
Optimistic Distributed Simulation Based on Transitive DependencyTrackingOm P. Damani Yi-Min Wang Vijay K. Garg�Dept. of Computer Sci. AT&T Labs-Research Dept. of Elect. & Comp. EngUni. of Texas at Austin Murray Hill, NJ Uni. of Texas at Austindamani@cs.utexas.edu ymwang@research.att.com garg@ece.utexas.eduAbstractIn traditional optimistic distributed simulation pro-tocols, a logical process(LP) receiving a straggler rollsback and sends out anti-messages. Receiver of ananti-message may also roll back and send out moreanti-messages. So a single straggler may result ina large number of anti-messages and multiple roll-backs of some LPs. In our protocol, an LP receiv-ing a straggler broadcasts its rollback. On receivingthis announcement, other LPs may roll back but theydo not announce their rollbacks. So each LP rollsback at most once in response to each straggler. Anti-messages are not used. This eliminates the need foroutput queues and results in simple memory manage-ment. It also eliminates the problem of cascading roll-backs and echoing, and results in faster simulation.All this is achieved by a scheme for maintaining tran-sitive dependency information. The cost incurred in-cludes the tagging of each message with extra depen-dency information and the increased processing timeupon receiving a message. We also present the simi-larities between the two areas of distributed simulationand distributed recovery. We show how the solutionsfor one area can be applied to the other area.1 IntroductionWe modify the time warp algorithm to quickly stopthe spread of erroneous computation. Our schemedoes not require output queues and anti-messages.This results in less memory overhead and simple mem-ory management algorithms. It also eliminates theproblem of cascading rollbacks and echoing [15], re-sulting in faster simulation. We use aggressive cancel-lation [7].Our protocol is an adaptation of a similar protocolfor the problem of distributed recovery [4, 21]. We�supported in part by the NSF Grants CCR-9520540 andECS-9414780, a TRW faculty assistantship award, a GeneralMotors Fellowship, and an IBM grant.

illustrate the main concept behind this scheme withthe help of Figure 1. In the �gure, horizontal arrowsshow the direction of the simulation time. Messagesare shown by the inter-process directed arrows. Circlesrepresent states. State transition is caused by actingon the message associated with the incoming arrow.For example, the state transition of P1 from s10 tos11 happened when P1 acted on m0. In the timewarp scheme, when a logical process (LP) P2 receivesa straggler (i.e., a message which schedules an event inP2's past) it rolls back the state s20 and sends an anti-message corresponding to message m2. On receivingthis anti-message, P1 rolls back state s10 and sendsan anti-message corresponding to m1. It then acts onthe next message in its message queue, which happensto be m0. On receiving the anti-message for m1, P0rolls back s00 and sends an anti-message for m0. Onreceiving this anti-message, P1 rolls back s11.In our scheme, transitive dependency information ismaintained with all states and messages. After rollingback s20 due to a straggler, P2 broadcasts that s20has been rolled back. On receiving this announce-ment, P1 rolls back s10 as it �nds that s10 is tran-sitively dependent on s20. P1 also �nds that m0 istransitively dependent on s20 and discards it. Sim-ilarly P0 rolls back s00 on receiving the broadcast.We see that P1 was able to discard m0 faster com-pared to the previous scheme. Even P0 would likelyreceive the broadcast faster than receiving the anti-message for m1 as that can be sent only after P1 hasrolled back s10. Therefore, simulation should proceedfaster. As explained later, we use incarnation num-ber to distinguish between two states with the sametimestamp, one of which is committed and the otheris rolled back.We only need the LP that receives a straggler tobroadcast the timestamp of the straggler. Every otherLP can determine whether they need to roll back ornot by comparing their local dependency information

with the broadcast timestamp. Other LPs that rollback in response to a rollback announcement do notsend any announcement or anti-messages. Hence, eachLP rolls back at most once in response to a strag-gler, and the problem of multiple rollbacks is avoided.Several schemes have been proposed to minimize the
m0

