
Lattice Completion Algorithms for Distributed
Computations

Vijay K. Garg

Parallel and Distributed Systems Lab,
Department of Electrical and Computer Engineering,

The University of Texas at Austin,
Austin, TX 78712

http://www.ece.utexas.edu/˜garg

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

Outline of the Talk

What is lattice completion?

Motivation

Normal Cuts

Incremental Lattice Completion Algorithms

Lattice Traversal Algorithms

Conclusions and Future Work

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

Model of a Distributed Computation: Poset

distributed computation = poset (partially ordered set)
(E ,→) where
E = is the set of events, and
→ is (happened-before) relation.

P

P

P

1

2

3

d

b f

c e

a
P

P

P

1

2

3

(1,0,2)

(1,0,0) (2,1,0)

(0,2,1)

(0,0,1)

(0,1,0)

(i) (ii)

Events can be timestamped in an online fashion using Vector
Clocks such that e → f ≡ V (e) < V (f).

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

Motivation: Computing Meets and Joins

a

d e

c

f

b

Meet (greatest lower bound) of a subset of events
Interpretation: most recent common cause
meet of {d , e} = d u e = {a}
meet of {a, b} does not exist
meet of {e, f }

does not exist

Join (least upper bound) of a subset of events (t)
Interpretation: least common consequence

Lattice: a poset in which all finite subsets have meets and
joins.

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

Motivation: Computing Meets and Joins

a

d e

c

f

b

Meet (greatest lower bound) of a subset of events
Interpretation: most recent common cause
meet of {d , e} = d u e = {a}
meet of {a, b} does not exist
meet of {e, f } does not exist

Join (least upper bound) of a subset of events (t)
Interpretation: least common consequence

Lattice: a poset in which all finite subsets have meets and
joins.

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

Smallest Lattice Completion

Problem Statement: Given a poset (a computation), find the
smallest lattice that contains P as a subposet.

a

d e

c

f

b x1

a

b c

d e

x2

x3

f

(L,u,t) is an algebra.PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

Consistent Cut of a Distributed System

P
1

P
2

P
3

G
1

G
2

m

m

m1

2

3

Consistent cut = set of events executed so far
A subset G of E is a consistent cut (consistent global state) if

∀e, f ∈ E : (f ∈ G) ∧ (e → f)⇒ (e ∈ G)

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

Motivation 2: Detecting Global Conditions

Problem: Given a global predicate find a consistent cut that
satisfies the given predicate

a

c d

b {}

{a} {b}

{a,c} {a,b,d}

{a,b,c,d}

{}

{a} {b}

{a,c} {a,b}

{a,b,c} {a,b,d}

{a,b,c,d}

(i) Poset (ii) Lattice Completion (Normal Cuts) (iii) Consistent
Cuts

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

Normal Cuts of a Poset

a

c d

b

Q l : Lower Bounds of a set
Example: {c , d}l = {a}
{d}l = {a, b, d}
Qu:Upper Bounds of a set
Example: {a, b, d}u = {d}
({a, b, d}u)l = {a, b, d}
{a, b}ul = {d}l = {a, b, d}
A set Q ⊆ P is a normal cut if Qul = Q.

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

Dedekind–MacNeille Completion of a Poset

Dedekind–MacNeille completion of P = (X ,≤) is the poset formed
with the set of all the normal cuts of P under the set inclusion.

DM(P) = ({A ⊆ X : Aul = A},⊆).

a

d e

c

f

b {}

{a}

{b} {c}

{a,d} {a,b,c,e}

{b,c}

{a,b,c,d,e,f}

{b,c,f}

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

Outline of the Talk

What is lattice completion?

