A Lightweight Algorithm for Causal Message Ordering in Mobile
Computing Systems

Chakarat Skawratananond, *Neeraj Mittal, and Vijay K. Garg

Electrical and Computer Engineering Dept.

The University of Texas at Austin
Austin, TX 78712

Abstract

Causally ordered message delivery is a required
property for several distributed applications particu-
larly those that involve human interactions (such as
teleconferencing and collaborative work). In this pa-
per, we present an efficient protocol for causal ordering
in mobile computing systems. This protocol requires
minimal resources on mobile hosts and wireless links.
The proposed protocol is scalable and can easily handle
dynamic change in the number of participating mobile
hosts in the system. Qur protocol, when compared to
previous proposals, offers a low unnecessary delay, low
message overhead and optimized handoff cost.

1 Introduction

The emergence of mobile computing devices, such
as notebook computers and personal digital assistants
with communication capabilities, has had a significant
impact on distributed computing. These devices pro-
vide users the freedom to move anywhere under the
service area while retaining network connection. How-
ever, mobile computing devices have limited resources
compared to stationary machines. Distributed algo-
rithms that run on the system with mobile computing
devices therefore require some modifications to com-
pensate for these factors.

In this paper, we consider causal message order-
ing required in many distributed applications such as
management of replicated data [5, 6], distributed mon-
itoring [4], resource allocation [11], distributed shared
memory [2], multimedia systems [1], and collaborative
work [12]. The protocols to implement causal mes-
sage ordering in systems with static hosts have been
presented in [7, 6, 9, 11, 13, 14]. These protocols can
be executed by every mobile host with all the rele-
vant data structures being stored on the mobile hosts

*Computer Science Dept.
The University of Texas at Austin
Austin, TX 78712

themselves. However, considering limited resources
and bandwidth of wireless links available to mobile
hosts, it is not appropriate to apply these protocols
directly to mobile systems. As introduced in [3], the
following factors should be taken into account in de-
signing protocols for mobile systems. Computation
load on mobile hosts, and communication overhead in
the wireless medium should be minimal. Also, proto-
cols should be scalable, and be able to easily handle
the effect of hosts connections and disconnections.

While ordering of messages in distributed systems
with static hosts has received wide attention, there has
been little work on causal message ordering in mo-
bile computing systems. Alagar and Venkatesan [3]
proposed three algorithms based on the algorithm by
Raynal, Schiper and Toueg (RST) in [11]. The first
algorithm (AV'1) maintains causal ordering among all
mobile hosts (MHs). The message overhead is propor-
tional to the square of the number of MHs (n;). How-
ever, the data structures required in the algorithm are
stored in mobile support stations (MSSs) to reduce
load on mobile hosts and wireless links. In the second
algorithm (AV'2), causal ordering is exclusively main-
tained among MSSs. The message overhead reduces
to the square of the number of MSSs (n;). Since
stronger ordering is imposed, messages may experience
unnecessarily delay even though they do not violate
causal ordering in the mobile hosts’ view. Their third
algorithm (AV3) is aimed at reducing this unnecessary
delay by partitioning each physical MSS into & logical
support stations. As k increases, the degree of unnec-
essary delay decreases, but the message overhead and
the cost of handling host migration increases.

Yen, Huang, and Hwang (YHH) [16] proposed an-
other algorithm based on [11]. The message overhead
in their algorithm lies between that of AV'1 and AV 2.
In particular, each MSS maintains a matrix of size
ns X ny. The unnecessary delay in their algorithm is

lower than AV2. Their handoff module is also more
efficient than AV2. Prakash, Raynal, and Singhal
(PSR) [10] presented an algorithm where message
overhead is relatively low; however, in the worst case,
it can be as large as O(n3).

In this paper we propose a new protocol in which
message overhead structure is independent of the num-
ber of hosts in the system. As a result, our protocol is
scalable and suitable for the systems where the number
of participating hosts is varied dynamically. Our con-
tribution can be summarized as follows: (1) With our
protocol, we are able to decrease the unnecessary de-
livery delay while maintaining low message overhead.
(2) Our handoff module is more efficient than AV2
and AV'3 because we do not require the messages ex-
changed among mobile support stations to be causally
ordered. (3) We discovered that YHH does not sat-
isfy the liveness property. (4) Finally, we state and
prove the condition implemented by our static mod-
ule. We also present conditions implemented by AV 2
and YHH (corrected) algorithms.