m1

s00

s10 s11

P0

P1

s20

P2

m2Figure 1: A Distributed Simulation.spread of erroneous computations. A survey of theseschemes can be found in [7]. The Filter protocol byPrakash and Subramanian [17] is most closely relatedto our work. It maintain a list of assumptions witheach message, which describe the class of stragglerevents that could cause this message to be canceled.It maintains one assumption per channel, whereas ourprotocol can be viewed as maintaining one assumptionper LP. In the worst case, Filter tags each messagewith O(n2) integers whereas our protocol tags O(n)integers, where n is the number of LPs in the sys-tem. Since for some applications even O(n)-taggingmay not be acceptable, we also describe techniques tofurther reduce this overhead. If a subset of LPs inter-act mostly with each other, then, for most of the time,the tag size of their messages will be bounded by thesize of the subset.The paper is organized as follows. Section 2 de-scribes the basic model of simulation; Section 3 in-troduces the happen before relation between statesand the simulation vector which serves as the basis ofour optimistic simulation protocol; Section 4 describesthe protocol and gives a correctness proof; Section 5presents optimization techniques to reduce the over-head of the protocol; Section 6 compares distributedsimulation with distributed recovery.2 Model of SimulationWe consider event-driven optimistic simulation.The execution of an LP consists of a sequence of stateswhere each state transition is caused by the executionof an event. If there are multiple events scheduledat the same time, it can execute those events in anarbitrary order. In addition to causing a state transi-tion, executing an event may also schedule new eventsfor other LPs (or the local LP) by sending messages.

When LP P1 acts on a message from P2, P1 becomesdependent on P2. This dependency relation is transi-tive.The arrival of a straggler causes an LP to roll back.A state that is rolled back, or is transitively dependenton a rolled back state is called an orphan state. Amessage sent from an orphan state is called an orphanmessage. For correctness of a simulation, all orphanstates must be rolled back and all orphan messagesmust be discarded.An example of a distributed simulation is shownin Figure 2. Numbers shown in parentheses are ei-ther the virtual times of states or the virtual times ofscheduled events carried by messages. Solid lines indi-cate useful computations, while dashed lines indicaterolled back computations. In Figure 2(a), s00 sched-ules an event for P1 at time 5 by sending messagem0. P1 optimistically executes this event, resultingin a state transition from s10 to s11, and schedules anevent for P2 at time 7 by sending message m1. ThenP1 receives message m2 which schedules an event attime 2 and is detected as a straggler. Execution afterthe arrival of this straggler is shown in Figure 2(b).P1 rolls back, restores s10, takes actions needed formaintaining the correctness of the simulation (to bedescribed later) and restarts from state r10. Then itbroadcasts a rollback announcement (shown by dot-ted arrows), acts on m2, and then acts on m0. Uponreceiving the rollback announcement from P1, P2 re-alizes that it is dependent on a rolled back state andso it also rolls back, restores state s20, takes actionsneeded, and restarts from state r20. Finally, the or-phan message m1 is discarded by P2.3 Dependency TrackingFrom here on, i,j refer to LP numbers; k refers toincarnation number; s,u,w,x refer to states; Pi refersto logical process i; s:p refers to the number associatedwith the LP to which s belongs, that is, s:p = i) s 2Pi; m refers to a message and e refers to an event.3.1 Happen Before RelationLamport de�ned the happen before(!) relation be-tween events in a rollback-free distributed computa-tion [12]. To take rollbacks into account, we extendthis relation. As in [4, 21], we de�ne it for the states.For any two states s and u, s ! u is the transitiveclosure of the relation de�ned by the following threeconditions:1. s:p = u:p and s immediately precedes u.2. s:p = u:p and s is the state restored after a roll-back and u is the state after Pu:p has taken the

s21

(0,0)

(0,-1)
(0,-1)

(0,-1)

(0,0)

(0,-1)

(0,-1)

(0,-1)

(0,0)

(0,0)

(0,5)

(0,-1)

(0,0)

(0,5)

(0,7)

s00

s10 s11

s21

P0

P1

P2

m0

m1

(0)

(0)

(7)

(5)
(5)

(7)

r20 (0)

r10 (0)

m2(2)

m0 (5)

s12 (2) s13 (5)

(0,-1)

(1,0)

(0,-1)

s00(0)

s20(0)s20 (0)

m2 (2)

(0,-1)

(0,-1)

(1,0)

(0,-1)

(1,2)

(0,0)

(0,0)

(1,5)

(0,0)

s10 (0)

