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Model of a Distributed Computation: Poset

distributed computation = poset (partially ordered set)
(E ,→) where
E = is the set of events, and
→ is (happened-before) relation.
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Events can be timestamped in an online fashion using Vector
Clocks such that e → f ≡ V (e) < V (f ).
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Motivation: Computing Meets and Joins
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Meet (greatest lower bound) of a subset of events
Interpretation: most recent common cause
meet of {d , e} = d u e = {a}
meet of {a, b} does not exist
meet of {e, f }

does not exist

Join (least upper bound) of a subset of events (t)
Interpretation: least common consequence

Lattice: a poset in which all finite subsets have meets and
joins.
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Smallest Lattice Completion

Problem Statement: Given a poset (a computation), find the
smallest lattice that contains P as a subposet.

a

d e

c

f

b x1

a

b c

d e

x2

x3

f

(L,u,t) is an algebra.PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations



Consistent Cut of a Distributed System
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Consistent cut = set of events executed so far
A subset G of E is a consistent cut (consistent global state) if

∀e, f ∈ E : (f ∈ G ) ∧ (e → f )⇒ (e ∈ G )
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Motivation 2: Detecting Global Conditions

Problem: Given a global predicate find a consistent cut that
satisfies the given predicate
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Normal Cuts of a Poset
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Q l : Lower Bounds of a set
Example: {c , d}l = {a}
{d}l = {a, b, d}
Qu:Upper Bounds of a set
Example: {a, b, d}u = {d}
({a, b, d}u)l = {a, b, d}
{a, b}ul = {d}l = {a, b, d}
A set Q ⊆ P is a normal cut if Qul = Q.
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Dedekind–MacNeille Completion of a Poset

Dedekind–MacNeille completion of P = (X ,≤) is the poset formed
with the set of all the normal cuts of P under the set inclusion.

DM(P) = ({A ⊆ X : Aul = A},⊆).
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Related Work: Incremental Algorithms

Elements of the poset arrive in a order preserving →
Input: poset P, its DM-completion L, element x
Output: L′ := DM-completion of P ∪ {x}

Algorithm Time Complexity Space

Ganter and Kuznetsov 98 O(mn3) O(mn log n)
Nourine and Raynaud 99, 02 O(mn2) O(mn log n)
Algorithm IDML [this paper] O(rwm logm) O(mw log n)

The parameters are:
n size of the poset P m size of the lattice L of normal cuts
w width of the poset P r elements with > 1 lower cover
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Ideas in Our Incremental Algorithm

Use vector clocks to represent cuts

For any x ∈ P = (X ,≤), let D[x ] = {y ∈ X |y ≤ x}
D[x ] is always a normal cut.

A finite poset is a lattice iff it has the top element and all
meets are defined.
join(Q) = meet (Qu)

Whenever a new element arrives, ensure that
(1) there is a top element, and
(2) all meets are defined.

If an element x covers a single element, then it is sufficient to
add D[x ].
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Using Vector Clocks
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Incremental Algorithm for DM-construction

Input: a nonempty finite poset P, its DM-completion L, element x
Output: L′ := DM-completion of P ∪ {x}

D[x ] := the vector clock for x ;
Y := top(L);
newTop := max(D[x ],Y );
// Step 1: Ensure that L′ has a top element

if Y ∈ P then L′ := L ∪ {newTop};
else L′ := (L− Y ) ∪ {newTop};

// Step 2: Ensure that D[x ] is in L′

L′ := L′ ∪ {D[x ]};

// Step 3: Ensure that all meets are defined

if x covers more than one element in P then
for all normal cuts W ∈ L do

if min(W ,D[x ]) 6∈ L′ then L′ := L′ ∪min(W ,D[x ]);
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IDML Example
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IDML Example

(1,0,0)

(2,0,0)

(0,1,0)

(0,0,0)

(1,0,0) (0,1,0)

(1,1,0)

(0,0,0)

(1,0,0)

(0,1,0)(2,0,0)

(2,1,0)

PDSL, UT Austin Lattice Completion Algorithms for Distributed Computations



IDML Example
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IDML Example
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IDML Example
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Related Work: Enumeration Algorithms

Input: a nonempty finite poset P
Output: enumerate all elements of L := DM-completion of P

Algorithm Time Space

Lexical (by Ganter84) O(mn3) O(n log n)
BFS [this paper] O(mw2(w + logwL)) O(wLw log n)
DFS [this paper] O(mw3) O(hLw log n)

The parameters are:
n size of the poset P m size of the lattice L of normal cuts
w width of the poset P wL width of the lattice L
hL height of the lattice L
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Enumeration Algorithms

Enumerate all normal cuts without storing them

Traversal can be done in BFS, DFS, or lexical

Challenge: Not allowed to store the lattice (graph)
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BFS Traversal Algorithm

Input: a finite poset P
Output: BFS Enumeration of DM(P)
G := bottom element ;
S := Ordered Set of VectorClocks initially {G};
(1) while (S is notEmpty)
(2) H := remove the smallest element from S;
(3) output(H);
(4) foreach event e enabled in H do;
(5) K := the smallest normal cut containing Q := H ∪ {e};
(6) if K is not in S, then add K to S;
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BFS: Maintaining S

Keeping S as a queue does not work

Need the guarantee that if K has been enumerated then
K ∈ S
The order on S must preserve the order defined by the size of
the cut
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BFS Example
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BFS Example
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BFS Example
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Depth First Search Enumeration of Normal Cuts

BFS requires space O(width(DM(P))

Width of the lattice of normal cuts can be large

DFS requires space O(height(DM(P))

height(DM(P)) ≤ |P|
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Depth First Search Enumeration of Normal Cuts

Input: a finite poset P, starting state G
Output: DFS Enumeration of elements of DM-completion of P

(1) output(G );
(2) foreach event e enabled in G do
(3) K := smallest normal cut containing Q := G ∪ {e};
(4) if K has not been visited before then
(5) DFS-NormalCuts(K);
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How to avoid revisiting cuts?

Visit a state only from the maximum predecessor.
(4) M := get-Max-predecessor(K ) ;
(5) if M = G then
(6) DFS-NormalCuts(K);

(0,0,0)

(1,0,0) (0,1,0) (0,0,1)

(2,0,0) (1,2,1)

(2,2,1)
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Application to Global Predicate Detection

Every one knows predicate B in the consistent cut G , if there
exists a consistent cut H such that

H satisfies B and

for every process i there exists an event e in G [i ] such that all
events in H happened before e.

Everyone Knows B can be detected in the lattice of normal cuts
instead of consistent cuts.
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Conclusions and Future Work

An Incremental Algorithm IDML to generate completion
lattice

BFS and DFS enumeration of normal cuts. DFS has O(mw3)
time complexity.

Applications to global predicate detection

Question: Is there a space-efficient algorithm with time complexity
O(mw log n)?
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Thank You

Any questions?
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Complexity of the Incremental Algorithm

Input: a nonempty finite poset P, its DM-completion L, element x
Output: L′ := DM-completion of P ∪ {x}

// Step 3: Ensure that all meets are defined
if x covers more than one element in P then

for all normal cuts W ∈ L do
if min(W ,D[x ]) 6∈ L′ then L′ := L′ ∪min(W ,D[x ]);

Time dominated by step 3: Use balanced binary trees to store L
Time: O(w logm) to check if a vector in L
Due to for loop, we get O(mw logm) for elements that cover more
than one element
If x does not cover more than one element, then O(w logm)
Building the lattice for the entire poset:
O(rmw logm + (n − r)w logm). =O(rmw logm) for r > 1.
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Using Closures

Given any subset Q of the poset:
Qul = the smallest normal cut that contains Q

Computing Qul is a closure operator, i.e.,
1 Q ⊆ Qul (it is extensive)
2 Q1 ⊆ Q2 ⇒ Qul

1 ⊆ Qul
2 (it is monotone)

3 (Qul)ul = Qul (it is idempotent)

lattices ≡ family of closed sets ≡ topped intersection-closed
family of sets.
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How to get the maximum predecessor?

Expand K in the dual poset. Choose the biggest successor.
function VectorClock get-Max-predecessor(K) {
//returns K’s maximum predecessor normal cut
(1) H = MinimalUpperBounds(K ); // H := Ku

(2) foreach event f enabled in the cut H in Pd do
(3) tempf := H − {f }; // advance on f in Pd

(4) // get the set of lower bounds on tempf
(5) pred := MaximalLowerBounds(tempf ) using H l ;
(6) if (levelCompare(pred , maxPred) = 1) maxPred = pred ;
(7) return maxPred ;
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Application to Global Predicate Detection

every one knows the predicate B in the consistent cut G , if there
exists a consistent cut H such that

H satisfies B and

for every process i there exists an event e in G [i ] such that all
events in H happened before e.

Theorem

Let B be any global predicate and G be a consistent cut such that
E (B,G ). Then, there exists a normal cut N such that E (B,Nu)
and Nu is less than or equal to G.

The least consistent cut in which Everyone Knows B corresponds
to Nu for a normal cut N.
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