
Accurate Byzantine Agreement with Feedback

Vijay K. Garg∗, John Bridgman and Bharath Balasubramanian
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, TX 78712-1084, USA, Fax: 512 4715120

garg@ece.utexas.edu,{johnfb,bbharath}@mail.utexas.edu

Abstract

The standard Byzantine Agreement (BA) problem requires non-faulty processes to agree on
a common value. In many real-world applications, it is important that the processes agree on
the correct value rather than any value. In this paper, we present a problem called Accurate
Byzantine Agreement (ABA) in which all processes get a common feedback (or payoff) from
the environment indicating if the value they agreed upon wascorrect or not. The solution to this
problem, referred to as the ABA algorithm, requires the non-faulty processes to incorporate the
feedback so that their chance of choosing the correct value improves over subsequent iterations
of the algorithm. We present an algorithm that solves the ABAproblem based on two key ingre-
dients: a standard solution to the BA problem and a multiplicative method to maintain and update
process weights indicative of how often they are correct. Wegive guarantees on the accuracy of
the algorithm based on assumptions on the accuracy of the processes and the proportion of faulty
and non-faulty processes in the system. For each iteration,if the weight of accurate processes
is at least 3/4th the weight of the non-faulty processes, the algorithm always decides on the cor-
rect value. When the non-faulty processes are accurate withprobability greater than 1/2, the
algorithm decides on the correct value with very high probability after some initial number of
mistakes. In fact, amongn processes, if there exists evenoneprocess which is accurate for all
iterations, the algorithm is wrong onlyO(logn) times for any large number of iterations of the
algorithm.

Keywords: Byzantine Agreement, Weighted Majority, Multiplicative Update

1 Introduction

In real-world applications, processes in a distributed system may be compromised, leading to mali-
cious or arbitrary behavior. The Byzantine Agreement (BA) problem [PSL80, LSP82, FM97, DRS90,
GM93] requires all non-faulty processes to agree on a commonbinary value given that some of the
processes may show arbitrary faulty or Byzantine behavior.In the standard version of the problem,
the value that is agreed upon may be either of the binary values so long as it is proposed by at least
one non-faulty process. In some scenarios, it is better for the system to agree on a specific value
among the two binary values. For example, suppose in a distributed control system a coordinated
action needs to be taken (such as opening or closing a valve) depending upon the observations made
by possibly faulty distributed processes. Depending upon the outcome of the action, the environment
can provide a feedback if the action taken was correct or not.As another example, suppose that the
system is making decision on whether to sell a stock based on recommendations made by multiple

∗This research was supported in part by the NSF Grants CNS-0718990, CNS-0509024, Texas Education Board Grant
781, SRC Grant 2006-TJ-1426, and Cullen Trust for Higher Education Endowed Professorship.



processes. The final closing price of the stock provides a feedback for the decision made. Thus, the
system or the environment can usually provide feedback to the non-faulty processes about which of
the values was preferred or correct for that iteration of theagreement algorithm. Can the non-faulty
processes use this feedback in a way that the probability of choosing the correct value increases in
subsequent iterations of the algorithm?

We refer to this version of the BA problem as Accurate Byzantine Agreement (ABA) and define it
as follows. Assume a set ofn processes among which at mostf Byzantine faults can occur. All non-
faulty processes are required to make decisions for multiple rounds or iterations. For each iteration,
a process can propose a binary value 0 or 1. All nonfaulty processes must agree on each decision and
must take finite time to agree. After each decision, the environment provides a common feedback to
all processes indicating if their decision was correct or wrong. The goal is to design an algorithm that
maximizes the (expected) number of correct decisions by non-faulty processes over iterations of the
algorithm.

In this paper, we give an algorithm, referred to as the ABA algorithm for the ABA problem.
Our method relies on maintaining a common weight vector at all processes and updating this vector
based on the feedback for each iteration. Initially, the weight of each process is a non-negative value
proportional to the trust of the system on that process. If there is no prior information available, then
the weights can simply be initialized to 1/n. We use a weighted majority rule to determine the agreed
upon value for the ABA problem. Once the value is committed, the feedback determines whether
the decided value was a mistake or not. An important aspect ofthe algorithm is how the weights are
updated based on the feedback. One possibility is to penalize all processes that proposed a wrong
value after each iteration. Another possibility is to penalize processes only if the value decided in
that iteration was wrong. Somewhat surprisingly, the behavior of the ABA algorithm may crucially
depend upon which rule is used. We provide guarantees on the accuracy of the algorithm based on
different assumptions on the accuracy of the processes and different weight update rules.

Byzantine Agreement is a well-studied problem in the field ofdistributed computing with re-
search in both the theoretical [KS10, ADGH06, HM97, FM98] and practical aspects [CL99, CML+06,
CMW+09]. For the synchronous model of communication (as assumedin this paper), it is known
that agreement can be achieved only whenn ≥ 3 f + 1 [PSL80]. In our work in [GB10], we present
algorithms and bounds for weighted BA, where processes are assigned weights according to the ap-
plication. In that paper, we give Byzantine agreement protocols that work even whenn < 3 f + 1,
where f is the number of processes that have failed so long as the ratio of the weight of the failed
processes to the weight of nonfaulty processes is at most 1/2. We also present techniques to increase
the weights of the non-faulty processes relative to that of the faulty processes based on detection of
faulty behavior. Weighted BA problem does not have any notion of accuratevalue for agreement
or environmental feeback as required for the ABA problem. Itcan be used as a subroutine in the
ABA algorithm as shown in Section 5. Other approaches to BA include the use of artificial neural
networks [WK01, LE07], randomized algorithms [Rab83, Bra87] or authentication based algorithms
[DS83, PSL80]. None of these works explore the notion of accurate processes or the correct value
for agreement. Our work can be applied to extend the results of these papers.