(a) (b)

s11

Figure 2: Using Simulation Vector for Distributed Simulation. (a) Pre-straggler computation. (b) Post-stragglercomputation.actions needed to maintain the correctness of sim-ulation despite the rollbacks. For example, in Fig-ure 2(b), s20! r20.3. s is the sender of a message m and u is the re-ceiver's state after the event scheduled by m isexecuted.For example, in Figure 2(a), s10 ! s11 and s00 !s21, and in Figure 2(b) s11 6! r10. Saying s happenedbefore u is equivalent to saying that u is transitivelydependent on s.For our protocol, \actions needed to maintain thecorrectness of simulation" include broadcasting a roll-back announcement and incrementing the incarnationnumber. For other protocols, the actions may be dif-ferent. For example, in time warp, these actions in-clude the sending of anti-messages. Our de�nition ofhappen before is independent of such actions. Theterms \rollback announcements" and \tokens" will beused interchangeably. Tokens do not contribute to thehappen before relation. So if u receives a token froms, u does not become transitively dependent on s dueto this token.3.2 Simulation VectorA vector clock is a vector of size n where n is thenumber of processes in the system [16]. Each vectorentry is a timestamp that usually counts the num-ber of send and receive events of a process. In thecontext of distributed simulation, we modify and ex-tend the notion of vector clock, and de�ne a Simula-tion Vector (SV) as follows. To maintain dependencyin the presence of rollbacks, we extend each entry to

contain both a timestamp and an incarnation num-ber [19]. The timestamp in the ith entry of the SV ofPi corresponds to the virtual time of Pi. The times-tamp in the jth entry corresponds to the virtual timeof the latest state of Pj on which Pi depends. Theincarnation number in the ith entry is equal to thenumber of times Pi has rolled back. The incarnationnumber in the jth entry is equal to the highest incar-nation number of Pj on which Pi depends. Let entryen be a tuple (incarnation v, timestamp t). We de�nea lexicographical ordering between entries as follows:en1 < en2 � (v1 < v2) _ [(v1 = v2) ^ (t1 < t2)].Simulation vectors are used to maintain transitivedependency information. Suppose Pi schedules anevent e for Pj at time t by sending a message m. Piattaches its current SV to m. By \virtual time of m",we mean the scheduled time of the event e. If m isneither an orphan nor a straggler, it is kept in the in-coming queue by Pj . When the event correspondingto m is executed, Pj updates its SV with m's SV bytaking the componentwise lexicographical maximum.Then Pj updates its virtual time (denoted by the jthtimestamp in its SV) to the virtual time of m. A for-mal description of the SV protocol is given in Figure3. Examples of SV are shown in Figure 2 where theSV of each state is shown in the box near it.The SV has properties similar to a vector clock.It can be used to detect the transitive dependenciesbetween states. The following theorem shows the re-lationship between virtual time and SV.Theorem 1 The timestamp in the ith entry of Pi'sSV corresponds to the virtual time of Pi.

LP Pi :type entry = (int inc, int ts)/* incarnation, timestamp */var sv: array [0..n-1] of entryInitialize :8 j : sv[j]:inc = 0 ; sv[j]:ts = -1 ;sv[i]:ts = 0 ;Send message(m) :m:sv = sv ;m:ts = time at which m should be executed ;send (m:data, m:ts, m:sv) ;Execute message (m:data, m:ts, m:sv) :/* Pi executes event scheduled by m */8 j: sv[j] = max(sv[j],m:sv[j]) ;sv[i]:ts = m:ts ;Rollback :/* State s is restored. So, sv = s:sv */sv[i]:inc+ + ;Figure 3: Formal description of the Simulation VectorprotocolProof. By Induction. The above claim is true forthe initial state of Pi. While executing a message, thevirtual time of the Pi is correctly set. After a rollback,virtual time of the restored state remains unchanged.Let s:sv denote the SV of Ps:p in state s. We de�nethe ordering between two SV's c and d as follows.c � d � (8i : c[i] � d[i]):In Pi's SV, the jth timestamp denotes the maximumvirtual time of Pj on which Pi depends. This times-tamp should not be greater than Pi's own virtual time.Lemma 1 formalizes the above notion.Lemma 1 The timestamp in the ith entry of the SVof a state of Pi has the highest value among all thetimestamps in this SV.Proof. By induction. The lemma is true for the initialstate of Pi. Assume that state s of Pj sent a mes-sage m to Pi. State u of Pi executed m, resulting instate w. By induction hypothesis, s:sv[j]:ts and theu:sv[i]:ts are the highest timestamps in their SV's. Sothe maximum of these two timestamps is greater thanall the timestamps in w:sv after the max operation inExecute message. Now m:ts, the virtual time of mes-sage m, is not less than the virtual time of the state ssending the message. It is also not less than the virtualtime of the state u acting on the message, otherwise,it would have caused a rollback. So by theorem 1,

m:ts is not less than the maximum of s:sv[j]:ts andthe u:sv[i]:ts. Hence setting the w:sv[i]:ts to m:ts pre-serves the above property. All other routines do notchange the timestamps.The following two lemmas give the relationship be-tween the SV and the happen before relation.Lemma 2 If s happens before u, then s:sv is less thanor equal to u:sv.Proof. By induction. Consider any two states s and usuch that s happens before u by applying one of thethree rules in the de�nition of happen before. In caseof rule 1, state s is changed to state u by acting ona message m. The update of the SV by taking themaximum in the routine Execute message maintainsthe above property. Now consider the next action inwhich u:sv[u:p]:ts is set to m:ts. Since virtual timeof m cannot be less than the virtual time of state sexecuting it, this operation also maintains the aboveproperty.In case of rule 2, in routine Rollback, the update ofthe SV by incrementing the incarnation number pre-serves the above property. The case of rule 3 is similarto that of the rule 1. Let state w change to state u byacting on the message m sent by state s. By lemma 1,in m's SV, s:pth timestamp is not less than the u:pthtimestamp. Also the virtual time of m is not less thanthe s:pth timestamp in its SV. Hence setting the ithtimestamp to the virtual time of m, after taking max,preserves the above property.The following lemma shows that LPs acquire times-tamps by becoming dependent on other LPs. Thisproperty is later used to detect orphans. This lemmastates that if jth timestamp in state w's SV is not mi-nus one (an impossible virtual time) then w must bedependent on a state u of Pj , where the virtual timeof u is w:sv[j]:ts .Lemma 3 8w; j : j 6= w:p : (w:sv[j]:ts = �1) _ (9u :(u:p = j) ^ (u! w) ^ (u:sv[j] = w:sv[j])).Proof. By induction. Initialize trivially satis�es theabove property. In Execute message, let x be the statethat sends m and let state s change to state w byacting on m. By induction hypothesis, x and s satisfythe lemma.In taking maximum, let the jth entry from x is se-lected. If j is x:p then x itself plays the role of u.Else, by induction hypothesis, (x:sv[j]:ts = �1)_(9u :(u:p = j) ^ (u! x) ^ u:sv[j] = x:sv[j]). Hence eitherw:sv[j]:ts is -1 or by transitivity, u happens before w.

The same argument also applies to the case where thejth entry comes from s.In case of Rollback, let s be the state restored andlet w be the state resulting from s by taking the ac-tions needed for the correct simulation. By inductionhypothesis, s satis�es the lemma. Now s:sv and w:svdi�er only in w:pth entry and all states that happenedbefore s also happened before w. Hence w satis�es thelemma.LP Pi :type entry = (int inc, int ts)var sv : array[0..n-1] of entry; /* simulation vector */iet : array[0..n-1] of set of entry;/* incarnation end table */token : entry; /* rollback announcement */Initialize :8 j : sv[j]:inc = 0 ; sv[j]:ts = -1 ;sv[i]:ts = 0 ;8 j : iet[j] = fg ; /* empty set */Receive message(m) :if 9j; t : ((m:sv[j]:inc; t) 2 iet[j]) ^ (t < m:sv[j]:ts)then discard m ;else if m:ts < sv[i]:ts then/* m is a straggler */token = (sv[i]:inc;m:ts) ;Broadcast(token) ;/* Pi receives its own broadcast and rolls back. */Block till all LPs acknowledge broadcast ;Execute message :m = messages with the lowest value of m:ts ;8 j: sv[j] = max(sv[j];m:sv[j]) ;sv[i]:ts = m:ts ;Act on the event scheduled by m ;Receive token(v; t) from Pj :Send acknowledgement ;iet[j] = iet[j] [f(v; t)g ;8m 2 input queue :if (m:sv[j]:inc = v) ^ (t < m:sv[j]:ts)then discard m ;if (sv[j]:inc = v) ^ (t < sv[j]:ts)then Rollback(j; (v; t)) ;Rollback(j; (v; t)) :Save the iet ;Restore the latest state s such thatsv[j] � (v; t) ...(C1)Discard the states that follow s ;Restore the saved iet ; sv[i]:inc ++ ;Figure 4: Our protocol for distributed simulation