Motivation

Normal Cuts

Incremental Lattice Completion Algorithms

Lattice Traversal Algorithms

Conclusions and Future Work

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

Related Work: Incremental Algorithms

Elements of the poset arrive in a order preserving →
Input: poset P, its DM-completion L, element x
Output: L′ := DM-completion of P ∪ {x}

Algorithm Time Complexity Space

Ganter and Kuznetsov 98 O(mn3) O(mn log n)
Nourine and Raynaud 99, 02 O(mn2) O(mn log n)
Algorithm IDML [this paper] O(rwm logm) O(mw log n)

The parameters are:
n size of the poset P m size of the lattice L of normal cuts
w width of the poset P r elements with > 1 lower cover

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

Ideas in Our Incremental Algorithm

Use vector clocks to represent cuts

For any x ∈ P = (X ,≤), let D[x] = {y ∈ X |y ≤ x}
D[x] is always a normal cut.

A finite poset is a lattice iff it has the top element and all
meets are defined.
join(Q) = meet (Qu)

Whenever a new element arrives, ensure that
(1) there is a top element, and
(2) all meets are defined.

If an element x covers a single element, then it is sufficient to
add D[x].

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

Using Vector Clocks

a

d e

c

f

b (1,0,0)

(2,0,0) (1,2,1)

(0,0,1)

(0,1,2)

(0,1,0) (0,0,0)

(1,0,0)

(0,1,0) (0,0,1)

(2,0,0) (1,2,1)

(0,1,1)

(2,2,2)

(0,1,2)

Normal Cuts represented using vector clocks

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

Incremental Algorithm for DM-construction

Input: a nonempty finite poset P, its DM-completion L, element x
Output: L′ := DM-completion of P ∪ {x}

D[x] := the vector clock for x ;
Y := top(L);
newTop := max(D[x],Y);
// Step 1: Ensure that L′ has a top element

if Y ∈ P then L′ := L ∪ {newTop};
else L′ := (L− Y) ∪ {newTop};

// Step 2: Ensure that D[x] is in L′

L′ := L′ ∪ {D[x]};

// Step 3: Ensure that all meets are defined

if x covers more than one element in P then
for all normal cuts W ∈ L do

if min(W ,D[x]) 6∈ L′ then L′ := L′ ∪min(W ,D[x]);

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

Incremental Algorithm for DM-construction

Input: a nonempty finite poset P, its DM-completion L, element x
Output: L′ := DM-completion of P ∪ {x}

D[x] := the vector clock for x ;
Y := top(L);
newTop := max(D[x],Y);
// Step 1: Ensure that L′ has a top element

if Y ∈ P then L′ := L ∪ {newTop};
else L′ := (L− Y) ∪ {newTop};

// Step 2: Ensure that D[x] is in L′

L′ := L′ ∪ {D[x]};

// Step 3: Ensure that all meets are defined

if x covers more than one element in P then
for all normal cuts W ∈ L do

if min(W ,D[x]) 6∈ L′ then L′ := L′ ∪min(W ,D[x]);

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

Incremental Algorithm for DM-construction

Input: a nonempty finite poset P, its DM-completion L, element x
Output: L′ := DM-completion of P ∪ {x}

D[x] := the vector clock for x ;
Y := top(L);
newTop := max(D[x],Y);
// Step 1: Ensure that L′ has a top element

if Y ∈ P then L′ := L ∪ {newTop};
else L′ := (L− Y) ∪ {newTop};

// Step 2: Ensure that D[x] is in L′

L′ := L′ ∪ {D[x]};
// Step 3: Ensure that all meets are defined

if x covers more than one element in P then
for all normal cuts W ∈ L do

if min(W ,D[x]) 6∈ L′ then L′ := L′ ∪min(W ,D[x]);

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

Incremental Algorithm for DM-construction

Input: a nonempty finite poset P, its DM-completion L, element x
Output: L′ := DM-completion of P ∪ {x}

D[x] := the vector clock for x ;
Y := top(L);
newTop := max(D[x],Y);
// Step 1: Ensure that L′ has a top element

if Y ∈ P then L′ := L ∪ {newTop};
else L′ := (L− Y) ∪ {newTop};

// Step 2: Ensure that D[x] is in L′

L′ := L′ ∪ {D[x]};

