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Abstract

The standard Byzantine Agreement (BA) problem requiresfaaity processes to agree on
a common value. In many real-world applications, it is intpot that the processes agree on
the correct value rather than any value. In this paper, we present a gmoleklled Accurate
Byzantine Agreement (ABA) in which all processes get a comife@dback (or pay®) from
the environment indicating if the value they agreed uponeaaeect or not. The solution to this
problem, referred to as the ABA algorithm, requires the faarlty processes to incorporate the
feedback so that their chance of choosing the correct vaipeaves over subsequent iterations
of the algorithm. We present an algorithm that solves the ABéblem based on two key ingre-
dients: a standard solution to the BA problem and a mul@pile method to maintain and update
process weights indicative of how often they are correct.giWe guarantees on the accuracy of
the algorithm based on assumptions on the accuracy of tlregses and the proportion of faulty
and non-faulty processes in the system. For each iterafitime weight of accurate processes
is at least 34" the weight of the non-faulty processes, the algorithm asdacides on the cor-
rect value. When the non-faulty processes are accuratepnatbability greater than/2, the
algorithm decides on the correct value with very high prélisitafter some initial number of
mistakes. In fact, among processes, if there exists eveneprocess which is accurate for all
iterations, the algorithm is wrong onfy(logn) times for any large number of iterations of the
algorithm.
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1 Introduction

In real-world applications, processes in a distributedesysmay be compromised, leading to mali-
cious or arbitrary behavior. The Byzantine Agreement (Bidjtem [PSL80, LSP82, FM97, DRS90,
GM93] requires all non-faulty processes to agree on a compimary value given that some of the
processes may show arbitrary faulty or Byzantine behawothe standard version of the problem,
the value that is agreed upon may be either of the binary saadong as it is proposed by at least
one non-faulty process. In some scenarios, it is betterhfersystem to agree on a specific value
among the two binary values. For example, suppose in aldigdd control system a coordinated
action needs to be taken (such as opening or closing a vadyending upon the observations made
by possibly faulty distributed processes. Depending uperotitcome of the action, the environment
can provide a feedback if the action taken was correct or Astanother example, suppose that the
system is making decision on whether to sell a stock baseéammendations made by multiple
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processes. The final closing price of the stock provides @bfsek for the decision made. Thus, the
system or the environment can usually provide feedbackemdm-faulty processes about which of
the values was preferred or correct for that iteration ofateement algorithm. Can the non-faulty
processes use this feedback in a way that the probabilith@dsing the correct value increases in
subsequent iterations of the algorithm?

We refer to this version of the BA problem as Accurate ByzanfAgreement (ABA) and define it
as follows. Assume a set afprocesses among which at mdgByzantine faults can occur. All non-
faulty processes are required to make decisions for meltmlinds or iterations. For each iteration,
a process can propose a binary value 0 or 1. All nonfaultyge®es must agree on each decision and
must take finite time to agree. After each decision, the envirent provides a common feedback to
all processes indicating if their decision was correct awg. The goal is to design an algorithm that
maximizes the (expected) number of correct decisions byfawlty processes over iterations of the
algorithm.

In this paper, we give an algorithm, referred to as the ABAoatgm for the ABA problem.
Our method relies on maintaining a common weight vectorlgiratesses and updating this vector
based on the feedback for each iteration. Initially, theglveof each process is a non-negative value
proportional to the trust of the system on that process.éelfdlis no prior information available, then
the weights can simply be initialized tgrl. We use a weighted majority rule to determine the agreed
upon value for the ABA problem. Once the value is committé@, feedback determines whether
the decided value was a mistake or not. An important aspebieddlgorithm is how the weights are
updated based on the feedback. One possibility is to penalizorocesses that proposed a wrong
value after each iteration. Another possibility is to p&ebprocesses only if the value decided in
that iteration was wrong. Somewhat surprisingly, the bihasf the ABA algorithm may crucially
depend upon which rule is used. We provide guarantees orctheaey of the algorithm based on
different assumptions on the accuracy of the processes fiacedt weight update rules.

Byzantine Agreement is a well-studied problem in the fieldistributed computing with re-
search in both the theoretical [KS10, ADGH06, HM97, FM98] anactical aspects [CL99, CMI06,
CMW*09]. For the synchronous model of communication (as assum#éds paper), it is known
that agreement can be achieved only when 3f + 1 [PSL80]. In our work in [GB10], we present
algorithms and bounds for weighted BA, where processesssigraed weights according to the ap-
plication. In that paper, we give Byzantine agreement pa®that work even when < 3f + 1,
where f is the number of processes that have failed so long as tleeafthe weight of the failed
processes to the weight of nonfaulty processes is at mi@stWe also present techniques to increase
the weights of the non-faulty processes relative to thaheffaulty processes based on detection of
faulty behavior. Weighted BA problem does not have any motbaccuratevalue for agreement
or environmental feeback as required for the ABA problemcalt be used as a subroutine in the
ABA algorithm as shown in Section 5. Other approaches to BAuite the use of artificial neural
networks [WKO01, LEO7], randomized algorithms [Rab83, Bilp& authentication based algorithms
[DS83, PSL80]. None of these works explore the notion of eateuprocesses or the correct value
for agreement. Our work can be applied to extend the restttese papers.

The concept of weighted majority and multiplicative weigipdate is used in many disciplines
such as learning theory, game theory and linear programiiial®7, LW94]. In the literature for
this methodology, the experts are independent entitieghaard is no notion of liars that can collude
and confuse other experts into suggesting the wrong valu¢hid paper, we assume the presence
of malicious Byzantine experts and design algorithms ter&de them. In summary, we make the
following contributions:

e The ABA ProblemWe introduce the problem of Accurate Byzantine Agreemetiiere the
processes have to agree on a correct binary value as deeneetitpnmental feedback. The
goal is to use this feedback to improve the accuracy of theridhgn in subsequent iterations.
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e The ABA Algorithm We present an algorithm to solve the ABA problem that useta@a-s
dard solution to the BA problem and a multiplicative methodrtaintain and update process
weights. We make guarantees on the accuracy of the algofiththe following models:

— Deterministic Accuracy We make assumptions on two ratios, thecuracy ratio(a)
and the initial fault ratio p). The accuracy ratio is the ratio of weight of the accurate
processes to the weight of the non-faulty processes. THeré&io r is the ratio of the
weight of the faulty processes to that of the non-faulty peses. When > 3/4, the
algorithm is always accurate ih < 1/2. We relax this bound and show that when
a > (1/2+d), forany 0< d < 1/2, the algorithm is always accuraterif < 2d .

— Probabilistic Accuracy We make assumptions on the probability with which nontfaul
processes propose the correct vagignd on the fault ratio. Wheng > 1/2 + d for any
0 < d < 1/2, the probability of the algorithm being inaccurate is exgutially small if
r < 2d.

— At-Least-One Accuracyif there exists at least one process such that it is inatewata
mosth times, then the ABA algorithm is inaccurate ordyb + logn) times. Hence, the
algorithm tracks the most accurate process in the system.

e Experimental EvaluationWe present simulation results evaluating the performaridaree
distinct solutions: the ABA algorithm (with update on inacacy), the ABA algorithm with
update on every iteration (always update) and the standgzdrBine Agreement (never up-
date). While always-update and never-update perform vetyfar one of the models each,
they perform poorly for the other one. The update on inaayuraethod performs well for
both the models. The experimental results are presentée iappendix due to lack of space.

2 Model and Definitions

We consider a distributed systemroprocessesR; ... P, with a completely connected topology. We
assume that the underlying systensysmichronous.e., there is an upper bound on the message delay
and on the duration of actions performed by processes. Tiencmication system is assumed to be
reliable and hence, no messages are dropped. The proceagasdergo Byzantine failures, i.e.,
fail in an arbitrary fashion; in particular, they may lie aoollude with other failed processes to foil
any algorithm. However, they may not fake their identity.

We classify the processes in our system based on their lmehat® non-faulty, accurate and
faulty processes. While the notion of faulty and non-fapitgcesses is common to all BA problems,
we introduce the concept of accurate processes that capghaedea of a correct proposal. A non-
faulty process is considereatcuratefor an iteration if it proposes the correct value for thatdten.

In the standard BA problem, all non-faulty processes musteagn a common value. The only
requirement on the decided value is that it must be propogechbn-faulty process. In our proposal,
the value decided by the algorithm is important as there iswaard function associated with the
value decided, awarded by the environment or the system.cdinect value is assigned 1 unit of
reward and an incorrect value is assigned 0 units, i.e.,warte Based on the reward, we replace the
standard concept of validity with the notion afcuracy Validity specifies that the value decided by
the non-faulty processes must have been proposed by ableastf the non-faulty processes. This
condition eliminates the trivial solution where all non#ty processes agree on a fixed value all the
time. In our system, the accuracy requirement eliminatedritial solution. We define our problem
below.

Definition 1 (Accurate Byzantine Agreement with Feedback) Considencegses consisting of non-
faulty and faulty processes. There are multiple binary siecis that these n processes are required
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to make. For each possible decision (iteration of the ABAleim), each of the non-faulty processes
proposes eithed or 1. An algorithm that solves the Accurate Byzantine Agreemitht Feedback
(ABA) problem, must guarantee the following properties:

e Agreement: For each iteration, all non-faulty processesidie on the same value.
e Termination: The algorithm terminates in a finite numberafmds.

e Accuracy: The non-faulty processes agree on a value thatesngd correct by environmental
feedback. We define three distinct models of accuracy regeints:

— Deterministic Accuracy requires that all non-faulty presesalwaysdecide on a value
that is correct.

— Probabilistic accuracy requires that the probability of kiilag a mistake is small assuming
that non-faulty processes propose the correct value witkalility greater tharil/2.

— Cumulative accuracy requires that the total number of nkiskamade by the algorithm is
bounded assuming that there is at least one process thatanakg few mistakes (also
referred to as at-least-one accuracy).

To incorporate the feedback provided by the environmentsg@a a non-negative weigh to
each procesB; that provides an estimate, possibly erroneous, of the ptased on that process. We
summarize our notation in table 1.

Table 1: Notation

n Number of processes f Number of Byzantine faults

W Weight of proces$; a | Total weight of accurate processes
p | Total weight of non-faulty processasq | Total weight of faulty processes

r Fault Ratio € g/p) a Accuracy ratio € a/p)

3 The ABA Algorithm

In this section, we propose an algorithm (Figure 1) for theAABoblem. The algorithm is identical
at all processes and executes in synchronous iterationgadkt process, we maintain two vectors
W andV. VectorW stores the weight of each process while vedtastores the value proposed by
each of them. Initially, the weight of each process is a negative value directly proportional to the
initial trust on that process. In each iteration of the alion, non-faulty process proposes a value
and executes Step 1 to Step 5 of the algorithm.

In Step 1, all processes exchange their proposed valuesptdgteV. If no value is received
from some process, the corresponding entry is set to 0. &ty processes may send conflicting
values to other processes, it is not guaranteed that thextor is identical at all non-faulty processes
after Step 1.

In Step 2, the algorithm requires all non-faulty processesgtee on the value proposed by every
other process and thereby make Yheector identical at all non-faulty processes after Step 2nyf
iteration. For this step, we can use any standard BA algaorithch as the King algorithm [BGP89]
that requiren > 3f + 1, or the Queen algorithm [BG89] that requines> 4f + 1. The validity
property satisfied by these algorithms ensures that the wd\M[i] for any non-faulty procesp; is
exactly the value proposed IB;.

In Step 3, processes determine the sum of weights of all psesethat support value 0 or 1. The
value with larger support, i.e., the weighted majority i®®#n as the value ieecided
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var
W: array[1..n] of float initialized according to system trust (default value all 1/n);
V: array[1..n] of {0, 1} initialized to O;

for iteration:= 1to t do
V[i] = proposed value byP;;

/I Step 1: Exchange values with all
for j:1tondo
send V[i] to Pj;
receive V[ j] from Pj; //if (no value received from P;), V[j] = 0;

/I Step 2: Agree on V vector
for j: 1to ndo: run standard Byzantine Agreement on V[ |];

/I Step 3: Compute support for values 0 and 1 and choose the majority value
float SO = ¥, {W[j] | V[j] = O float s1 = 3,;{W[j] | V[j] = 1;
if (s0 > sl1) then decided:= 0; elsedecided:= 1;

/I Step 4: Wait for reward and determine the correct value based on the feedback
if (reward = 1) then correctVal:= decided
elsecorrectVal:= 1 — decided //the process decided on the wrong value

/I Step 5: //multiplicative weight update on inaccuracy: ABA(UI)
if (reward = 0) then
for j:1tondo
if (V[j] # correctVa) then W[j] = (1 - ¢€) =« W[]];

/I Alternative Step 5’: //multiplicative weight update on all iterations ABA(UA)
for j:1tondo
if (V[]] # correctVa) then W[j] = (1 -€) =« W[]];

endfor;

Figure 1: The ABA Algorithm aP;

In Step 4, processes receive the common feedback from tiveement to determine the correct
value.

In Step 5, we carry out the update of weights. If the valuedkstivas incorrect, then the weights
of the processes that proposed an incorrect value is rediycgmme constant proportian0 < € < 1)
of its previous weight (multiplicative update). As an afigtive to step 5, in step 5', we carry out
the weight update on all iterations irrespective of the relalue. If we update weights only on
inaccuracy, we refer to the algorithm as ABA(UI) (“updateioaccuracy”). If we update weights on
all iterations, we refer to the algorithm as ABA(UA) (“updadlways”). We now prove that both the
versions of the algorithm guarantee the agreement andrtation property specified in definition 1
independent of the assumptions on accuracy.

Theorem 1 (Agreements Termination) Assuming & 3f + 1, all iterations of the ABA algorithm



guarantee agreement and termination.

Proof:
Agreement We show that after Step 2 of every iteration, all non-fagltgcesses have identicél
andV vectors. The proof is by induction on the iteration numbenth& first iteration, the vectdd is
identical at all non-faulty processes by the initializatidNow assume that the vectéfis identical at
the beginning of any iteration Because all processes agree on ve¢tasing Byzantine agreement,
all non-faulty processes will have identiddlafter Step 2. This implies that all non-faulty processes
will have identical values 0$0, sl1, anddecidedafter step 3 because these variables depend only on
W andV. Since the reward function is assumed to be common, all aokyf processes will have
identical value ottorrectValand therefore will updat&/ in an identical manner. The value decided
depends only oV andV vectors and hence all non-faulty processes agree on thesduse
Termination This is a synchronous algorithm which executes in finite benof rounds and
hence, termination is satisfied trivially. [ |
The ABA algorithm guarantees another useful property: ibafaulty process proposes an ac-
curate value, then it can never be penalized. This prop&pipits the validity condition satisfied by
the BA algorithm used in Step 2. A non-faulty procé&sswill send the same value to all non-faulty
processes. Therefore, all non-faulty processes will hdeaticalV[i] when they invoke the BA al-
gorithm. Therefore, by validity of the BA algorithiv][i] at all non-faulty processes will be identical
to the one proposed ;.

4 Accuracy Guarantees of the ABA Algorithm

In the previous section, we have shown that ABA algorithmrgoees agreement and termination.
This section focuses on the accuracy guarantees the &lgotdn provide based on varying assump-
tions about the accuracy of the processes in the systeme Siacdard Byzantine agreement is used
in Step 2, in this section we assume that 3f + 1, according to the lower bound for the BA problem

[PSL80]. In Section 5, we consider the case when3f + 1 does not hold.

4.1 Deterministic Accuracy

For deterministic accuracy, we make guarantees based @tcteacy ratiar (ratio of the weight of
accurate processes to the weight of non-faulty processelstha fault ratio of the system(ratio of

the weight of faulty processes to the weight of non-faultggaisses). We show thatdf > 3/4 for
each iteration and if the initial fault ratip < 1/2, then the algorithm guarantees accuracy. Then we
relax this requirement and show that it idistient thata > (1/2 + d) for each iteration such that

ro < 2d, to guarantee accuracy.

We first show that as long as > 1/2 for each iterationt never increases if we update weights
only on error. This enables us to make guarantees just bastt anitial fault ratio of the system.
The proof crucially depends on the fact that we update thghtgiof inaccurate processes only when
the algorithm chooses the incorrect value.

Lemma 1 (Non-Increasing Fault Ratio) For any iteration, if the acauay ratio a > 1/2, then the
fault ratio r cannot increase after that iteration of the A@A) algorithm.

Proof: In the ABA(UI) algorithm, the weights of the processes clemgnly when the algorithm
makes a mistake. Consider the weight of the non-faulty m®e®p. Sincea > 1/2, when the
algorithm makes a mistake, greater th#@ of the weight will be unfiected and less thawy2 of the



weight will be reduced by a factor of 4 e. Hence, ifp’ is the weight of the non-faulty processes
after a weight update,
P'>p/2+(1-€p/2=p2-¢€)/2 1)
Now consider the weight of the faulty processgd he algorithm chooses the wrong value only
when a majority weight, i.e> (p + q)/2 of the weights are inaccurate. Since greater thghof
the weights are accurate, at legg? of the weights are inaccurate. Hencey'iis the weight of the
faulty processes after a weight update,

q<09/2+(1-€09/2=0q(2-¢€)/2 ()

Dividing equation 2 by equation 1, we get/p’ < q/p. [ |

Note that the proof for lemma 1 does not hold for the alwaysatgdule. If the faulty processes
keep proposing the correct value, then the ABA(UA) alganithill increase the relative weight of the
faulty processes and consequently the fault ratio. If thé fatio increases beyond 1 then Byzantine
processes can force the ABA algorithm to choose incorrdaeven crucial decisions.

In the following theorem we show thatdf > 3/4, then the ABA(UI) algorithm never makes a
mistake as long as the initial fault ratio is less thd@.1

Lemma 2 If the accuracy ratior > 3/4, and the initial fault ratio p < 1/2, for all iterations, then
the ABA(UI) algorithm guarantees accuracy.

Proof: If the weight of accurate proposals is at leapf4 then the weight of inaccurate proposals
is at mostp/4 + g. The algorithm selects the correct value if the accurateyltés more than the
inaccurate weight. We need to show that4 + q < 3p/4. Dividing both sides by and rearranging,
this is equivalent to showing that< 1/2. Sincerp < 1/2, from lemma 1, for all iterations, < 1/2.
[ |
In the following theorem, we show that even if the accuradiors just above 12, the ABA
algorithm never makes a mistake as long as the initial fatilb is less than a certain threshold.

Theorem 2 (Deterministic Accuracy) If the accuracy ratin> 1/2 + d and if the initial fault ratio
ro < 2d, for any0 < d < 1/4, for all iterations, then the ABA(UI) algorithm guaranteascuracy.

Proof: If the weight of accurate proposals is at le@$l/2 + d), then the weight of inaccurate
proposals is at mogi(1/2 — d) + g. The algorithm selects the correct value if the accuratees
more than the inaccurate weight. Therefore, we ng@d2 — d) + g < p(1/2 + d). This condition is
equivalent tar < 2d. Sincerg < 2d, from lemma 1, for any iteratiom, < 2d. [ |
Note that wherd equals 14, this theorem reduces to lemma 2. Thus, theorem 2 geresaliz
lemma 2, wherd < 1/4. Accuracy of the ABA(UI) is guaranteed if either an ovenlmhi@g majority
of non-faulty processes is accuratkig large) or there is a large percentage of non-faulty pseEes
(ro is small).
The following theorem handles the case when a majority ohth#aulty processes are accurate
but the fault ratio is not smaller thami2

Theorem 3 (Accuracy after some initial mistakes) If the accuracyagati> 1/2+d, for any0 < d <
1/4, for all iterations, then the ABA(UI) algorithm guaranteascuracy after some initial mistakes.

Proof: (Sketch) Similar to the proof of lemma 1, it is easy to shovt thare exists a constaptsuch
that the fault ratio decreases by a factor of at ledstlr any mistake. Therefore, eventually the fault
ratio becomes less thamn.2Subsequently, by theorem 2 the algorithm ABA(UI) does nakenany
mistake. |
It is easy to show that ABA(UA) algorithm can be forced to makdounded mistakes by the

Byzantine processes for any accuracy ratio less thidn Byzantine processes may initially propose
correct values to increase the fault ratio. Once the fatiti iehigh, they can ensure that ABA makes
mistakes. They can repeat this cycle forever.



4.2 Probabilistic Accuracy

For probabilistic accuracy, we make guarantees based oprtf@bility of accuracy of each non-
faulty process, and the fault ratia, of the system. We show thatgf> 1/2+d (0 < d < 1/2), and
r < 2d, the ABA algorithm guarantees accuracy with high probghbili

Theorem 4 (Probabilistic Accuracy) Let all weights in the system b§iri]. If the accuracy prob-
ability of non-faulty processg$> 1/2 + d and the fault ratio r< 2d, for any(0 < d < 1/2), for all
iterations, then the ABA algorithm guarantees accuracywibbability greater tharl — ((l%;fl,ﬁ))#,
whereu = p(1/2 + d) andé = (2d —r)/(2d + 1).

Proof: Let X; be the random variable indicating the non-faulty prod@ssaking an accurate pro-
posal. LetX = }; w; X, wherew; is the weight of procesB;. We haveE[X] = 1/2 + d. Therefore,
E[X] = (1/2 +d) XZiwi = p(1/2 + d).
Letu = E[X]. We now show that (+ 6)u = (p + g)/2.
(1-6u=@d+1-(2d-r))/(2d+1)=p=(2d+1)/2=(1+r)p/2=(1+a/p)p/2=(p+a)/2.
Whenr < 2d < 1, we get that < § < 1. Hence, from Cherrts bound, we have,
Pr[ABA algorithm makes wrong decision]
= Pr[sum of all weights supporting the correct vakidp + q)/2)] { From the algorithnj
< Pr[X < (p+ q)/2)] { Considering only non-faulty processges
= Pr[X < (1 - 6)u] { Shown abovg
< ((l_‘;%)ﬂ, { From Cherné’s bound and < § < 1}. |
In %‘heorem 4, the error probability depends upcea (2d-r)/(2d+1). Asr decreases,increases.
We now show that for the ABA(UA) algorithm the ratids expected to decrease exponentially with
increasing iterations.