The rest of the paper is organized as follows. Sec-
tion 2 presents the system model and the notation used
in the paper. Sufficient conditions for causal message
ordering in mobile computing systems are presented
in Section 3. We present our protocol in Section 4.
We compare our protocol with the previous work in
Section 5. The simulation results are presented in Sec-
tion 6. Section 7 concludes the paper.

2 System Model and Definitions

A mobile computing system consists of two kinds
of processing units: mobile hosts, and mobile support
stations. A mobile host (MH) is a host that can move
while retaining its network connections. A mobile sup-
port station (MSS) is a machine that can communi-
cate directly with mobile hosts over wireless channels.
The geographical area within which an MSS supports
MHs is called a cell. Even though cells may physically
overlap, an MH can be directly connected through a
wireless channel to at most one MSS at any given time.
An MH can communicate with other MHs and MSSs
only through the MSS to which it is directly connected.
We assume that the wireless channels are FIFO, and
both wired and wireless channels are reliable and take
an arbitrary but finite amount of time to deliver mes-
sages. A mobile host can disconnect itself from the
network and can reconnect at a later time.

Let H = {h1,h2,...,hy, } represent the set of mo-
bile hosts and S = {S1, S2,...,Sn, } denote the set of
mobile support stations. In general, ny > ns. A mo-

bile computation can be illustrated using a graphical
representation referred to as concrete diagram. Fig-
ure 1 illustrates such a diagram where the horizontal
lines represent MH and MSS processes. hg is in the
cell of S;. hg is in the cell of S;. A concrete diagram
in which only MH processes are shown is referred to
as an abstract diagram.

An application message is a message sent by an MH
intended for another MH. Since mobile hosts do not
communicate with each other directly, an MH, say hs,
first sends an application message m to its MSS, say
Si, which then forwards m to the MSS, S;, of the des-
tination host, hy. Figure 1 illustrates our notation.
We define the delivery event as a local event that rep-
resents the delivery of a received message to the ap-
plication or applications running on that process.

msnd B
\ h, = msic
N Mh.snd
.t S =tsc
\‘\\ \\\\ m
_\:*m.rcv th.dv s = th dst
\ . hy = mdst

mrev mdlv

Figure 1: Notation

For any two events e and f on some mobile host,
we write e <5 f iff e occurs before f in real-time.
Similarly, e <5 f iff e occurs before f in real-time
on some mobile support station. We use —; and
—s to denote the Lamport’s happened before rela-
tion [8] in the abstract and concrete diagram respec-
tively. For any pair of messages m; and m;, we say
that m; causally precedes m; in abstract view, de-
noted by m; —, my, iff m;.snd —, mj.snd. Also,
m,; causally precedes m; in concrete view, denoted by
m; —s My, iff m;.snd =, mj.snd. A mobile compu-
tation is causally ordered if the following property is
satisfied for any pair of application messages, m; and
m;, in the mobile system,

(CO) my.snd =y, mj.snd = —(m;.dlv <p m;.dlv)

3 Sufficient Conditions

Theorem 1 : A mobile computation with static MHs
is causally ordered if (C1) all wireless channels are
FIFO, (C3) messages in the wired network are causally

ordered, and (C3) each MSS sends out messages in the
order they are received.

The proof is provided in [15]. Condition C> can be
formally expressed as

(CO")Y 1hy.snd —5 mj.snd = —(m;.dlv <, m;.dlv)

Sufficient conditions given in Theorem 1 were im-
plicitly used in [3]. For systems with multiple static
hosts, Theorem 1 gives a lightweight protocol for
causal message ordering. In the extreme case when the
entire computation is in a single cell, causal ordering
can be provided by simply using FIFO between MHs
and the MSS. However, C';, Cs, and C3 are not neces-
sary. This is because we can construct a causally or-
dered computation such that C; and Cs do not hold.