4 The ProtocolOur protocol for distributed simulation is shownin Figure 4. To keep the presentation and correct-ness proof clear, optimization techniques for reducingoverhead are not included in this protocol. They aredescribed in the next section. Besides a simulationvector, each LP Pi also maintains an incarnation endtable (iet). The jth component of iet is a set of entriesof the form (k; ts), where ts is the timestamp of thestraggler that caused the rollback of the kth incarna-tion of Pj. All states of the kth incarnation of Pj withtimestamp greater than ts have been rolled back. Theiet allows an LP to detect orphan messages.When Pi is ready for the next event, it acts on themessage with the lowest virtual time. As explained inSection 3, Pi updates its SV and the internal state, andpossibly schedules events for itself and for the otherLPs by sending messages.Upon receiving a message m, Pi discards m if m isan orphan. This is the case when, for some j, Pi's ietand the jth entry of m's SV indicate that m is depen-dent on a rolled back state of Pj. If Pi detects that mis a straggler with virtual time t, it broadcasts a tokencontaining t and its current incarnation number k. Itrolls back all states with virtual time greater than tand increments its incarnation number, as shown inRollback. Thus, the token basically indicates that allstates of incarnation k with virtual time greater than tare orphans. States dependent on any of these orphanstates are also orphans.When an LP receives a token containing virtualtime t from Pj, it rolls back all states with the jthtimestamp greater than t, discards all orphan mes-sages in its input queue, and increments its incarna-tion number. It does not broadcast a token, whichis an important property of our protocol. This worksbecause transitive dependencies are maintained. Sup-pose state w of Pi is dependent on a rolled back stateu of Pj. Then any state x dependent on w must alsobe dependent on u. So x can be detected as an orphanstate when the token from Pj arrives at Px:p, withoutthe need of an additional token from Pi. The argu-ment for the detection of orphan messages is similar.We require an LP to block its execution after broad-casting a token until it receives acknowledgments fromall the other LPs. This ensures that a token for alower incarnation of Pj reaches all LPs before theycan become dependent on any higher incarnation ofPj. This greatly simpli�es the design because, whena dependency entry is overwritten by an entry froma higher incarnation in the lexicographical maximumoperation, it is guaranteed that no future rollback can

occur due to the overwritten entry (as the correspond-ing token must have arrived). While blocked, an LPacknowledges the received broadcasts.4.1 Proof of CorrectnessSuppose state u of Pj is rolled back due to the ar-rival of a straggler. The simulation is correct if all thestates that are dependent on u are also rolled back.The following theorem proves that our protocol cor-rectly implements the simulation.Theorem 2 A state is rolled back due to either astraggler or a token. A state is rolled back due to atoken if and only if it is dependent on a state that hasbeen rolled back due to a straggler.Proof. The routine Rollback is called from two places:Receive message and Receive token. States that arerolled back in a call from Receive message are rolledback due to a straggler. Suppose Pj receives a strag-gler. Let u be one of the states of Pj that are rolledback due to this straggler. In the call from routine Re-ceive token, any state w not satisfying condition (C1)is rolled back. Since the virtual time of u is greaterthan the virtual time of the straggler, by Lemma 2,any state w dependent on u will not satisfy condition(C1). In the future, no state can become dependenton u because any message causing such dependency isdiscarded: if it arrives after the token, it is discardedby the �rst test in the routine Receive message; if itarrives before the token, it is discarded by the �rsttest in the routine Receive token. So all orphan statesare rolled back.From Lemma 3, for any state w not satisfying con-dition (C1) and thus rolled back, there exists a state uwhich is rolled back due to the straggler, and u! w.That means no state is unnecessarily rolled back.5 Reducing the OverheadFor systems with a large number of LP's, the over-head of SV and the delay due to the blocking can besubstantial. In this section, we describe several op-timization techniques for reducing the overhead andblocking.5.1 Reducing the blockingFor simplicity, the protocol description in Figure 4increments the incarnation number upon a rollbackdue to a token (although it does not broadcast an-other token). We next argue that the protocol workseven if the incarnation number is not incremented.This modi�cation then allows an optimization to re-duce the blocking. We use the example in Figure 2(b)to illustrate this modi�cation. Suppose P2 executes

an event and makes a state transition from r20 to s22with virtual time 7 (not shown in the �gure). If P2does not increment its incarnation number on rollingback due to the token from P1, then s22 will have(0; 7) as the 3rd entry of its SV, which is the same ass21's 3rd entry in Figure 2(a). Now suppose the 3rdentry of a state w of another LP P3 is (0; 7). Howdoes P3 decide whether w is dependent on s21 whichis rolled back or s22 which is not rolled back? Theanswer is that, if w is dependent on s21, then it isalso dependent on s11. Therefore, its orphan statuswill be identi�ed by its 2nd entry, without relying onthe 3rd entry.The above modi�cation ensures that, for every newincarnation, a token is broadcast and so every LP willhave an iet entry for it. This allows the following opti-mization technique for reducing the blocking. SupposePi receives a straggler and broadcasts a token. Insteadof requiring Pi to block until it receives all acknowl-edgements, we allow Pi to continue its execution inthe new incarnation. One problem that needs to besolved is that dependencies on the new incarnation ofPi may reach an LP Pj (through a chain of messages)before the corresponding token does. If Pj has a de-pendency entry on any rolled back state of the oldincarnation then it should be identi�ed as an orphanwhen the token arrives. Overwriting the old entrywith the new entry via the lexicographical maximumoperation results in undetected orphans and hence in-correct simulation. The solution is to force Pj to blockfor the token before acquiring any dependency on thenew incarnation. We conjecture that this blocking atthe token receiver's side would be a improvement overthe original blocking at the token sender's side if thenumber of LPs (and hence acknowledgements) is large.5.2 Reducing the size of simulation vec-torsThe Global Virtual Time(GVT) is the virtual timeat a given point in simulation such that no state withvirtual time less than GVT will ever be rolled back. Itis the minimum of the virtual times of all LPs and allthe messages in transit at the given instant. Severalalgorithms have been developed for computing GVT[2, 20]. To reduce the size of simulation vectors, anyentry that has a timestamp less than the GVT can beset to NULL, and NULL entries need not be transmit-ted with the message. This does not a�ect the correct-ness of simulation because: (1) the virtual time of anymessage must be greater than or equal to the GVT,and so timestamps less than the GVT are never use-ful for detecting stragglers; (2) the virtual time con-tained in any token must be greater than or equal to

the GVT, and so timestamps less than the GVT arenever useful for detecting orphans. Since most of theSV entries are initialized to -1 (see Figure 3) whichmust be less than the GVT, this optimization allows asimulation to start with very small vectors, and is par-ticularly e�ective if there is high locality in messageactivities.Following [21], we can also use a K-optimistic pro-tocol. In this scheme, an LP is allowed to act on amessage only if that will not result in more than Knon-NULL entries in its SV. Otherwise it blocks. Thisensures that an LP can be rolled back by at most Kother LPs. In this sense optimistic protocols are N -optimistic and pessimistic protocols are 0-optimistic.Another approach to reducing the size of simula-tion vectors is to divide the LPs into clusters. Severaldesigns are possible. If the interaction inside a clus-ter is optimistic while inter-cluster messages are sentconservatively [18], independent SV's can be used in-side each cluster, involving only the LPs in the clus-ter. If intra-cluster execution is sequential while inter-cluster execution is optimistic [1], SV's can be used forinter-cluster messages with one entry per cluster. Sim-ilarly one can devise a scheme where inter-cluster andintra-cluster executions are both optimistic but em-ploy di�erent simulation vectors. This can be furthergeneralized to a hierarchy of clusters and simulationvectors. In general, however, inter-cluster simulationvectors introduce false dependencies [14] which mayresult in unnecessary rollbacks. So there is a trade-o�between the size of simulation vectors and unneces-sary rollbacks. But it does not a�ect the correctnessof the simulation.6 Distributed Simulation and Dis-tributed RecoveryThe problem of failure recovery in distributed sys-tems [6] is very similar to the problem of distributedsimulation. Upon a failure, a process typically restoresits last checkpoint and starts execution from there.However, process states that were lost upon the fail-ure may create orphans and cause the system stateto become inconsistent. A consistent system state isone where the send of a message must be recorded ifits receive is recorded [6]. In pessimistic logging [6],every message is logged before the receiver acts on it.When a process fails, it restores its last checkpointand replays the logged messages in the original or-der. This ensures that the pre-failure state is recreatedand no other process needs to be rolled back. But thesynchronization between message logging and messageprocessing reduces the speed of computation. In op-timistic logging [19], messages are stored in a volatile

memory bu�er and logged asynchronously to the sta-ble storage. Since the content of volatile memory islost upon a failure, some of the messages are no longeravailable for replay after the failure. Thus, some of theprocess states are lost in the failure. States in otherprocesses that are dependent on these lost states thenbecome orphan states. Any optimistic logging proto-col must roll back all orphan states in order to bringthe system back to a consistent state.There are many parallels between the issues in dis-tributed recovery and distributed simulation. A sur-vey of di�erent approaches to distributed recovery canbe found in [6]. In Table 1, we list the equivalent termsfrom these two domains. References are omitted forthose terms that are widely used. The equivalence isexact in many cases, but only approximate in othercases.Stragglers trigger rollbacks in distributed simula-tion, while failures trigger rollbacks in distributed re-covery. Conservative simulation [7] ensures that thecurrent state will never need to roll back. Similarly,pessimistic logging [6] ensures that the current stateis always recoverable after a failure. In other words,although a rollback does occur, the rolled back statescan always be reconstructed.The time warp optimistic approach [10] inspired theseminal work on optimistic message logging [19]. Theoptimistic protocol presented in this paper is based onthe optimistic recovery protocol presented in [4, 21].In the simulation scheme by Dickens and Reynolds [5],any results of an optimistically processed event are notsent to other processes until they become de�nite [3].In the recovery scheme by Jalote [11], any messagesoriginating from an unstable state interval are not sentto other processes until the interval becomes stable [6].Both schemes con�ne the loss of computation, eitherdue to a straggler or a failure, to the local process.Distributed Simulation Distributed RecoveryLogical Process Recovery Unit [19]Virtual Time State Interval IndexSim. Vector (this paper) Trans. Dep. Vector [19]Straggler FailureAnti-Message Rollback AnnouncementFossil Collection [10] Garbage Collection [6]Global Virtual Time [2] Global Recovery Line [6]Conservative Schemes Pessimistic SchemesOptimistic Schemes Optimistic SchemesCausality Error Orphan DetectionCascading Rollback [15] Domino E�ect [6]Echoing [15] Livelock [6]Conditional Event [3] Unstable State [6]De�nite Event [3] Stable State [6]Table 1: Parallel terms from Distributed Simula-

tion and RecoveryConservative and optimistic simulations are com-bined in [1, 18] by dividing LPs into clusters andhaving di�erent schemes for inter-cluster and intra-cluster executions. In distributed recovery, the paperby Lowry et al. [14] describes an idea similar to theconservative time windows in the simulation literature[7].Now we list some of the main di�erences betweenthe two areas. While the arrival of a straggler canbe prevented, the occurrence of a failure cannot. Butpessimistic logging can cancel the e�ect of a failurethrough message logging and replaying. The arrivalof a straggler in optimistic simulation does not causeany loss of information, while the occurrence of a fail-ure in optimistic logging causes volatile message logsto be lost. So some recovery protocols have to dealwith \lost in-transit message" problem [6] which is notpresent in distributed simulation protocols. Incomingmessages from di�erent channels can be processed inan arbitrary order, while event messages in distributedsimulation must be executed in the order of increas-ing timestamps. Due to these di�erences, some of theprotocols presented in one area may not be applicableto the other area.Distributed recovery can potentially bene�t fromthe advances in distributed simulation in the areas ofmemory management [13], analytical modeling to de-termine checkpoint frequency [8], checkpointing mech-anisms [22], and time constrained systems [9]. Simi-larly, research work on coordinated checkpointing, op-timal checkpoint garbage collection, and dependencytracking [6] can potentially be applied to distributedsimulation.References[1] H. Avril and C. Tropper. Clustered Time Warp andLogic Simulation. Proc. 9th Workshop on Parallel andDistributed Simulation, 112-119, 1995.[2] S. Bellenot. Global Virtual Time Algorithms. Proc.Multiconference on Distributed Simulation, 122-127,1990.[3] K. M. Chandy and R. Sherman. The ConditionalEvent Approach to Distributed Simulation. Proc.SCS Multiconference on Distributed Simulation, 93-99, 1989.[4] O. P. Damani and V. K. Garg. How to Recover Ef-�ciently and Asynchronously when Optimism Fails.Proc. 16th IEEE Intl. Conf. Distributed ComputingSystems, 108-115, 1996.[5] P. M. Dickens and P. F. Reynolds Jr. SRADS withLocal Rollback. Proc. SCS Multiconference on Dist.Simulation, 161-164, 1990.[6] E. N. Elnozahy, D. B. Johnson and Y. M. Wang. ASurvey of Rollback-Recovery Protocols in Message-

Passing Systems. Tech. Rep. No. CMU-CS-96-181,Dept. of Computer Science, Carnegie Mellon Univer-sity, ftp://ftp.cs.cmu.edu/user/mootaz/papers/S.ps,1996.[7] R. Fujimoto. Parallel Discrete Event Simulation.Comm. ACM, 33(10), 30-53, Oct. 1990.[8] J. Fleischmann and P. A. Wilsey. Comparative Analy-sis of Periodic State Saving Techniques in Time WarpSimulators. Proc. 9th Workshop on Parall. and Dist.Simulation., 50-58, 1995.[9] K. Ghosh, R. M. Fujimoto, and K. Schwan. TimeWarp Simulation in Time Constrained Systems. Proc.7th Workshop on Parallel and Distributed Simulation,163-166, 1993.[10] D. R. Je�erson. Virtual Time. ACM Trans. Prog.Lang. and Sys., 7(3), 404-425, 1985.[11] P. Jalote. Fault Tolerant Processes. Distributed Com-puting, 3, 187-195, 1989.[12] L. Lamport. Time, Clocks, and the Ordering ofEvents in a Distributed System. Communications ofthe ACM, vol. 21, no. 7, 558-565, 1978.[13] Y. B. Lin. Memory Management Algorithms for Op-timistic Parallel Simulation. Proc. 6th Workshop onParallel and Distributed Simulation, 43-52, 1992.[14] A. Lowry, J. R. Russel and A. P. Goldberg. OptimisticFailure Recovery for Very Large Networks. Proc. Proc.10th IEEE Symp. on Reliable Distributed Systems, 66-75, 1991.[15] B. D. Lubachevsky, A. Schwartz, and A. Weiss. Roll-back Sometimes Works ... if Filtered. Proc. 1989 Win-ter Simulation Conference, 630-639, 1989.[16] F. Mattern. Virtual Time and Global States ofDistributed Systems. Parallel and Distributed Algo-rithms: Proc. of the Intl. Workshop on Parallel andDistributed Algorithms, Elsevier Science PublishersB. V.(North Holland), 215-226, 1989.[17] A. Prakash and R. Subramanian. An E�cient Opti-mistic Distributed Simulation Scheme Based on Con-ditional Knowledge. Proc. 6th Workshop on Paralleland Dist. Simulation, 85-94, 1992.[18] H. Rajaei, R. Ayani, and L. E. Thorelli. The LocalTime Warp Approach to Parallel Simulation. Proc.7th Workshop on Parallel and Distributed Simulation,119-126, 1993.[19] R. E. Strom and S. Yemini. Optimistic Recovery inDistributed Systems. ACM Trans. on Computer Sys-tems, 204-226, August 1985.[20] A. I. Tomlinson and V. K. Garg. An Algorithm forMinimally Latent Global Virtual Time. Proc. 7thWorkshop on Parallel and Distributed Simulation, 35-42, 1993.[21] Y. M. Wang, O. P. Damani, and V. K. Garg. Dis-tributed Recovery with K-Optimistic Logging. To ap-pear in Proc. the 17th IEEE Intl. Conf. DistributedComputing Systems, 1997.[22] D. West and K. Panesar. Automatic IncrementalState Saving. Proc. 10th Workshop on Parallel andDistributed Simulation, 78-85, 1996.