Theorem 5 (ABA(UA): Exponentially Decreasing Expected Fault Rakidhe accuracy probability

of non-faulty processes is at leds® + d, and the accuracy probability of faulty processes is attmos
1/2 — d, then there exists k 1, such that after j iterations of the ABA(UA) algorithm, thepected
ratio of the weight of the non-faulty processes to the weiglthe faulty processes is at least k.

Proof: We first show a bound on the expected weight of a non-faultggs® aftejj iterations. Let the
initial weight of a nonfaulty process ). Let M; be the random variable denoting the multiplicative
factor at iteration for a non-faulty process. L&V, be the random variable denoting weight of a non-
faulty process aftey iterations. It is clear that for ABA(UA) algorithmyv; = WQH:leMi. The
multiplicative factor for any iteration depends on the eonimental feedback and is independent of
other iterations. HenceE[Wj] = WoIT_jE[Mi] > WollZ;(1/2 +d) x 1+ (1/2 - d) « (1 - ¢) =
Wo(l —€/2+ dE)J.

Similarly, since the probability that a faulty process nmmkecorrect proposal is at most2l- d,
the expected weight of a faulty process afféterations of the ABA(UA) algorithm is at most @
€/2 — de)! times its original weight.

We now show that the expected fault ratio decreases exgatgntith the number of iterations.
Let pop andqp be the intial weights of non-faulty and faulty processeshshetgo/po = ro. LetS;
andT; be the random variables to denote weights of the non-fauttggsses and faulty processes
after j iterations of the ABA(UA) algorithm. Since the expected gliof each non-faulty process
after j iterations is at least (t €/2 + de)! times its original weight; by linearity of expectation,
E[Sj] > po* (1—€/2+de)). Similarly, E[T;] < go* (1—€/2—de)l. We now boundE[S;/T;]. Using
independence d; andTj, we get thatE[S;/T;] = E[S;] = E[1/T;]. We now use the fact that for
any nonnegative random variabfe E[1/X] > 1/E[X] which can be shown using Jensen’s inequality
(E[T(X)] = f(E[X]) for convex f). Therefore,



E[S;] = E[1/T;] = E[Sj] = 1/E[T;]

Po(1—€/2+de)] = 1/ro* (1+ 2de )j

= go+(1-€/2—de)! T—¢/2—de

By definingk = (1 + %), we get the desired result. Because @ < 1 and O< d < 1/2,

(1 - €/2 — de) is guaranteed to be positive which ensukes1. [ |
Remark The above theorem can be generalized to the case when unlbn{feocesses are ac-
curate with probability at least/2 + d; and faulty processes are accurate with probability at most
1/2 — d. In this casek = (1 + %). Whend; = d, we get the original value df. Also when

d> = —d; (faulty processes are as accurate as non-faulty processeggtk equals 1.

4.3 At-Least-One Accuracy

For this section, we assume that there is at least one praotéiss system that is inaccurataly
for a small number of iterations of the ABA algorithm. Thissasption is sfficient to guarantee
cumulative accuracyi.e., a bound on the total number of mistakes made by theitigo Our
results are based on the method of weighted majority withtiplighative updates [Kal07]. We first
consider ABA(UI) algorithm. In the following theorem, weash that ABA(UI) guarantees accuracy
for a large number of iterations.

Theorem 6 (At-Least-One Accuracy, ABA(UI)) Assume Bf +1. If there exists at least one process
such that is inaccurate at most b out of j iterations of the ABIA\algorithm, then the algorithm is
inaccurate at mos2(1+ €)b + (2/¢) logn times.

Proof: The proof follows from standard arguments in multiplicatiupdate method [Kal07]. We
assume that the process weights are all initialized/to 1Let ¢(i) be the sum of all the weights
of the processes at the end of iterationSuppose that for any iteratianthe ABA(UI) algorithm

is wrong. This means that the weighted majority of the valnethe proposed vector were wrong
and hence a majority of the weights will decrease by-(d) of their previous value. Therefore,
o) < (i —1)/2+ ¢(i —1)/2 % (1 - €) = ¢(i — 1)(1 - €/2). The total weight, at the beginning of the
algorithm,#(0) is equal to one. Suppose that the ABA(UI) algorithm makég mistakes in the first

j iterations. Afterj iterations of ABA(UI), we get(j) < ¢(0)(1 - e/2)™D = (1 — ¢/2)™D),

Now consider a nonfaulty process that is inaccurate at imosit of j iterations. In spite of the
presence of Byzantine processes, ABA(UI) algorithm guaesthat this process is never penalized
when it is accurate. The weight of this process is at least §Px(its initial weight) = (1 — €)°/n.
This weight is less than the total weight. Therefore-(@P?/n < (1 — ¢/2)™0).

Taking log on both sides and shiftingto the right hand side, we gétlog(1 - €) < logn +
m(j)log(1-€/2).

Dividing both sides by log(% €/2) which is a negative quantity and rearranging gives us

m(j) < blog(1-¢€)/log(1-€/2)—logn/log(1- €/2).

In the following part of the proof, we use two inequalitiestog(1—¢) < e+€? and—log(1-¢/2) >

€/2 that requires < 0.684. Applying these inequalities we gei(j) < b= 2 x (e + €2)/e + 2logn/e.
Thereforem(j) < 2(1+ €)b + 2/elogn. ]
Interestingly, the result holds even when we use ABA(UA).

Theorem 7 (At-Least-One Accuracy, ABA(UA)) Assume=n3f + 1. If there exists at least one
process such that is inaccurate at most b out of j iteratiohshe ABA(UA) algorithm, then the
algorithm is inaccurate at mog(1 + €)b + (2¢) log n times.



Proof: Note that even when we update weights on all iterations,dhefing inequalities hold. The
total weight in the systemy(j) < ¢(0)(1 - €/2)™) = (1 — ¢/2)™1, The weight of the process that
is wrongb out of j iterations is (1- €)Px(its initial weight)= (1 — €)?/n. Hence, the previous proof
applies. [ |

Substitutingb = 0 in the above theorem, i.e., when at least one process isatedior all |
iterations of the algorithm, the ABA algorithm makes a nlistanly O(logn) times. Note that this
is independent of the number of iterations and hence, if A& Algorithm is run for a large number
of iterations { >> logn), then it guarantees accuracy in most of them. Or in othedgydhe ABA
algorithm is approximately as accurate as the most accpratess in the system.

5 ABA Algorithm with Weighted Byzantine Agreement

In the ABA algorithm proposed in Figure 1, we have used stahBgzantine Agreement in Step 2.
Since standard Byzantine Agreement assumes3f + 1, the ABA algorithm also made the same
assumption. This assumption is crucial for correctnesh@®f™BA algorithm because agreement re-
quires that processes have identi¢alector after step 2. We now consider the case wher8f + 1,
but the initial fault ratio is less than/2. Thus, more than a third of the processes may be faulty but
the total weight of the faulty processes is still less thah df the weight of the nonfaulty processes.
Under this scenario, we propose an alternative to ABA dalgoriby replacing Step 2 of the ABA
algorithm by
// Step 2'(Alternative to Step 2) : Agree dhvector
for j : 1 tondo: runWeightedByzantine Agreement [GB10] on

VIl

Thus, we use the weight vector even to agree on the valud gf(as used by the algorithms in
[GB10]). We refer to this algorithm as ABAW algorithm. Sinttee fault ratio decreases under vari-
ous accuracy assumptions, the ABAW algorithm works colyresten when the set of processes that
act Byzantine increases with time so long as the fault rééipsdess than/R2. The following theorem
can be shown for the ABAW algorithm analogous to that for ABgoaithm.

Theorem 8 Assuming ¢ < 1/2, all iterations of the ABAW algorithm guarantee agreememd a
termination if the weight update method ensurest/2.

For the deterministic accuracy property, we have the falgwheorem.

Theorem 9 If the accuracy ratiar > 1/2+d and if the initial fault ratio g < 2d, forany0 < d < 1/4,
for all iterations, then the ABAW(UI) algorithm guarantesscuracy.

Note that Theorem 3 does not hold for ABAW(UI) because weireqy < 1/2. Theorem 4 holds
for ABAW(UA) without the assumption afl > 3f + 1 (assuming < 1/2). Theorem 6 does not hold
for ABAW(UI) or ABAW(UA) because the fault ratio may increadeyond 12 even if one process
is accurate most of the times.

6 Conclusion and Future Work

We introduce the problem of Accurate Byzantine Agreemerth \Weedback where in addition to
agreeing on the same value, the processes in the systemdageee on the correct value. The
notion of correctness is based on the environment or anydiegternal feedback common to all the
processes in the system. We present an algorithm that sthiggzoblem for various assumptions
on the initial accuracy and weight distribution of the presms. We show that if the weight of the

10



accurate processes is greater thaa the weight of the non-faulty processes, then the algorithm
always decides on the correct value. We relax this furthersow that if a majority of the non-
faulty processes are accurate, then for certain assursptiorthe faulty and non-faulty processes,
the algorithm never makes a mistake. Further, we show thheifprobability of accuracy of the
non-faulty process is greater thay2] then the algorithm’s accuracy improves exponentiallyhiz
number of mistakes it makes. Finally, we consider the siraglumption that at least one process
always proposes the correct value for all iterations andghat the algorithm rarely makes mistakes.

We performed simulations comparing the performance ofthierent weight update methods:
update on inaccuracy, always update and never update {arslesd Byzantine agreement). The
experiments compared the performance of these solutioter @l three accuracy assumptions and
the results indicate that while never update and alwaystepakrform very well for dferent fault
models, update on inaccuracy performs uniformly well fahbfault models.

This problem brings up many further questions. The resuolthis paper mainly present upper
bounds for the problem of accurate Byzantine agreement feétiback. We also need to explore
lower bounds for the problem. Also, our results depend omthktiplicative update rule. We wish to
explore other update rules, such as additive updates anglazertheir performance, both theoretically
and practically. Designing optimal policies to guarantesximum probability of correct decisions is
also an interesting problem.
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7 Appendix: Experimental Evaluation of ABA Algorithm

The experimental evaluation compares threé®edént update methods: “always update”, “update on
inaccuracy” and “never update”. The last option reducestdadard Byzantine agreement. The
performance of the three accuracy models presented indipisr@are considered with each of these
update methods for two fllerent Byzantine fault models. Always update and never epdetform
very well under one of the fault models each, while they batifgyrm very poorly for the other.
Update on inaccuracy, the method followed in this papelwsays close to the best.

7.1 Experimental Setup and Parameters

For the experimental evaluation, we focus on faulty proee#isat will always try to make the system
agree upon an incorrect value. The faulty processes havpletaknowledge of the system including
the correct value for each iteration. Our simulation uses rivodels for faulty processes. Model 1
uses a process that will always propose the incorrect valliedel 2 uses a process that looks at
the percentage of its own weight to the weight of all process®a proposes the correct value if its
percentage is below a threshold and the incorrect valuewise There are two types of non-faulty
processes used. The first is an accurate non-faulty prokasgltvays proposes the correct value
(d = 05,8 = 1). The second type of non-faulty process chooses the ¢ambe with probability

B =0.5+d, whered € [0, 0.5]. The Queen algorithm [BG89] is used for step 2 in the ABAoaidpm
and for all simulationsn = 41, f = 10 ande = 0.1.

7.2 Results

Simulation results fodeterministic accuracgre shown in Figure 2. For this experiment, we had one
accurate process, and the other non-faulty processes tedeaofd = 0.00001. We compare the %
of accurate decisions made by the algorithm for 100 itematigvith increasing values a/(p + Q)

i.e. the starting weights of the accurate processes divigethe total weight of processes in the
system. The experiments were performed for the two faultetsoland 2. As can be seen, having an
update method performs much better than not having one watteirl and always updating performs
poorly with model 2. Update on error gives a good comprometeveen the two.

Results forprobabilistic accuracyare shown in Figure 3. For this experiment, all non-faulty
processes hadl = 0.02 and all processes start with uniform weights. We comgeé4 of accurate
decisions with increasing number of iterations. Notice,tlwa the whole, update on inaccuracy
performs the best for these graphs. Always updating sedmgHe natural method to use but in
Figure 3(b) always update performs the worst.

Simulation results foat-least-one accuracgre shown in Figure 4. For this experiment, we had
one non-faulty process which is always accurated.e.0.5, and the remaining non-faulty processes
hadd = 0.00001. The processes start with uniform weights. We conparéo of accurate decisions
with increasing number of iterations. For model 1 in Figufa)4updating weights increases the
accuracy over iterations. With model 2 always update shbesvorse performance with update on
accurate being the best. Notice how update on inaccuradyéays close to the best.
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