4 Algorithm

Alagar and Venkatesan extended RST [11] to mo-
bile systems. In AV 2, causal message ordering is main-
tained among MSSs. All MHs in a cell share a single
matrix. The message and storage overhead is reduced
to O(n?). This however can create false causal depen-
dencies between messages. Figure 2 displays a sample
of false dependencies created by AV2. In order to re-
duce these false causal dependencies and hence the un-
necessary delay in AV2, we propose to use a separate
matrix for each MH in a cell. The next two subsec-
tions describe the static and the handoff modules of
our protocol. The static module is executed when an
MH is in a particular cell. The handoff module is ex-
ecuted when an MH moves from one cell to another.

d2

N e
© X

= S
ml\ \mS
h4

dld3

Figure 2: An example of unnecessary delay in AV2.

4.1 Static Module

For convenience, we first describe the static module
assuming that hosts do not move. In the next subsec-
tion, we describe the handoff module and the modifi-
cations that need to be made to the static module to
incorporate mobile hosts.

Our static module is based on RST. For simple
exposition of the protocol, we assume that the chan-
nels among the MSSs are FIFO. This assumption can
be easily relaxed by implementing FIFO among MSSs
using sequence numbers. We also assume that every
MSS knows about the location of the MHs. For each
MH h;, we maintain an ns; X ng matrix M;. M;[i, j]
denotes the total number of messages h; knows to
have been sent by S; to S;. Assume that h; is in
the cell of S;. In order to reduce the communica-
tion and computation overhead of h;, the matrix M;
is stored at S;. In addition, each S; also maintain two
arrays lastsent; and lastrcvd; of size ng. The jth en-
try of lastsent;, lastsent;[j], denotes the number of
messages sent by S; to S;. Similarly, the jth entry
of lastrcvd;, lastrcvd;[j], denotes the number of mes-
sages sent by S; that have been received at S;.

Initially, all the entries in the matrices M;, and ar-
rays lastsent; and lastrcvd; are set to 0. To send a
message m to another MH hg, h first sends the mes-
sage to its MSS S;. Assume that hg is in the cell of
S;j. S; increments lastsent;[j] by one and then sends
(m, My, lastsent;[j]) to S;. After that S; sets M;[i, j]
to lastsent;[j].

S; on receiving (m, M, seqgno) from S; meant for hy
first checks whether m is deliverable. m is deliver-
able if S; has received all the messages on which m
causally depends (lastrcvd;[k] > M]Ik,j] for all k),
and there is no message destined for hy on which m
causally depends which is yet to be delivered to hqg
(i.e. A(m',M', seqno’) destined for hy sent by Sj yet
to be delivered such that seqno’ < M]Jk,j]). If so,
S; transmits m to hg. If m is not currently deliver-
able, it is kept in rcv@);, until it becomes deliverable.
Like YHH, we do not update M, immediately after
delivering m to hg, but we store m in ack@Qg4. When
hg receives m, it sends back an acknowledge message,
ack(m), to S;. On receiving ack(m), S; sets My, j]
to the maximum of its original value and seqno (pig-
gybacked on m). Then it sets each element in My to
the maximum of its original value and the value of
the corresponding element in M (also piggybacked on
m). This prevents any outgoing message from hg to
become causally dependent on m that is sent before m
is received by hy. For more detailed description of the
static module, please refer to [15]. Section 5 gives the
formal condition implemented by our static module.

4.2 Handoff Module

In order to ensure causally ordered message deliv-
ery, some steps have to taken during handoff after an
MH moves from one cell to another. This can be il-

lustrated by the following example. Let m; and ms,
mi —p, Mo, be both destined for the same MH, say h; .
Assume that h; moves from the cell of S; to the cell
of S3. Moreover, it leaves the cell before m; arrives
at S;. Also, assume that mo is sent to Ss. S3 cannot
decide based on M, the matrix for h;, that there are
messages in transition for h; sent to S;. To ensure
CO, Sy has to ascertain that all the messages for h;
sent to S; have been delivered.

We now describe the handoff module. Each MH h;
maintains a mobility number, mbl;, which is initially
set to 0. It is incremented every time a mobile host
moves. Intuitively, mbl denotes the number of times
an MH has changed cell. In addition, every MSS main-
tains an array of 2-tuples, denoted by cell, with an
entry for each MH. The [th entry of cell;, cell;[l] is
a 2-tuple (mbl,mss), where the value of cell;[l].mss
represents S;’s knowledge of the location of h; and the
value of cell;[l].mbl indicates how “current” the knowl-
edge is.

Consider a scenario when an MH h; moves from
the cell of S; to the cell of S;. After switching cell, h;
increments mbl; and sends register(mbl;, S;) message
to S; to inform S; of its presence. Also, h; retrans-
mits the messages to S; for which it did not receive
the acknowledge message from its previous MSS S;.
On receiving this message h;, S; updates cell;[l] (its
local knowledge about the location of h;) and sends
handoff-begin(h;, mbl;) message to S;. The MSS S;,
on receiving handoff-begin(h;, mbl;) message, updates
cell;[l] and sends enable(hy, M;, ack®);) message to S;.
It then broadcasts notify(h;, mbl;, S;) message to all
MSSs (except S; and S;), and waits for last(h;) mes-
sage from all the MSSs to which it sent notify message.
Meanwhile, if any message received by S; for h; be-
comes deliverable, S; marks it as “old” and forwards
it to S;. ack@Q is the queue of messages that have
been sent to h; from S;, but acknowledgment has not
been received.

On receiving enable(h;, M, ack@;) message from
Si, S; first delivers all the messages in ack@;. It also
updates M; assuming all the messages in ack@; have
been received at h;. Then S; starts sending the ap-
plication messages on behalf of h;. S; also delivers all
the messages for h; that are marked “old” in the or-
der in which the messages arrived. However, messages
destined for h; that are not marked “old” are queued
in rcv@;.

An MSS S, on receiving notify(h;, mbl;, S;) mes-
sage, updates cell[l] and then sends last(h;) mes-
sage to S;. Observe that since the channels among all
the MSSs are assumed to be FIFO, after S; receives
last(h;) message from S there are no messages in

transition destined for h; that are sent by Si to S;. On
receiving last(h;) message from all the MSSs (to which
notify message was sent), S; sends handoff-over(h;)
message to S;. The handoff terminates at S; after S;
receives handoff-over(h;) message. S; can now start
delivering messages to h;. Meanwhile, if S; receives
handoff-begin(h;) message from some other MSS be-
fore the current handoff terminates, S; responds to the
message only after the handoff terminates.

Since we do not assume that the messages in the
wired network are causally ordered, it is possible that
a message m destined for h; is sent to S; (the old MSS
of h;), whereas its causally preceding message m/', also
destined for hy, is sent to S; (the new MSS of h;). In
order to prevent this, an MSS piggybacks additional
information on all the message that contain applica-
tion messages: messages destined for an MH (may or
may not be marked as “old”) and enable messages. On
these messages, an MSS piggybacks its local knowl-
edge of the location of all the mobile hosts that have
changed their cells since it last communicated with the
other MSS. On receiving this information, the other
MSS updates its knowledge of the location of the MHs
(its cell) based on their mobility number. In the worst
case, this extra overhead could be as large as O(ny,).
In practice, we expect it to be much smaller. Let ¢4
denote the mean inter-message generation time and
tmov be the mean inter-switch time for an MH. Then,
the average extra overhead for uniform communication
pattern (every MH has equal probability of sending a
message to every other MH) is = O(ttm—"oini)

Our handoff module is more efficient than the hand-
off module in AV2 and AV3 since we do not re-
quire the messages exchanged among the MSSs to be
causally ordered. Formal description of the handoff
module and its correctness proof can be found in [15].

5 Comparisons

In this section we first state the predicate that char-
acterizes our static module. Then we present the con-
ditions implemented by the static modules of AV2 and
YHH. Finally, we provide a comparison between all
the protocols.

5.1 Characterization of Static Module
The static module in Section 4.1 implements,
(CO"™) (Imy : Thi.dst = my,.dst :

(m;.snd s ™g.snd) A (my.snd —p, mj.snd)) =
—(mj.dlv <p mi.div) A —(hj.dlv <s h;.rev),

where e < f iff (e = f) V (e <5 f), under the
assumption that the channels among MSSs are FIFO.
Moreover, if the channels among MSSs are not FIFO
then it implements,

CO" A (1h.snd <s Thj.snd = —(h;.dlv <s m;.rev))

The formal proof is given in [15]. For convenience,

let FO" “ pnisnd <, mjsnd = —(mj.dlo <,

M.rev).
5.2 Discussion

The proposed static module implements CO" A
FO" which is weaker than CO' implemented by AV 2
(CO" = CO"NFO"). As aresult, unnecessary delay
in our protocol is lower than that imposed in AV2.
In the worst case, our message overhead in the wired
network is O(n2 + n;,) but we expect it to be closer to
O(n?) in practice. Our storage overhead in each MSS
is O(k x n?), where k is the number of MHs currently
in the cell of the MSS. Unlike AV2, our handoff pro-
tocol does not require causal ordering among applica-
tion messages and messages sent as part of the handoff
protocol. This further reduces the unnecessary delay
compared to AV2.

PSR [10] is not suitable for systems where the num-
ber of mobile hosts dynamically changes because the
structure of information carried by each message in
their algorithm depends on the number of participat-
ing processes. In our protocol, the structure of the
information carried by each message in the wired net-
work does not vary with the number of MHs in the
system. So, our protocol is more suitable for dynamic
systems. PSR, however, incurs no unnecessary delay
in message delivery.

A /1

7 N
\ m3, M4
\ \ / \\

___. Looo N
T / Y
000 . N / 000 00
/

. \\ WA

h3

Figure 3: Liveness problem in YHH.

In Figure 3, we show a scenario where YHH does
not satisfy liveness property. According to YHH,

message mg will be delayed because m4.M[1,2] >
MH_DELIV,[1]. And since at the time when m4 ar-
rives at Sy, there are no messages in transit, my is
delayed indefinitely. The problem can be corrected
by using sequence numbers. The static module in
YHH (corrected) [16] satisfies rfi;.snd —5 mj.snd =
=(mj.dlv <p mi.dlv). Their message overhead in
the wired network is O(ns x np). This overhead is
higher than ours but lower than AV'1. Their unnec-
essary delay is strictly lower than AV2. When com-
paring in terms of unnecessary delay, their delay is
lower than ours in the average case which is expected
because of their higher message overhead. However,
there are cases where our protocol does not impose
delivery delay but their protocol does. One can fur-
ther reduce the unnecessary delay in YHH using the
technique introduced in this paper. By assigning a
matrix of size ns; X nj to each host, the condition im-
plemented by their static module can be weakened to,
(3 myg : my.dst = my.dst :
(h;.snd s g.snd) A (my.snd —p, mj.snd)) =
ﬁ(mj.dlv <h m,-.dlv)

Algorithm Message overhead dyn:Xﬁlcl_S%%;gglgor
AV2 O(n?) Yes
PSR O(n}) No
YHH O(ns X np) No

[Our Algorithm | O(n2 + nyp) | Yes

6 Performance Evaluation

Simulation experiments are conducted for different
combinations of message size and communication pat-
tern. We use 512 bytes for the size of small messages,
and 8K — 10K bytes for large messages. Two com-
munication patterns are used in the simulation: uni-
form, and nonuniform. Nonuniform pattern is induced
by having odd numbered hosts generate messages at
three times the rate of even numbered hosts. For each
application message m, we define MH-to-MH Delay as
the elapsed time between m.snd and m.dlv. Similarly,
MSS-to-MSS Delay is the elapsed time between 1m.snd
and m.dlv. The time between generation of successive
messages at a mobile host is exponentially distributed
with mean 100 ms. The throughput of a wired chan-
nel is assumed to be 100 Mbps, and the propagation
delay is 7 ms. For a wireless channel, the throughput
and propagation delay are respectively assumed to be

20 Mbps and 0.5 ms. This throughput is supported in
European HiperLAN.

Results: Due to space limitation, we plot the MH-
to-MH and MSS-to-MSS delay from our static module
against those from AV2 in [15]. The simulation re-
sults show that our static module can reduce the MH-
to-MH delay by as much as 18.4%, and MSS-to-MSS
delay by 20.7% under uniform communication pattern
and small message size. Under large message size, our
static module can reduce the MH-to-MH delay by as
much as 11.02%, and MSS-to-MSS delay by 18.7%.