// Step 3: Ensure that all meets are defined
if x covers more than one element in P then

for all normal cuts W ∈ L do
if min(W ,D[x]) 6∈ L′ then L′ := L′ ∪min(W ,D[x]);

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

IDML Example

(1,0,0) (0,1,0)

(1,0,0) (0,0,0)

(1,0,0) (0,1,0)

(1,1,0)

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

IDML Example

(1,0,0)

(2,0,0)

(0,1,0)

(0,0,0)

(1,0,0) (0,1,0)

(1,1,0)

(0,0,0)

(1,0,0)

(0,1,0)(2,0,0)

(2,1,0)

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

IDML Example

(1,0,0)

(2,0,0)

(0,0,1) (0,1,0)

(0,0,0)

(1,0,0)

(0,1,0)(2,0,0)

(2,1,0)

(0,0,0)

(1,0,0)

(0,1,0)

(0,0,1)

(2,0,0)

(2,1,1)

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

IDML Example

(1,0,0)

(2,0,0) (1,2,1)

(0,0,1) (0,1,0)
(0,0,0)

(1,0,0)

(0,1,0)

(0,0,1)

(2,0,0)

(2,1,1)

(0,0,0)

(1,0,0) (0,1,0) (0,0,1)

(2,0,0) (1,2,1)

(2,2,1)

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

IDML Example

(1,0,0)

(2,0,0) (1,2,1)

(0,0,1)

(0,1,2)

(0,1,0)

(0,0,0)

(1,0,0) (0,1,0) (0,0,1)

(2,0,0) (1,2,1)

(2,2,1)

(0,0,0)

(1,0,0)

(0,1,0) (0,0,1)

(2,0,0) (1,2,1)

(0,1,1)

(2,2,2)

(0,1,2)

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

Outline of the Talk

What is lattice completion?

Motivation

Normal Cuts

Incremental Lattice Completion Algorithms

Lattice Traversal Algorithms

Conclusions and Future Work

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

Related Work: Enumeration Algorithms

Input: a nonempty finite poset P
Output: enumerate all elements of L := DM-completion of P

Algorithm Time Space

Lexical (by Ganter84) O(mn3) O(n log n)
BFS [this paper] O(mw2(w + logwL)) O(wLw log n)
DFS [this paper] O(mw3) O(hLw log n)

The parameters are:
n size of the poset P m size of the lattice L of normal cuts
w width of the poset P wL width of the lattice L
hL height of the lattice L

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

Enumeration Algorithms

Enumerate all normal cuts without storing them

Traversal can be done in BFS, DFS, or lexical

Challenge: Not allowed to store the lattice (graph)

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

BFS Traversal Algorithm

Input: a finite poset P
Output: BFS Enumeration of DM(P)
G := bottom element ;
S := Ordered Set of VectorClocks initially {G};
(1) while (S is notEmpty)
(2) H := remove the smallest element from S;
(3) output(H);
(4) foreach event e enabled in H do;
(5) K := the smallest normal cut containing Q := H ∪ {e};
(6) if K is not in S, then add K to S;

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

BFS: Maintaining S

Keeping S as a queue does not work

Need the guarantee that if K has been enumerated then
K ∈ S
The order on S must preserve the order defined by the size of
the cut

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

BFS Example

(1,0,0)

(2,0,0) (1,2,1)

(0,0,1)

(0,1,2)

(0,1,0)
(0,0,0)

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

BFS Example

(1,0,0)

(2,0,0) (1,2,1)

(0,0,1)

(0,1,2)

(0,1,0)
(0,0,0)

(1,0,0) (0,1,0) (0,0,1)

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

BFS Example

(1,0,0)

(2,0,0) (1,2,1)

(0,0,1)

(0,1,2)

(0,1,0)
(0,0,0)

(1,0,0) (0,1,0) (0,0,1)

(2,0,0) (1,2,1)

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

BFS Example

(1,0,0)

(2,0,0) (1,2,1)

