
Parallel Minimum Spanning Tree Algorithms via
Lattice Linear Predicate Detection

David R. Alves and Vijay K. Garg
The University of Texas at Austin

Department of Electrical and Computer Engineering

Austin, TX 78712, USA

Email: dralves@utexas.edu, garg@ece.utexas.edu

Abstract—We show that the problem of computing the mini-
mum spanning tree can be formulated as special case of detecting
Lattice Linear Predicate (LLP). In general, formulating problems
as LLP presents two main advantages: 1) Different problems are
formulated under a single, general framework, which defines the
problem in terms of simple local predicates that must hold for
the all the elements of a lattice, making the problem (and the
solution) compact and easy to understand. 2) improvements on
one set of problems can be transferable to other sets of problems;
3) since the problems are stated as a set of local predicates, which
can be often tested with little or no synchronization it is often the
case that new opportunities for parallelism present themselves.

In this paper we introduce two parallel algorithms LLP-Prim
and LLP-Boruvka that improve on the non-LLP counterparts in
several ways. LLP-Prim reduces the number of heap operations
required by Prim by allowing edges to be selected without
entering the heap thus allowing for parallelism. LLP-Boruvka
improves on Boruvka by reducing synchronization and thus once
more improving parallelism opportunities.

Our experimental evaluation shows that LLP-Prim is faster
than Prim’s algorithm in both single threaded and multithreaded
scenarios and that it provides a good tradeoff between paral-
lelism and efficiency at low core counts. For higher core count
scenarios we show how LLP-Boruvka improves on an efficient
implementation of a parallel version of Boruvka.

Index Terms—Minimum Spanning Tree, Parallel Algorithms

I. INTRODUCTION

Graphs are increasingly prevalent: from virtual social net-

works, to physical road networks to everything in between,

such as computer networks. When performing computations

on graphs, a common problem is that of finding the minimum

spanning tree (MST) between vertices of the graph. In a fully

connected graph, i.e. one where all the vertices are connected

by at least one edge, the MST is a such such that it connects

all the vertices in the graph in a way that minimizes the

sum of the weights of the chosen edges. If the graph is not

fully connected, then we have a minimum spanning forest

(MSF), i.e. a set of minimum spanning trees each with the

aforementioned property.

There are many well known algorithms that solve this prob-

lem. Among the most well known are Prim’s [14], Boruvka’s

[11] and Kruskal’s [7] algorithm for the MST. While these

algorithms it’s many derivations have been widely studied,

This work was supported in parts by the National Science Foundation
Grants CNS-1812349, CNS-1563544, and the Cullen Trust Endowed Pro-
fessorship.

we show how formulating Prim’s and Boruvka’s as a special

case of detecting Lattice-Linear Predicates [1] opens the door

for new efficiencies, and especially new opportunities for

parallelization that result in a speedup experimentally. In

this paper we introduce two new algorithms, LLP-Prim and

LLP-Boruvka: First, we introduce the LLP formulation for

these algorithms, and the increased parallelization that can be

obtained from the formulation. Then we demonstrate, experi-

mentally, how this parallelization results in speedups compared

to efficient implementations of the non-LLP counterparts.

Suppose that we have an undirected weighted graph on

n vertices with m edges. Our goal is to find the minimum

spanning tree. It is known that if the graph is connected and

all edge weights are distinct then there is a unique MST. If

the graph is not connected, then there is a unique MSF. While

LLP-Boruvka considers spanning forests, LLP-Prim considers

a spanning tree, i.e. assumes the graph is fully connected.

We briefly provide an intuition for LLP-Prim1: We model the

search space of the problem in the form of a lattice. For LLP-
Prim this lattice is the lattice of all possible choices of edges

E, on for each of the n−1, vertices in the graph V other than

the root (v0). Each solution is represented by vector, G. G[v]
corresponds to the edge chosen for vertex v. An element of the

lattice is a spanning tree if the set of edges spans all vertices

and does not have any cycle. Our goal is to reach the element

in the lattice with the minimum weight, which corresponds to

the Minimum Spanning Tree. Formulating the MST problem

as a Lattice-Linear predicate entails defining two functions:

forbidden and advance that are applied independently to the

elements of G. forbidden(V,E,G, v) is a predicate that must

be false for each element, for the solution to be valid, while

advance(V,E,G, v) is the function that allows to change G[v]
such that it will eventually not be forbidden. Once no element

in G is forbidden then we have our MST. Since each element

of G can be tested for forbidden independently this produces

opportunities for parallelism.

In this paper we make the following contributions:

• We introduce an LLP formulation for Prim’s algorithm

and a derived serial and parallel implementation for the

MST problem that includes novel optimizations.

1The formulation for LLP-Boruvka is different and will be introduced later
in the paper

774

2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

978-1-6654-9747-3/22/$31.00 ©2022 IEEE
DOI 10.1109/IPDPSW55747.2022.00131

20
22

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
ist

rib
ut

ed
 P

ro
ce

ss
in

g
Sy

m
po

siu
m

 W
or

ks
ho

ps
 (I

PD
PS

W
) |

 9
78

-1
-6

65
4-

97
47

-3
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IP

DP
SW

55
74

7.
20

22
.0

01
31

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 02,2022 at 20:48:31 UTC from IEEE Xplore. Restrictions apply.

• We introduce an LLP formulation of Boruvka’s algo-

rithm and a derived implementation that includes novel

optimizations that also applies to the minimum spanning

forest problem.

• We experimentally evaluate the implementations of LLP-
Prim and LLP-Boruvka comparing to well-known effi-

cient implementations of Prim and Boruvka. Our imple-

mentation is freely available on Github2.

The rest of the paper is sectioned as follows: In section II,

we introduce the general form of Lattice-Linear Predicates.

In section III we mention relevant related work. In section

IV we give background on the classical Prim and Boruvka

algorithms. In section V we introduce novel algorithms LLP-
Prim and LLP-Boruvka. In section VII we experimentally

evaluate these algorithms. Finally, in section VIII we make

some final remarks and provide directions for future work.

II. PRELIMINARIES: LATTICE LINEAR PREDICATES

Let L be the lattice of all n-dimensional vectors of reals

greater than or equal to zero vector and less than or equal to

a given vector T where the order on the vectors is defined

by the component-wise natural ≤. The minimum element of

this lattice is the zero vector. The lattice is used to model

the search space of the combinatorial optimization problem.

The combinatorial optimization problem is modeled as finding

the minimum element in L that satisfies a boolean predicate
B, where B models feasible (or acceptable solutions). We

are interested in parallel algorithms to solve the combinatorial

optimization problem with n processes. We will assume that

the systems maintains as its state the current candidate vector

G ∈ L in the search lattice, where G[i] is maintained at process

i. We call G, the global state, and G[i], the state of process i.
Finding an element in lattice that satisfies the given

predicate B is called the predicate detection problem. Finding

the minimum element that satisfies B (whenever it exists)

is the combinatorial optimization problem. We now define

lattice-linearity which enables efficient computation of this

minimum element. A key concept in deriving an efficient

predicate detection algorithm is that of a forbidden state.

Given a predicate B, and a vector G ∈ L, a state G[i] is

forbidden (or equivalently, the index i is forbidden) if for any

vector H ∈ L , where G ≤ H , if H[i] equals G[i], then B is

false for H . Formally:

Definition 1 (Forbidden State): Given any distributive lattice

L of n-dimensional vectors of R≥0, and a predicate B, we

define forbidden(G, i,B) ≡ ∀H ∈ L : G ≤ H : (G[i] =
H[i])⇒ ¬B(H).

We define a predicate B to be lattice-linear with respect to

a lattice L if for any global state G, B is false in G implies

that G contains a forbidden state. Formally:

Definition 2 (lattice-linear Predicate): A boolean predicate

B is lattice-linear with respect to a lattice L iff ∀G ∈ L :
¬B(G)⇒ (∃i : forbidden(G, i,B)).

2https://github.com/dralves/llp-mst

Once we determine j such that forbidden(G, j,B), we

also need to determine how to advance along index j. To that

end, we extend the definition of forbidden as follows:

Definition 3 (advance): Let B be any boolean predicate

on the lattice L of all assignment vectors. For any G, j and

positive real α > G[j], we define forbidden(G, j,B, α) iff

∀H ∈ L : H ≥ G : (H[j] < α)⇒ ¬B(H).

Given any lattice-linear predicate B, suppose ¬B(G). This

means that G must be advanced on all indices j such

that forbidden(G, j,B). We use a function advance(G, j,B)
such that forbidden(G, j,B, advance(G, j,B)) holds when-

ever forbidden(G, j,B) is true. With the notion of

advance(G, j,B), we have Algorithm 1. Algorithm 1 has two

inputs — the predicate B and the top element of the lattice

T . It returns the least vector G which is less than or equal

to T and satisfies B (if it exists). Whenever B is not true in

the current vector G, the algorithm advances on all forbidden

indices j in parallel. This simple parallel algorithm can be used

to solve a large variety of combinatorial optimization problems

by instantiating different forbidden(G, j,B) and α(G, j,B).

ALGORITHM 1: Algorithm LLP to find the minimum vector
at most T that satisfies B

vector function getLeastFeasible(T : vector, B: predicate)
var G: vector of reals initially ∀i : G[i] = 0;
while ∃j : forbidden(G, j,B) do

for all j such that forbidden(G, j,B) in parallel:
if advance(G, j,B) > T [j] then return null;
else G[j] := advance(G, j,B);

endwhile;
return G; // the optimal solution

III. RELATED WORK

The LLP algorithm for combinatorial optimization is pro-

posed in [15] where it is shown that variants of Gale-Shapley

algorithm for stable marriage problem, Dijkstra’s algorithm

and Bellman-Ford algorithm for the shortest path problem, and

Gale-Demange-Sotomayor algorithm for the market clearing

prices can be derived from the LLP algorithm. In this paper,

we add to this list a variant of Prim’s algorithm called LLP-

Prim algorithm and a variant of Boruvka’s algorithm called

LLP-Boruvka.

O. Boruvka [11] was one of the first to formulate the

minimum spanning tree problem in the 1920’s. Boruvka’s

algorithm starts by considering all the vertices of the graph

a component. In each iteration the algorithm selects the

minimum edge out of each component and then merges the

components connected in this way. Another famous sequential

algorithm for the minimum spanning tree problem is Prim’s

algorithm [14]. Prim’s algorithm works by, starting from the

initial vertex, always adding the minimum known edge to the

tree where one vertex in that edge is in the tree and the other is

not. The algorithm does this, one edge -the minimum edge - at

a time, until the set of vertexes in the tree is the same as the set

775

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 02,2022 at 20:48:31 UTC from IEEE Xplore. Restrictions apply.

in the graph. By contrast our algorithm explores multiple edges

at once, in parallel. Another popular deterministic minimum

spanning tree algorithm is Kruskal’s algorithm [7]. Kruskal’s

algorithm works by always selecting the minimum edge across

the whole graph and connecting the vertexes on either end, as

long as the edge does not form a cycle. Since this algorithm

also relies on pulling the minimum element from a heap it

is also hard to parallelize, in contrast to the LLP algorithm

proposed here which explores multiple edges at the same time,

in the R set. All of these three deterministic algorithms have a

worst-case complexity of O(m log n), our algorithms do not

improve on this complexity.

A randomized linear time algorithm was proposed by Karger

and [5] later demonstrated to run in linear time based on

the work developed together with Klein, Tarjan [4] and by

Pettie et al. [12]. This algorithm is based using on Boruvka’s

algorithm together with a linear time MST verifier. This

principle was used by Cole, Klein, Tarjan to develop a linear

time parallel algorithm [6]. We plan to compare directly with

this approach when solving the MST problem with the generic

LLP solver, but our approach thus far is different since our

LLP-Prim algorithm is parallel and deterministic while the

aforementioned parallel algorithm isn’t and LLP-Boruvka only

applies the LLP algorithm for each iteration and not globally.

The authors of the Galois framework [8] have studied

the parallelization of both the classical Prim and Boruvka

algorithms in [13]. In this study they reported the interesting

finding that Boruvka’s algorithm is highly parallelizable in

the beginning, quickly tapering off after that. The authors of

the Graph Based Benchmark Suite [2] also provide a highly

parallel version of Boruvka’s algorithm that they include with

their benchmark suite. Out implementation of LLP-Boruvka

shares some similarities with the work from Zhou, W. [16],

but our formulation and the process through which we get the

minimum edge within a component is different.

IV. BACKGROUND

In this section we cover Prim’s and Boruvka’s algorithm

as to serve as a reference to the LLP versions introduced in

section V.

The notion of a fragment is crucial in understanding all

MST algorithms. A fragment is simply a subtree of the MST.

Consider the graph in Fig. 1. The minimum spanning tree in

this graph corresponds to the edges {2, 3, 4, 7}. The subtree

formed by edges 3 and 4 is a fragment with three vertices

{a, b, c} and two edges {(a, c), (b, c)}.
A crucial property of MST is as follows:

Lemma 1: Let F be a fragment. Let e be the edge with

minimum weight that is outgoing form F . Then, F ∪ {e} is

also a fragment.

Proof: In the minimum spanning tree T , there must be at

least one edge going out of the fragment F . Let that edge be

f . If we add e to T and remove f , we get another tree T ′ with

lower weight than T , a contradiction because we assumed that

T is the minimum spanning tree.

a

b
5

c
4

3
d7

9
e11

2

Fig. 1: An undirected weighted graph

A. Prim’s Algorithm

Prim’s algorithm is a greedy algorithm and is depicted in Al-

gorithm 2. It builds the minimum spanning tree by increasing

the size of a single fragment by adding the minimum weight

outgoing edge of the fragment. It simply exploits Lemma 1

to increase the size of fragment until it becomes the MST.

At any stage, Prim’s algorithm has a fragment F . It finds

the minimum outgoing edge from that fragment e. This edge

can be viewed as the edge from the fragment to its nearest

neighbor. Therefore, this algorithm is sometimes also known

as the nearest-neighbor-next algorithm. To find the nearest

neighbor, every vertex v maintains a label d which corresponds

to the cost of adding v to the fragment. At every iteration, the

algorithm chooses the vertex v with the minimum d value and

adds it to the fragment. The array fixed keeps track of the

vertices in the fragment. Whenever, a new vertex v is fixed
and added to the fragment, the d values for all adjacent vertex

v′ are updated as follows. We check whether the weight of the

edge (v, v′) is lower than the previous value of d[v′]. If this

is true, then d[v′] is updated to w[v, v′]. We also use parent
pointer with each node which keeps track of the parent node

v that is responsible for the d value of v′.

ALGORITHM 2: Prim: Finding the MST rooted at v0 .

var d: array[0 . . . n− 1] of integer initially ∀i : d[i] =∞;
fixed: array[0 . . . n− 1] of boolean initially

∀i : fixed[i] = false;
H: binary heap of (j, key) initially empty;// j is the vertex

and key is the tentative cost
parent: array[0..n− 1] of int initially −1; // gives the

parent structure of the minimum spanning tree

d[0] := 0;
H .insert((0,d[0]));
while ¬H .empty() do

(j, key) := H .removeMin();
fixed[j] := true;
forall k: ¬fixed(k) ∧ (j, k) ∈ E

if (d[k] > w[j, k]) then
d[k] := w[j, k];
parent[k] := j;
H .insertOrAdjust (k, d[k]);

endwhile;

Consider the graph shown in Fig. 1 again. For Prim’s

algorithm, we start from a fixed node. Suppose we start from

the vertex a. Then, the nearest neighbor is c with the cost of 4.

The next nearest neighbor to the fragment with vertices {a, c}
is the vertex b. The cost of adding b is 3. At this point, we

776

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 02,2022 at 20:48:31 UTC from IEEE Xplore. Restrictions apply.

have vertices {a, b, c} in the fragment. The cost to add vertex

d is 7 and to add the vertex e is 11. We add the vertex d to

our fragment with the cost 7. Finally, e is added with the cost

2. Hence, the edges are added to the tree in the order 4, 3, 7, 2.

B. Boruvka’s Algorithm

In Prim’s algorithm, we started with a trivial fragment

including just the vertex v0. We kept increasing the size of

the fragment till it became a spanning tree. In Boruvka’s

algorithm depicted in Algorithm 3, we may have more than

one fragment. We increase the size of all fragments by adding

the minimum outgoing edge for each fragment.

ALGORITHM 3: Boruvka: Finding the MSF

Input: Undirected connected Weighted Graph: (V,E,w).
Output: Minimum Weight Spanning Tree
var

T : { set of edges } initially {};
cid: array[1..n] of 0..n initially all 0;
mwe: array[1..n] of edge initially all null;
dist: array[1..n] of 0..n initially all ∞;

while (|T | < n− 1) do
visited: array[1..n] of boolean initially all false;
for i := 1 to n do

if (¬visited[i])
// do a BFS in the graph (V, T) from
// vertex i setting cid of every visited vertex to i
BFS(i);

for (i, j) ∈ E such that (cid[i] �= cid[j]) do
if w[i, j] < dist[cid[i]]

dist[cid[i]] = w[i, j]
mwe[cid[i]] = (i, j)

if w[i, j] < dist[cid[j]]
dist[cid[j]] = w[i, j]
mwe[cid[j]] = (i, j)

forall i do:
T := T ∪mwe[cid[i]];

endwhile
return T

We use T to denote the set of tree edges. Initially, T is

empty. When we determine the components in (V, T) using

BFS, we get that there are n components as each vertex

is a component by itself when T is empty. The algorithm

finds minimum weight outgoing edge for each component

as follows. At any iteration, we use BFS to find the least

numbered vertex that any vertex is connected to in the graph

(V, T). This vertex serves as the identifier for the component

of the node i, and we use the variable cid[i] to store it. Once

we have determined the component identity of all nodes, we

move to the next step of determining the minimum weight

outgoing edge for each component. We traverse all edges and

for each edge that connects two different components we check

whether it is cheaper than previously known outgoing edge for

the component on either side. Once we have determined all

minimum weight edges for every component, we add these to

T and start the next iteration.

For example, consider the graph in Fig. 1. Initially, T is

empty and there are 5 components. We we compute mwe for

each component, we get the edges 4, 3, 3, 2, 2 as the minimum

weight edges of a, b, c, d, e, respectively. Once, these edges are

added we have two components: {a, b, c} and {d, e}. We then

find mwe of these two components as the edge 7. On adding

this edge, we have chosen (n − 1) edges and the algorithm

terminates with the edges {2, 3, 4, 7}.
For complexity analysis, let n be the number of vertices

and m be the number of edges. For simplicity, we analyze

a version of Prim’s algorithm in which instead of adjusting

the key in the heap for a vertex, we simply insert the vertex

in the heap. As a result the heap may have a vertex multiple

times with different keys. When a vertex is removed, we check

if it has already been fixed. If it is fixed, then we do not

need to explore it and we can remove the next vertex in the

heap. Since a vertex can be inserted in the heap only when an

edge is explored, we get that there are at most m insertions

from the heap. We can also conclude that there are at most m
deletions from the heap. Since an insertion or a deletion from

a heap takes O(logm) = O(log n) time, we get the overall

time complexity of O(m log n). LLP-Prim, introduced in the

next section does not improve on this complexity.

V. LLP MST ALGORITHMS

A. LLP-Prim

We now show an LLP based algorithm to find a minimum

spanning tree rooted at a fixed vertex v0. For simplicity, we

assume that all edge weights are unique in the graph. If edge

weights are not unique, then they can be made unique by

incorporating identities of its endpoints.

When a minimum spanning tree is rooted at a fixed node,

we can define an orientation of the edge directed towards the

path to the root. We say that x is parent of y in the tree rooted

at v0, if (x, y) is an edge in the tree and x is closer than y to

v0. The problem of finding minimum spanning tree rooted at

v0 can be reformulated as finding the parent for every node

other than v0. We let these n − 1 nodes be responsible for

choosing their parent edges. The variable S will be used as

the state vector where S[i] denotes the current choice of the

edge for node i for 1 ≤ i ≤ n− 1. Since all edge weights are

unique, we simply use the weight of the edge as the identity

of the edge. Initially, for any i, S[i] is the least weight edge

adjacent to node i. For example, all the choices for the graph

in Fig. 1 are shown below. Since we will consider trees rooted

at node a, we do not consider the node a.

b: 3 5 7
c: 3 4 9 11
d: 2 7 9
e: 2 11

Node b may choose as its parent edge, the edge 3, 5 or

7. Similarly, node e may choose 2 or 11. Initially, we have

G[b] = 3, G[c] = 3, G[d] = 2 and G[e] = 2. In all there are

3× 4× 3× 2 = 72 possible S vectors. These G vectors form

a distributive lattice with (3, 3, 2, 2) as the bottom vector and

(7, 11, 9, 11) as the top vector. If G[j] equals the edge e, then

we say that node j has proposed e as its parent edge. One of

777

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 02,2022 at 20:48:31 UTC from IEEE Xplore. Restrictions apply.

these vectors correspond to the minimum spanning tree and

our goal is to find that vector efficiently.

The LLP algorithm for searching in this lattice is based on

defining a predicate B such that the element in the lattice that

satisfies the predicate is the desired element. The search for

the element starts from the bottom element (3, 3, 2, 2). If this

element forms a spanning tree rooted at a, then we are done.

Otherwise, we will find a node such that unless it advances to a

heavier edge, the minimum spanning tree cannot be found. By

repeating this procedure, we will reach the minimum spanning

tree vector.

Given any G vector, we define a bipartition of the graph

formed by directed edges in G as follows. There are n − 1
edges in G and every node in {vi | 1 ≤ i ≤ n − 1} has

exactly one outgoing edge in G. We have that: Any path
starting from any node i and following the outgoing edge
either ends at v0 or ends in a cycle.

We define a vertex to be fixed if by traversing the path

starting from the edge proposed by that vertex leads to v0. It

is clear that the edge proposed by a non-fixed vertex can only

lead to a non-fixed vertex and the edge proposed by a fixed

vertex can only lead to a fixed vertex. Thus, any G partitions

the set of vertices into fixed and non-fixed vertices. We define

the set of cut edges between these two partitions as follows:

E′(G) := {(i, k) ∈ E | fixed(i, G) ∧ ¬fixed(k,G)}

Let (i, j) be the edge in E′ with minimum w[i, j] such

that i is fixed and j is not fixed. We claim that process j
must choose the edge (i, j) as its parent edge and all edges

with lower weight than w[i, j] that are adjacent to j cannot

be parent edges of the minimum spanning tree.

Lemma 2: Consider any state vector S such that w[i, j] is the

minimum cut edge between fixed(S) and non − fixed(S),
then the edge j to i is the parent edge in the minimum spanning

tree.

Proof: Follows from the standard cut property of minimum

spanning trees.

Thus, any G such that G[j] < w[i, j] cannot be part of the

minimum spanning tree. When we advance G[j] to that edge,

vj becomes fixed because by definition of E′, the node i is

fixed and now j’s parent edge leads to a fixed node. Observe

that additional nodes may become fixed if their proposed edge

lead to vj directly or indirectly.

We can then repeat this step until either all nodes become

fixed and the algorithm can output G as the set of n − 1
minimum spanning tree edges, or the edge set E′ is empty.

In the second case, the graph is not connected and there is no

minimum spanning tree.

Algorithm 4 gives the boolean predicate required to search

for the minimum spanning tree vector G. The algorithm has

only one variable G, that denotes the element in the distributive

lattice. We use the always section to define derived variables

(or macros). A node is fixed if there is a path from that node

to v0. The edge set E′ denotes all the edges that go from non-

fixed vertices to fixed vertices. A node j is forbidden if it is

the non-fixed vertex in the minimum weight edge in E′. The

node j must advance to the minimum weight edge.

ALGORITHM 4: LLP Prim: Finding the MST .

var G: array[0..n− 1] of real initially ∀i : G[i] = minimum
edge adjacent to i;
always

fixed(j,G) ≡ there exists a directed path
from j to 0 using edges in G

E′(G) := { (i, k) ∈ E | fixed(i, G) ∧ ¬fixed(k,G)};
forbidden(j)≡ ∃i : (i, j) ∈ E′ such that it has min. weight

w[i, j] of all edges in E′

advance(j) G[j] := min{w[i, j] | (i, j) ∈ E′}

We now give an efficient implementations of above LLP-

Prim algorithm. Instead of recomputing fixed after every

iteration of LLP-Prim algorithm, we store whether a vertex has

been fixed. Observe that once a vertex is fixed it stays fixed

because its parent edge never changes. The set of cut edges

in E′ are maintained as a heap so that it is easy to determine

the minimum of the set. The crucial difference from Prim’s

algorithm is in the way a non-fixed node is fixed. In Prim’s

algorithm, we only mark an element v as fixed only when we

remove it from the min-heap. In each iteration, we choose the

vertex v with the least value of d from all non-fixed vertices.

We then explore all the neighbors of v. The only difference is

the way d is updated. Whenever a vertex is removed from the

heap, all its outgoing edges can be explored in parallel. Prim’s

algorithm suffers from the sequential bottleneck (similar to

Dijkstra’s algorithm for the shortest path): in every iteration

of the while loop, exactly one vertex becomes fixed. In LLP-

Prim algorithm not only that vertex v is fixed but also all

the vertices that can reach v directly or indirectly using their

current proposed edges are also fixed.

Note that Prim’s Algorithm grows the fragment of MST

one vertex at a time. We call all the vertices that are part of

the fragment as fixed. All of these vertices know their final

parent in the MST rooted at v0. Prim’s algorithm determines

the next vertex to be fixed as the vertex that is nearest to fixed

vertices. We now claim that any non-fixed vertex such that

it is connected to one of the fixed vertices with a minimum

weight edge (MWE) can also be fixed. Observe that initially

all nodes such that their minimum weight edge points to v0
are fixed. In every iteration, a node k can become fixed in

either of the two ways

1) It is the the nearest neighbor to the fragment. This is the

usual way in Prim’s algorithm.

2) It is connected to a fixed node z via a minimum weight

edge. This edge could be the minimum weight edge for

z or for k.

Note that when a node becomes fixed, it may result in

additional nodes becoming fixed due to the second way of

becoming fixed. We continue to add nodes to the fixed set

until we are not able to add any more nodes by this method.

778

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 02,2022 at 20:48:31 UTC from IEEE Xplore. Restrictions apply.

ALGORITHM 5: LLP-Prim: Early Fixing Algorithm MST1

Input: Undirected Weighted Graph: (V,E,w).
Output: Minimum Weight Spanning Tree
struct Node: {
min edge: e ∈ E, set beforehand to the minimum Edge

connected to Node
fixed: boolean,
parent: v ∈ V, initially not set
dist: integer, initially ∞}
var H: binary heap of Node initially empty;// Node.dist is the
tentative cost
R: bag of Node initially empty

source.dist := 0;
R.insert(source);
while !R.empty() in parallel do

j = R.pop()
j.fixed = true
forall k: ¬k.fixed ∧ (j, k) ∈ E

if (k.min edge = w[j, k]]) then:
k.dist := w[j, j]
k.fixed := true
k.parent := j
R.push(k)

else if k.dist > w[j, k] then:
k.dist := w[j, k]
k.parent := j
H.push(k)

if R.empty() && !H.empty() then:
R.push(H.pop())

endwhile;

The algorithm starts with the insertion of the source vertex

with its d value as 0 in the R set. Instead of removing the

minimum vertex from the heap in each iteration and then

exploring it, the algorithm always extracts vertexes from the

R set first, and only when it’s empty does it go to the heap to

pop the minimum element. If the value popped from R is then

marked as fixed and it has already been explored and therefore

it is skipped; otherwise, it is marked as fixed and inserted in R
to start the inner while loop. The inner loop keeps processing

the set R till it becomes empty.

We do not require that vertices in R be explored in the

order of their cost. If R consists of multiple vertices then all

of them can be explored in parallel. During this exploration

other non-fixed vertices may become fixed. These are then

added to R. Some vertices may initially be non-fixed but R
may become fixed later when R is processed. To avoid the

expense of inserting these vertices in the heap, we collect all

such vertices which may need to be inserted or adjusted in

the heap in a separate set called Q. Only, when we are done

processing R, we call H.insertOrAdjust on vertices in Q.

The vertices z ∈ R are explored as follows. We process all

out-going adjacent edges (z, k) of the vertex z to non-fixed

vertices k. This step is called processEdge1 in Algorithm 5.

First, we check if this edge is in the set MWE. If this is the

case, then we know that this edge can be added to the tree

and the node k can be marked as fixed. Setting fixed[k] to

true removes it effectively from the heap because whenever a

fixed vertex is extracted in the outer while loop it is skipped.

The vertex k can be added to R for future processing. If (z, k)
is not in MWE, then we check if the existing distance d[k] is

bigger than the weight of the edge (z, k). If this is the case,

we update d[k] and make z as the parent of k. Finally, if d[k]
has decreased, we insert it in Q so that once R becomes empty

we can call H .insertOrAdjust() method on vertices in Q. This

algorithm can be terminated as soon as n−1 edges have been

chosen.

Let us run this algorithm on the graph in Fig. 1. We first

insert the vertex a in the heap with distance 0. We remove

a from the heap, fix it and insert it into R. We then process

all edges of vertices in R. When we process the edge (a, c),
we find that it is the mwe for a. Hence, c is fixed and added

to R. We continue processing edges of a. The next vertex

discovered is b. It is added to Q. We then continue processing

R. The next vertex is c. When we process the edge (c, b), we

find that it is mwe for b (and c). Hence, b is now added to R.

We now remove the vertex b from R and process its edges.

Since vertices a and c are already fixed, we discover d and

insert it in Q. Now, R is empty and we start inserting vertices

from Q into the heap. Since c is already fixed, we insert only

the vertex d in the heap. We are now ready to remove the

minimum from the heap. The vertex d is removed and fixed.

When we explore the edges of d, we find that the edge (d, c)
is mwe and the vertex c is also fixed. At this point all vertices

have been fixed and we get the edges {4, 3, 7, 2} as the MST.

Note that this algorithm requires every vertex to know its

minimum weight edge. If this information is not available,

then every node can determine this information in parallel by

processing all its adjacent edges. In a sequential algorithm, the

set MWE can be computed when the graph is input.

B. LLP-Boruvka

VI. LLP-BORUVKA ALGORITHM

In this section, we continue with the recursive version of the

algorithm, but implement each recursive instance of Boruvka’s

algorithm with the LLP algorithm. As before, we assume that

input to our algorithm is a connected graph without any self-

loops. The LLP algorithm uses the single variable G. For each

instance, we let the minimum weight edge (mwe) adjacent to

each vertex v be denoted by mwe[v]. We denote this directed

graph by H: the set of vertices is V and the set of edges is

{(v, w)|(v, w) = mwe[v]}. We initialize G[v] with the node

w when mwe[v] = (v, w) except when mwe[w] = (w, v) and

v < w. For the latter case, we make G[v] equal to v. As a

result of this initialization, the structure G[v] forms a rooted

tree. This initialization is simply the steps of getting the rooted

tree in Algorithm 6. We say that the edge (v, w) is incident
to v when G[v] equals w for w different from v.

Once we have rooted trees for the graph, we convert the

rooted trees to rooted stars using pointer-jumping. A node j
is considered forbidden if G[j] �= G[G[j]]. It is advanced by

setting G[j] to G[G[j]]. The algorithm stops this iteration when

no node is forbidden. We show that each instance is indeed

an LLP algorithm.

779

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 02,2022 at 20:48:31 UTC from IEEE Xplore. Restrictions apply.

ALGORITHM 6: LLP-Boruvka: Finding MSF

Input: Undirected Weighted Graph: (V,E,w).
Output: Minimum Spanning Forest
function Boruvka(V,E)

var G: array[1..|V |], T = {}
forall v in V in parallel do:

// Choose the minimum weight edge from v
(v, w) = mwe(v)

// Choose v’s parent, break symmetry with w
G[v] := if mwe(w) �= (v, w)⇒ w

else if mwe(v) = mwe(w) and v < w ⇒ v
else ⇒ w

// Add to the MSF
T := T ∪ (v, w)

// Evaluate in parallel
forbidden(j)≡ G[j] �= G[[G[j]]
advance(j) ≡ G[j] := G[G[j]]

if |E| = 0 return {}
else

E′ := {(G[v], G[w])|((v, w) ∈ E) ∧ (G[v] �= G[w])}
V ′ := {v ∈ V | G[v] = v}
return T ∪Boruvka(V ′, E′)

We first show a basic lemma:

Lemma 3: The following is an invariant of the program:

G[v] is reachable from v in the directed graph H .

Proof: The invariant is true initially because G[v] is set to w
where (v, w) is an edge in H . The only statement executed in

the program is G[v] := G[G[v]] which preserves the invariant

because G[G[v]] is reachable from G[v].
We also observe that H is a collection of rooted trees and

if w is reachable from v, then there is a unique path from

v to w. Furthermore, the weight of edges along any path

is strictly decreasing. This is because if v points to w and

w points to u then the weight of the edge (w, u) must be

strictly smaller than the the weight of the edge (v, w) by the

property that each vertex points to the minimum weight edge

incident to it. We are now ready to show the following lemma:

Lemma 4: Each instance of finding connected components

is an LLP algorithm that terminates.

Proof: We consider the lattice of vectors. For component j,

we keep the weight of the minimum weight edge in the path

from j to G[j]. We define the predicate B as

B ≡ ∀j : G[j] = G[G[j]]

We show that predicate is lattice-linear. Suppose the predicate

B is not true. This implies that there exists j such that G[j]
is different from G[G[j]]. We show that the component j is

forbidden. G[j] cannot be the root of a tree in H because the

root points to itself (and therefore G[j] equals G[G[j]]. Let

k be equal to G[j]. We just showed that k is not equal to

the root. Therefore, G[k] �= k even if G[k] changes. Hence,

G[j] �= G[G[j]] continues to hold. The component j in G
vector is advanced by setting G[j] to be G[G[j]].

Dataset Original Name Name used Type
Galois USA-road-d.USA USA Roads - 23M road
Graph500 graph500-s25-ef16 Graph500 18M scalefree

TABLE I: Graphs used in experimental evaluation

We now show that the LLP algorithm terminates. When

G[j] is advanced, the weight of the last edge from j to G[j]
can only strictly decrease. Since there are at most n−1 edges

in H , the algorithm must eventually terminate with B as true.

Let us run this algorithm through the graph Fig. 1.

We compare vertices lexicographically and we use

(vertex, parent, chosen edge) here instead of G for

simplicity of exposition. In the first iteration, we start by

choosing, in parallel, the minimum weight edge and the

parent for each of the vertices. We obtain the following set

{(a, c, 4), (b, b, 3), (c, b, 3), (d, d, 2), (e, d, 2)}, T = 4, 3, 2.

We then proceed to evaluate forbidden and advance in

parallel and without synchronization, which in this very

simple case just results in changing the parent of a to b,
resulting in {(a, b, 4), (b, b, 3), (c, b, 3), (d, d, 2), (e, d, 2)}.
In preparation for the second iteration we choose vertices

such that vertex = parent, so vertices {b, d} and edges

such that the parents of either end differ, so in this case

edges {7, 9, 11}. In the second iteration, again starting with

choosing the minimum weight edges and the parent, resulting

in {(b, b, 7), (d, b, 7)}), T = 7. The next phase has nothing

to do in this second iteration, since G[j] = G[G[j]] for all

vertices, so the algorithm returns the union of all T ’s, the

minimum spanning tree T = {4, 3, 2, 7}. Note that, within

a round, Algorithm 6 requires little to no synchronization

between vertices of the MSF.

VII. EXPERIMENTAL EVALUATION

We use the Galois Library [8] as our underlying runtime

framework for Prim and LLP-Prim and the Graph Based

Benchmark Suite [2] (GBBS) for Boruvka and LLP-Boruvka.

Using existing frameworks allows us to explore our own

algorithms experimentally while relying on thoroughly tested

parallel and benchmark constructs.

A. Experimental Setup

The experimental system is a single custom configured

virtual machine of type C2 allocated through Google Compute

Engine [3]. The virtual machine boosts 48 vCPUs and 96GB’s

of memory. Our experiments were limited to a maximum of

32 threads constrained to a single socket, to exclude possible

NUMA effects. We use the Release build of our own fork

of the Galois library for our experiment (available on github)

as well our fork of the Graph Based Benchmark Suite [2],

which contains competitive implementations of Prim and a

fast parallel implementation of Boruvka.

We use two types of graphs for our benchmarks: graphs

from graph500 [10] benchmarks are synthetic Kronecker [9]

graphs that are generated to be used in the benchmarks and

780

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 02,2022 at 20:48:31 UTC from IEEE Xplore. Restrictions apply.

are thus a good reference to run our algorithms against. To

make sure that our results also apply to real world graphs, we

also test the algorithms in the USA road network, which is

24M node graph with real weights. Table I summarizes the

graphs use in the experiments, including their vertex counts

and types.

B. All Single vs Multi Threaded

In this section we take a look at the single-threaded versus

the multi-threaded performance and give some intuition about

the behavior observed.

Fig. 2: Prim, LLP-Prim, Boruvka, single-threaded,
Road network graph and Graph500 18M

Fig. 2 compares Prim, LLP-Prim (1 Thread), and Boruvka
(1 Thread) in the USA Roads graph and in the Graph500
18M graphs. These graphs were chosen to illustrate different

morphologies, but similar sizes. As we can see, both Prim and

LLP-Prim (1T) are much faster that the the Boruvka version,

in a single thread scenario, by a factor of about 3x, with LLP-
Prim (1T) showing an advantage of about 21% and 27% vs

Prim in in the graph 500 and road graphs, respectively. This

is expected, since Prim is a greedy algorithm, it fares better

in a single threaded scenario and since LLP-Prim (1T) does

less work than Prim, it’s faster in absolute terms. Note that we

didn’t include LLP-Boruvka (1 Thread), in this comparison as

we’ll look at how it compares vs Boruvka in the next section.

Fig. 3 on the other hand shows quite a different scenario.

When increasing the number of threads, Boruvka based algo-

rithms start dominating the benchmark. In this case around

8 threads both Boruvka and LLP-Boruvka become faster and,

with almost linear speedup. While LLP-Prim does show some

speedup it is not linear and even starts to regress at about 8

threads. The reason behind this is that the algorithm has ex-

hausted the parallelism opportunities (i.e. processing vertices

in parallel), and thus adding more threads brings diminishing

returns.