The concept of weighted majority and multiplicative weightupdate is used in many disciplines
such as learning theory, game theory and linear programming[Kal07, LW94]. In the literature for
this methodology, the experts are independent entities andthere is no notion of liars that can collude
and confuse other experts into suggesting the wrong value. In this paper, we assume the presence
of malicious Byzantine experts and design algorithms to tolerate them. In summary, we make the
following contributions:

• The ABA Problem: We introduce the problem of Accurate Byzantine Agreement,where the
processes have to agree on a correct binary value as deemed byenvironmental feedback. The
goal is to use this feedback to improve the accuracy of the algorithm in subsequent iterations.

2



• The ABA Algorithm: We present an algorithm to solve the ABA problem that uses a stan-
dard solution to the BA problem and a multiplicative method to maintain and update process
weights. We make guarantees on the accuracy of the algorithmfor the following models:

– Deterministic Accuracy: We make assumptions on two ratios, theaccuracy ratio(α)
and the initial fault ratio (r0). The accuracy ratio is the ratio of weight of the accurate
processes to the weight of the non-faulty processes. The fault ratio r is the ratio of the
weight of the faulty processes to that of the non-faulty processes. Whenα > 3/4, the
algorithm is always accurate ifr0 < 1/2. We relax this bound and show that when
α > (1/2+ d), for any 0≤ d ≤ 1/2, the algorithm is always accurate ifr0 < 2d .

– Probabilistic Accuracy: We make assumptions on the probability with which non-faulty
processes propose the correct value,β, and on the fault ratior. Whenβ > 1/2+ d for any
0 < d < 1/2, the probability of the algorithm being inaccurate is exponentially small if
r < 2d.

– At-Least-One Accuracy: If there exists at least one process such that it is inaccurate at
mostb times, then the ABA algorithm is inaccurate onlyO(b+ logn) times. Hence, the
algorithm tracks the most accurate process in the system.

• Experimental Evaluation: We present simulation results evaluating the performanceof three
distinct solutions: the ABA algorithm (with update on inaccuracy), the ABA algorithm with
update on every iteration (always update) and the standard Byzantine Agreement (never up-
date). While always-update and never-update perform very well for one of the models each,
they perform poorly for the other one. The update on inaccuracy method performs well for
both the models. The experimental results are presented in the appendix due to lack of space.

2 Model and Definitions

We consider a distributed system ofn processes,P1 . . .Pn with a completely connected topology. We
assume that the underlying system issynchronousi.e., there is an upper bound on the message delay
and on the duration of actions performed by processes. The communication system is assumed to be
reliable and hence, no messages are dropped. The processes may undergo Byzantine failures, i.e.,
fail in an arbitrary fashion; in particular, they may lie andcollude with other failed processes to foil
any algorithm. However, they may not fake their identity.

We classify the processes in our system based on their behavior into non-faulty, accurate and
faulty processes. While the notion of faulty and non-faultyprocesses is common to all BA problems,
we introduce the concept of accurate processes that captures the idea of a correct proposal. A non-
faulty process is consideredaccuratefor an iteration if it proposes the correct value for that iteration.

In the standard BA problem, all non-faulty processes must agree on a common value. The only
requirement on the decided value is that it must be proposed by a non-faulty process. In our proposal,
the value decided by the algorithm is important as there is a reward function associated with the
value decided, awarded by the environment or the system. Thecorrect value is assigned 1 unit of
reward and an incorrect value is assigned 0 units, i.e., no reward. Based on the reward, we replace the
standard concept of validity with the notion ofaccuracy. Validity specifies that the value decided by
the non-faulty processes must have been proposed by at leastone of the non-faulty processes. This
condition eliminates the trivial solution where all non-faulty processes agree on a fixed value all the
time. In our system, the accuracy requirement eliminates the trivial solution. We define our problem
below.

Definition 1 (Accurate Byzantine Agreement with Feedback) Consider n processes consisting of non-
faulty and faulty processes. There are multiple binary decisions that these n processes are required

3



to make. For each possible decision (iteration of the ABA problem), each of the non-faulty processes
proposes either0 or 1. An algorithm that solves the Accurate Byzantine Agreementwith Feedback
(ABA) problem, must guarantee the following properties:

• Agreement: For each iteration, all non-faulty processes decide on the same value.

• Termination: The algorithm terminates in a finite number of rounds.

• Accuracy: The non-faulty processes agree on a value that is deemed correct by environmental
feedback. We define three distinct models of accuracy requirements:

– Deterministic Accuracy requires that all non-faulty processesalwaysdecide on a value
that is correct.

– Probabilistic accuracy requires that the probability of making a mistake is small assuming
that non-faulty processes propose the correct value with probability greater than1/2.

– Cumulative accuracy requires that the total number of mistakes made by the algorithm is
bounded assuming that there is at least one process that makes very few mistakes (also
referred to as at-least-one accuracy).

To incorporate the feedback provided by the environment we assign a non-negative weightwi to
each processPi that provides an estimate, possibly erroneous, of the trustplaced on that process. We
summarize our notation in table 1.

Table 1: Notation

n Number of processes f Number of Byzantine faults
wi Weight of processPi a Total weight of accurate processes
p Total weight of non-faulty processesq Total weight of faulty processes
r Fault Ratio (= q/p) α Accuracy ratio (= a/p)

3 The ABA Algorithm

In this section, we propose an algorithm (Figure 1) for the ABA problem. The algorithm is identical
at all processes and executes in synchronous iterations. Ateach process, we maintain two vectors
W andV. VectorW stores the weight of each process while vectorV stores the value proposed by
each of them. Initially, the weight of each process is a non-negative value directly proportional to the
initial trust on that process. In each iteration of the algorithm, non-faulty process proposes a value
and executes Step 1 to Step 5 of the algorithm.

In Step 1, all processes exchange their proposed values to populateV. If no value is received
from some process, the corresponding entry is set to 0. Sincefaulty processes may send conflicting
values to other processes, it is not guaranteed that theV vector is identical at all non-faulty processes
after Step 1.

In Step 2, the algorithm requires all non-faulty processes to agree on the value proposed by every
other process and thereby make theV vector identical at all non-faulty processes after Step 2 ofany
iteration. For this step, we can use any standard BA algorithm such as the King algorithm [BGP89]
that requiresn ≥ 3 f + 1, or the Queen algorithm [BG89] that requiresn ≥ 4 f + 1. The validity
property satisfied by these algorithms ensures that the value of V[i] for any non-faulty processPi is
exactly the value proposed byPi.

In Step 3, processes determine the sum of weights of all processes that support value 0 or 1. The
value with larger support, i.e., the weighted majority is chosen as the value indecided.

4



var
W: array[1..n] of float initialized according to system trust (default value all 1/n);
V: array[1..n] of {0, 1} initialized to 0;

for iteration := 1 to t do
V[i] = proposed value byPi ;

// Step 1: Exchange values with all
for j : 1 to n do

send V[i] to P j ;
receive V[ j] from P j ; //if (no value received from P j), V[ j] = 0;

// Step 2: Agree on V vector
for j : 1 to n do: run standard Byzantine Agreement on V[ j];

// Step 3: Compute support for values 0 and 1 and choose the majority value
float s0 =

∑
j{W[ j] | V[ j] = 0}; float s1 =

∑
j{W[ j] | V[ j] = 1};

if (s0 ≥ s1) then decided:= 0; elsedecided:= 1;

// Step 4: Wait for reward and determine the correct value based on the feedback
if (reward= 1) then correctVal:= decided;
elsecorrectVal:= 1− decided; //the process decided on the wrong value

// Step 5: //multiplicative weight update on inaccuracy: ABA(UI)
if (reward= 0) then

for j : 1 to n do
if (V[ j] , correctVal) then W[ j] = (1− ǫ) ∗W[ j];

// Alternative Step 5’: //multiplicative weight update on all iterations ABA(UA)
for j : 1 to n do

if (V[ j] , correctVal) then W[ j] = (1− ǫ) ∗W[ j];

endfor;

Figure 1: The ABA Algorithm atPi

In Step 4, processes receive the common feedback from the environment to determine the correct
value.

In Step 5, we carry out the update of weights. If the value decided was incorrect, then the weights
of the processes that proposed an incorrect value is reducedby some constant proportionǫ (0 < ǫ < 1)
of its previous weight (multiplicative update). As an alternative to step 5, in step 5’, we carry out
the weight update on all iterations irrespective of the reward value. If we update weights only on
inaccuracy, we refer to the algorithm as ABA(UI) (“update oninaccuracy”). If we update weights on
all iterations, we refer to the algorithm as ABA(UA) (“update always”). We now prove that both the
versions of the algorithm guarantee the agreement and termination property specified in definition 1
independent of the assumptions on accuracy.

Theorem 1 (Agreement& Termination) Assuming n≥ 3 f + 1, all iterations of the ABA algorithm

5



guarantee agreement and termination.

Proof:
Agreement: We show that after Step 2 of every iteration, all non-faultyprocesses have identicalW
andV vectors. The proof is by induction on the iteration number. At the first iteration, the vectorW is
identical at all non-faulty processes by the initialization. Now assume that the vectorW is identical at
the beginning of any iterationi. Because all processes agree on vectorV using Byzantine agreement,
all non-faulty processes will have identicalV after Step 2. This implies that all non-faulty processes
will have identical values ofs0, s1, anddecidedafter step 3 because these variables depend only on
W andV. Since the reward function is assumed to be common, all non-faulty processes will have
identical value ofcorrectValand therefore will updateW in an identical manner. The value decided
depends only onW andV vectors and hence all non-faulty processes agree on the samevalue.

Termination: This is a synchronous algorithm which executes in finite number of rounds and
hence, termination is satisfied trivially.

The ABA algorithm guarantees another useful property: if a nonfaulty process proposes an ac-
curate value, then it can never be penalized. This property exploits the validity condition satisfied by
the BA algorithm used in Step 2. A non-faulty processPi will send the same value to all non-faulty
processes. Therefore, all non-faulty processes will have identicalV[i] when they invoke the BA al-
gorithm. Therefore, by validity of the BA algorithm,V[i] at all non-faulty processes will be identical
to the one proposed byPi .

4 Accuracy Guarantees of the ABA Algorithm

In the previous section, we have shown that ABA algorithm guarantees agreement and termination.
This section focuses on the accuracy guarantees the algorithm can provide based on varying assump-
tions about the accuracy of the processes in the system. Since standard Byzantine agreement is used
in Step 2, in this section we assume thatn ≥ 3 f +1, according to the lower bound for the BA problem
[PSL80]. In Section 5, we consider the case whenn ≥ 3 f + 1 does not hold.

4.1 Deterministic Accuracy

For deterministic accuracy, we make guarantees based on theaccuracy ratioα (ratio of the weight of
accurate processes to the weight of non-faulty processes) and the fault ratio of the systemr (ratio of
the weight of faulty processes to the weight of non-faulty processes). We show that ifα > 3/4 for
each iteration and if the initial fault ratior0 < 1/2, then the algorithm guarantees accuracy. Then we
relax this requirement and show that it is sufficient thatα > (1/2 + d) for each iteration such that
r0 < 2d, to guarantee accuracy.

We first show that as long asα > 1/2 for each iteration,r never increases if we update weights
only on error. This enables us to make guarantees just based on the initial fault ratio of the system.
The proof crucially depends on the fact that we update the weights of inaccurate processes only when
the algorithm chooses the incorrect value.

Lemma 1 (Non-Increasing Fault Ratio) For any iteration, if the accuracy ratio α > 1/2, then the
fault ratio r cannot increase after that iteration of the ABA(UI) algorithm.

Proof: In the ABA(UI) algorithm, the weights of the processes changes only when the algorithm
makes a mistake. Consider the weight of the non-faulty processes,p. Sinceα > 1/2, when the
algorithm makes a mistake, greater thanp/2 of the weight will be unaffected and less thanp/2 of the

6



weight will be reduced by a factor of 1− ǫ. Hence, ifp′ is the weight of the non-faulty processes
after a weight update,

p′ > p/2+ (1− ǫ)p/2 = p(2− ǫ)/2 (1)

Now consider the weight of the faulty processesq. The algorithm chooses the wrong value only
when a majority weight, i.e.> (p + q)/2 of the weights are inaccurate. Since greater thanp/2 of
the weights are accurate, at leastq/2 of the weights are inaccurate. Hence, ifq′ is the weight of the
faulty processes after a weight update,

q′ < q/2+ (1− ǫ)q/2 = q(2− ǫ)/2 (2)

Dividing equation 2 by equation 1, we get,q′/p′ < q/p.
Note that the proof for lemma 1 does not hold for the always update rule. If the faulty processes

keep proposing the correct value, then the ABA(UA) algorithm will increase the relative weight of the
faulty processes and consequently the fault ratio. If the fault ratio increases beyond 1 then Byzantine
processes can force the ABA algorithm to choose incorrect value on crucial decisions.

In the following theorem we show that ifα > 3/4, then the ABA(UI) algorithm never makes a
mistake as long as the initial fault ratio is less than 1/2.

Lemma 2 If the accuracy ratioα > 3/4, and the initial fault ratio r0 < 1/2, for all iterations, then
the ABA(UI) algorithm guarantees accuracy.

Proof: If the weight of accurate proposals is at least 3p/4, then the weight of inaccurate proposals
is at mostp/4 + q. The algorithm selects the correct value if the accurate weight is more than the
inaccurate weight. We need to show that,p/4+ q < 3p/4. Dividing both sides byp and rearranging,
this is equivalent to showing thatr < 1/2. Sincer0 < 1/2, from lemma 1, for all iterations,r < 1/2.

In the following theorem, we show that even if the accuracy ratio is just above 1/2, the ABA
algorithm never makes a mistake as long as the initial fault ratio is less than a certain threshold.

Theorem 2 (Deterministic Accuracy) If the accuracy ratioα > 1/2 + d and if the initial fault ratio
r0 < 2d, for any0 ≤ d ≤ 1/4, for all iterations, then the ABA(UI) algorithm guaranteesaccuracy.

Proof: If the weight of accurate proposals is at leastp(1/2 + d), then the weight of inaccurate
proposals is at mostp(1/2 − d) + q. The algorithm selects the correct value if the accurate weight is
more than the inaccurate weight. Therefore, we needp(1/2− d) + q < p(1/2+ d). This condition is
equivalent tor < 2d. Sincer0 < 2d, from lemma 1, for any iteration,r < 2d.

Note that whend equals 1/4, this theorem reduces to lemma 2. Thus, theorem 2 generalizes
lemma 2, whend < 1/4. Accuracy of the ABA(UI) is guaranteed if either an overwhelming majority
of non-faulty processes is accurate (d is large) or there is a large percentage of non-faulty processes
(r0 is small).

The following theorem handles the case when a majority of thenonfaulty processes are accurate
but the fault ratio is not smaller than 2d.

Theorem 3 (Accuracy after some initial mistakes) If the accuracy ratio α > 1/2+d, for any0 ≤ d ≤
1/4, for all iterations, then the ABA(UI) algorithm guaranteesaccuracy after some initial mistakes.

Proof: (Sketch) Similar to the proof of lemma 1, it is easy to show that there exists a constantγ such
that the fault ratio decreases by a factor of at leastγ for any mistake. Therefore, eventually the fault
ratio becomes less than 2d. Subsequently, by theorem 2 the algorithm ABA(UI) does not make any
mistake.

It is easy to show that ABA(UA) algorithm can be forced to makeunbounded mistakes by the
Byzantine processes for any accuracy ratio less than 3/4. Byzantine processes may initially propose
correct values to increase the fault ratio. Once the fault ratio is high, they can ensure that ABA makes
mistakes. They can repeat this cycle forever.

7



4.2 Probabilistic Accuracy

For probabilistic accuracy, we make guarantees based on theprobability of accuracy of each non-
faulty processβ, and the fault ratior, of the system. We show that ifβ > 1/2+ d (0 < d < 1/2), and
r < 2d, the ABA algorithm guarantees accuracy with high probability.

Theorem 4 (Probabilistic Accuracy) Let all weights in the system be in[0, 1]. If the accuracy prob-
ability of non-faulty processesβ > 1/2 + d and the fault ratio r< 2d, for any(0 < d < 1/2), for all
iterations, then the ABA algorithm guarantees accuracy with probability greater than1− ( e−δ

(1−δ)(1−δ) )
µ,

whereµ = p(1/2+ d) andδ = (2d − r)/(2d + 1).

Proof: Let Xi be the random variable indicating the non-faulty processPi making an accurate pro-
posal. LetX =

∑
i wiXi , wherewi is the weight of processPi. We haveE[Xi ] = 1/2+ d. Therefore,

E[X] = (1/2+ d)
∑

i wi = p(1/2+ d).
Let µ = E[X]. We now show that (1− δ)µ = (p+ q)/2.

(1− δ)µ = (2d + 1− (2d − r))/(2d + 1) ∗ p ∗ (2d + 1)/2 = (1+ r)p/2 = (1+ q/p)p/2 = (p+ q)/2.
Whenr < 2d ≤ 1, we get that 0< δ < 1. Hence, from Chernoff’s bound, we have,

Pr[ABA algorithm makes wrong decision]
= Pr[sum of all weights supporting the correct value< (p+ q)/2)] { From the algorithm}
≤ Pr[X < (p+ q)/2)] { Considering only non-faulty processes}
= Pr[X < (1− δ)µ] { Shown above}
< ( e−δ

(1−δ)(1−δ) )µ, { From Chernoff’s bound and 0< δ < 1 }.
In Theorem 4, the error probability depends uponδ = (2d−r)/(2d+1). Asr decreases,δ increases.

We now show that for the ABA(UA) algorithm the ratior is expected to decrease exponentially with
increasing iterations.

Theorem 5 (ABA(UA): Exponentially Decreasing Expected Fault Ratio)If the accuracy probability
of non-faulty processes is at least1/2+ d, and the accuracy probability of faulty processes is at most
1/2 − d, then there exists k> 1, such that after j iterations of the ABA(UA) algorithm, the expected
ratio of the weight of the non-faulty processes to the weightof the faulty processes is at least kj/r0.

Proof: We first show a bound on the expected weight of a non-faulty process afterj iterations. Let the
initial weight of a nonfaulty process bew0. Let Mi be the random variable denoting the multiplicative
factor at iterationi for a non-faulty process. LetWj be the random variable denoting weight of a non-
faulty process afterj iterations. It is clear that for ABA(UA) algorithm,Wj = w0Π

i= j
i=1Mi. The

multiplicative factor for any iteration depends on the environmental feedback and is independent of
other iterations. Hence,E[Wj ] = w0Π

i= j
i=1E[Mi] ≥ w0Π

i= j
i=1(1/2 + d) ∗ 1 + (1/2 − d) ∗ (1 − ǫ) =

w0(1− ǫ/2+ dǫ) j .
Similarly, since the probability that a faulty process makes a correct proposal is at most 1/2− d,

the expected weight of a faulty process afterj iterations of the ABA(UA) algorithm is at most (1−
ǫ/2− dǫ) j times its original weight.

We now show that the expected fault ratio decreases exponentially with the number of iterations.
Let p0 andq0 be the intial weights of non-faulty and faulty processes such thatq0/p0 = r0. Let S j

andT j be the random variables to denote weights of the non-faulty processes and faulty processes
after j iterations of the ABA(UA) algorithm. Since the expected weight of each non-faulty process
after j iterations is at least (1− ǫ/2 + dǫ) j times its original weight; by linearity of expectation,
E[S j ] ≥ p0 ∗ (1− ǫ/2+dǫ) j . Similarly, E[T j ] ≤ q0 ∗ (1− ǫ/2−dǫ) j . We now boundE[S j/T j ]. Using
independence ofS j andT j , we get thatE[S j/T j ] = E[S j ] ∗ E[1/T j ]. We now use the fact that for
any nonnegative random variableX, E[1/X] ≥ 1/E[X] which can be shown using Jensen’s inequality
(E[ f (X)] ≥ f (E[X]) for convex f ). Therefore,

8



E[S j ] ∗ E[1/T j ] ≥ E[S j ] ∗ 1/E[T j ]

≥
p0∗(1−ǫ/2+dǫ) j

q0∗(1−ǫ/2−dǫ) j = 1/r0 ∗ (1+ 2dǫ
1−ǫ/2−dǫ )

j

By definingk = (1 + 2dǫ
1−ǫ/2−dǫ ), we get the desired result. Because 0< ǫ < 1 and 0< d < 1/2,

(1− ǫ/2− dǫ) is guaranteed to be positive which ensuresk > 1.
Remark: The above theorem can be generalized to the case when non-faulty processes are ac-

curate with probability at least 1/2 + d1 and faulty processes are accurate with probability at most
1/2 − d2. In this case,k = (1+ ǫ(d1+d2)

1−ǫ/2−d2ǫ
). Whend1 = d2 we get the original value ofk. Also when

d2 = −d1 (faulty processes are as accurate as non-faulty processes), we getk equals 1.

4.3 At-Least-One Accuracy

For this section, we assume that there is at least one processin the system that is inaccurateonly
for a small number of iterations of the ABA algorithm. This assumption is sufficient to guarantee
cumulative accuracy, i.e., a bound on the total number of mistakes made by the algorithm. Our
results are based on the method of weighted majority with multiplicative updates [Kal07]. We first
consider ABA(UI) algorithm. In the following theorem, we show that ABA(UI) guarantees accuracy
for a large number of iterations.

Theorem 6 (At-Least-One Accuracy, ABA(UI)) Assume n≥ 3 f+1. If there exists at least one process
such that is inaccurate at most b out of j iterations of the ABA(UI) algorithm, then the algorithm is
inaccurate at most2(1+ ǫ)b+ (2/ǫ) logn times.

Proof: The proof follows from standard arguments in multiplicative update method [Kal07]. We
assume that the process weights are all initialized to 1/n. Let φ(i) be the sum of all the weights
of the processes at the end of iterationi. Suppose that for any iterationi, the ABA(UI) algorithm
is wrong. This means that the weighted majority of the valuesin the proposed vector were wrong
and hence a majority of the weights will decrease by (1− ǫ) of their previous value. Therefore,
φ(i) ≤ φ(i − 1)/2+ φ(i − 1)/2 ∗ (1− ǫ) = φ(i − 1)(1− ǫ/2). The total weight, at the beginning of the
algorithm,φ(0) is equal to one. Suppose that the ABA(UI) algorithm makesm( j) mistakes in the first
j iterations. Afterj iterations of ABA(UI), we getφ( j) ≤ φ(0)(1− ǫ/2)m( j) = (1− ǫ/2)m( j).

Now consider a nonfaulty process that is inaccurate at mostb out of j iterations. In spite of the
presence of Byzantine processes, ABA(UI) algorithm guarantees that this process is never penalized
when it is accurate. The weight of this process is at least (1− ǫ)b∗(its initial weight)= (1 − ǫ)b/n.
This weight is less than the total weight. Therefore, (1− ǫ)b/n < (1− ǫ/2)m( j) .

Taking log on both sides and shiftingn to the right hand side, we getb log(1− ǫ) < logn +
m( j) log(1− ǫ/2).

Dividing both sides by log(1− ǫ/2) which is a negative quantity and rearranging gives us

m( j) < b log(1− ǫ)/ log(1− ǫ/2)− logn/ log(1− ǫ/2).

In the following part of the proof, we use two inequalities:− log(1−ǫ) ≤ ǫ+ǫ2 and− log(1−ǫ/2) ≥
ǫ/2 that requireǫ < 0.684. Applying these inequalities we get,m( j) < b ∗ 2 ∗ (ǫ + ǫ2)/ǫ + 2 logn/ǫ.

Therefore,m( j) < 2(1+ ǫ)b+ 2/ǫ logn.
Interestingly, the result holds even when we use ABA(UA).

Theorem 7 (At-Least-One Accuracy, ABA(UA)) Assume n≥ 3 f + 1. If there exists at least one
process such that is inaccurate at most b out of j iterations of the ABA(UA) algorithm, then the
algorithm is inaccurate at most2(1+ ǫ)b+ (2ǫ) log n times.

9



Proof: Note that even when we update weights on all iterations, the following inequalities hold. The
total weight in the system,φ( j) ≤ φ(0)(1− ǫ/2)m( j) = (1 − ǫ/2)m( j). The weight of the process that
is wrongb out of j iterations is (1− ǫ)b∗(its initial weight)= (1 − ǫ)b/n. Hence, the previous proof
applies.

Substitutingb = 0 in the above theorem, i.e., when at least one process is accurate for all j
iterations of the algorithm, the ABA algorithm makes a mistake onlyO(logn) times. Note that this
is independent of the number of iterations and hence, if the ABA algorithm is run for a large number
of iterations (j >> logn), then it guarantees accuracy in most of them. Or in other words, the ABA
algorithm is approximately as accurate as the most accurateprocess in the system.

5 ABA Algorithm with Weighted Byzantine Agreement

In the ABA algorithm proposed in Figure 1, we have used standard Byzantine Agreement in Step 2.
Since standard Byzantine Agreement assumesn ≥ 3 f + 1, the ABA algorithm also made the same
assumption. This assumption is crucial for correctness of the ABA algorithm because agreement re-
quires that processes have identicalV vector after step 2. We now consider the case whenn < 3 f +1,
but the initial fault ratio is less than 1/2. Thus, more than a third of the processes may be faulty but
the total weight of the faulty processes is still less than 1/2 of the weight of the nonfaulty processes.
Under this scenario, we propose an alternative to ABA algorithm by replacing Step 2 of the ABA
algorithm by

// Step 2’(Alternative to Step 2) : Agree onV vector
for j : 1 to n do: runWeightedByzantine Agreement [GB10] on

V[ j]

Thus, we use the weight vector even to agree on the value ofV[ j] (as used by the algorithms in
[GB10]). We refer to this algorithm as ABAW algorithm. Sincethe fault ratio decreases under vari-
ous accuracy assumptions, the ABAW algorithm works correctly even when the set of processes that
act Byzantine increases with time so long as the fault ratio stays less than 1/2. The following theorem
can be shown for the ABAW algorithm analogous to that for ABA algorithm.

Theorem 8 Assuming r0 < 1/2, all iterations of the ABAW algorithm guarantee agreement and
termination if the weight update method ensures r< 1/2.

For the deterministic accuracy property, we have the following theorem.

Theorem 9 If the accuracy ratioα > 1/2+d and if the initial fault ratio r0 < 2d, for any0 ≤ d ≤ 1/4,
for all iterations, then the ABAW(UI) algorithm guaranteesaccuracy.

Note that Theorem 3 does not hold for ABAW(UI) because we require r0 < 1/2. Theorem 4 holds
for ABAW(UA) without the assumption ofn ≥ 3 f + 1 (assumingr < 1/2). Theorem 6 does not hold
for ABAW(UI) or ABAW(UA) because the fault ratio may increase beyond 1/2 even if one process
is accurate most of the times.

6 Conclusion and Future Work

We introduce the problem of Accurate Byzantine Agreement with Feedback where in addition to
agreeing on the same value, the processes in the system have to agree on the correct value. The
notion of correctness is based on the environment or any kindof external feedback common to all the
processes in the system. We present an algorithm that solvesthe problem for various assumptions
on the initial accuracy and weight distribution of the processes. We show that if the weight of the

10



accurate processes is greater than 3/4 the weight of the non-faulty processes, then the algorithm
always decides on the correct value. We relax this further and show that if a majority of the non-
faulty processes are accurate, then for certain assumptions on the faulty and non-faulty processes,
the algorithm never makes a mistake. Further, we show that ifthe probability of accuracy of the
non-faulty process is greater than 1/2, then the algorithm’s accuracy improves exponentially inthe
number of mistakes it makes. Finally, we consider the simpleassumption that at least one process
always proposes the correct value for all iterations and show that the algorithm rarely makes mistakes.

We performed simulations comparing the performance of three different weight update methods:
update on inaccuracy, always update and never update (just standard Byzantine agreement). The
experiments compared the performance of these solutions under all three accuracy assumptions and
the results indicate that while never update and always update perform very well for different fault
models, update on inaccuracy performs uniformly well for both fault models.

This problem brings up many further questions. The results in this paper mainly present upper
bounds for the problem of accurate Byzantine agreement withfeedback. We also need to explore
lower bounds for the problem. Also, our results depend on themultiplicative update rule. We wish to
explore other update rules, such as additive updates and compare their performance, both theoretically
and practically. Designing optimal policies to guarantee maximum probability of correct decisions is
also an interesting problem.

References

[ADGH06] Ittai Abraham, Danny Dolev, Rica Gonen, and Joe Halpern. Distributed computing
meets game theory: robust mechanisms for rational secret sharing and multiparty com-
putation. InProceedings of the twenty-fifth annual ACM symposium on Principles of
distributed computing, PODC ’06, pages 53–62, New York, NY, USA, 2006. ACM.

[BG89] Piotr Berman and Juan A. Garay. Asymptotically optimal distributed consensus (ex-
tended abstract). InProceedings of the 16th International Colloquium on Automata,
Languages and Programming, pages 80–94, London, UK, 1989. Springer-Verlag.

[BGP89] P. Berman, J.A. Garay, and K.J. Perry. Towards optimal distributed consensus.Founda-
tions of Computer Science, Annual IEEE Symposium on, 0:410–415, 1989.

[Bra87] Gabriel Bracha. AnO(logn) expected rounds randomized Byzantine generals protocol.
Journal of the ACM, 34(4):910–920, October 1987.

[CL99] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. InThird
Symposium on Operating Systems Design and Implementation (OSDI), New Orleans,
Louisiana, February 1999. USENIX Association, Co-sponsored by IEEE TCOS and
ACM SIGOPS.

[CML+06] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Rodrigues, and Liuba Shrira.
Hq replication: A hybrid quorum protocol for byzantine fault tolerance. InProceedings
of the Seventh Symposium on Operating Systems Design and Implementations (OSDI),
Seattle, Washington, November 2006.

[CMW+09] A. Clement, M. Marchetti, E. Wong, L. Alvisi, and M. Dahlin. Making byzantine fault
tolerant systems tolerate byzantine faults. In6th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), April 2009.

[DRS90] Danny Dolev, Ruediger Reischuk, and H. Raymond Strong. Early stopping in byzantine
agreement.J. ACM, 37(4):720–741, 1990.

11



[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agree-
ment.SIAM J. Comput., 12(4):656–666, 1983.

[FM97] Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for synchronous
byzantine agreement.SIAM J. Comput., 26(4):873–933, 1997.

[FM98] Matthias Fitzi and Ueli M. Maurer. Efficient byzantine agreement secure against gen-
eral adversaries. InDISC ’98: Proceedings of the 12th International Symposium on
Distributed Computing, pages 134–148, London, UK, 1998. Springer-Verlag.

[GB10] Vijay Garg and John Bridgman. A report on the weightedbyzantine agreement
problem (to appear in proceedings of ipdps 2011). TechnicalReport TR-PDS-2010-002
http://maple.ece.utexas.edu/TechReports/2010/TR-PDS-2010-002.pdf,
Parallel and Distributed Systems Laboratory, The University of Texas at Austin, 2010.

[GM93] Juan A. Garay and Yoram Moses. Fully polynomial byzantine agreement in t+ 1 rounds.
In STOC ’93: Proceedings of the twenty-fifth annual ACM symposium on Theory of
computing, pages 31–41, New York, NY, USA, 1993. ACM.

[HM97] Martin Hirt and Ueli Maurer. Complete characterization of adversaries tolerable in se-
cure multi-party computation (extended abstract). InPODC ’97: Proceedings of the
sixteenth annual ACM symposium on Principles of distributed computing, pages 25–34,
New York, NY, USA, 1997. ACM.

[Kal07] Satyen Kale.Efficient algorithms using the multiplicative weights update method. PhD
thesis, Princeton, NJ, USA, 2007. AAI3286120.