(0,0,1)

(0,1,2)

(0,1,0)
(0,0,0)

(1,0,0) (0,1,0) (0,0,1)

(2,0,0) (1,2,1) (0,1,1)

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

Depth First Search Enumeration of Normal Cuts

BFS requires space O(width(DM(P))

Width of the lattice of normal cuts can be large

DFS requires space O(height(DM(P))

height(DM(P)) ≤ |P|

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

Depth First Search Enumeration of Normal Cuts

Input: a finite poset P, starting state G
Output: DFS Enumeration of elements of DM-completion of P

(1) output(G);
(2) foreach event e enabled in G do
(3) K := smallest normal cut containing Q := G ∪ {e};
(4) if K has not been visited before then
(5) DFS-NormalCuts(K);

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

How to avoid revisiting cuts?

Visit a state only from the maximum predecessor.
(4) M := get-Max-predecessor(K) ;
(5) if M = G then
(6) DFS-NormalCuts(K);

(0,0,0)

(1,0,0) (0,1,0) (0,0,1)

(2,0,0) (1,2,1)

(2,2,1)

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

Application to Global Predicate Detection

Every one knows predicate B in the consistent cut G , if there
exists a consistent cut H such that

H satisfies B and

for every process i there exists an event e in G [i] such that all
events in H happened before e.

Everyone Knows B can be detected in the lattice of normal cuts
instead of consistent cuts.

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

Conclusions and Future Work

An Incremental Algorithm IDML to generate completion
lattice

BFS and DFS enumeration of normal cuts. DFS has O(mw3)
time complexity.

Applications to global predicate detection

Question: Is there a space-efficient algorithm with time complexity
O(mw log n)?

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

Thank You

Any questions?

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

Complexity of the Incremental Algorithm

Input: a nonempty finite poset P, its DM-completion L, element x
Output: L′ := DM-completion of P ∪ {x}

// Step 3: Ensure that all meets are defined
if x covers more than one element in P then

for all normal cuts W ∈ L do
if min(W ,D[x]) 6∈ L′ then L′ := L′ ∪min(W ,D[x]);

Time dominated by step 3: Use balanced binary trees to store L
Time: O(w logm) to check if a vector in L
Due to for loop, we get O(mw logm) for elements that cover more
than one element
If x does not cover more than one element, then O(w logm)
Building the lattice for the entire poset:
O(rmw logm + (n − r)w logm). =O(rmw logm) for r > 1.

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

Using Closures

Given any subset Q of the poset:
Qul = the smallest normal cut that contains Q

Computing Qul is a closure operator, i.e.,
1 Q ⊆ Qul (it is extensive)
2 Q1 ⊆ Q2 ⇒ Qul

1 ⊆ Qul
2 (it is monotone)

3 (Qul)ul = Qul (it is idempotent)

lattices ≡ family of closed sets ≡ topped intersection-closed
family of sets.

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

How to get the maximum predecessor?

Expand K in the dual poset. Choose the biggest successor.
function VectorClock get-Max-predecessor(K) {
//returns K’s maximum predecessor normal cut
(1) H = MinimalUpperBounds(K); // H := Ku

(2) foreach event f enabled in the cut H in Pd do
(3) tempf := H − {f }; // advance on f in Pd

(4) // get the set of lower bounds on tempf
(5) pred := MaximalLowerBounds(tempf) using H l ;
(6) if (levelCompare(pred , maxPred) = 1) maxPred = pred ;
(7) return maxPred ;

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

Application to Global Predicate Detection

every one knows the predicate B in the consistent cut G , if there
exists a consistent cut H such that

H satisfies B and

for every process i there exists an event e in G [i] such that all
events in H happened before e.

Theorem

Let B be any global predicate and G be a consistent cut such that
E (B,G). Then, there exists a normal cut N such that E (B,Nu)
and Nu is less than or equal to G.

The least consistent cut in which Everyone Knows B corresponds
to Nu for a normal cut N.

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations

