wedge\left(C_{1} \cup C_{2} \models b\right)
$$

Remark 5.1 More precisely, given a set of elements that forms a lattice under some partial order, a subset of elements forms a sublattice of the lattice if the subset is closed under the meet and join operators of the lattice. In our case, the meet and join operators are set intersection and set union, respectively.

If the set of consistent cuts that satisfy a predicate is closed under set intersection then the predicate is said to be linear [CG98]. Dually, if the set of consistent cuts that satisfy a predicate is closed under set union then the predicate is said to be post-linear [CG98]. The class of regular predicates is, therefore, given by the intersection of the class of linear predicates and the class of post-linear predicates.

It can be verified that a local predicate is a regular predicate. Therefore the following predicates are regular.

- process p_{i} is in "red" state
- the leader has sent all "prepare to commit" messages

We now provide more examples of regular predicates. Consider a function $f(x, y)$ with two arguments such that it is monotonic in its first argument x but anti-monotonic in its second argument y. Some examples of the function f are: $x-y, 3 x-5 y, x / y$ when $x, y>0$, and $\log _{y} x$ when $x, y \geqslant 1$. We establish that the predicates of the form $f(x, y)<c$ and $f(x, y) \leqslant c$, where c is some constant, are regular when either both x and y are monotonically non-decreasing variables or both x and y are monotonically non-increasing variables.

Lemma 5.2 Let x and y be monotonically non-decreasing variables. Then the predicates $f(x, y)<c$ and $f(x, y) \leqslant c$ are regular predicates.

Proof: We show that the predicate $f(x, y)<c$ is regular. The proof for the other predicate is similar and has been omitted. For a consistent C, let $x(C)$ and $y(C)$ denote the values of variables x and y, respectively, immediately after all events in C are executed. Consider consistent cuts C_{1} and C_{2} that satisfy the predicate $f(x, y)<c$. Note that, by definition of $C_{1} \cap C_{2}, y\left(C_{1} \cap C_{2}\right)$ is either $y\left(C_{1}\right)$ or $y\left(C_{2}\right)$. Without loss of generality, assume that $y\left(C_{1} \cap C_{2}\right)=y\left(C_{1}\right)$. Then,

$$
\left.\left.\begin{array}{rl}
& f\left(x\left(C_{1} \cap C_{2}\right), y\left(C_{1} \cap C_{2}\right)\right) \\
= & \{\text { assumption }\} \\
& f\left(x\left(C_{1} \cap C_{2}\right), y\left(C_{1}\right)\right) \\
\leqslant & \left\{x \text { is monotonically non-decreasing implies } x\left(C_{1} \cap C_{2}\right) \leqslant x\left(C_{1}\right),\right. \\
\text { and } f \text { is monotonic in } x
\end{array}\right\}, \begin{array}{l}
\\
\\
<
\end{array}\left(x\left(C_{1}\right), y\left(C_{1}\right)\right),\left\{C_{1} \text { satisfies the predicate } f(x, y)<c\right\}\right\}
$$

Thus $C_{1} \cap C_{2}$ satisfies the predicate $f(x, y)<c$. Also, note that, by definition of $C_{1} \cup C_{2}, x\left(C_{1} \cup C_{2}\right)$ is either $x\left(C_{1}\right)$ or $x\left(C_{2}\right)$. Without loss of generality, assume that $x\left(C_{1} \cup C_{2}\right)=x\left(C_{1}\right)$. Then,

$$
\begin{aligned}
& f\left(x\left(C_{1} \cup C_{2}\right), y\left(C_{1} \cup C_{2}\right)\right) \\
= & \{\text { assumption }\} \\
& f\left(x\left(C_{1}\right), y\left(C_{1} \cup C_{2}\right)\right) \\
\leqslant & \left\{\begin{array}{l}
y \text { is monotonically non-decreasing implies } y\left(C_{1} \cup C_{2}\right) \geqslant y\left(C_{1}\right), \\
\text { and } f \text { is anti-monotonic in } y
\end{array}\right\} \\
& f\left(x\left(C_{1}\right), y\left(C_{1}\right)\right)
\end{aligned}
$$

```
< { C C satisfies the predicate f(x,y)<c}
    c
```

Thus $C_{1} \cup C_{2}$ also satisfies the predicate $f(x, y)<c$.

We now establish that Lemma 5.2 holds even when both x and y are monotonically non-increasing variables.

Lemma 5.3 Let x and y be monotonically non-increasing variables. Then the predicates $f(x, y)<c$ and $f(x, y) \leqslant c$ are regular predicates.

Proof: We show that the predicate $f(x, y)<c$ is regular. The proof for the other predicate is similar and has been omitted. For a consistent C, let $x(C)$ and $y(C)$ denote the values of variables x and y, respectively, immediately after all events in C are executed. Consider consistent cuts C_{1} and C_{2} that satisfy the predicate $f(x, y)<c$. Note that, by definition of $C_{1} \cap C_{2}, x\left(C_{1} \cap C_{2}\right)$ is either $x\left(C_{1}\right)$ or $x\left(C_{2}\right)$. Without loss of generality, assume that $x\left(C_{1} \cap C_{2}\right)=x\left(C_{1}\right)$. Then,

$$
\begin{aligned}
& f\left(x\left(C_{1} \cap C_{2}\right), y\left(C_{1} \cap C_{2}\right)\right) \\
= & \{\text { assumption }\} \\
& f\left(x\left(C_{1}\right), y\left(C_{1} \cap C_{2}\right)\right) \\
\leqslant & \left\{\begin{array}{l}
y \text { is monotonically non-increasing implies } y\left(C_{1} \cap C_{2}\right) \geqslant y\left(C_{1}\right), \\
\text { and } f \text { is anti-monotonic in } y
\end{array}\right\} \\
& f\left(x\left(C_{1}\right), y\left(C_{1}\right)\right) \\
< & \left\{C_{1} \text { satisfies the predicate } f(x, y)<c\right\} \\
& c
\end{aligned}
$$

Thus $C_{1} \cap C_{2}$ satisfies the predicate $f(x, y)<c$. Also, note that, by definition of $C_{1} \cup C_{2}, y\left(C_{1} \cup C_{2}\right)$ is either $y\left(C_{1}\right)$ or $y\left(C_{2}\right)$. Without loss of generality, assume that $y\left(C_{1} \cup C_{2}\right)=y\left(C_{1}\right)$. Then,

$$
\left.\left.\left.\begin{array}{rl}
& f\left(x\left(C_{1} \cup C_{2}\right), y\left(C_{1} \cup C_{2}\right)\right) \\
= & \{\text { assumption }\} \\
& f\left(x\left(C_{1} \cup C_{2}\right), y\left(C_{1}\right)\right) \\
\leqslant & \left\{x \text { is monotonically non-decreasing implies } x\left(C_{1} \cup C_{2}\right) \leqslant x\left(C_{1}\right),\right. \\
\text { and } f \text { is monotonic in } x
\end{array}\right\}, \begin{array}{l}
\\
<
\end{array}\right\}\left(x\left(C_{1}\right), y\left(C_{1}\right)\right), ~\left\{C_{1} \text { satisfies the predicate } f(x, y)<c\right\}\right\}
$$

Thus $C_{1} \cup C_{2}$ also satisfies the predicate $f(x, y)<c$.

Combining the above two lemmas, we obtain the following:

Lemma 5.4 The predicates of the form $f(x, y)<c$ and $f(x, y) \leqslant c$, where c is some constant, are regular when either both x and y are monotonically non-decreasing variables or both x and y are monotonically non-increasing variables.

As a corollary of Lemma 5.4, it can be proved that Lemma 5.4 still holds when $<$ and \leqslant are replaced by $>$ and \geqslant, respectively.

Corollary 5.5 Let x and y be monotonically non-decreasing variables. Then the predicates $f(x, y)>c$ and $f(x, y) \geqslant c$ are regular predicates.

Proof: Define $g(y, x)=-f(x, y)$ and $d=-c$. Observe that the predicate $f(x, y)>c$ is equivalent to the predicate $g(y, x)<d$. Furthermore, the function g is monotonic in its first argument y and anti-monotonic in its second argument x. From Lemma 5.4, the predicate $g(y, x)<d$ is regular and hence the predicate $f(x, y)>c$ is also regular. Similarly, the predicate $f(x, y) \geqslant c$ is regular.

Similarly, it follows that:

Corollary 5.6 Let x and y be monotonically non-increasing variables. Then the predicates $f(x, y)>c$ and $f(x, y) \geqslant c$ are regular predicates.

The following theorem combines all the above results.

Theorem 5.7 Let f be a function with two arguments such that it is monotonic in its first argument and anti-monotonic in its second argument. Then the predicate of the form $f(x, y)$ relop c, where relop $\in\{<, \leqslant,>, \geqslant\}$ and c is some constant, is regular when either both x and y are monotonically non-decreasing variables or both x and y are monotonically non-increasing variables.

Remark 5.2 Let x_{i} and y_{i} be variables on process p_{i}, where $1 \leqslant i \leqslant n$. Consider $j \in[1 \ldots n], I \subseteq\{1,2, \ldots, n\}$ and some constant c.

Let $\mathbf{x}(I)=\left\{x_{i} \mid i \in I\right\}$ and let f be a function on the variables in $\mathbf{x}(I)$ and y_{j} such that it is monotonic in each $x_{i} \in \mathbf{x}(I)$ but anti-monotonic in y_{j}. If each $x_{i} \in \mathbf{x}(I)$ is a monotonically non-decreasing variable then it can be established that the predicates $f\left(\mathbf{x}(I), y_{j}\right)<c$ and $f\left(\mathbf{x}(I), y_{j}\right) \leqslant c$ are linear predicates. Similarly, if each $x_{i} \in \mathbf{x}(I)$ is a monotonically non-increasing variable then it can be proved that the predicates $f\left(\mathbf{x}(I), y_{j}\right)>c$ and $f\left(\mathbf{x}(I), y_{j}\right) \geqslant c$ are also linear predicates. None of the predicates mentioned above is regular in general.

Dually, let $\mathbf{y}(I)=\left\{y_{i} \mid i \in I\right\}$ and let f be a function on x_{j} and the variables in $\mathbf{y}(I)$ such that it is monotonic in x_{j} but anti-monotonic in each $y_{i} \in \mathbf{y}(I)$. If each $y_{i} \in \mathbf{x}(I)$ is a monotonically non-decreasing variable then it can be established that the predicates $f\left(x_{j}, \mathbf{y}(I)\right)<c$ and $f\left(x_{j}, \mathbf{y}(I)\right) \leqslant c$ are post-linear predicates. Similarly, if each $y_{i} \in \mathbf{y}(I)$ is a monotonically non-increasing variable then it can be proved that the predicates $f\left(x_{j}, \mathbf{y}(I)\right)>c$ and $f\left(x_{j}, \mathbf{y}(I)\right) \geqslant c$ are also post-linear predicates. As before, none of the predicates mentioned above is regular in general.

Theorem 5.7 therefore corresponds to the case when I is a singleton set. Further, observe that Theorem 5.7 holds not only for scalar variables, but also for
vector variables. As in the case of scalars, in the case of vectors, the variable should either be monotonically non-decreasing, that is, the value of the variable for the successor event either stays the same or strictly increases, or monotonically nonincreasing, that is, the value of the variable for the successor event either stays the same or strictly decreases, as the case may be.

By substituting $f(x, y)$ with $x-y, x$ with "the number of messages that process p_{i} has sent to process p_{j} so far" and y with "the number of messages sent by process p_{i} that process p_{j} has received so far", it can be verified that the following predicates are regular.

- no outstanding message in the channel from process p_{i} to process p_{j}
- the channel from process p_{i} to process p_{j} is non-empty
- at most k messages in transit from process p_{i} to process p_{j}
- at least k messages in transit from process p_{i} to process p_{j}

We next show that the conjunction of two regular predicates is also a regular predicate.

Theorem 5.8 The class of regular predicates is closed under conjunction.

Proof: We have to prove that if b_{1} and b_{2} are regular predicates then so is $b_{1} \wedge b_{2}$. Consider consistent cuts C_{1} and C_{2} that satisfy $b_{1} \wedge b_{2}$. By semantics of conjunction, both C_{1} and C_{2} satisfy b_{1} as well as b_{2}. Since b_{1} and b_{2} are regular predicates, $C_{1} \cap C_{2}$ satisfies b_{1} and b_{2}. Again, by semantics of conjunction, $C_{1} \cap C_{2}$ satisfies $b_{1} \wedge b_{2}$. Likewise, $C_{1} \cup C_{2}$ satisfies $b_{1} \wedge b_{2}$. Thus $b_{1} \wedge b_{2}$ is a regular predicate.

The closure under conjunction implies that the following predicates are also regular.

- any conjunction of local predicates
- no process has the token and no channel has the token
- every "request" message has been "acknowledged" in the system

5.5 Establishing the Existence and Uniqueness of Slice

In this section, we show that the slice exists and is uniquely defined for all predicates. Our approach is to first prove that the slice not only exists for a regular predicate, but is also lean. Using this fact we next establish that the slice exists even for a predicate that is not regular.

5.5.1 Regular Predicates

It is well known in distributed systems that the set of all consistent cuts of a computation forms a lattice under the subset relation [JZ88, Mat89]. We ask the question does the lattice of consistent cuts satisfy any additional property? It turns out that the answer to this question is in affirmative. Specifically, we show that the set of consistent cuts of a directed graph not only forms a lattice but that the lattice is distributive. A lattice is said to be distributive if meet distributes over join [DP90]. Formally,

$$
a \sqcap(b \sqcup c) \equiv(a \sqcap b) \sqcup(a \sqcap c)
$$

where \square and \sqcup denote the meet (infimum) and join (supremum) operators, respectively. (It can be proved that meet distributes over join if and only if join distributes over meet.)

Theorem 5.9 Given a directed graph $G,\langle\mathcal{C}(G) ; \subseteq\rangle$ forms a distributive lattice.

Proof: Let C_{1} and C_{2} be consistent cuts of G. We define their meet and join as follows:

$$
\begin{aligned}
& C_{1} \sqcap C_{2} \triangleq C_{1} \cap C_{2} \\
& C_{1} \sqcup C_{2} \triangleq C_{1} \cup C_{2}
\end{aligned}
$$

It is sufficient to establish that $C_{1} \cap C_{2}$ and $C_{1} \cup C_{2}$ are consistent cuts of G which can be easily verified.

The above theorem is a generalization of the result in lattice theory that the set of down-sets of a partially ordered set forms a distributive lattice [DP90]. We further prove that the set of consistent cuts (of a directed graph) does not satisfy any additional structural property. To that end, we need the notion of join-irreducible element defined as follows.

Definition 5.3 (join-irreducible element [DP90]) An element of a lattice is join-irreducible if (1) it is not the least element of the lattice, and (2) it cannot be expressed as join of two distinct elements, both different from itself. Formally, $a \in L$ is join-irreducible if

$$
\langle\exists x:: x<a\rangle \bigwedge\langle\forall x, y \in L: a=x \sqcup y:(a=x) \vee(a=y)\rangle
$$

Pictorially, an element of a lattice is join-irreducible if and only if it has exactly one lower cover, that is, it has exactly one incoming edge in the corresponding Hasse diagram. The notion of meet-irreducible element can be similarly defined. It turns out that a distributive lattice is uniquely characterized by the set of its joinirreducible elements. In particular, every element of the lattice can be written as join of some subset of its join-irreducible elements and vice versa. This is formally captured by the next theorem.

Theorem 5.10 (Birkhoff's Representation Theorem for Finite
Distributive Lattices [DP90]) Let L be a finite distributive lattice and

(a)

(c)

\square : join-irreducible element

(d)
\square : non-trivial consistent cut
\square : consistent cut that satisfies the predicate

Figure 5.1: (a) A computation, (b) the lattice of its consistent cuts, (c) the sublattice of the consistent cuts that satisfy the regular predicate "all channels are empty", and (d) the poset induced on the set of join-irreducible elements of the sublattice.
$\mathcal{J I}(L)$ be the set of its join-irreducible elements. Then the map $f: L \longrightarrow \mathcal{C}(\mathcal{J I}(L))$ defined by

$$
f(a)=\{x \in \mathcal{J I}(L) \mid x \leqslant a\}
$$

is an isomorphism of L onto $\mathcal{C}(\mathcal{J I}(L))$. Dually, let P be a finite poset. Then the map $g: P \longrightarrow \mathcal{J I}(\mathcal{C}(P))$ defined by

$$
g(a)=\{x \in P \mid x \leqslant a\}
$$

is an isomorphism of P onto $\mathcal{J I}(\mathcal{C}(P))$.
Note that the above theorem can also be stated in terms of meet-irreducible elements.

Example 5.1 Consider the computation shown in Figure 5.1(a). Figure 5.1(b) depicts the lattice of consistent cuts of the computation. In the figure, the label of a consistent cut indicates the number of events that have to be executed on each process to reach the cut. For example, the label of the consistent cut C is $(3,2,1)$ implying that to reach C, three events have to executed on process p_{1}, two on p_{2} and one on p_{3}. Mathematically, $C=\left\{e_{1}, e_{2}, e_{3}, f_{1}, f_{2}, g_{1}\right\}$.

In Figure 5.1(b), the consistent cuts of the computation corresponding to the join-irreducible elements of the lattice have been drawn in thick lines. There are exactly eight join-irreducible elements which is same as the number of strongly connected components of the computation. Note that the poset induced on the set of strongly connected components of the computation is isomorphic to the poset induced on the set of join-irreducible elements of the lattice. It can be verified that every consistent cut of the computation can be expressed as the join of some subset of these join-irreducible elements. For example, the consistent cut C can be written as the join of the consistent cuts T and V. Moreover, the join of every subset of these join-irreducible elements is a consistent cut of the computation. For instance, the join of the consistent cuts T, V and W is given by the consistent cut D.