[KS10] Valerie King and Jared Saia. Breaking the o(n2) bit barrier: scalable byzantine agree-
ment with an adaptive adversary. InProceeding of the 29th ACM SIGACT-SIGOPS
symposium on Principles of distributed computing, PODC ’10, pages 420–429, New
York, NY, USA, 2010. ACM.

[LE07] Kok-Wah Lee and Hong-Tat Ewe. Performance study of byzantine agreement protocol
with artificial neural network.Inf. Sci., 177(21):4785–4798, 2007.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem.
ACM Trans. Program. Lang. Syst., 4:382–401, July 1982.

[LW94] Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Inf.
Comput., 108:212–261, February 1994.

[PSL80] M. Pease, R. Shostak, and L. Lamport. Reaching agreements in the presence of faults.
Journal of the ACM, 27(2):228–234, April 1980.

[Rab83] Michael O. Rabin. Randomized byzantine generals. In Foundations of Computer Sci-
ence, pages 403–409, 1983.

[WK01] S. C. Wang and S. H. Kao. A new approach for byzantine agreement. InProceedings
of the The International Conference on Information Networking, page 518, Washington,
DC, USA, 2001. IEEE Computer Society.

12



7 Appendix: Experimental Evaluation of ABA Algorithm

The experimental evaluation compares three different update methods: “always update”, “update on
inaccuracy” and “never update”. The last option reduces to standard Byzantine agreement. The
performance of the three accuracy models presented in this paper are considered with each of these
update methods for two different Byzantine fault models. Always update and never update perform
very well under one of the fault models each, while they both perform very poorly for the other.
Update on inaccuracy, the method followed in this paper, is always close to the best.

7.1 Experimental Setup and Parameters

For the experimental evaluation, we focus on faulty processes that will always try to make the system
agree upon an incorrect value. The faulty processes have complete knowledge of the system including
the correct value for each iteration. Our simulation uses two models for faulty processes. Model 1
uses a process that will always propose the incorrect value.Model 2 uses a process that looks at
the percentage of its own weight to the weight of all processes and proposes the correct value if its
percentage is below a threshold and the incorrect value otherwise. There are two types of non-faulty
processes used. The first is an accurate non-faulty process that always proposes the correct value
(d = 0.5, β = 1). The second type of non-faulty process chooses the correct value with probability
β = 0.5+d, whered ∈ [0, 0.5]. The Queen algorithm [BG89] is used for step 2 in the ABA algorithm
and for all simulations,n = 41, f = 10 andǫ = 0.1.

7.2 Results

Simulation results fordeterministic accuracyare shown in Figure 2. For this experiment, we had one
accurate process, and the other non-faulty processes had a value ofd = 0.00001. We compare the %
of accurate decisions made by the algorithm for 100 iterations, with increasing values ofa0/(p + q)
i.e. the starting weights of the accurate processes dividedby the total weight of processes in the
system. The experiments were performed for the two fault models 1 and 2. As can be seen, having an
update method performs much better than not having one with model 1 and always updating performs
poorly with model 2. Update on error gives a good compromise between the two.

Results forprobabilistic accuracyare shown in Figure 3. For this experiment, all non-faulty
processes hadd = 0.02 and all processes start with uniform weights. We compare the % of accurate
decisions with increasing number of iterations. Notice that, on the whole, update on inaccuracy
performs the best for these graphs. Always updating seems like the natural method to use but in
Figure 3(b) always update performs the worst.

Simulation results forat-least-one accuracyare shown in Figure 4. For this experiment, we had
one non-faulty process which is always accurate i.e.d = 0.5, and the remaining non-faulty processes
hadd = 0.00001. The processes start with uniform weights. We comparethe % of accurate decisions
with increasing number of iterations. For model 1 in Figure 4(a), updating weights increases the
accuracy over iterations. With model 2 always update shows the worse performance with update on
accurate being the best. Notice how update on inaccuracy is always close to the best.

13



0.0 0.1 0.2 0.3 0.4 0.5
a0/(p+q)

0

20

40

60

80

100

%
 A

cc
ur

at
e 

D
ec

is
io

ns
Never update
Update on inaccuracy
Always update

(a) With model 1.

0.0 0.1 0.2 0.3 0.4 0.5
a0 /(p+q)

60

65

70

75

80

85

90

95

100

%
 A

cc
ur

at
e 

D
ec

is
io

ns

Never update
Update on inaccuracy
Always update

(b) With model 2.

Figure 2: Deterministic accuracy: Ratio of Accurate Process Weights vs. % Accurate Decisions

10 20 30 40 50 60 70 80 90 100
Iterations

0

10

20

30

40

50

%
 A

cc
ur

at
e 

D
ec

is
io

ns

Never update
Update on inaccuracy
Always update

(a) With model 1.

10 20 30 40 50 60 70 80 90 100
Iterations

60

65

70

75

80

85

90

95

100

%
 A

cc
ur

at
e 

D
ec

is
io

ns

Never update
Update on inaccuracy
Always update

(b) With model 2.

Figure 3: Probabilistic Accuracy: Iterations vs. % Accurate Decisions,d = 0.02

10 20 30 40 50 60 70 80 90 100
Iterations

0

10

20

30

40

50

60

70

80

%
 A

cc
ur

at
e 

D
ec

is
io

ns Never update
Update on inaccuracy
Always update

(a) With model 1.

10 20 30 40 50 60 70 80 90 100
Iterations

75

80

85

90

95

100

%
 A

cc
ur

at
e 

D
ec

is
io

ns

Never update
Update on inaccuracy
Always update

(b) With model 2.

Figure 4: At-Least One Accuracy: Iterations vs. % Accurate Decisions, One accurate process

14