Comparing LLP-Boruvka and Boruvka in Fig 3 we can

observe that LLP-Boruvka is faster than parallel Boruvka up to

Fig. 3: LLP-Prim, Boruvka, LLP-Boruvka multi-threaded,
USA Road network graph

32 threads, though the difference starts to taper off at higher

core counts. When the number of threads available is small

(or even one) LLP-Prim (1T) is the fastest. This seems to

indicate that in scenarios of low thread count where only one

or few threads are available, LLP-Prim (1T) is a better choice

that both Boruvka based algorithms and Prim as it allows for

some speedup it there are a few threads available while still

performing very well in single thread scenarios.

C. Parallel Algorithms on Different Graphs

In this section we take a closer look at the parallel algo-

rithms and their behavior on different graphs.

Fig. 4: LLP-Prim, Boruvka, LLP-Boruvka.
Low/High core count. Different graphs

Fig. 4 compares all the parallel algorithms Boruvka, LLP-
Boruvka and LLP-Prim at low and high core counts for

781

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 02,2022 at 20:48:31 UTC from IEEE Xplore. Restrictions apply.

different types of graphs. Once more we can see that LLP-
Prim is faster at low core counts, whereas the Boruvka

based algorithms fare better at higher core counts. More

importantly, we can observe that that LLP-Prim performs best

in graphs with more edges. The USA Road Network graph

has, on average, a lower number of edges per vertex than the

graph 500 benchmark graphs. This means that the graph 500

graphs present more opportunities for parallelism for LLP-
Prim. On other other hand, at higher core counts Boruvka

based algorithms have the most advantage with LLP-Boruvka
being faster than Boruvka, though not by much.

We also tested the algorithms in graphs of different sizes

and the same morphology. But we only had immediate access

smaller graphs than the ones used in the experiments above the

results were analogous and didn’t show any additional insight.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we demonstrated how the minimum spanning

tree problem can be modeled in terms of Lattice-Linear

Predicates and we used this theoretical framework to extract

more parallelism from Prim’s and Boruvka’s classical algo-

rithm for the minimum spanning tree.We introduce two novel

parallel algorithms LLP-Prim and LLP-Boruvka. LLP-Prim is

an improvement over Prim’s algorithm and is suitable for low

core count scenarios, whereas LLP-Boruvka is an improvement

over the version of Boruvka’s algorithm and is more suited

for high core count scenarios. In future work we will explore

and evaluate LLP-based formulations for other combinatorial

optimization problems.

REFERENCES

[1] C. M. Chase and V. K. Garg. Detection of global predicates: Techniques
and their limitations. Distributed Computing, 11(4):191–201, 1998.

[2] L. Dhulipala, J. Shi, T. Tseng, G. E. Blelloch, and J. Shun. The
Graph Based Benchmark Suite (GBBS). Proceedings of the 3rd Joint
International Workshop on Graph Data Management Experiences &
Systems (GRADES) and Network Data Analytics (NDA), pages 1–8,
2020.

[3] Google. About machine families — google compute engine documen-
tation. https://cloud.google.com/compute/docs/machine-types.

[4] D. R. Karger, P. N. Klein, and R. E. Tarjan. A randomized linear-time
algorithm to find minimum spanning trees. Journal of the ACM (JACM),
42(2):321–328, 1995.

[5] D. Karker. Random sampling in matroids, with applications to graph
connectivity and minimum spanning trees. Proceedings of 1993 IEEE
34th Annual Foundations of Computer Science, pages 84–93, 1993.

[6] P. Klein, R. Cole, and R. Tarjan. A Linear-Work Parallel Algorithm for
Finding Minimum Spanning Trees. Proceedings of the 6th Symposium
on Parallel Algorithms and Architectures, pages 11–15, 1994.

[7] J. B. Kruskal. On the shortest spanning subtree of a graph and the
traveling salesman problem. Proceedings of the American Mathematical
Society, 7(1):48–50, 1956.

[8] M. Kulkarni and M. Burtscher. Lonestar: A Suite of Parallel Irregular
Programs. In ISPASS ’09: IEEE International Symposium on Perfor-
mance Analysis of Systems and Software, 2009.

[9] J. Leskovec and C. Faloutsos. Scalable modeling of real graphs
using Kronecker multiplication. Proceedings of the 24th international
conference on Machine learning - ICML ’07, pages 497–504, 2007.

[10] R. C. Murphy, K. B. Wheeler, and B. B. C. U. Group. Introducing the
graph 500. richardmurphy.net, 2010.

[11] J. Nešetřil, E. Milková, and H. Nešetřilová. Otakar Borůvka on minimum
spanning tree problem Translation of both the 1926 papers, comments,
history. Discrete Mathematics, 233(1-3):3–36, 2001.

[12] S. Pettie and V. Ramachandran. A Randomized Time-Work Optimal
Parallel Algorithm for Finding a Minimum Spanning Forest. SIAM
Journal on Computing, 31(6):1879–1895, 2002.

[13] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan,
R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich, M. Méndez-Lojo,
D. Prountzos, and X. Sui. The tao of parallelism in algorithms. ACM
SIGPLAN Notices, 46(6):12–25, 2011.

[14] R. C. Prim. Shortest connection networks and some generalizations. The
Bell System Technical Journal, 36(6):1389–1401, 1957.

[15] C. Scheideler, M. Spear, and V. K. Garg. Predicate Detection to Solve
Combinatorial Optimization Problems. Proceedings of the 32nd ACM
Symposium on Parallelism in Algorithms and Architectures, pages 235–
245, 2020.

[16] W. Zhou. A Practical Scalable Shared-Memory Parallel Algorithm for
Computing Minimum Spanning Trees. PhD thesis, Carnegie Mellon
University, 2017.

782

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 02,2022 at 20:48:31 UTC from IEEE Xplore. Restrictions apply.