In this chapter, we are concerned with only a subset of consistent cuts and not the entire set of consistent cuts. To that end, the notion of sublattice of a lattice comes in useful [DP90]. Given a lattice, a subset of its elements forms a sublattice if the subset is closed under the meet and join operators of the given lattice. In our case, the meet and join operators are set intersection and set union, respectively. Clearly, the set of consistent cuts satisfying a regular predicate forms a sublattice of the lattice of consistent cuts. Finally, we make an important observation regarding a sublattice which will help us prove the desired result.

Lemma 5.11 ([DP90]) A sublattice of a distributive lattice is also a distributive lattice.

Example 5.2 In Figure 5.1(b), the consistent cuts for which the regular predicate "all channels are empty" evaluates to true have been shaded. Figure 5.1(c) depicts the poset induced on these consistent cuts. It can be verified that the poset forms a sublattice of the lattice in Figure 5.1(b). Moreover, the sublattice is, in fact, a distributive lattice.

We now prove that the slice for a predicate is lean if and only if the predicate is regular.

Theorem 5.12 The slice of a computation with respect to a predicate is lean if and only if the predicate is regular.

Proof: (if) Assume that the predicate, say b, is regular. Thus the set of consistent cuts that satisfy the predicate, denoted by \mathcal{C}_{b}, forms a sublattice of the lattice of consistent cuts (of the computation). From Lemma 5.11, \mathcal{C}_{b} is in fact a distributive lattice. Let $\mathcal{J I}\left(\mathcal{C}_{b}\right)$ denote the set of join-irreducible elements of \mathcal{C}_{b}. From Birkhoff's Representation Theorem, \mathcal{C}_{b} is isomorphic to $\mathcal{C}\left(\mathcal{J I}\left(\mathcal{C}_{b}\right)\right)$. Thus the required slice is
given by the poset induced on $\mathcal{J} \mathcal{I}\left(\mathcal{C}_{b}\right)$ by \subseteq. Moreover, every consistent cut of the slice satisfies the predicate and therefore the slice is lean.
(only if) Assume that the slice of a computation with respect to a predicate is lean. From the proof of Theorem 5.9, the set of consistent cuts of the slice is closed under set union and set intersection. This in turn implies that the set of consistent cuts that satisfy the predicate is closed under set union and set intersection. Thus the predicate is regular.

Example 5.3 The sublattice shown in Figure 5.1(c) has exactly six join-irreducible elements, namely U, V, W, X, Y and Z. These elements or consistent cuts have been drawn in thick lines. It can be ascertained that every consistent cut in the sublattice can be written as the join of some subset of the consistent cuts in $\mathcal{J}=$ $\{U, V, W, X, Y, Z\}$. In other words, every consistent cut of the computation that satisfies the regular predicate "all channels are empty" can be represented as the join of some subset of the elements in \mathcal{J}. Moreover, the join of every subset of elements in \mathcal{J} yields a consistent cut contained in the sublattice and hence a cut that satisfies the regular predicate. The poset induced on the elements of \mathcal{J} by the relation \subseteq is shown in Figure 5.1(d). This poset corresponds to the slice of the computation shown in Figure 5.1(a) with respect to the regular predicate "all channels are empty".

5.5.2 General Predicates

To prove that the slice exists even for a predicate that is not a regular predicate, we define a closure operator, denoted by reg, which, given a computation, converts an arbitrary predicate into a regular predicate satisfying certain properties. Given a computation $\langle E, \rightarrow\rangle$, let $\mathcal{R}(E)$ denote the set of predicates that are regular with respect to the computation (\rightarrow is implicit).

Definition 5.4 (reg) Given a predicate b, we define reg (b) as the predicate that satisfies the following conditions:

1. it is regular, that is, $\operatorname{reg}(b) \in \mathcal{R}(E)$,
2. it is weaker than b, that is, $b \Rightarrow r e g(b)$, and
3. it is stronger than any other predicate that satisfies (1) and (2), that is, $\left\langle\forall b^{\prime}: b^{\prime} \in \mathcal{R}(E):\left(b \Rightarrow b^{\prime}\right) \Rightarrow\left(r e g(b) \Rightarrow b^{\prime}\right)\right\rangle$.

Informally, reg (b) is the strongest regular predicate weaker than b. In general, reg (b) not only depends on the predicate b, but also on the computation under consideration. We assume the dependence on computation to be implicit and make it explicit only when necessary. The next theorem establishes that reg (b) exists for every predicate b. Observe that the slice for b is given by the slice for reg (b). Thus slice exists and is uniquely defined for all predicates.

Theorem 5.13 Given a predicate b, reg (b) exists and is uniquely defined.

Proof: Let $\mathcal{R}_{b}(E)$ be the set of regular predicates in $\mathcal{R}(E)$ weaker than b. Observe that $\mathcal{R}_{b}(E)$ is non-empty because true is a regular predicate weaker than b and therefore contained in $\mathcal{R}_{b}(E)$. We set reg (b) to the conjunction of all predicates in $\mathcal{R}_{b}(E)$. Formally,

$$
\operatorname{reg}(b) \triangleq \bigwedge_{q \in \mathcal{R}_{b}(E)} q
$$

It remains to be shown that reg (b) as defined satisfies the three required conditions. Now, condition (1) holds because the class of regular predicates is closed under conjunction. Condition (2) holds because every predicate in $\mathcal{R}_{b}(E)$ is weaker than b and hence their conjunction is weaker than b. Finally, let b^{\prime} be a predicate that satisfies conditions (1) and (2). Note that $b^{\prime} \in \mathcal{R}_{b}(E)$. Since conjunction of

Figure 5.2: (a) A computation, (b) the lattice of its consistent cuts, (c) the sublattice of its consistent cuts that satisfy $\operatorname{reg}\left(x_{1} \vee x_{2}\right)$, and (d) its slice with respect to $r e g\left(x_{1} \vee x_{2}\right)$ (and therefore also with respect to $\left.x_{1} \vee x_{2}\right)$.
predicates is stronger than any of its conjunct, $\operatorname{reg}(b)$ is stronger than b^{\prime}. Thus reg (b) satisfies condition (3).

Thus, given a computation $\langle E, \rightarrow\rangle$ and a predicate b, the slice of $\langle E, \rightarrow\rangle$ with respect to b can be obtained by first applying reg operator to b to get reg (b) and
then computing the slice of $\langle E, \rightarrow\rangle$ with respect to reg (b).

Example 5.4 Consider the computation shown in Figure 5.2(a). The lattice of its consistent cuts is depicted in Figure 5.2(b). Each consistent cut is labeled with its frontier. The consistent cuts for which the predicate $x_{1} \vee x_{2}$ evaluates to true have been shaded in the figure. Clearly, the set of consistent cuts that satisfy $x_{1} \vee x_{2}$ does not form a sublattice. The smallest sublattice that contains the subset is shown in Figure 5.2(c); the sublattice corresponds to the predicate reg $\left(x_{1} \vee x_{2}\right)$. The slice for the regular predicate reg $\left(x_{1} \vee x_{2}\right)$ and hence for the predicate $x_{1} \vee x_{2}$ is portrayed in Figure 5.2(d).

Theorem 5.14 reg is a closure operator. Formally,

1. $\operatorname{reg}(b)$ is weaker than b, that is, $b \Rightarrow \operatorname{reg}(b)$,
2. reg is monotonic, that is, $\left(b \Rightarrow b^{\prime}\right) \Rightarrow\left(r e g(b) \Rightarrow r e g\left(b^{\prime}\right)\right)$, and
3. reg is idempotent, that is, reg $(\operatorname{reg}(b)) \equiv \operatorname{reg}(b)$.

Proof: (reg (b) is weaker than b) Follows from the definition.
(reg is monotonic) Since reg $\left(b^{\prime}\right)$ is weaker than b^{\prime}, it is also weaker than b. That is, $r e g\left(b^{\prime}\right)$ is a regular predicate weaker than b. By definition, $r e g(b)$ is the strongest regular predicate weaker than b. Therefore reg (b) is stronger than reg $\left(b^{\prime}\right)$ or, in other words, $r e g(b) \Rightarrow r e g\left(b^{\prime}\right)$.
(reg is idempotent) Follows from the fact that reg (b) is a regular predicate and is weaker than reg (b).

From the above theorem it follows that [DP90, Theorem 2.21],

Corollary $5.15\langle\mathcal{R}(E) ; \Rightarrow\rangle$ forms a lattice.

The meet and join of two regular predicates b_{1} and b_{2} is given by

$$
\begin{aligned}
b_{1} \sqcap b_{2} & \triangleq b_{1} \wedge b_{2} \\
b_{1} \sqcup b_{2} & \triangleq r e g\left(b_{1} \vee b_{2}\right)
\end{aligned}
$$

The dual notion of $\operatorname{reg}(b)$, the weakest regular predicate stronger than b, is also conceivable. However, such a predicate may not always be unique.

Example 5.5 In the previous example, three consistent cuts satisfy the predicate $x_{1} \vee x_{2}$, namely X, Y and Z, as shown in Figure 5.2(b). Two distinct subsets of the set $\mathcal{S}=\{X, Y, Z\}$, given by $\{X, Y\}$ and $\{X, Z\}$, form maximal sublattices of \mathcal{S} implying that there is no weakest regular predicate that is stronger than $x_{1} \vee x_{2}$.

5.6 Representing a Slice

Any directed graph that is cut-equivalent to a slice constitutes a valid representation of the slice. However, for computational purposes, it is preferable to select those graphs to represent a slice that have fewer edges and can be constructed cheaply. In this section, we show that every slice can be represented by a directed graph with $O(|E|)$ vertices and $O(n|E|)$ edges.

Consider a regular predicate b and a computation $\langle E, \rightarrow\rangle$. Recall that $\mathcal{C}\left(\langle E, \rightarrow\rangle_{b}\right)$ denote the set of consistent cuts of $\langle E, \rightarrow\rangle_{b}$, or, in other words, the set of consistent cuts of $\langle E, \rightarrow\rangle$ that satisfy b. For reasons of clarity, we abbreviate $\mathcal{C}\left(\langle E, \rightarrow\rangle_{b}\right)$ by $\mathcal{C}_{b}(E)$. From Birkhoff's Representation Theorem, the poset induced on $\mathcal{J I}\left(\mathcal{C}_{b}(E)\right)$ by the relation \subseteq is cut-equivalent to the slice $\langle E, \rightarrow\rangle_{b}$. It can be proved that $\left|\mathcal{J I}\left(\mathcal{C}_{b}(E)\right)\right|$ is upper-bounded by $|E|$. Therefore the directed graph corresponding to $\left\langle\mathcal{J I}\left(\mathcal{C}_{b}(E)\right) ; \subseteq\right\rangle$ may have $\Omega\left(|E|^{2}\right)$.

In order to reduce the number of edges, we exploit properties of joinirreducible elements. For an event e, let $J_{b}(e)$ denote the least consistent cut of
$\langle E, \rightarrow\rangle$ that satisfies b and contains e. In case no consistent cut containing e that also satisfies b exists or when $e \in \top, J_{b}(e)$ is set to E-one of the trivial consistent cuts. Here, we use E as a sentinel cut. We first show that $J_{b}(e)$ is uniquely defined. Let i_{e} be the predicate defined as follows:

$$
C \models i_{e} \triangleq(e \in C)
$$

It can be proved that i_{e} is a regular predicate. Next, consider the predicate b_{e} defined as the conjunction of b and i_{e}. Since the class of regular predicates is closed under conjunction, b_{e} is also a regular predicate. The consistent cut $J_{b}(e)$ can now be reinterpreted as the least consistent that satisfies b_{e}. Since b_{e} is regular, the notion of least consistent cut that satisfies b_{e} is uniquely defined, thereby implying that $J_{b}(e)$ is uniquely defined. For purposes of computing the slice only, we assume that both trivial consistent cuts satisfy the given regular predicate. That is, $\{\emptyset, E\} \subseteq \mathcal{C}_{b}(E)$. The next lemma establishes that $J_{b}(e)$ is a join-irreducible element of $\mathcal{C}_{b}(E)$.

Lemma 5.16 $J_{b}(e)$ is a join-irreducible element of the distributive lattice $\left\langle\mathcal{C}_{b}(E) ; \subseteq\right\rangle$.

Proof: Suppose $J_{b}(e)$ can be expressed as the join (in our case, set union) of two consistent cuts in $\mathcal{C}_{b}(E)$, say C and D. That is, $J_{b}(e)=C \cup D$, where both C and D satisfy b. Our obligation is to show that either $J_{b}(e)=C$ or $J_{b}(e)=D$. Since $J_{b}(e)$ contains e, either C or D must contain e. Without loss of generality, assume that e belongs to C. By definition of union, $C \subseteq J_{b}(e)$. Further, since C is a consistent cut containing e that satisfies b and $J_{b}(e)$ is the least such cut, $J_{b}(e) \subseteq C$. Thus $J_{b}(e)=C$.

It is possible that $J_{b}(e) \mathrm{s}$ are not all distinct. Let $\mathcal{J}_{b}(E)$ denote the set $\left\{J_{b}(e) \mid e \in E\right\}$. Does $\mathcal{J}_{b}(e)$ capture all join-irreducible elements of $\mathcal{C}_{b}(E)$? The following lemma provides the answer.

Lemma 5.17 Every consistent cut in $\mathcal{C}_{b}(E)$ can be expressed as the join of some subset of consistent cuts in $\mathcal{J}_{b}(E)$.

Proof: Consider a consistent cut C in $\mathcal{C}_{b}(E)$. Let $D(C)$ be the consistent cut defined as follows:

$$
D(C)=\bigcup_{e \in C} J_{b}(e)
$$

We prove that $D(C)$ is actually equal to C. Since, by definition, $e \in J_{b}(e)$, each event in C is also present in $D(C)$. Thus $C \subseteq D(C)$. To prove that $D(C) \subseteq C$, consider an event $e \in C$. Since C is a consistent cut containing e that satisfies b and $J_{b}(e)$ is the least such cut, $J_{b}(e) \subseteq C$. More precisely, for each event $e \in C$, $J_{b}(e) \subseteq C$. This implies that $D(C) \subseteq C$.

From the previous two lemmas, it follows that $\mathcal{J}_{b}(E)=\mathcal{J} \mathcal{I}\left(\mathcal{C}_{b}(E)\right)$. Combining it with Birkhoff's Representation Theorem, we can deduce that:

Theorem 5.18 Given a computation $\langle E, \rightarrow\rangle$ and a regular predicate b, the poset $\left\langle\mathcal{J}_{b}(E) ; \subseteq\right\rangle$ is cut-equivalent to the slice $\langle E, \rightarrow\rangle_{b}$.

Next, to reduce the number of edges, rather than constructing a directed graph with join-irreducible elements as vertices, we construct a directed graph with events as vertices. Theorem 5.18 implies that:

Observation 5.1 The directed graph $\mathcal{G}_{b}(E)$ with the set of vertices as E and an edge from an event e to an event f if and only if $J_{b}(e) \subseteq J_{b}(f)$ is cut-equivalent to the slice $\langle E, \rightarrow\rangle_{b}$.

Whereas the poset representation of a slice is better for presentation purposes, the graph representation is more suited for slicing algorithms. From the way the graph $\mathcal{G}_{b}(E)$ is constructed, clearly, two events e and f belong to the same strongly connected component of $\mathcal{G}_{b}(E)$ if and only if $J_{b}(e)=J_{b}(f)$. As a result, there is

(a)

(b)

(c)

Figure 5.3: (a) A computation, (b) its slice with respect to the predicate "all channels are empty", and (c) the skeletal representation of the slice.
a one-to-one correspondence between the strongly connected components of $\mathcal{G}_{b}(E)$ and the join-irreducible elements of $\mathcal{C}_{b}(E)$.

Now, let $F_{b}(e)$ be a vector whose $i^{\text {th }}$ entry denotes the earliest event f on process p_{i} such that $J_{b}(e) \subseteq J_{b}(f)$. Informally, $F_{b}(e)[i]$ is the earliest event on p_{i} that is reachable from e in the slice $\langle E, \rightarrow\rangle_{b}$. Using $F_{b}(e) \mathrm{s}$, we construct a directed graph we call the skeletal representation of the slice and denote it by $\mathcal{S}_{b}(E)$. The graph $\mathcal{S}_{b}(E)$ has E as the set of vertices and the following edges:

1. for each event $e \notin \top$, there is an edge from e to $\operatorname{succ}(e)$, and
2. for each event e and process p_{i}, there is an edge from e to $F_{b}(e)[i]$.

Example 5.6 Consider the computation shown in Figure 5.3(a) and the predicate "all channels are empty". The slice with respect to the predicate is depicted in Figure 5.3(b). Here, $J_{b}(c)=\{a, b, c, e, f, g\}$ and $J_{b}(g)=\{a, b, c, e, f, g\}=J_{b}(c)$.

Also, $F_{b}(c)=[b, f]$ and $F_{b}(g)=[b, f]$. The skeletal representation of the slice is shown in Figure 5.3(c).

To prove that $\mathcal{S}_{b}(E)$ faithfully captures the slice $\langle E, \rightarrow\rangle_{b}$, we prove the following two lemmas. The first lemma establishes that J_{b} is order-preserving.

Lemma 5.19 (J_{b} is order-preserving) Given events e and f,

$$
e \rightarrow f \Rightarrow J_{b}(e) \subseteq J_{b}(f)
$$

Proof: Consider $J_{b}(f)$. Since $e \rightarrow f$ and $f \in J_{b}(f), e \in J_{b}(f)$. Thus $J_{b}(f)$ is a consistent cut that contains e and satisfies b. Since $J_{b}(e)$ is the least such cut, $J_{b}(e) \subseteq J_{b}(f)$.

The second lemma shows that if $J_{b}(e) \subseteq J_{b}(f)$ then there is a path from event e to event f in $\mathcal{S}_{b}(E)$ and vice versa.

Lemma 5.20 Given events e and f,

$$
J_{b}(e) \subseteq J_{b}(f) \equiv(e, f) \in \mathcal{P}\left(\mathcal{S}_{b}(E)\right)
$$

Proof: (\Rightarrow) Assume that $J_{b}(e) \subseteq J_{b}(f)$. Let $\operatorname{proc}(f)=p_{i}$ and $g=F_{b}(e)[i]$. Since, by definition, g is the earliest event on p_{i} such that $J_{b}(e) \subseteq J_{b}(g), g \xrightarrow{P} f$. This implies that $(g, f) \in \mathcal{P}\left(\mathcal{S}_{b}(E)\right)$. Further, by construction, $(e, g) \in \mathcal{P}\left(\mathcal{S}_{b}(E)\right)$. Thus $(e, f) \in \mathcal{P}\left(\mathcal{S}_{b}(E)\right)$.
(\Leftarrow) It suffices to show that for each edge (u, v) in $\mathcal{S}_{b}(E), J_{b}(u) \subseteq J_{b}(v)$. If $v=\operatorname{succ}(u)$ then $J_{b}(u) \subseteq J_{b}(v)$ follows from Lemma 5.19. If $v=F_{b}(u)[i]$, where $p_{i}=\operatorname{proc}(v)$, then $J_{b}(u) \subseteq J_{b}(v)$ follows from the definition of $F_{b}(u)$.

Finally, from Observation 5.1 and Lemma 5.20, we can conclude that:
Theorem 5.21 Given a computation $\langle E, \rightarrow\rangle$ and a regular predicate $b, \mathcal{S}_{b}(E)$ is cut-equivalent to $\langle E, \rightarrow\rangle_{b}$.

It is easy to see that $\mathcal{S}_{b}(E)$ has $O(|E|)$ vertices and $O(n|E|)$ edges. In the next section we give efficient polynomial-time algorithms to compute $J_{b}(e)$ and $F_{b}(e)$ for each event e when b is a regular predicate.

5.7 Slicing for Regular Predicates

In this section, we discuss our results on slicing with respect to a regular predicate. They are discussed here separately from our results on slicing with respect to a general predicate because, as proved in Section 5.5.1, the slice for a regular predicate is lean and therefore furnishes more information than the slice for a general predicate. First, we present an efficient $O\left(n^{2}|E|\right)$ algorithm to compute the slice for a regular predicate. The algorithm is then optimized for the case when a regular predicate can be decomposed into a conjunction of clauses, where each clause itself is a regular predicate but depends on variables of only a small subset of processes. We also provide optimal algorithms for special cases of regular predicates such as conjunctive predicates and certain monotonic channel predicates. Next, we show how a regular predicate can be monitored under various modalities [CM91, GW91, TG99, MG00, SUL00], specifically possibly, invariant and controllable, using slicing. Finally, we demonstrate that results pertaining to consistent global checkpoints can be derived as special cases of slicing.

5.7.1 Computing the Slice for Regular Predicates

In this section, given a computation $\langle E, \rightarrow\rangle$ and a regular predicate b, we describe an efficient $O\left(n^{2}|E|\right)$ algorithm to compute the slice $\langle E, \rightarrow\rangle_{b}$. In particular, we construct $\mathcal{S}_{b}(E)$-the skeletal representation of $\langle E, \rightarrow\rangle_{b}$. To that end, it suffices to give an algorithm to compute $F_{b}(e)$ for each event e.

Our approach is to first compute $J_{b}(e)$ for each event e. To that end, consider the predicate b_{e} defined in Section 5.6. Since b_{e} is a regular predicate, it is also a

```
Algorithm Algo 5.1:
    Input: (1) a computation }\langleE,->\rangle\mathrm{ , (2) a regular predicate b, and
        (3) a process pi
    Output:}\mp@subsup{J}{b}{}(e)\mathrm{ for each event e on pi
    C := \perp;
    for each event e on pi do // visited in the order given by }\xrightarrow{}{P
    done := false;
    if C=E then done := true;
    while not(done) do
            if there exist events f and g}\mathrm{ in frontier(C)
                such that succ(f)->g\mathrm{ then // C is not a consistent cut}
                C:=C\cup{\operatorname{succ}(f)}; // advance beyond f
            else // C is a consistent cut
                if C=E or C}=\mp@subsup{b}{e}{}\mathrm{ then done := true;
                else
                    f:= forbidden }\mp@subsup{b}{e}{}(C); // invoke the linearity property
                    C:=C\cup{\operatorname{succ}(f)};\quad// advance beyond f
                endif;
            endif;
        endwhile;
11 J
    endfor;
```

Figure 5.4: The algorithm Algo 5.1 to compute $J_{b}(e)$ for each event e on process p_{i}.
linear predicate. (A predicate is said to be linear if, given two consistent cuts that satisfy the predicate, the consistent cut given by their set intersection also satisfies the predicate.) Chase and Garg [CG98] give an efficient algorithm to find the least consistent cut that satisfies a linear predicate. Their algorithm is based on the linearity property defined in Chapter 4. Please refer to the chapter for details.

Figure 5.4 describes the algorithm Algo 5.1 to compute $J_{b}(e)$ for each event e on process p_{i}, using the linearity property, in a single scan of the computation from

```
Algorithm Algo \({ }_{5.2}\) :
    Input: (1) a computation \(\langle E, \rightarrow\rangle\), (2) \(J_{b}(e)\) for each event \(e\), and
        (3) a process \(p_{i}\)
    Output: \(F_{b}(e)\) for each event \(e\) on \(p_{i}\)
    for each process \(p_{j}\) do
    \(f:=\perp_{j} ;\)
    for each event \(e\) on \(p_{i}\) do \(\quad / /\) visited in the order given by \(\xrightarrow{P}\)
        while \(J_{b}(e) \nsubseteq J_{b}(f)\) do \(f:=\operatorname{succ}(f)\); endwhile;
        \(F_{b}(e)[j]:=f\);
    endfor;
    endfor;
```

Figure 5.5: The algorithm Algo 5.2 to compute $F_{b}(e)$ for each event e on process p_{i}.
left to right. This is possible because, from Lemma 5.19 , once we have computed $J_{b}(e)$, we do not need to start all over again to determine $J_{b}(\operatorname{succ}(e))$ but can rather continue on from $J_{b}(e)$ itself. The algorithm basically adds events one-by-one to the cut constructed so far until either all events are exhausted or the desired consistent cut is reached.

The time-complexity analysis of the algorithm Algo 5.1 is as follows. Each iteration of the while loop at line 5 has $O(n)$ time-complexity assuming that the time-complexity of invoking forbidden ${b_{e}}$ at line 9 once is $O(n)$. Moreover, the while loop is executed at most $O(|E|)$ times because in each iteration either we succeed in finding the required consistent cut or we add a new event to C. Since there are at most $|E|$ events in the computation, the while loop cannot be executed more than $O(|E|)$ times. Thus the overall time-complexity of the algorithm Algo 5.1 is $O(n|E|)$ implying that $J_{b}(e)$ for each event e can be computed in $O\left(n^{2}|E|\right)$ time.

Finally, we give an algorithm to compute $F_{b}(e)$ for each event e provided $J_{b}(e)$
for each event e is given to us. We first establish a lemma similar to Lemma 5.19 for F_{b}. The lemma allows us to compute the $j^{\text {th }}$ entry of $F_{b}(e)$ for each event e on process p_{i} in a single scan of the events on process p_{j} from left to right.

Lemma 5.22 Given events e and f and a process p_{i},

$$
e \rightarrow f \Rightarrow F_{b}(e)[i] \stackrel{P}{\rightrightarrows} F_{b}(f)[i]
$$

Proof: Assume that $e \rightarrow f$. Let $g=F_{b}(e)[i]$ and $h=F_{b}(f)[i]$. Note that $\operatorname{proc}(g)=$ $\operatorname{proc}(h)=p_{i}$. By definition of $F_{b}(f), J_{b}(f) \subseteq J_{b}(h)$. Since, from Lemma 5.19, $J_{b}(e) \subseteq J_{b}(f), J_{b}(e) \subseteq J_{b}(h)$. Again, by definition of $F_{b}(e), g$ is the earliest event on p_{i} such that $J_{b}(e) \subseteq J_{b}(g)$. Therefore $g \xrightarrow{P} h$.

Figure 5.5 depicts the algorithm Algo ${ }_{5.2}$ to compute $F_{b}(e)$ for each event e on process p_{i}. The algorithm is self-explanatory and its time-complexity analysis is as follows. Let E_{j} denote the set of events on process p_{j}. The outer for loop at line 1 is executed exactly n times. For $j^{\text {th }}$ iteration of the outer for loop, the while loop at line 4 is executed at most $O\left(\left|E_{i}\right|+\left|E_{j}\right|\right)$ times. Each iteration of the while loop has $O(1)$ time-complexity because whether $J_{b}(e) \subseteq J_{b}(f)$ can be ascertained by performing only a single comparison. Thus the overall time-complexity of the algorithm Algo ${ }_{5.2}$ is $O\left(n\left|E_{i}\right|+|E|\right)$. Summing up over all processes, $F_{b}(e)$ for each event e can be determined in $O(n|E|)$ time. A summary of the overall algorithm is presented in Figure 5.6.

5.7.2 Optimizing for the Special Case: Computing the Slice for Decomposable Regular Predicates

In this section, we explore the possibility of a faster algorithm for the case when a regular predicate can be expressed as a conjunction of clauses such that each clause is again a regular predicate but spans a small fraction of processes. An example of

```
Algorithm Algo 5.3:
    Input: (1) a computation }\langleE,->\rangle\mathrm{ , and (2) a regular predicate b
    Output: the slice }\langleE,->\mp@subsup{\rangle}{b}{
    compute }\mp@subsup{J}{b}{}(e)\mathrm{ for each event }e\mathrm{ using Algo 5.1;
    compute }\mp@subsup{F}{b}{}(e)\mathrm{ for each event e using Algo 5.2;
    construct }\mp@subsup{\mathcal{S}}{b}{}(E)\mathrm{ the skeletal representation of }\langleE,->\mp@subsup{\rangle}{b}{}\mathrm{ ;
```

Figure 5.6: The algorithm Algo $_{5.3}$ to compute the slice for a regular predicate.
such a predicate is $\bigwedge_{1 \leqslant i, j \leqslant n}\left(\mid\right.$ counter $_{i}-$ counter $\left._{j} \mid \leqslant \triangle_{i j}\right)$, where each counter $_{i}$ is a monotonically non-decreasing variable on process p_{i}. In this example, each clause depends on variables of at most two processes. We describe the algorithm in two steps. In the first step, we give a fast algorithm to compute the slice for each clause. In the second step, we describe how to combine the slices for all clauses efficiently to obtain the slice for the desired regular predicate.

Step 1

Consider a computation $\langle E, \rightarrow\rangle$ and a regular predicate b that depends on variables of a subset Q of the set of processes P. Without loss of generality, assume that \rightarrow is a transitive relation. We denote the projection of E on Q by $E(Q)$ and that of \rightarrow on $Q \times Q$ by $\rightarrow(Q)$. Thus the projection of the computation $\langle E, \rightarrow\rangle$ on Q is given by $\langle E(Q), \rightarrow(Q)\rangle$.

We first show that the slice $\langle E, \rightarrow\rangle_{b}$ of the computation $\langle E, \rightarrow\rangle$ can be recovered exactly from the slice $\langle E(Q), \rightarrow(Q)\rangle_{b}$ of the projected computation $\langle E(Q), \rightarrow(Q)\rangle$. To that end, we extend the definition of $F_{b}(e)$ and define $F_{b}(e, Q)$ to be a vector whose $i^{\text {th }}$ entry represents the earliest event on process p_{i} that is reachable from e in the slice $\langle E(Q), \rightarrow(Q)\rangle_{b}$. Thus $F_{b}(e)=F_{b}(e, P), F(e, Q)=$
$F_{\text {true }}(e, Q)$ and $F(e)=F_{\text {true }}(e)$. We next define $K_{b}(e)$ as follows:

$$
K_{b}(e)[i]=\left\{\begin{array}{lll}
F_{b}(e, Q)[i] & : & (e \in E(Q)) \wedge\left(p_{i} \in Q\right) \\
F(e)[i] & : & \text { otherwise }
\end{array}\right.
$$

We claim that it suffices to know $K_{b}(e)$ for each event e to be able to compute the slice $\langle E, \rightarrow\rangle_{b}$. Before we establish our claim, we define some notation. When events e and f occur on the same process and e occurred before f in real-time, then we write $e \xrightarrow{P} f$, and let \xrightarrow{P} be the reflexive closure of \xrightarrow{P}. We now build a graph $\mathcal{H}_{b}(E)$ that is similar to the skeletal representation $\mathcal{S}_{b}(E)$ of $\langle E, \rightarrow\rangle_{b}$ except that we use K_{b} instead of F_{b} in its construction. The next lemma proves that every path in $\mathcal{H}_{b}(E)$ is also a path in $\mathcal{S}_{b}(E)$.

Lemma 5.23 For each event e and process $p_{i}, F_{b}(e)[i] \xrightarrow{P} K_{b}(e)[i]$.
Proof: Clearly, for each event e and process $p_{i}, F_{b}(e)[i] \stackrel{P}{\rightrightarrows} F(e)[i]$. Thus we only need to prove that $F_{b}(e)[i] \xrightarrow{P} F_{b}(e, Q)[i]$ when $e \in E(Q)$ and $p_{i} \in Q$.

Assume, on the contrary, that, for some event $e \in E(Q)$ and process $p_{i} \in$ $Q, F_{b}(e, Q)[i] \xrightarrow{P} F_{b}(e)[i]$. For convenience, let $f=F_{b}(e, Q)[i]$ and $g=F_{b}(e)[i]$. Consider the least consistent cut C of the slice $\langle E, \rightarrow\rangle_{b}$ that contains f. Note that C does not contain e. This is because, by definition of $F_{b}(e)[i], g$ is the earliest event on p_{i} that is reachable from e in $\langle E, \rightarrow\rangle_{b}$. Since f occurs before g on p_{i}, f is not reachable from e in $\langle E, \rightarrow\rangle_{b}$ and therefore e is not contained in C. Let $C(Q)$ denote the projection of C on Q. Since C satisfies b and b depends only on variables of processes in $Q, C(Q)$ satisfies b. However, any consistent cut of $\langle E(Q), \rightarrow(Q)\rangle_{b}$ that contains f must contain e. This is because, by definition of $F_{b}(e, Q)[i]$, there is a path from e to f in $\langle E(Q), \rightarrow(Q)\rangle_{b}$. Thus $C(Q)$ is not a consistent cut of $\langle E(Q), \rightarrow(Q)\rangle_{b}$ which contradicts the fact that $\langle E(Q), \rightarrow(Q)\rangle_{b}$ contains all consistent cuts of $\langle E(Q), \rightarrow(Q)\rangle$ that satisfy b. This establishes the lemma.

We now prove the converse, that is, every path in $\mathcal{S}_{b}(E)$ is also a path in

Algorithm Algo 5.4 :

Input: (1) a computation $\langle E, \rightarrow\rangle$, (2) a subset of processes Q, and
(3) a regular predicate b that depends only on variables of Q

Output: the slice $\langle E, \rightarrow\rangle_{b}$

1 compute $F(e)$ for each event e;
2 compute the projected computation $\langle E(Q), \rightarrow(Q)\rangle$;
3 compute the slice of the projected computation $\langle E(Q), \rightarrow(Q)\rangle_{b}$ using the algorithm Algo 5.3;
Also, compute $F_{b}(e, Q)$ for each event e;
compute $K_{b}(e)$ for each event e as follows:

$$
K_{b}(e)[i]= \begin{cases}F_{b}(e, Q)[i] & : \quad(e \in E(Q)) \wedge\left(p_{i} \in Q\right) \\ F(e)[i] & : \quad \text { otherwise }\end{cases}
$$

5 construct the directed graph $\mathcal{H}_{b}(E)$ with E as its set of vertices and edges as follows:

1. for each event $e \notin \top$, there is an edge from e to $\operatorname{succ}(e)$, and
2. for each event e and process p_{i}, there is an edge from e to $K_{b}(e)[i]$.

Figure 5.7: The algorithm Algo 5.4 to compute the slice for a regular predicate that depends on variables of only a subset of processes.
$\mathcal{H}_{b}(E)$. To that end, by virtue of Lemma 5.1, it suffices to show that every consistent cut of $\mathcal{H}_{b}(E)$ is also a consistent cut of $\mathcal{S}_{b}(E)$ or, equivalently, every consistent cut of $\mathcal{H}_{b}(E)$ satisfies b.

Lemma 5.24 Every consistent cut of $\mathcal{H}_{b}(E)$ satisfies b.

Proof: Consider a consistent cut C of $\mathcal{H}_{b}(E)$. It is sufficient to prove that the projection of C on Q, denoted by $C(Q)$, is a consistent cut of $\langle E(Q), \rightarrow(Q)\rangle_{b}$. Assume, on the contrary, that $C(Q)$ is not a consistent cut of $\langle E(Q), \rightarrow(Q)\rangle_{b}$. Thus there exist events e and f such that there is a path from e to f in $\langle E(Q), \rightarrow(Q)\rangle_{b}$,
f is in $C(Q)$ but e is not. Let p_{i} denote the process on which f occurs. Clearly, $F_{b}(e, Q)[i] \stackrel{P}{\rightrightarrows} f$. This implies that there is a path from e to f in $\mathcal{H}_{b}(E)$ or, in other words, C is not a consistent cut of $\mathcal{H}_{b}(E)$-a contradiction.

Finally, the previous two lemmas can be combined to give the following theorem:

Theorem $5.25 \mathcal{H}_{b}(E)$ is cut-equivalent to $\mathcal{S}_{b}(E)$.

Note that the graph $\mathcal{H}_{b}(E)$ may in fact be different from the skeletal representation $\mathcal{S}_{b}(E)$. However, the above theorem guarantees that the two will be path-equivalent. Figure 5.7 describes the algorithm Algo ${ }_{5.4}$ to compute the slice for a regular predicate that depends on variables of only a subset of processes in detail. We assume that the computation is given to us as n queues of events-one for each process. Further, the Fidge/Mattern's timestamp $t s(e)$ for each event e is also available to us. The algorithm Algo ${ }_{5.2}$ can be used to compute $F(e)$ for each event e in $O(n|E|)$ (b is true in this case). The projected computation can then be computed at line 2 in a straightforward fashion. The slice of the projected computation can be computed at line 3 in $O\left(|Q|^{2}|E(Q)|\right)$ time. The vector $K_{b}(e)$ for each event e can be determined at line 4 in $O(n|E|)$ time. Finally, the graph $\mathcal{H}_{b}(E)$ can be constructed at line 5 in $O(n|E|)$ time. Thus the overall time-complexity of the algorithm is $O\left(|Q|^{2}|E(Q)|+n|E|\right)$. If $|Q|$ is small, say at most \sqrt{n}, then the time-complexity of the algorithm is $O(n|E|)$-a factor of n faster than computing the slice directly using the algorithm Algo 5.3 .

A natural question to ask is: "Can this technique of taking a projection of a computation on a subset of processes, then computing the slice of the projection and finally mapping the slice back to the original set of processes be used for a nonregular predicate as well?" The answer is no in general as the following example suggests.

Figure 5.8: (a) A computation, (b) its slice with respect to the predicate $x_{1} \vee x_{2}$, (c) its projection on processes p_{1} and p_{2}, (d) the slice of the projected computation with respect to the predicate $x_{1} \vee x_{2}$, and (e) the slice computed in (d) mapped to the original set of processes.

Example 5.7 Consider the computation shown in Figure 5.8(a) involving three processes p_{1}, p_{2} and p_{3}. Let x_{1} and x_{2} be boolean variables on processes p_{1} and p_{2}, respectively. In the figure, the solid events, namely e_{3} and f_{3}, satisfy the respective boolean variable. The slice of the computation for the (non-regular) predicate $x_{1} \vee x_{2}$ is depicted in Figure 5.8(b). Figure 5.8(c) displays the projection of the computation
on processes on which the predicate $x_{1} \vee x_{2}$ depends, namely p_{1} and p_{2}. The slice of the projected computation is shown in Figure 5.8(d) and its mapping back to the original set of processes is depicted in Figure 5.8(e). As it can be seen, the slice computed using the algorithm Algo 5.4 (Figure 5.8(e)) is different from the actual slice (Figure $5.8(b))$. For instance, events g_{2} and g_{3} belong to the same meta-event in the actual slice but not in the slice computed using the algorithm Algo 5.4. The reason for this difference is as follows. Since the predicate $x_{1} \vee x_{2}$ is non-regular, the slice of the projected computation shown in Figure 5.8(d) contains the consistent cut $X=\left\{e_{1}, e_{2}, f_{1}, f_{2}\right\}$ which does not satisfy $x_{1} \vee x_{2}$ but has to be included anyway so as to complete the sublattice. Now, on mapping this slice back to the original set of processes, the resulting slice depicted in Figure 5.8(e) will contain all consistent cuts of the original computation whose projection on $\left\{p_{1}, p_{2}\right\}$ is X. There are three such consistent cuts, namely $X \cup\left\{g_{1}\right\}, X \cup\left\{g_{1}, g_{2}\right\}$ and $X \cup\left\{g_{1}, g_{2}, g_{3}\right\}$. However, only one of these consistent cuts, given by $X \cup\left\{g_{1}, g_{2}, g_{3}\right\}$, is required to complete the sublattice for the actual slice.

It can be verified that the slice computed using the algorithm Algo 5.4 for a non-regular predicate will, in general, be bigger than the actual slice. Thus the algorithm Algo $_{5.4}$ gives a fast way to compute an approximate slice for a non-regular predicate (e.g., linear predicate).

Step 2

We use the above algorithm to devise a faster algorithm for computing the slice for a regular predicate b that can be expressed as conjunction of regular predicates $b^{(j)}, 1 \leqslant j \leqslant m$, such that each $b^{(j)}$ is a function of variables on a subset of at most k processes Q_{j}. Let l denote the maximum number of subsets from the set $\left\{Q_{j} \mid 1 \leqslant j \leqslant m\right\}$, that contain a given process. For example, for the regular predicate $\bigwedge_{1 \leqslant i, j \leqslant n}\left(\mid\right.$ counter $_{i}-$ counter $\left._{j} \mid \leqslant \triangle_{i j}\right)$, where each counter ${ }_{i}$ is a monotonically non-

```
for each event \(e \in E\) do
    \(K_{b}(e):=F(e) ;\)
endfor;
for each conjunct \(b^{(j)}\) do
    for each event \(e \in E\left(Q_{j}\right)\) do
        for each process \(p_{i} \in Q_{j}\) do
            \(K_{b}(e)[i]:=\min \left\{K_{b}(e)[i], F_{b^{(j)}}\left(e, Q_{j}\right)[i]\right\} ;\)
        endfor;
    endfor;
endfor;
```


Figure 5.9: Computing $K_{b}(e)$ for each event e.

decreasing variable on process $p_{i}, k=2$ and $l=n$.
To obtain the slice with respect to b, we first compute the slice $\left\langle E\left(Q_{j}\right), \rightarrow\left(Q_{j}\right)\right\rangle_{b^{(j)}}$ with respect to each conjunct $b^{(j)}$ using the algorithm in [GM01], thereby giving us the vector $F_{b^{(j)}}\left(e, Q_{j}\right)$ for each event $e \in Q_{j}$. We next compute the vector $K_{b}(e)$ for each event e as shown in Figure 5.9.

Intuitively, among all slices for clauses that contain some variable on process $p_{i}, K_{b}(e)[i]$ is the earliest event on p_{i} reachable from e in some slice. Formally, let $C l_{i}$ denote the set of clauses that depend on some variable on p_{i}. Then,

$$
K_{b}(e)[i]=\min _{b^{(j)} \in C l_{i}}\left\{F_{b^{(j)}}\left(e, Q_{j}\right)[i]\right\}
$$

It can be easily verified that the graph $\mathcal{H}_{b}(E)$ then constructed using $K_{b}(e)$ for each event e (in a similar fashion as in Step 1) is actually cut-equivalent to the slice $\langle E, \rightarrow\rangle_{b}$. The proof is similar to the proof in Step 1 and has been omitted. The overall time-complexity of the algorithm is given by:

$$
O(n|E|)+\sum_{1 \leqslant j \leqslant m} O\left(\left|Q_{j}\right|^{2}\left|E\left(Q_{j}\right)\right|\right)
$$

$$
\begin{aligned}
= & \left\{\text { for each } Q_{j},\left|Q_{j}\right| \leqslant k\right\} \\
& O\left(n|E|+k^{2} \sum_{1 \leqslant j \leqslant m}\left|E\left(Q_{j}\right)\right|\right) \\
= & \{\text { simplifying \}} \\
& O\left(n|E|+k^{2} l|E|\right)=O\left(\left(n+k^{2} l\right)|E|\right)
\end{aligned}
$$

If k is constant and l is $O(n)$ then the overall time-complexity is $O(n|E|)$ which is a factor of n less than computing the slice directly using the algorithm Algo 5.3 .

5.7.3 Optimal Algorithms for Special Cases

We now present optimal algorithms for computing the slice for special cases of regular predicates, namely conjunctive predicates and certain monotonic channel predicates. Our algorithms have $O(|E|)$ time-complexity.

Computing the Slice for Conjunctive Predicates

Consider a computation $\langle E, \rightarrow\rangle$ and a conjunctive predicate b. The first step is to partition events on each process into true events and false events. Having done that, we then construct a graph $\mathcal{H}_{b}(E)$ with vertices as the events in E and the following edges:

1. from an event, that is not a final event, to its successor,
2. from a send event to the corresponding receive event, and
3. from the successor of a false event to the false event.

For the purpose of building the graph, we assume that all final events are true events. Therefore every false event has a successor. The first two types of edges ensure that the Lamport's happened-before relation [Lam78] is contained in

Figure 5.10: (a) A computation, and (b) its slice with respect to the conjunctive predicate $x_{1} \wedge x_{2}$.
$\mathcal{P}\left(\mathcal{H}_{b}(E)\right)$. Consider the computation depicted in Figure 5.10(a) and the conjunctive predicate $x_{1} \wedge x_{2}$. The corresponding graph constructed as described is shown in Figure 5.10(b). We now establish that the above-mentioned edges are sufficient to eliminate all those consistent cuts of the computation that do not satisfy the conjunctive predicate.

Lemma 5.26 Every consistent cut of $\mathcal{H}_{b}(E)$ satisfies b.

Proof: It is sufficient to prove that no consistent cut of $\mathcal{H}_{b}(E)$ contains a false event in its frontier. Consider a consistent cut C of $\mathcal{H}_{b}(E)$. Assume, on the contrary, that C contains a false event, say e, in its frontier. Since every false event has a successor, by construction, there is an edge from the successor of e, say f, to e. Therefore f also belongs to C. This contradicts the fact that e is the last event on its process
to be contained in C.

We next show that the above constructed graph retains all consistent cuts of the computation that satisfy the conjunctive predicate.

Lemma 5.27 Every consistent cut of $\langle E, \rightarrow\rangle$ that satisfies b is a consistent cut of $\mathcal{H}_{b}(E)$.

Proof: Consider a consistent cut C of $\langle E, \rightarrow\rangle$ that satisfies b. Assume, on the contrary, that C is not a consistent cut of $\mathcal{H}_{b}(E)$. Thus there exist events e and f such that there is an edge from e to f in $\mathcal{H}_{b}(E), f$ belongs to C but e does not. Since C is a consistent cut of $\langle E, \rightarrow\rangle$, the edge from e to f could only of type (3). Equivalently, e and f occur on the same process, e is the successor of f, and f is a false event. Again, since f is contained in C but its successor e is not, f belongs to the frontier of C. However, C satisfies b and therefore cannot contain any false event in its frontier.

From the previous two lemmas, it follows that:

Theorem 5.28 $\mathcal{H}_{b}(E)$ is cut-equivalent to $\langle E, \rightarrow\rangle_{b}$.

It is easy to see that the graph $\mathcal{H}_{b}(E)$ has $O(|E|)$ vertices, $O(|E|)$ edges (at most three edges per event assuming that an event that is not local either sends at most one message or receives at most one message but not both) and can be built in $O(|E|)$ time. Thus the algorithm has $O(|E|)$ overall time-complexity. It also gives us an $O(|E|)$ algorithm to evaluate possibly: b when b is a conjunctive predicate.

Computing the Slice for Monotonic Channel Predicates

We present an optimal algorithm to compute the slice with respect to monotonic channel predicates such as:

- $\bigwedge_{i, j \in[1 . . n]}\left(\right.$ at most $k_{i j}$ messages in transit from process p_{i} to process p_{j}), and
- $\bigwedge_{i, j \in[1 . . n]}$ (at least $k_{i j}$ messages in transit from process p_{i} to process p_{j})

We only provide the slicing algorithm for the former predicate here. The slicing algorithm for the latter predicate is very similar and has been omitted. Let $\operatorname{snd}\langle i, j\rangle(m)$ denote the send event on process p_{i} that corresponds to the send of $m^{t h}$ message to process p_{j}. Similarly, let $\operatorname{rcv}\langle i, j\rangle(m)$ denote the receive event on process p_{i} that corresponds to the receive of $m^{t h}$ message from process p_{j}.

Consider a computation $\langle E, \rightarrow\rangle$ and a monotonic channel predicate b discussed in the previous paragraph. As in the case of conjunctive predicate, we construct a graph $\mathcal{H}_{b}(E)$ with vertices as the events in E and the following edges:

1. from an event, that is not a final event, to its successor,
2. from a send event to the corresponding receive event, and
3. from a receive event $\operatorname{rcv}\langle j, i\rangle(m)$ to the send event $\operatorname{snd}\langle i, j\rangle\left(m+k_{i j}\right)$, if it exists.

As before, the first two types of edges ensure that the Lamport's happenedbefore relation [Lam78] is contained in $\mathcal{P}\left(\mathcal{H}_{b}(E)\right)$. Consider the computation shown in Figure 5.11(a) and the monotonic channel predicate "at most one message in transit in any channel". Here, $k_{12}=k_{21}=1$. The corresponding graph constructed as described is shown in Figure 5.11(b). We now establish that the above-mentioned edges are sufficient to eliminate all those consistent cuts of the computation that do not satisfy the channel predicate.

Lemma 5.29 Every consistent cut of $\mathcal{H}_{b}(E)$ satisfies b.

Proof: Consider a consistent cut C of $\mathcal{H}_{b}(E)$ and processes p_{i} and p_{j}. Let $s n d\langle i, j\rangle(m)$ be the send event corresponding to the last message sent by p_{i} to

(a)

(b)

Figure 5.11: (a) A computation, and (b) its slice with respect to the monotonic channel predicate "at most one message in transit in any channel".
p_{j} such that $\operatorname{snd}\langle i, j\rangle(m) \in C$. Since C is a consistent cut of $\mathcal{H}_{b}(E)$ and there is an edge from $\operatorname{rcv}\langle j, i\rangle\left(m-k_{i j}\right)$ to $s n d\langle i, j\rangle(m), \operatorname{rcv}\langle j, i\rangle\left(m-k_{i j}\right)$ also belongs to C. This implies that there are at most $k_{i j}$ messages in transit from p_{i} to p_{j}.

We next show that the above constructed graph retains all consistent cuts of the computation that satisfy the channel predicate.

Lemma 5.30 Every consistent cut of $\langle E, \rightarrow\rangle$ that satisfies b is a consistent cut of $\mathcal{H}_{b}(E)$.

Proof: Consider a consistent cut C of $\langle E, \rightarrow\rangle$ that satisfies b. Assume, on the contrary, that C is not a consistent cut of $\mathcal{H}_{b}(E)$. Thus there exist events e and f such that there is a path from e to f in $\mathcal{H}_{b}(E), f$ belongs to C but e does not. Since C is a consistent cut of $\langle E, \rightarrow\rangle$, the edge from e to f could only of type (3). Let e be $r c v\langle j, i\rangle(m)$ and f be $s n d\langle i, j\rangle\left(m+k_{i j}\right)$. Since C satisfies $b, r c v\langle j, i\rangle(m)$
or, equivalently, e belongs to C-a contradiction.

From the previous two lemmas, it follows that:

Theorem 5.31 $\mathcal{H}_{b}(E)$ is cut-equivalent to $\langle E, \rightarrow\rangle_{b}$.

It is easy to see that the graph $\mathcal{H}_{b}(E)$ has $O(|E|)$ vertices, $O(|E|)$ edges (at most three edges per event assuming that an event that is not local either sends at most one message or receives at most one message but not both) and can be built in $O(|E|)$ time. Thus the algorithm has $O(|E|)$ overall time-complexity.

5.7.4 Applications of Slicing

In this section, we show that slicing can be used to solve other problems in distributed systems.

Monitoring Regular Predicates under Various Modalities

A predicate can be monitored under four modalities, namely possibly, definitely, invariant and controllable [CM91, GW91, TG99, MG00, SUL00]. A predicate is possibly true in a computation if there is a consistent cut of the computation that satisfies the predicate. On the other hand, a predicate definitely holds in a computation if it eventually becomes true in all runs of the computation (a run is a path in the lattice of consistent cuts starting from the initial consistent cut and ending at the final consistent cut). The modalities invariant and controllable are duals of the predicates possibly and definitely, respectively. Monitoring has applications in the areas of testing and debugging and software fault tolerance of distributed programs.

We show how to monitor a regular predicate under possibly: b, invariant: b and controllable: b modalities using slicing. Given a directed graph G, let $\operatorname{scc}(G)$ denote the number of strongly connected components of G.

Theorem 5.32 A regular predicate is

1. possibly true in a computation if and only if the slice of the computation with respect to the predicate has at least one non-trivial consistent cut, that is, it has at least two strongly connected components. Formally,

$$
\text { possibly: } b \equiv \operatorname{scc}\left(\langle E, \rightarrow\rangle_{b}\right) \geqslant 2
$$

2. invariant in a computation if and only if the slice of the computation with respect to the predicate is cut-equivalent to the computation. Formally,

$$
\text { invariant: } b \equiv\langle E, \rightarrow\rangle_{b} \cong\langle E, \rightarrow\rangle
$$

3. controllable in a computation if and only if the slice of the computation with respect to the predicate has the same number of strongly connected components as the computation. Formally,

$$
\text { controllable }: b \equiv \operatorname{scc}\left(\langle E, \rightarrow\rangle_{b}\right)=\operatorname{scc}(\langle E, \rightarrow\rangle)
$$

Proof: The first two propositions are easy to verify. We only prove the last proposition. As for the last proposition, it can be verified that a regular predicate is controllable in a computation if and only if there exists a path from the initial to the final consistent cut in the lattice (of consistent cuts) such that every consistent cut along the path satisfies the predicate [TG98b]. Note that the path from the initial to the final consistent cut actually corresponds to a longest chain in the lattice of consistent cuts. For a lattice L, let height (L) denote the length of a longest chain in L. Therefore if b is controllable in $\langle E, \rightarrow\rangle$, then a longest chain in $\mathcal{C}(E)$ is contained in $\mathcal{C}_{b}(E)$ as well and vice versa. This implies that height $(\mathcal{C}(E)) \leqslant \operatorname{height}\left(\mathcal{C}_{b}(E)\right)$. However, $\mathcal{C}_{b}(E) \subseteq \mathcal{C}(E)$ implying that height $\left(\mathcal{C}_{b}(E)\right) \leqslant$ height $(\mathcal{C}(E))$. Therefore we have:

$$
\text { controllable }: b \equiv \operatorname{height}(\mathcal{C}(E))=\operatorname{height}\left(\mathcal{C}_{b}(E)\right)
$$

For a finite distributive lattice L, the length of its longest chain is equal to the number of its join-irreducible elements [DP90]. In other words, height $(L)=$ $\mathcal{J I}(L)$. Also, as observed before in Section 5.6, for a directed graph, the number of join-irreducible elements of the lattice generated by its set of consistent cutsincluding the two trivial consistent cuts-is same as the number of its strongly connected components. As a result, height $(\mathcal{C}(E))=\mathcal{J I}(\mathcal{C}(E))=\operatorname{scc}(\langle E, \rightarrow\rangle)$ and height $\left(\mathcal{C}_{b}(E)\right)=\mathcal{J I}\left(\mathcal{C}_{b}(E)\right)=\operatorname{scc}\left(\langle E, \rightarrow\rangle_{b}\right)$.

Zig-Zag Consistency Theorem: A Special Case of Slicing

We now show how slicing relates to some of the well-known results in checkpointing. Consider a conjunctive predicate such that the local predicate for an event on a process is true if and only if the event corresponds to a local checkpoint. It can be verified that there is a zigzag path [NX95, Wan97] from a local checkpoint c to a local checkpoint c^{\prime} in a computation if and only if there is a path from $\operatorname{succ}(c)$, if it exists, to c^{\prime} in the corresponding slice - which can be ascertained by comparing $J_{b}(\operatorname{succ}(c))$ and $J_{b}\left(c^{\prime}\right)$. An alternative formulation of the consistency theorem in [NX95] can thus be obtained as follows:

Theorem 5.33 A set of local checkpoints can belong to the same consistent global snapshot if and only if the local checkpoints in the set are mutually consistent (including with itself) in the corresponding slice.

Moreover, the R-graph (rollback-dependency graph) [Wan97] is pathequivalent to the slice when each contiguous sequence of false events on a process is merged with the nearest true event that occurs later on the process. The minimum consistent global checkpoint that contains a set of local checkpoints [Wan97] can be computed by taking the set union of J_{b} 's for each local checkpoint in the set. The maximum consistent global checkpoint can be similarly obtained by using the dual of J_{b}.

5.8 Slicing for General Predicates

In this section, we describe our results on slicing for general predicates. We first prove that it is in general NP-hard to compute the slice for an arbitrary predicate. Nonetheless, polynomial-time algorithms can be developed for certain special classes of predicates. In particular, we provide efficient algorithm to compute the slice for a linear predicate and its dual-a post-linear predicate [CG98]. We next present the notion of grafting which can be used to compose two slices; grafting can be done with respect to meet or join operator as explained later. We provide efficient algorithms for grafting two slices. Grafting can be used to compute the slice for a predicate in DNF (disjunctive normal form). We further give three more applications of grafting. First, we demonstrate how grafting can be employed to compute the slice for a co-regular predicate - complement of a regular predicate - in polynomial-time. Second, using grafting, we derive a polynomial-time algorithm to the compute the slice for a k-local predicate for constant k; a k-local predicate depends on variables of at most k processes [SS95]. Lastly, we employ grafting to compute an approximate slice - in polynomial-time - for a predicate composed from regular and co-regular predicates, linear predicates and post-linear predicates, and k-local predicates, for constant k, using \wedge and \vee operators.

5.8.1 NP-Hardness Result

It is evident from the definition of slice that the following is true:

Observation 5.2 The necessary and sufficient condition for the slice of a computation with respect to a predicate to be non-empty is that there exists a consistent cut of the computation that satisfies the predicate.

However, finding out whether some consistent cut of the computation satisfies a predicate is an NP-complete problem [CG95]. Thus it is in general NP-complete
to determine whether the slice for a predicate is non-empty. This further implies that computing the slice for an arbitrary predicate is an NP-hard problem. From the results of Chapter 3, it follows that this is the case even when the predicate is a singular 2-CNF (conjunctive normal form) predicate.

5.8.2 Computing the Slice for Linear Predicates and their Dual

Recall that a predicate is linear if given two consistent cuts that satisfy the predicate, the cut given by their set intersection also satisfies the predicate [CG98]. A postlinear predicate can defined dually [CG98]. In this section we prove that the slicing algorithm Algo $_{5.3}$ for a regular predicate described in Section 5.7.1 can be used for a linear predicate as well. For a post-linear predicate, however, a slightly different version of the algorithm based on the notion of meet-irreducible element will be applicable.

Consider a computation $\langle E, \rightarrow\rangle$ and a linear predicate b. First, we extend the definition of $J_{b}(e)$ for an event e and a regular predicate b to the case when b is a linear predicate. It can be easily verified that $J_{b}(e)$ is uniquely defined for each event e even when b is a linear predicate. Now, consider the directed graph $\mathcal{G}_{b}(E)$ with vertices as events in E and an edge from an event e to an event f if and only if $J_{b}(e) \subseteq J_{b}(f)$. We establish that the directed graph $\mathcal{G}_{b}(E)$ is cut-equivalent to the slice $\langle E, \rightarrow\rangle_{b}$. It suffices to prove that $\mathcal{C}\left(\mathcal{G}_{b}(E)\right)$ is the smallest sublattice of $\mathcal{C}(E)$ that contains $\mathcal{C}_{b}(E)$. To that end, the following lemma comes in useful. The lemma basically states that, for each event $e, J_{b}(e)$ is the least consistent cut of $\mathcal{G}_{b}(E)$ that contains e. (Note that $J_{b}(e) \subseteq J_{b}(f)$ is equivalent to saying that there is an path from e to f in $\mathcal{G}_{b}(E)$.)

Lemma 5.34 Given events e and $f, e \in J_{b}(f) \equiv J_{b}(e) \subseteq J_{b}(f)$.
Proof: (\Rightarrow) Assume that $e \in J_{b}(f)$. Let $C=J_{b}(e) \cap J_{b}(f)$. Since $e \in J_{b}(e), e \in C$. Note that $J_{b}(e)$ and $J_{b}(f)$ are consistent cuts of $\langle E, \rightarrow\rangle$. Moreover, both of them
satisfy b. Since b is a linear predicate, their conjunction, given by C, also satisfies b. This implies that C is a consistent cut of $\langle E, \rightarrow\rangle$ which contains e and satisfies b. However, $J_{b}(e)$ is the least such cut. Therefore $J_{b}(e) \subseteq C$ or $J_{b}(e) \subseteq J_{b}(e) \cap J_{b}(f)$. This implies that $J_{b}(e)=J_{b}(e) \cap J_{b}(f)$. Equivalently, $J_{b}(e) \subseteq J_{b}(f)$.
(\Leftarrow) Assume that $J_{b}(e) \subseteq J_{b}(f)$. Since $e \in J_{b}(E)$, trivially, $e \in J_{b}(f)$.

Again, as before, let $\mathcal{J}_{b}(E)=\left\{J_{b}(e) \mid e \in E\right\}$. Using Lemma 5.34, the following theorem can be proved in a similar fashion as Lemma 5.16 and Lemma 5.17.

Theorem $5.35 \mathcal{C}\left(\mathcal{G}_{b}(E)\right)$ forms a distributive lattice under \subseteq. Further, the set of join-irreducible elements of $\mathcal{C}\left(\mathcal{G}_{b}(E)\right)$ is given by $\mathcal{J}_{b}(E)$.

The next lemma demonstrates that $\mathcal{C}\left(\mathcal{G}_{b}(E)\right)$ contains at least $\mathcal{C}_{b}(E)$.

Lemma 5.36 Every consistent cut in $\mathcal{C}_{b}(E)$ can be written as the join of some subset of elements in $\mathcal{J}_{b}(E)$.

The proof of the above lemma is similar to the proof of Lemma 5.17 and therefore has been omitted. Observe that, for every event e, by definition, either $J_{b}(e)$ satisfies b or is same as E. In either case, $J_{b}(e) \in \mathcal{C}_{b}(E)$. Therefore we have,

Observation 5.3 $\mathcal{J}_{b}(E) \subseteq \mathcal{C}_{b}(E)$.

Finally, the next theorem establishes that $\mathcal{C}\left(\mathcal{G}_{b}(E)\right)$ is indeed the smallest sublattice of $\mathcal{C}(E)$ that contains all consistent cuts satisfying b.

Theorem 5.37 Any sublattice of $\mathcal{C}(E)$ that contains $\mathcal{C}_{b}(E)$ also contains $\mathcal{C}\left(\mathcal{G}_{b}(E)\right)$.

Proof: Consider a sublattice \mathcal{D} of $\mathcal{C}(E)$ such that \mathcal{D} contains $\mathcal{C}_{b}(E)$. Also, consider a consistent cut C of $\mathcal{C}\left(\mathcal{G}_{b}(E)\right)$. From Birkhoff's Representation Theorem and Theorem 5.35, C can be expressed as the join of some subset of elements in $\mathcal{J}_{b}(E)$.

Since $\mathcal{J}_{b}(E) \subseteq \mathcal{C}_{b}(E)$ and $\mathcal{C}_{b}(E) \subseteq \mathcal{D}, \mathcal{J}_{b}(E) \subseteq \mathcal{D}$. This implies that C can be written as the join of some subset of elements in \mathcal{D}. However, \mathcal{D} is a sublattice and thus closed under set union. Therefore $C \in \mathcal{D}$.

The directed graph $\mathcal{G}_{b}(E)$ has $|E|$ vertices and can have as many as $\Omega\left(|E|^{2}\right)$ edges. However, by constructing $\mathcal{S}_{b}(E)$, the skeletal representation of $\langle E, \rightarrow\rangle_{b}$, instead of $\mathcal{G}_{b}(E)$, the number of edges and the time-complexity can be reduced to $O(n|E|)$ and $O\left(n^{2}|E|\right)$, respectively.

5.8.3 Grafting Two Slices

Given two slices, grafting can be used to either compute the smallest slice that contains all consistent cuts common to both slices-grafting with respect to meetor compute the smallest slice that contains consistent cuts of both slices - grafting with respect to join. In other words, given slices $\langle E, \rightarrow\rangle_{b_{1}}$ and $\langle E, \rightarrow\rangle_{b_{2}}$, where b_{1} and b_{2} are regular predicates, grafting can be used to compute the slice $\langle E, \rightarrow\rangle_{b}$, where b is either $b_{1} \sqcap b_{2}=b_{1} \wedge b_{2}$ or $b_{1} \sqcup b_{2}=r e g\left(b_{1} \vee b_{2}\right)$. Grafting enables us to compute the exact slice for an arbitrary boolean expression of local predicates-by rewriting it in DNF-although it may require exponential time in the worst case.

Grafting with respect to Meet: $b \equiv b_{1} \sqcap b_{2} \equiv b_{1} \wedge b_{2}$
In this case, the slice $\langle E, \rightarrow\rangle_{b}$ contains a consistent cut of $\langle E, \rightarrow\rangle$ if and only if the cut satisfies b_{1} as well as b_{2}. Given an event e, let $F_{\min }(e)$ denote the vector obtained by taking componentwise minimum of $F_{b_{1}}(e)$ and $F_{b_{2}}(e)$. We first prove that no component of $F_{\min }(e)$ is less than (or occurs before) the corresponding component of $F_{b}(e)$.

Lemma 5.38 For each event e and process p_{i},

$$
F_{b}(e)[i] \stackrel{P}{\longrightarrow} F_{\min }(e)[i]
$$

Proof: It is sufficient to prove that $F_{b}(e)[i] \stackrel{P}{\Longrightarrow} F_{b_{1}}(e)[i]$ and $F_{b}(e)[i] \stackrel{P}{\rightleftharpoons} F_{b_{2}}(e)[i]$ for each event e and process p_{i}. Assume, on the contrary, that $F_{b_{1}}(e)[i] \xrightarrow{P} F_{b}(e)[i]$ for some event e and process p_{i}. For convenience, let $F_{b_{1}}(e)[i]=f$. Consider $J_{b}(f)$. Observe that $J_{b}(f)$ contains f and is also a consistent cut of $\langle E, \rightarrow\rangle_{b_{1}}$. By definition of $\mathcal{S}_{b_{1}}(E)$, any consistent of $\langle E, \rightarrow\rangle_{b_{1}}$ that contains f also contains e because $f=F_{b_{1}}(e)[i]$. This implies that $J_{b}(f)$ contains e. Since $J_{b}(f)$ is the least consistent cut of $\langle E, \rightarrow\rangle_{b}$ that contains f, there is a path from e to f in $\mathcal{S}_{b}(E)$. Using Lemma 5.20, $J_{b}(e) \subseteq J_{b}(f)$ which contradicts our choice of $F_{b}(e)[i]$.

We now construct a directed graph $\mathcal{S}_{\text {min }}(E)$ that is similar to $\mathcal{S}_{b}(E)$ except that we use $F_{\text {min }}$ instead of F_{b} in its construction. The following theorem proves that $\mathcal{S}_{\text {min }}(E)$ is in fact cut-equivalent to $\mathcal{S}_{b}(E)$.

Theorem 5.39 $\mathcal{S}_{\min }(E)$ is cut-equivalent to $\mathcal{S}_{b}(E)$.
Proof: We have,

$$
\begin{aligned}
& \left\{\text { definition of } F_{\min }\right\} \\
& \left(\mathcal{P}\left(\mathcal{S}_{b_{1}}(E)\right) \subseteq \mathcal{P}\left(\mathcal{S}_{\min }(E)\right)\right) \wedge\left(\mathcal{P}\left(\mathcal{S}_{b_{2}}(E)\right) \subseteq \mathcal{P}\left(\mathcal{S}_{\min }(E)\right)\right) \\
\equiv & \{\text { using Lemma } 5.1\} \\
& \left(\mathcal{C}\left(\mathcal{S}_{\min }(E)\right) \subseteq \mathcal{C}\left(\mathcal{S}_{b_{1}}(E)\right)\right) \wedge\left(\mathcal{C}\left(\mathcal{S}_{\min }(E)\right) \subseteq \mathcal{C}\left(\mathcal{S}_{b_{2}}(E)\right)\right) \\
\equiv & \{\text { set calculus }\} \\
& \mathcal{C}\left(\mathcal{S}_{\min }(E)\right) \subseteq\left(\mathcal{C}\left(\mathcal{S}_{b_{1}}(E)\right) \cap \mathcal{C}\left(\mathcal{S}_{b_{2}}(E)\right)\right) \\
\equiv & \left\{b \equiv b_{1} \wedge b_{2}\right\} \\
& \mathcal{C}\left(\mathcal{S}_{\min }(E)\right) \subseteq \mathcal{C}\left(\mathcal{S}_{b}(E)\right)
\end{aligned}
$$

Also, we have,
\{ using Lemma 5.38 \}
$\mathcal{P}\left(\mathcal{S}_{\text {min }}(E)\right) \subseteq \mathcal{P}\left(\mathcal{S}_{b}(E)\right)$
\equiv \{ using Lemma 5.1$\}$

$$
\mathcal{C}\left(\mathcal{S}_{b}(E)\right) \subseteq \mathcal{C}\left(\mathcal{S}_{\min }(E)\right)
$$

Thus $\mathcal{C}\left(\mathcal{S}_{\text {min }}(E)\right)=\mathcal{C}\left(\mathcal{S}_{b}(E)\right)$.
Roughly speaking, the aforementioned algorithm computes the union of the sets of edges of each slice. Note that, in general, $F_{b}(e)[i]$ need not be same as $F_{\min }(e)[i]$. This algorithm can be generalized to conjunction of an arbitrary number of regular predicates.

Grafting with respect to Join: $b \equiv b_{1} \sqcup \mathbf{b}_{\mathbf{2}} \equiv \operatorname{reg}\left(\mathbf{b}_{\mathbf{1}} \vee \mathbf{b}_{\mathbf{2}}\right)$
In this case, the slice $\langle E, \rightarrow\rangle_{b}$ contains a consistent cut of $\langle E, \rightarrow\rangle$ if the cut satisfies either b_{1} or b_{2}. Given an event e, let $F_{\max }(e)$ denote the vector obtained by taking componentwise maximum of $F_{b_{1}}(e)$ and $F_{b_{2}}(e)$. We first prove that no component of $F_{b}(e)$ is less than (or occurs before) the corresponding component of $F_{\max }(e)$.

Lemma 5.40 For each event e and process p_{i},

$$
F_{\max }(e)[i] \stackrel{P}{\Longrightarrow} F_{b}(e)[i]
$$

The proof of Lemma 5.40 is similar to that of Lemma 5.38 and therefore has been omitted. We now construct a directed graph $\mathcal{S}_{\max }(E)$ that is similar to $\mathcal{S}_{b}(E)$ except that we use $F_{\max }$ instead of F_{b} in its construction. The following theorem proves that $\mathcal{S}_{\max }(E)$ is in fact cut-equivalent to $\mathcal{S}_{b}(E)$.

Theorem $5.41 \mathcal{S}_{\max }(E)$ is cut-equivalent to $\mathcal{S}_{b}(E)$.

Again, the proof of Theorem 5.41 is similar to that of Theorem 5.39 and hence has been omitted. Intuitively, the above-mentioned algorithm computes the intersection of the sets of edges of each slice. In this case, in contrast to the former case, $F_{b}(e)[i]$ is identical to $F_{\max }(e)[i]$. The reason is as follows. Recall that $F_{b}(e)[i]$ is the earliest event on p_{i} that is reachable from e in $\langle E, \rightarrow\rangle_{b}$. From Theorem 5.41,
at least $F_{\max }(e)[i]$ is reachable from e in $\langle E, \rightarrow\rangle_{b}$. Thus $F_{b}(e)[i] \stackrel{P}{\rightrightarrows} F_{\max }(e)[i]$. Combining it with Lemma 5.40, we obtain the required result. This algorithm can be generalized to disjunction of an arbitrary number of regular predicates.

5.8.4 Computing the Slice for Co-Regular Predicates

Given a regular predicate, we give an algorithm to compute the slice of a computation with respect to its negation-a co-regular predicate. In particular, we express the negation as disjunction of polynomial number of regular predicates. The slice can then be computed by grafting together slices for each disjunct.

Consider a computation $\langle E, \rightarrow\rangle$ and a regular predicate b. For convenience, let \rightarrow_{b} be the edge relation for the slice $\langle E, \rightarrow\rangle_{b}$. Without loss of generality, assume that both \rightarrow and \rightarrow_{b} are transitive relations. Our objective is to find a property that distinguishes the consistent cuts that belong to the slice from the consistent cuts that do not. Consider events e and f such that $e \nrightarrow f$ but $e \rightarrow_{b} f$. Then, clearly, a consistent cut that contains f but does not contain e cannot belong to the slice. On the other hand, every consistent cut of the slice that contains f also contains e. This motivates us to define a predicate $\operatorname{prevents}(f, e)$ as follows:

$$
C \text { satisfies } \operatorname{prevents}(f, e) \triangleq(f \in C) \wedge(e \notin C)
$$

We now prove that the predicate $\operatorname{prevents}(f, e)$ is actually a regular predicate. Specifically, we establish that $\operatorname{prevents}(f, e)$ is a conjunctive predicate.

Lemma 5.42 prevents (f, e) is a conjunctive predicate.
Proof: Let $\operatorname{proc}(e)=p_{i}$ and $\operatorname{proc}(f)=p_{j}$. We define a local predicate $l_{i}(e)$ to be true for an event g on process p_{i} if $g \xrightarrow{P} e$. Similarly, we define a local predicate $m_{j}(f)$ to be true for an event h on process p_{j} if $f \stackrel{P}{\rightleftharpoons} h$. Clearly, prevents (f, e) is equivalent to $l_{i}(e) \wedge m_{j}(f)$.

It turns out that every consistent cut that does not belong to the slice satisfies
prevents (f, e) for some pair of events (e, f) such that $(e \nrightarrow f) \wedge(e \rightarrow b f)$ holds. Formally,

Theorem 5.43 Let C be a consistent cut of $\langle E, \rightarrow\rangle$. Then,

$$
C \text { satisfies } \neg b \equiv\left\langle\exists e, f:(e \nrightarrow f) \wedge\left(e \rightarrow_{b} f\right): C \text { satisfies prevents }(f, e)\right\rangle
$$

Proof: We have,

$$
\begin{aligned}
& C \text { satisfies } \neg b \\
\equiv & \{b \text { is a regular predicate }\} \\
& \neg\left(C \in \mathcal{C}\left(\langle E, \rightarrow\rangle_{b}\right)\right) \\
\equiv & \left\{\text { definition of } \mathcal{C}\left(\langle E, \rightarrow\rangle_{b}\right)\right\} \\
& \neg\left\langle\forall e, f: e \rightarrow_{b} f: f \in C \Rightarrow e \in C\right\rangle \\
\equiv & \{\text { predicate calculus }\} \\
& \left\langle\exists e, f: e \rightarrow_{b} f:(f \in C) \wedge(e \notin C)\right\rangle \\
\equiv & \{\text { definition of prevents }(f, e)\} \\
& \left\langle\exists e, f: e \rightarrow_{b} f: C \text { satisfies prevents }(f, e)\right\rangle \\
\equiv & \{\text { predicate calculus }\} \\
& \left\langle\exists e, f:\left(e \rightarrow{ }_{b} f\right) \wedge((e \rightarrow f) \vee(e \nrightarrow f)): C \text { satisfies prevents }(f, e)\right\rangle \\
\equiv & \left\{e \rightarrow f \text { implies } e \rightarrow{ }_{b} f\right\} \\
& \left\langle\exists e, f:(e \rightarrow f) \bigvee\left(\left(e \rightarrow{ }_{b} f\right) \wedge(e \nrightarrow f)\right): C \text { satisfies prevents }(f, e)\right\rangle \\
\equiv & \left\{\begin{array}{l}
\text { since } C \text { is a consistent cut of }\langle E, \rightarrow\rangle, C \text { satisfies prevents }(f, e) \Rightarrow \\
e \neq f
\end{array}\right\} \\
& \left\langle\exists e, f:\left(e \rightarrow_{b} f\right) \wedge(e \nrightarrow f): C \text { satisfies prevents }(f, e)\right\rangle
\end{aligned}
$$

This establishes the theorem.
Theorem 5.43 can also be derived using the results in lattice theory [Riv74]. We now give the time-complexity of the algorithm. We start by making the following observation.

Observation 5.4 Let e, f and g be events such that $f \rightarrow g$. Then,

$$
\operatorname{prevents}(g, e) \Rightarrow \operatorname{prevents}(f, e)
$$

Let $K_{b}(e)$ denote the vector whose $i^{\text {th }}$ entry denote the earliest event f on process p_{i}, if it exists, such that $(e \nrightarrow f) \wedge\left(e \rightarrow_{b} f\right)$ holds. Observation 5.4 implies that prevents $\left(K_{b}(e)[i], e\right)$, whenever $K_{b}(e)[i]$ exists, is the weakest predicate among all predicates prevents (f, e), where $\operatorname{proc}(f)=p_{i}$ and $(e \nrightarrow f) \wedge\left(e \rightarrow_{b} f\right)$. Thus we can ignore all other events on p_{i} for the purpose of computing the slice for a co-regular predicate. More precisely, Theorem 5.43 can be restated as:

Theorem 5.44 Let C be a consistent cut of $\langle E, \rightarrow\rangle$. Then,

$$
C \text { satisfies } \neg b \equiv\left\langle\exists e, p_{i}:: C \text { satisfies prevents }\left(K_{b}(e)[i], e\right)\right\rangle
$$

It turns out that $K_{b}(e)[i]$ and $F_{b}(e)[i]$ are closely related.

Observation $5.5 K_{b}(e)[i]$ exists if and only if $e \nrightarrow F_{b}(e)[i]$. Moreover, whenever $K_{b}(e)[i]$ exists it is identical to $F_{b}(e)[i]$.

Note that, to compute the slice for $\neg b$, we actually compute the slice for $\operatorname{reg}(\neg b)$, that is, $\langle E, \rightarrow\rangle_{\neg b}=\langle E, \rightarrow\rangle_{\text {reg }(\neg b)}$. Theorem 5.44 implies that the number of disjuncts in the predicate equivalent to the negation of a regular predicate is at most $O(n|E|)$. Further, these disjuncts can be determined in $O\left(n^{2}|E|\right)$ time using the algorithm Algo ${ }_{5.2}$. The slice with respect to each disjunct can be computed in $O(|E|)$ time using the algorithm given in Section 5.7.3. Moreover, given a disjunct $b^{(i)}, J_{b^{(i)}}(e)$ for each event e can be computed in $O(n|E|)$ time which in turn can be used to determine $F_{b^{(i)}}(e)$ for each event e in $O(n|E|)$ time using the algorithm Algo 5.2. Finally, these slices can be grafted together to produce the slice for a co-regular predicate in $O(n|E| \times n|E|)=O\left(n^{2}|E|^{2}\right)$ time. This is because, given an
event e, computing each entry of $F_{b^{\prime}}(e)$, where $b^{\prime}=\operatorname{reg}(\neg b)$, requires $O(n|E|)$ time. Thus the overall time-complexity of the algorithm is $O\left(n^{2}|E|+n^{2}|E|^{2}\right)=O\left(n^{2}|E|^{2}\right)$.

5.8.5 Computing the Slice for k-Local Predicates for Constant k

A predicate is called k-local if it depends on variables of at most k processes [SS95]. To compute the slice for a k-local predicate, we use the technique developed by Stoller and Schneider [SS95]. Given a computation, their technique can be used to transform a k-local predicate into a predicate in k-DNF (disjunctive normal form) with at most m^{k-1} clauses, where m is the maximum number of events on a process. For example, consider the predicate $x_{1} \neq x_{2}$. Let V denote the set of values that x_{1} can take in the given computation. Note that $|V| \leqslant m$. Then $x_{1} \neq x_{2}$ can be rewritten as:

$$
x_{1} \neq x_{2} \equiv \bigvee_{v \in V}\left(\left(x_{1}=v\right) \wedge\left(x_{2} \neq v\right)\right)
$$

Each clause in the resultant k-DNF predicate will be a conjunctive predicate. We can use the optimal $O(|E|)$ algorithm given in Section 5.7.3 to compute the slice for each clause. These slices can then be grafted together with respect to disjunction to obtain the slice for the given k-local predicate. The time-complexity of the algorithm is $O\left(m^{k-1} n|E|\right)$.

5.8.6 Computing Approximate Slices

Even though it is, in general, NP-hard to compute the slice for an arbitrary predicate, it is still possible to compute an approximate slice in many cases. The slice is "approximate" in the sense that it is bigger than the actual slice for the predicate. Nonetheless, it still contains all consistent cuts of the computation that satisfy the predicate. In many cases, the approximate slice that we obtain is much smaller than the computation itself and therefore can be used to prune the search-space for many intractable problems such as monitoring predicates under various modalities.

Figure 5.12: (a) A computation, (b) the parse tree for the predicate $\left(x_{1} \vee x_{2}\right) \wedge\left(x_{3} \vee\right.$ x_{4}), (c) the slice with respect to x_{1}, (d) the slice with respect to x_{2}, (e) the slice with respect to $x_{3},(\mathrm{f})$ the slice with respect to x_{4}.

Figure 5.13: (continuation of Figure 5.12) (g) the slice with respect to $x_{1} \vee x_{2}$, (h) the slice with respect to $x_{3} \vee x_{4}$, and (i) the slice with respect to $\left(x_{1} \vee x_{2}\right) \wedge\left(x_{3} \vee x_{4}\right)$.

In particular, using grafting and the algorithms for computing the slice for various classes of predicates, it is possible to efficiently compute an approximate slice for a predicate derived from linear predicates, post-linear predicates, regular predicates, co-regular predicates, and k-local predicates for constant k using \wedge and \checkmark operators.

To compute an approximate slice, we first build the parse tree for the given boolean expression; all predicates occupy leaf nodes whereas all operators occupy non-leaf nodes. We then recursively compute the slice working our way up from leaf nodes to the root. For a leaf node, we use the algorithm appropriate for the predicate corresponding to the leaf node. For example, if the leaf node corresponds to a linear predicate, we use the algorithm described in Section 5.8.2. For the conjunction and disjunction operators, \wedge and \vee, we use the suitable grafting algorithm depending on the operator.

Example 5.8 For example, consider the computation depicted in Figure 5.12(a) and the predicate $\left(x_{1} \vee x_{2}\right) \wedge\left(x_{3} \vee x_{4}\right)$. The parse tree corresponding to the predicate
is shown in Figure 5.12(b). To compute an approximate slice for the predicate, we first compute slices for the (local) predicates x_{1}, x_{2}, x_{3} and x_{4} as shown in Figure 5.12(c)-(f). We then graft the first two and the last two slices together with respect to join to obtain slices for the clauses $x_{1} \vee x_{2}$ and $x_{3} \vee x_{4}$ as portrayed in Figure 5.13(g) and Figure 5.13(h), respectively. For the ease of understanding, the events belonging to the same strongly connected component are shown together in a subset. Finally, we graft the slices for both clauses together with respect to meet. The slice obtained will contain all consistent cuts that satisfy the predicate $\left(x_{1} \vee x_{2}\right) \wedge\left(x_{3} \vee x_{4}\right)$. The final slice is shown in Figure 5.13(i).

As shown in the figure, the computation has seven non-trivial consistent cuts, namely $\{a, d, u, x\},\{a, b, d, u, x\},\{a, d, e, u, x\},\{a, b, d, e, u, x\},\{a, b, d, e, u, v, x\}$, $\{a, b, d, e, u, x, y\}$ and $\{a, b, d, e, u, v, x, y\}$. On the other hand, the slice consists of only a single non-trivial consistent cut, which is given by $\{a, b, d, e, u, x\}$. The final slice corresponds to the predicate reg $\left(\operatorname{reg}\left(x_{1} \vee x_{2}\right) \wedge r e g\left(x_{3} \vee x_{4}\right)\right)$ and not to the predicate reg $\left(\left(x_{1} \vee x_{2}\right) \wedge\left(x_{3} \vee x_{4}\right)\right)$ as desired. This is expected because detecting even a predicate in 2-CNF when no two clauses contain variables from the same process is NP-complete in general (see Chapter 3).

5.9 Detecting Global Predicates using Slicing: An Experimental Study

In this section, we evaluate the effectiveness of slicing in pruning the search-space when detecting a predicate under possibly modality. We compare our approach with that of Stoller, Unnikrishnan and Liu [SUL00], which is based on partial-order methods [God96]. Intuitively, when searching the state-space, at each consistent cut, partial-order methods allow only a small subset of enabled transitions to be explored. In particular, we use partial-order methods employing both persistent and
sleep sets for comparison. We consider two examples that were also used by Stoller, Unnikrishnan and Liu to evaluate their approach [SUL00]. We briefly describe the main idea behind partial-order methods approach here; details can be found elsewhere [God96, SUL00].

The material in the next two paragraphs is paraphrased from [SUL00]. In their full generality, partial-order methods can be used to locate deadlocks in a concurrent system. A deadlock is a state in which no transitions are enabled. Clearly, all reachable deadlocks can be identified by exploring all reachable states. This involves explicitly considering all possible execution orderings of transitions, even if some transitions are "independent" (that is, executing them in any order leads to the same state). Exploring one interleaving of independent transitions is sufficient for finding deadlocks. This causes fewer intermediate states (that is, states in which some but not all of the independent transitions have been executed) to be explored, but it does not affect the reachability of deadlocks. This is because the intermediate states cannot be deadlocks since some of the independent transitions are enabled in those states. Partial-order methods attempt to eliminate exploration of multiple interleavings of independent transitions, thereby saving time and space.

Consider a state s. A set T of transitions enabled in s is said to be persistent in s if, for every sequence of transitions starting from s and not containing any transitions in T, all transitions in that sequence are independent with all transitions in T. As shown in [God96], in order to find all reachable deadlocks, it suffices to explore from each state s a set of transitions that is persistent in s. Note that the set of all enabled transitions in s trivially constitutes a persistent set in s. To save time and space, small persistent sets should be used. As further optimization, sleep sets can be employed to eliminate redundancy caused by exploring multiple interleavings of independent transitions in a persistent set [God96].

How do partial-order methods apply to detecting a predicate under possibly
modality? Consider a predicate $b=b^{(1)} \wedge b^{(2)} \wedge \cdots \wedge b^{(l)}$. Let support $\left(b^{(i)}\right)$ denote the subset of processes on which the conjunct $b^{(i)}$ depends. Suppose, when exploring the state-space of the computation, we reach a consistent cut C that does not satisfy b. Therefore there exists a conjunct $b^{(i)}$ that evaluates to false for C. A set T of transitions that constitutes a persistent set in C can be constructed as follows. For each process $p_{j} \in \operatorname{support}\left(b^{(i)}\right)$, in case the next transition t_{j} of p_{j}, if it exists, is enabled in C, add t_{j} to T; otherwise find some enabled transition t that must be executed before t_{j} and add t to T.

Now, with our approach based on computation slicing, in order to detect a predicate, we first compute an approximate slice of the computation with respect to the predicate, and then perform a simple search of the state-space of the resultant slice. Whereas, with the approach based on partial-order methods, we use persistent and sleep sets to search the state-space of the computation. To compare the two approaches, we consider two examples which were also used by Stoller, Unnikrishnan and Liu to evaluate their approach [SUL00].

The first example, called primary-secondary, concerns an algorithm designed to ensure that the system always contains a pair of processes acting together as primary and secondary. The invariant for the algorithm requires that there is a pair of processes p_{i} and p_{j} such that (1) p_{i} is acting as a primary and correctly thinks that p_{j} is its secondary, and (2) p_{j} is acting as a secondary and correctly thinks that p_{i} is its primary.

The first example, called primary-secondary, concerns an algorithm designed to ensure that the system always contains a pair of processes acting together as primary and secondary. The invariant for the algorithm requires that there is a pair of processes p_{i} and p_{j} such that (1) p_{i} is acting as a primary and correctly thinks that p_{j} is its secondary, and (2) p_{j} is acting as a secondary and correctly thinks that p_{i} is its primary. Both the primary and the secondary may choose new processes as
their successor at any time; the algorithm must ensure that the invariant is never falsified. Mathematically, the invariant $I_{p s}$ can be written as:

$$
I_{p s}=\bigvee_{i, j \in[1 \ldots n], i \neq j}\binom{\text { isPrimary }_{i} \wedge \text { isSecondary }_{j} \wedge}{\left(\text { secondary }_{i}=p_{j}\right) \wedge\left(\text { primary }_{j}=p_{i}\right)}
$$

Here, the variable isPrimary $_{i}$ is true if and only if process p_{i} is acting as the primary; in that case, the variable secondary y_{i} points to the process that p_{i} thinks is acting as its secondary. The variables isSecondary i_{i} and primary y_{i} can be interpreted in a similar fashion. Both the primary and the secondary may choose new processes as their successor at any time; the algorithm must ensure that the invariant is never falsified. Stoller, Unnikrishnan and Liu provide an algorithm in [SUL00] to maintain the above invariant. We describe it here for the sake of completeness.

Initially, process p_{1} is the primary and process p_{2} is the secondary. At any time, the primary may choose a new primary as its successor by first informing the secondary of its intention, waiting for an acknowledgement, and then multicasting to the other processes a request for volunteers to be the new primary. It chooses the first volunteer whose reply it receives and sends message to that process stating that it is the new primary. The new primary sends a message to the current secondary which updates its state to reflect the change and then sends a message to the old primary stating that it can stop being the primary. The secondary can choose a new secondary using a similar protocol. Before initiating the protocol, however, the secondary must wait for an acknowledgement from the primary. If the secondary instead receives a message that the primary is searching for a successor as well, the secondary aborts its current attempt to find a successor, waits until it receives a message from the new primary, and then re-starts the protocol. This prevents the primary and secondary from trying to choose successors concurrently. A global fault corresponds to the complement of the invariant which can be expressed as:

$$
\neg I_{p s}=\bigwedge_{i, j \in[1 \ldots n], i \neq j}\binom{\neg \text { isPrimary }_{i} \bigvee \neg \text { isSecondary }_{j} \bigvee}{\left(\text { secondary }_{i} \neq p_{j}\right) \bigvee\left(\text { primary }_{j} \neq p_{i}\right)}
$$

Note that $\neg I_{p s}$ is a predicate in CNF where each clause is a disjunction of two local predicates. An approximate slice for $\neg I_{p s}$ can be computed in $O\left(n^{3}|E|\right)$ time.

In the second example, called database partitioning, a database is partitioned among processes p_{2} through p_{n}, while process p_{1} assigns tasks to these processes based on the current partition. A process $p_{i}, i \in[2 \ldots n]$, can suggest a new partition at any time by setting variable change $_{i}$ to true and broadcasting a message containing the proposed partition and an appropriate version number. A recipient of this message accepts the proposed partition if its own version of the partition has a smaller version number or if its own version of the partition has the same version number and was proposed by a process with larger index. An invariant that should be maintained is: if no process is changing the partition, then all processes agree on the partition. Formally,

$$
I_{d b}=\left(\bigwedge_{i \in[2 \ldots n]} \neg \text { change }_{i}\right) \Rightarrow\left(\bigwedge_{1 \leqslant i<j \leqslant n} \text { partition }_{i}=\text { partition }_{j}\right)
$$

Again, the algorithm described above was given by Stoller, Unnikrishnan and Liu in [SUL00]. The complement of the invariant, given by $\neg I_{d b}$, can be written as:

$$
\neg I_{d b}=\left(\bigwedge_{i \in[2 \ldots n]} \neg \text { change }_{i}\right) \bigwedge\left(\bigvee_{i, j \in[1 \ldots n], i \neq j}\left(\text { partition }_{i} \neq \text { partition }_{j}\right)\right)
$$

Note that the first $n-1$ clauses of $\neg I_{d b}$ are local predicates and the last clause, say $L C$, is a disjunction of 2-local predicates. Thus, using the technique described in Section 5.8.5, $L C$ can be rewritten as a predicate in DNF with $O(n|E|)$ clauses. To reduce the number of clauses, we proceed as follows. Let V denote the set of values that partition ${ }_{1}$ assumes in the given computation. Then it can be

	No Faults				One Injected Fault				
Number of Processes	Partial-Order Methods			Computation Slicing		Partial-Order Methods		Computation Slicing	
n	T	M	T	M	T	M	T	M	
6	0.07	0.62	0.36	1.21	0.05	0.41	0.37	1.38	
7	0.16	1.11	0.61	1.34	0.11	0.81	0.58	1.41	
8	0.37	2.06	0.90	1.54	0.31	1.79	0.91	1.61	
9	0.83	4.37	1.24	1.70	0.59	3.05	1.21	1.77	
10	1.52	7.26	1.73	1.81	1.12	5.54	1.70	2.00	
11	2.99^{*}	13.14^{*}	2.15	1.93	2.09^{*}	9.50^{*}	2.13	2.27	
12	5.0^{*}	21.56^{*}	2.85	2.16	3.51^{*}	14.13^{*}	2.77	2.43	

n : number of processes T : amount of time spent (in s)
M: amount of memory used (in MB)
*: does not include the cases in which the technique runs out of memory
Table 5.1: Primary-Secondary example with the number of events on a process upper-bounded by 90 .
verified that $L C$ is logically equivalent to:
$\bigvee_{v \in V}\left(\left(\right.\right.$ partition $\left._{1}=v\right) \wedge\left(\left(\right.\right.$ partition $\left._{2} \neq v\right) \vee\left(\right.$ partition $\left._{3} \neq v\right) \vee \cdots \vee\left(\right.$ partition $\left.\left.\left._{n} \neq v\right)\right)\right)$
This decreases the number of clauses, when $L C$ is rewritten in a form that can be used to compute a slice, to $O(n|V|)$. Note that $|V|$ is bounded by the number of events on the first process, and therefore we expect $n|V|$ to be $O(|E|)$. We use the simulator implemented in Java by Stoller, Unnikrishnan and Liu to generate computations of these protocols. Message latencies and other delays (e.g., how long to wait before looking for a new successor) are selected randomly using the distribution $1+\exp (x)$, where $\exp (x)$ is the exponential distribution with mean x. Further details of the two protocols and the simulator can be found elsewhere [SUL00]. We consider two different scenarios: fault-free and faulty. The simulator always produces fault-free computations. A faulty computation is generated by

Figure 5.14: Primary-Secondary example with the number of events on a process upper-bounded by 90 for (a) no faults and (b) one injected fault.
randomly injecting faults into a fault-free computation. Note that in the first (faultfree) scenario, we know a priori that the computation does not contain a faulty consistent cut. We cannot, however, assume the availability of such knowledge in general. Thus it is important to study the behaviour of the two predicate detection techniques in the fault-free scenario as well. We implement the algorithm for slicing a computation in Java. We compare the two predicate detection techniques with respect to two metrics: amount of time spent and amount of memory used. In the case of the former technique, both metrics also include the overhead of computing the slice. We run our experiments on a machine with Pentium 4 processor operating at 1.8 GHz clock frequency and 512 MB of physical memory.

For primary-secondary example, the simulator is run until the number of events on some process reaches 90. The measurements averaged over 300 computations are displayed in Table 5.1. With computation slicing, for fault-free computations, the slice is always empty. As the number of processes is increased from 6 to 12 , the amount of time spent increases from 0.36 s to 2.85 s , whereas the amount of memory used increases from 1.21 M to 2.16 M . On the other hand, with partial-order methods, they increase, almost exponentially, from 0.07 s to 5.0 s and 0.62 M to 21.56 M , respectively. Even on injecting a fault, the slice stays quite small. After computing the slice, in our experiments, we only need to examine at the most 13 consistent cuts to locate a faulty consistent cut, if any. The amount of time spent and the amount of memory used, with computation slicing, increase from 0.37 s to 2.77 s and 1.38 M to 2.43 M , respectively, as the number of processes is increased from 6 to 12. However, with partial-order methods, they again increase almost exponentially from 0.05 s to 3.51 s and 0.41 M to 14.13 M , respectively. Clearly, with slicing, both time and space complexities for detecting a global fault, if it exists, in primary-secondary example are polynomial in input size for the specified range of parameters. In contrast, with partial-order methods, they are exponential in input size. Figure $5.14(\mathrm{a})$ and Figure $5.14(\mathrm{~b})$ plot the variation in the two metrics with the number of processes for the two approaches.

The worst-case performance of the partial-order methods approach is quite bad. With 12 processes in the system and the limit on the memory set to 100 MB , the approach runs out of memory in approximately 6% of the cases. In around two-thirds of such cases, the computation actually contains a consistent cut that does not satisfy the invariant. It may be noted that we do not include the above-mentioned cases in computing the average amount of time spent and memory used. Including them will only make the average performance of the partial-order methods approach worse. Further, the performance of the partial-order methods approach appears to be very

	No Faults				One Injected Fault			
Number of Processes	Partial-Order Methods		Computation Slicing		Partial-Order Methods		Computation Slicing	
n	T	M	T	M	T	M	T	
M								
4	0.05	0.07	0.24	1.06	0.03	0.05	0.24	
5	0.05	0.09	0.34	1.13	0.03	0.08	0.36	
6	0.05	0.13	0.50	1.22	0.03	0.10	0.48	
7	0.05	0.22	0.59	1.33	0.04	0.16	0.62	
8	0.07	0.31	0.76	1.41	0.04	0.23	0.73	
9	0.07^{*}	0.36^{*}	0.89	1.56	0.05	0.31	0.92	
10	0.08^{*}	0.40^{*}	1.09	1.80	0.05^{*}	0.42^{*}	1.07	
					1.80			

n : number of processes T : amount of time spent (in s)
M: amount of memory used (in MB)
*: does not include the cases in which the technique runs out of memory
Table 5.2: Database partitioning example with the number of events on a process upper-bounded by 80 .
sensitive to the location of the fault, in particular, whether it occurs earlier during the search or much later or perhaps does not occur at all. Consequently, the variation or standard deviation in the two metrics is very large. This has implications when predicate detection is employed for achieving software fault tolerance. Specifically, it becomes hard to provision resources (in our case, memory) when using partialorder methods approach. If too little memory is reserved, then, in many cases, the predicate detection algorithm will not be able to run successfully to completion. On the other hand, if too much memory is reserved, the memory utilization will be sub-optimal.

For database partitioning example, the simulator is run until the number of events on some process reaches 80 . The measurements averaged over 300 computations are shown in Table 5.2. Figure 5.15(c) and Figure 5.15(d) plot the variation in the two metrics with the number of processes for the two approaches. As

Figure 5.15: Database partitioning example with the number of events on a process upper-bounded by 80 for (c) no faults and (d) one injected fault.
it can be seen, the average performance of partial-order methods is much better than computation slicing. This is because substantial overhead is incurred in computing the slice. The slice itself is quite small. Specifically, for the fault-free scenario, the slice is always empty. On the other hand, for the faulty scenario, only at most 4 transitions need to be explored after computing the slice to locate a faulty consistent cut, if any.

Even for database partitioning example, for 10 processes, the partial-order methods approach runs out of memory in a small fraction-approximately 1%-of the cases. Therefore the worst-case performance of computation slicing is better than partial-order methods. To get the best of both worlds, predicate detection
can be first done using the partial-order methods approach. In case it turns out that the approach is using too much memory, say more than $c n|E|$ for some small constant c, and still has not terminated, it can be aborted and the computation slicing approach can then be used for predicate detection.

Chapter 6

Related Work

In this chapter, we discuss the related research in three sections corresponding to the topics of each of the previous three chapters: detecting global predicates, controlling global predicates, and slicing distributed computations.

6.1 Detecting Global Predicates

The results in predicate detection presented in this dissertation were first published in [MG01b]. The predicate detection problem is known to be intractable in general under both possibly and definitely modalities [CG95, SS95, TG98b]. Approaches to detecting global predicates can be broadly classified into three categories. The first approach [CL85, SK86, Bou87, HJPR87] is based on repeatedly computing a consistent cut of the system using a global snapshot protocol and verifying whether the cut satisfies the given predicate until the predicate becomes true. This method is suitable only for stable predicates-the predicates which stay true once they become true. Some examples of stable predicates are deadlock and termination. The approach cannot be used to detect unstable predicates which may become

Figure 6.1: Relation of our work to the known results in predicate detection under possibly modality.
true only between consecutive snapshots. The second approach [CM91, MN91, AV94, JMN95] enumerates all consistent cuts of the computation to detect a given predicate. Although this approach is able to detect unstable predicates, it has an exponential time-complexity of $O\left(k^{n}\right)$, where k is the number of "relevant" local events on each process and n is the number of processes, making it prohibitively expensive in practice. Partial-order techniques can be employed to avoid examining many consistent cuts during the search [SUL00]. The third approach [MC88, MI92, AV93, HPR93, GW94, BR95, FRGT94, JJJR94, CG95, GCKM95, GC95, GTFR95, TG95, VD95, GW96, HMRS96, BFR96, HR96, GCKM97, TG97] relies on exploiting

Figure 6.2: Relation of our work to the known results in detecting predicates under definitely modality.
the structure of the predicate. Rather than exploring all possible consistent cuts of the computation, the approach uses the computation directly. Thus efficient polynomial-time algorithms can be devised which, however, are restricted to certain special but useful classes of predicates such as conjunctive predicates, observerindependent predicates, linear and post-linear predicates, and relational predicates. Surveys of predicate detection may be found in [BM93, SM94, Gar96]. In this dissertation, our focus has been on the third approach. Within the third approach, we consider predicates that are defined on a single cut.

The predicate detection problem under possibly modality has been studied in more setting when events on a process may only be partially ordered [TG98a]. However, detecting even a conjunctive predicate becomes NP-complete in the general model.

Figure 6.1 and Figure 6.2 depict the relation of our work to the known results
in detecting predicates under possibly and definitely modalities, respectively.

6.2 Controlling Global Predicates

The results in predicate control provided in this dissertation were first published in [MG00]. The predicate control problem is known to be NP-hard in general [TG98b]. However, as in the case of predicate detection, by exploiting the structure of the predicate, polynomial-time algorithms have been developed for certain classes of predicates such as "disjunctive predicates" [TG98b] and "mutual exclusion predicates" [TG99]. The latter problem becomes intractable when generalized to "independent mutual exclusion predicates" where critical sections have "types" associated with them such that no two critical sections of the same type can execute simultaneously [Tar00]. In contrast to Tarafdar and Garg's algorithm [TG98b] for controlling a disjunctive predicate, our algorithm can be modified to generate a minimum controlling synchronization.

The study in [MSWW81] allows global properties within the class of conditional elementary restrictions. Unlike our model of a distributed system, their model uses an off-line specification of pair-wise mutually exclusive states and does not use causality. [Ray88] and [TG94] study the on-line maintenance of a class of global predicates based on ensuring that a sum or sum-of-product expression on local variables does not exceed a threshold. In contrast to these approaches, our focus is on controlling global predicates off-line with the computation known a priori.

An efficient algorithm for detecting a conjunctive predicate under definitely modality can be found in [GW96]. Since the problem of detecting a predicate under definitely modality is dual of the problem of monitoring a predicate under controllable modality, the above algorithm can be used to determine whether a disjunctive predicate is controllable in a computation. However, the predicate detection problem (under definitely modality) is not concerned with finding the
actual controlling synchronization, if it exists.

6.3 Slicing Distributed Computations

The results in computation slicing described in this dissertation were first published in [GM01, MG01a]. Analogous to the notion of computation slice, it is possible to define the notion of "program slice" [Wei82]. Given a program and a set of variables, a program slice consists of all statements in the program that may affect the value of the variables in the set at some given point. A program slice could be "static" [Wei82] or "dynamic" (for a specific program input) [KR97]. The notion of program slice has been extended to distributed programs as well [KF92]. Intuitively, program slicing can be used to perform data flow analysis in a program (static program slicing) or its trace (dynamic program slicing). The two slicing techniques, namely computation slicing and program slicing, serve different purposes and can, in fact, be used in a complimentary fashion. Computation slicing is useful for carrying out post-mortem analysis of a single execution of a distributed program in order to spot an incorrect behaviour of the program, if any, possibly involving multiple processes, in an automated fashion. On detecting a faulty behaviour, dynamic program slicing can be employed to obtain the relevant subset of the events that actually influenced the value of the variables under observation, using data flow analysis, thereby facilitating the localization of the bug. In other words, program slicing helps to reduce the size of the program that needs to be analyzed for locating the bug after a faulty behaviour has been observed using computation slicing or other techniques.

Model checking is an automated technique for verifying the correctness of concurrent programs [CE81, QS82]. Our technique differs from model checking in many aspects. First, model checking is concerned with ascertaining correctness of all computations of a program, whereas we focus on analyzing a single computation.

This is because our objective is to develop fast algorithms for the problems that arise in testing and debugging, and software fault tolerance of distributed programs in which a single execution trace of a program is observed. Second, even if model checking algorithms are used on a single computation of a program, their timecomplexity would be, in general, proportional to the size of the state-space which is still exponential in the number of processes. Whereas, our emphasis is on developing algorithms that are polynomial in the number of processes. We accomplish this by exploiting the structure of the computation (specifically, the set of consistent cuts of a computation forms a distributive lattice) as well as the structure of the predicate (for example, whether it is a regular predicate or a linear predicate). As a result, model checking techniques, although more general in their applicability, are much more expensive in terms of time and space.

Chapter 7

Conclusions and Future Work

We give a necessary and sufficient characterization of the set of consistent cuts of a distributed computation. Specifically, we show that the set of consistent cuts forms a distributive lattice and, further, it does not satisfy any additional structural property. We exploit this observation to derive the notion of computation slice. Intuitively, computation slicing is useful for throwing away the extraneous consistent cuts of a computation, in an efficient manner, and focusing on only those that are currently relevant for our purpose. As an application, it can be used to view a computation at various levels of atomicity, thereby providing a flexible and powerful framework for visualization of executions of complex distributed applications [KG95, KBTB97]. Computation slicing can also be used to achieve an exponential improvement in time and space for locating a faulty consistent cut in a computation. The reason for the improvement is that other approaches view the set of consistent cuts simply as a partially ordered set. We, on the other hand, adopt a more aggressive approach and exploit an important structural property of the set of consistent cuts, namely that it forms a distributive lattice.

In this dissertation, we focus on a more active approach to software fault
tolerance that involves taking corrective rather than reactive measures based on an understanding of the failure and its causes. The fault handler uses this information to decide on appropriate corrective actions. In fact, Tarafdar and Garg [Tar00] show that in the case of synchronization faults, by tracing synchronization information during normal execution, one can take more effective corrective action during re-execution. We extend their work in investigating the corresponding off-line synchronization problem-the predicate control problem. Specifically, we develop efficient algorithms for solving the predicate control problem for some important classes of predicates.

Currently, our algorithms for computing the slice of a computation are off-line and assume that the entire set of events is available to them a priori. While this is quite acceptable for debugging, for software fault tolerance, however, it is desirable that the slice be computed in an on-line and incremental manner; upon generation of an event in the system, the current slice is updated to accommodate the new event and the resultant slice is checked for an occurrence of a fault. This accelerates the detection of a fault. Also, some applications may execute indefinitely and generate computations that are non-terminating. In order to deal with such computations, mechanism needs to be devised to garbage collect portions of the slice that can no longer contribute to a fault or otherwise will not be needed in the future.

In this dissertation, we give polynomial-time algorithms to monitor a regular predicate under three modalities, namely possibly, invariant and controllable. It still remains an open question whether a regular predicate can be monitored under definitely modality in an efficient manner. Note that a conjunctive predicate, which is a special case of regular predicate, can be monitored efficiently under definitely modality [GW96]. For the general case, Cooper and Marzullo's algorithm can be used which, however, has exponential time-complexity [CM91]. It is possible to
improve the time-complexity of their algorithm using computation slicing as follows. We first compute the slice of the computation with respect to the complement of the regular predicate. In case the slice has different number of strongly connected components than the computation, then it can be shown that the regular predicate definitely holds in the computation. Otherwise, rather than applying Cooper and Marzullo's algorithm to the computation, it can now be applied to the slice, which may have much smaller state-space than the computation.

Our focus so far has been on building systems capable of tolerating software faults. A distributed system can fail because of other reasons as well including hardware faults. An interesting question that arises is: "How do we detect software faults in presence of hardware failures such as crashes?" A common way to model a crash failure is using the notion of failure detector proposed by Chandra and Toueg [CT96, GM98b]. A software fault, on the other hand, is modeled using predicate detection. An interesting research direction is to unify the two models so as to enable software faults to be detected in the presence of crashes. Gärtner and Pleisch prove some impossibility results about predicate detection when processes can fail by crashing [GP01b, GP01a]. Garg and Mitchell present an algorithm to detect predicates that are both set decreasing and conjunctive using infinitely often accurate detector [GM98a]. Can their work be extended to detect other important classes of predicates including regular predicates and relational predicates?

Clearly, it is possible to efficient evaluate whether some consistent cut of a computation satisfies a predicate given an efficient algorithm to compute the slice of the computation with respect to the predicate. Does the converse also hold? Specifically, is it possible to efficiently compute the slice for a predicate given an efficient algorithm to detect the predicate?

Bibliography

[AV93] S. Alagar and S. Venkatesan. Hierarchy in Testing Distributed Programs. In Proceedings of the International Workshop on Automated Debugging (AADEBUG), pages 101-116, 1993.
[AV94] S. Alagar and S. Venkatesan. Techniques to Tackle State Explosion in Global Predicate Detection. In Proceedings of the The Parallel and Distributed Systems Laboratory, pages 412-417, December 1994.
[BFR96] Ö. Babaoğlu, E. Fromentin, and M. Raynal. A Unified Framework for the Specification and Run-time Detection of Dynamic Properties in Distributed Computations. The Journal of Systems and Software, 33(3):287-298, June 1996.
[BM93] Ö. Babaoğlu and K. Marzullo. Consistent Global States of Distributed Systems: Fundamental Concepts and Mechanisms. In S. Mullender, editor, Distributed Systems, pages 55-96. Addison-Wesley, 1993.
[Bou87] L. Bouge. Repeated Snapshots in Distributed Systems with Synchronous Communication and their Implementation in CSP.

Theoretical Computer Science, 49:145-169, 1987.
[BR95] O. Babaoğlu and M. Raynal. Specification and Verification of

Dynamic Properties in Distributed Computations. Journal of Parallel and Distributed Computing, 28(2):173-185, 1995.
[CE81] E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchronization Skeletons using Branching Time Temporal Logic. In Proceedings of the Workshop on Logics of Programs, volume 131 of Lecture Notes in Computer Science, Yorktown Heights, New York, May 1981.
[CG95] C. Chase and V. K. Garg. On Techniques and their Limitations for the Global Predicate Detection Problem. In Proceedings of the Workshop on Distributed Algorithms (WDAG), pages 303-317, France, September 1995.
[CG98] C. Chase and V. K. Garg. Detection of Global Predicates: Techniques and their Limitations. Distributed Computing, 11(4):191-201, 1998.
[CL85] K. M. Chandy and L. Lamport. Distributed Snapshots: Determining Global States of Distributed Systems. ACM Transactions on Computer Systems, 3(1):63-75, February 1985.
[CLR91] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT Press, Cambridge, Massachusetts, 1991.
[CM91] R. Cooper and K. Marzullo. Consistent Detection of Global Predicates. In Proceedings of the ACM/ONR Workshop on Parallel and Distributed Debugging, pages 163-173, Santa Cruz, California, 1991.
[CT96] T. D. Chandra and S. Toueg. Unreliable Failure Detectors for Reliable Distributed Systems. Journal of the ACM, 43(2):225-267, 1996.
[DP90] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge University Press, Cambridge, UK, 1990.
[Fid91] C. Fidge. Logical Time in Distributed Computing Systems. IEEE Computer, 24(8):28-33, August 1991.
[FRGT94] E. Fromentin, M. Raynal, V. K. Garg, and A. I. Tomlinson. On the Fly Testing of Regular Patterns in Distributed Computations. In Proceedings of the 23rd International Conference on Parallel Processing, number 2, pages 73-76, Chicago, Illinois, August 1994.
[Gar96] V. K. Garg. Observation of Global Properties in Distributed Systems. In IEEE International Conference on Software and Knowledge Engineering, pages 418-425, Lake Tahoe, Nevada, June 1996.
[Gar97] V. K. Garg. Observation and Control for Debugging Distributed Computations. In Proceedings of the International Workshop on Automated Debugging (AADEBUG), pages 1-12, Linköping, Sweden, 1997. Keynote Presentation.
[GC95] V. K. Garg and C. Chase. Distributed Algorithms for Detecting Conjunctive Predicates. In Proceedings of the IEEE International Conference on Distributed Computing Systems (ICDCS), pages 423-430, Vancouver, Canada, June 1995.
[GCKM95] V. K. Garg, C. Chase, R. Kilgore, and J. R. Mitchell. Detecting Conjunctive Channel Predicates in a Distributed Programming Environment. In Proceedings of the International Conference on System Sciences, volume 2, pages 232-241, Maui, Hawaii, January 1995.
[GCKM97] V. K. Garg, C. Chase, R. Kilgore, and J. R. Mitchell. Efficient Detection of Channel Predicates in Distributed Systems. Journal of Parallel and Distributed Computing, 45(2):134-147, September 1997.
[GJ91] M. R. Garey and D. S. Johnson. Computer and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York, 1991.
[GM98a] V. K. Garg and J. R. Mitchell. Distributed Predicate Detection in a Faulty Environment. In Proceedings of the IEEE International Conference on Distributed Computing Systems (ICDCS), pages 416-423, Amsterdam, The Netherlands, May 1998.
[GM98b] V. K. Garg and J. R. Mitchell. Implementable Failure Detectors in Asynchronous Systems. In Proceedings of the Conference on the Foundations of Software Technology and Theoretical Computer Science (FSTTCS), pages 158-169, Chennai, India, 1998.
[GM01] V. K. Garg and N. Mittal. On Slicing a Distributed Computation. In Proceedings of the 21st IEEE International Conference on Distributed Computing Systems (ICDCS), pages 322-329, Phoenix, Arizona, April 2001.
[God96] P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems, volume 1032 of Lecture Notes in Computer Science. Springer-Verlag, 1996.
[GP01a] F. C. Gärtner and S. Pleisch. (Im)Possibilities of Predicate Detection in Crash-Affected Systems. In Proceedings of the 5th Workshop on Self-Stabilizing Systems (WSS), Lecture Notes in Computer

Science 2194, pages 98-113, Lisbon, Portugal, October 2001. Springer-Verlag.
[GP01b] F. C. Gärtner and S. Pleisch. (Im)Possibilities of Predicate Detection in Crash-Affected Systems using Interrupt-Style Failure Detectors. In Proceedings of the Symposium on Distributed Computing (DISC), Lisbon, Portugal, October 2001.
[GR93] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kaufmann, 1993.
[GTFR95] V. K. Garg, A. I. Tomlinson, E. Fromentin, and Michel Raynal. Expressing and Detecting General Control Flow Properties of Distributed Computations. In Proceedings of the 7th IEEE Symposium on Parallel and Distributed Processing (SPDP), pages 432-438, San Antonio, Texas, October 1995.
[GW91] V. K. Garg and B. Waldecker. Detection of Unstable Predicates. In Proceedings of the ACM/ONR Workshop on Parallel and Distributed Debugging, Santa Cruz, California, May 1991.
[GW94] V. K. Garg and B. Waldecker. Detection of Weak Unstable Predicates in Distributed Programs. IEEE Transactions on Parallel and Distributed Systems, 5(3):299-307, March 1994.
[GW96] V. K. Garg and B. Waldecker. Detection of Strong Unstable Predicates in Distributed Programs. IEEE Transactions on Parallel and Distributed Systems, 7(12):1323-1333, December 1996.
[HJPR87] J.-M. Helary, C. Jard, N. Plouzeau, and M. Raynal. Detection of Stable Properties in Distributed Applications. In Proceedings of
the ACM Symposium on Principles of Distributed Computing (PODC), pages 125-136, 1987.
[HMRS96] M. Hurfin, M. Mizuno, M. Raynal, and M. Singhal. Efficient Distributed Detection of Conjunctions of Local Predicates in Asynchronous Computations. In Proceedings of the 8th IEEE Symposium on Parallel and Distributed Processing (SPDP), pages 588-594, New Orleans, October 1996.
[HPR93] M. Hurfin, N. Plouzeau, and M. Raynal. Detecting Atomic Sequences of Predicates in Distributed Computations. In Proceedings of the ACM/ONR Workshop on Parallel and Distributed Debugging, pages 32-42, 1993.
[HR96] M. Hurfin and M. Raynal. Detecting Diamond Necklaces in Labeled Dags (A Problem from Distributed Debugging. In Proceedings of the International Workshop on Graph-Theoretic Concepts in Computer Science ($W G$), Lecture Notes in Computer Science, pages 211-223. Springer-Verlag, 1996.
[JJJR94] C. Jard, T. Jéron, G.-V. Jourdan, and J.-X. Rampon. A General Approach to Trace-Checking in Distributed Computing Systems. In Proceedings of the IEEE International Conference on Distributed Computing Systems (ICDCS), pages 396-403, 1994.
[JMN95] R. Jegou, R. Medina, and L. Nourine. Linear Space Algorithm for On-line Detection of Global Predicates. In J. Desel, editor, Proceedings of the International Workshop on Structures in Concurrency Theory (STRICT), pages 175-189. Springer-Verlag, 1995.
[JZ88] D. B. Johnson and W. Zwaenepoel. Recovery in Distributed Systems Using Optimistic Message Logging and Checkpointing. In Proceedings of the 6th ACM Symposium on Principles of Distributed Computing (PODC), pages 171-181, August 1988.
[KBTB97] T. Kunz, J. P. Black, D. J. Taylor, and T. Basten. POET: Target-System Independent Visualizations of Complex Distributed-Applications Executions. The Computer Journal, 40(8), 1997.
[KF92] B. Korel and R. Ferguson. Dynamic Slicing of Distributed Programs. Applied Mathematics and Computer Science Journal, 2(2):199-215, 1992.
[KG95] J. A. Kohl and G. A. Geist. The PVM 3.4 Tracing Facility and XPVM 1.1. Computer Science and Mathematics Divison, Oak Ridge National Laboratory, TN, USA, 1995.
[Koh78] Z. Kohavi. Switching and Finite Automata Theory. McGraw-Hill, 2nd edition, 1978.
[KR97] B. Korel and J. Rilling. Application of Dynamic Slicing in Program Debugging. In Mariam Kamkar, editor, Proceedings of the 3rd International Workshop on Automated Debugging ($A A D E B U G$), pages 43-57, Linköping, Sweden, May 1997.
[Lam78] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Communications of the ACM (CACM), 21(7):558-565, July 1978.
[Mat89] F. Mattern. Virtual Time and Global States of Distributed Systems. In Parallel and Distributed Algorithms: Proceedings of the Workshop
on Distributed Algorithms (WDAG), pages 215-226. Elsevier Science Publishers B. V. (North-Holland), 1989.
[MC88] B. P. Miller and J. Choi. Breakpoints and Halting in Distributed Programs. In Proceedings of the 8th IEEE International Conference on Distributed Computing Systems (ICDCS), pages 316-323, 1988.
[MG00] N. Mittal and V. K. Garg. Debugging Distributed Programs Using Controlled Re-execution. In Proceedings of the 19th ACM Symposium on Principles of Distributed Computing (PODC), pages 239-248, Portland, Oregon, July 2000.
[MG01a] N. Mittal and V. K. Garg. Computation Slicing: Techniques and Theory. In Proceedings of the Symposium on Distributed Computing (DISC), pages 78-92, Lisbon, Portugal, October 2001.
[MG01b] N. Mittal and V. K. Garg. On Detecting Global Predicates in Distributed Computations. In Proceedings of the 21st IEEE International Conference on Distributed Computing Systems (ICDCS), pages 3-10, Phoenix, Arizona, April 2001.
[MI92] Y. Manabe and M. Imase. Global Conditions in Debugging Distributed Programs. Journal of Parallel and Distributed Computing, 15(1):62-69, 1992.
[MN91] K. Marzullo and G. Neiger. Detection of Global State Predicates. In Proceedings of the Workshop on Distributed Algorithms (WDAG), pages 254-272, 1991.
[MSWW81] A. Maggiolo-Schettini, H. Welde, and J. Winkowski. Modeling a Solution for a Control Problem in Distributed Systems by

Restrictions. Theoretical Computer Science, 13(1):61-83, January 1981.
[NX95] R. H. B. Netzer and J. Xu. Necessary and Sufficient Conditions for Consistent Global Snapshots. IEEE Transactions on Parallel and Distributed Systems, 6(2):165-169, February 1995.
[QS82] J. P. Queille and J. Sifakis. Specification and Verification of Concurrent Systems in CESAR. In Proceedings of the 5th International Symposium in Programming, volume 137 of Lecture Notes in Computer Science, pages 337-351, New York, 1982. Springer-Verlag.
[Ray88] M. Raynal. Distributed Algorithms and Protocols. John Wiley and Sons Limited, 1988.
[Riv74] I. Rival. Maximal Sublattices of Finite Distributive Lattices II. Proceedings of the American Mathematical Society, 44(2):263-268, 1974.
[SK86] M. Spezialetti and P. Kearns. Efficient Distributed Snapshots. In Proceedings of the 6th IEEE International Conference on Distributed Computing Systems (ICDCS), pages 382-388, 1986.
[SM94] R. Schwartz and F. Mattern. Detecting Causal Relationships in Distributed Computations: In Search of the Holy Grail. Distributed Computing, 7(3):149-174, 1994.
[SS95] S. D. Stoller and F. Schneider. Faster Possibility Detection by Combining Two Approaches. In Proceedings of the Workshop on Distributed Algorithms (WDAG), volume 972 of Lecture Notes in Computer Science, pages 318-332, France, September 1995.
[SUL00] S. D. Stoller, L. Unnikrishnan, and Y. A. Liu. Efficient Detection of Global Properties in Distributed Systems Using Partial-Order Methods. In Proceedings of the 12th International Conference on Computer-Aided Verification (CAV), volume 1855 of Lecture Notes in Computer Science, pages 264-279. Springer-Verlag, July 2000.
[Tar00] A. Tarafdar. Software Fault Tolerance in Distributed Systems Using Controlled Re-execution. PhD thesis, The University of Texas at Austin, August 2000.
[TG94] A. I. Tomlinson and V. K. Garg. Maintaining Global Assertions in Distributed Systems. In Computer Science and Education, pages 257-272. Tata McGraw-Hill Publishing Company Limited, 1994.
[TG95] A. I. Tomlinson and V. K. Garg. Observation of Software for Distributed Systems with RCL. In Proceedings of the 15th Conference on the Foundations of Software Technology and Theoretical Computer Science (FSTTCS), pages 195-209, 1995.
[TG97] A. I. Tomlinson and V. K. Garg. Monitoring Functions on Global States of Distributed Programs. Journal of Parallel and Distributed Computing, 41(2):173-189, March 1997.
[TG98a] A. Tarafdar and V. K. Garg. Addressing False Causality while Detecting Predicates in Distributed Programs. In Proceedings of the 9th IEEE International Conference on Distributed Computing Systems (ICDCS), pages 94-101, Amsterdam, The Netherlands, May 1998.
[TG98b] A. Tarafdar and V. K. Garg. Predicate Control for Active Debugging of Distributed Programs. In Proceedings of the 9th IEEE Symposium
on Parallel and Distributed Processing (SPDP), pages 763-769, Orlando, 1998.
[TG99] A. Tarafdar and V. K. Garg. Software Fault Tolerance of Concurrent Programs Using Controlled Re-execution. In Proceedings of the 13th Symposium on Distributed Computing (DISC), pages 210-224, Bratislava, Slovak Republic, September 1999.
[TP00] W. Torres-Pomales. Software Fault Tolerance: A Tutorial, 2000. NASA Langley Research Center.
[VD95] S. Venkatesan and B. Dathan. Testing and Debugging Distributed Programs Using Global Predicates. IEEE Transactions on Software Engineering, 21(2):163-177, February 1995.
[Wan97] Y.-M. Wang. Consistent Global Checkpoints that Contain a Given Set of Local Checkpoints. IEEE Transactions on Computers, 46(4):456-468, April 1997.
[Wei82] M. Weiser. Programmers Use Slices when Debugging. Communications of the ACM (CACM), 25(7):446-452, 1982.
[WG91] B. Waldecker and V. K. Garg. Unstable Predicate Detection in Distributed Program Debugging. In Proceedings of the ACM/ONR Workshop on Parallel and Distributed Debugging, pages 276-278, Santa Cruz, California, May 1991.
[WHF $\left.{ }^{+} 97\right]$ Y.-M. Wang, Y. Huang, W. K. Fuchs, C. Kintala, and G. Suri. Progressive Retry for Software Failure Recovery in Message-Passing Applications. IEEE Transactions on Computers, 46(10):1137-1141, October 1997.

Vita

Neeraj Mittal was born on May 07, 1974 in New Delhi, India, the son of Shankuntla Mittal and Suresh Chandra Mittal. He completed his schooling in New Delhi, India in June 1991. He received the Bachelor of Technology degree in Computer Science and Engineering from the Indian Institute of Technology at Delhi in July 1995. Thereafter, he joined graduate school at the University of Texas at Austin where he received the Master of Sciences degree in Computer Sciences in May 1997. He has been employed at Lucent Bell Laboratories and IBM Almaden Research Center during the summers of 1997 and 1999, respectively. He was awarded the MCD graduate fellowship in August 1995 by the University of Texas at Austin.

Permanent Address: c/o Mr. Suresh Chandra Mittal
A-2/263 Janakpuri
New Delhi 110058, India

This dissertation was typeset with $\mathrm{IAT}_{\mathrm{E}} \mathrm{X} 2 \varepsilon^{1}$ by the author.

[^0]
[^0]: ${ }^{1}{ }^{1} T_{E} X 2_{\varepsilon}$ is an extension of ${ }_{A} T_{E} X$. ${ }^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ is a collection of macros for $T_{E} X . T_{E} \mathrm{X}$ is a trademark of the American Mathematical Society. The macros used in formatting this dissertation were written by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin.