Under nonuniform communication pattern and
small message size, the result shows that our static
module can reduce the MH-to-MH delay by as much
as 18.9%, and MSS-to-MSS delay by 20.9%. For large
message size, our static module can reduce the MH-
to-MH delay by as much as 12.11%, and MSS-to-MSS
delay by 19% .

7 Conclusion

We have presented a protocol that maintains the
low message overhead while reducing unnecessary de-
livery delay imposed by AV2. Unlike PSR and YHH,
our proposed protocol is scalable and suitable for dy-
namic systems. It is scalable because message over-
head does not depend on the number of mobile hosts.
And it is suitable for dynamic systems because it is
easy to adapt to the changes in the number of par-
ticipating mobile hosts. Delivery delay is reduced
at the cost of higher storage space required on each
MSS. Unlike AV2, our handoff protocol does not re-
quire causal ordering among application messages and
messages sent as part of the handoff protocol. This
further reduces the unnecessary delay in our protocol
compared to AV2. In future, as the throughput of
wireless links keeps increasing, the reduction of the
end-to-end delay achieved by our protocol will also be
higher.

References

[1] F. Adelstein and M. Singhal. Real-time Causal Message
Ordering in Multimedia Systems. In Proceedings of 15th
International Conference on Distributed Computing Sys-
tems, pages 36—43, June 1995.

[2] M. Ahamad, P. Hutto, and R. John. Implementing and
Programming Causal Distributed Memory. In Proceedings
of the 11th IEEE International Conference on Distributed
Computing Systems, pages 271-281, 1991.

[3] S. Alagar and S. Venkatesan. Causal Ordering in Dis-
tributed Mobile Systems. IEEE Transactions of Comput-
ers, 6(3), March 1997.

[4] O. Babaoglu and K. Marzullo. Consistent Global States
of Distributed Systems: Fundamental Concepts and Mech-
anisms. In Sape Mullender, editor, Distributed Systems,
pages 55-96. Addison-Wesley, 1993.

[5] K. Birman and T. Joseph. Reliable Communication in
Presence of Failures. ACM Transactions on Computer Sys-
tems, 5(1):47-76, February 1987.

[6] K. Birman, A. Schiper, and P. Stepehenson. Lightweight
causal and atomic broadcast. ACM Transactions on Com-
puter Systems, 9(3):272-314, 1991.

[7] A.D. Kshemkalyani and M. Singhal. An Optimal Algo-
rithm for Generalized Causal Message Ordering. In Pro-
ceedings of the 15th Annual ACM Symposium on Princi-
ples of Distributed Computing, pages 87-88, Philadelphia,
Pennsylvania, May 1996.

[8] L. Lamport. Time, Clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558-565, July 1978.

[9] A. Mostefaoui and M. Raynal. Causal Multicasts in Over-
lapping Groups: Towards a Low Cost Approach. In Pro-
ceedings of the 4th IEEE International Conference on Fu-
ture Trends in Distributed Computing Systems, pages 136—
142, Lisbon, September 1993.

[10] R.Prakash, M. Raynal, and M. Singhal. An efficient causal
ordering algorithm for mobile computing environments. In
Proceedings of the 16th International Conference on Dis-
tributed Computing Systems, 1996.

[11] M. Raynal, A. Schiper, and S. Toueg. Causal Ordering ab-
straction and a simple way to implement it. In Information
Processing Letters, volume 39(6), pages 343-350, 1991.

[12] M. Raynal, G. Thia-Kime, and M. Ahamad. From Serializ-
able to Causal Transactions for Collaborative Applications.
Technical Report 983, Irisa-Rennes, France, February 1996.
22 pages.

[13] L. Rodrigues and P. Verissimo. Causal Separators for
Large-Scale Multicast Communication. In Proceedings of
the 15th IEEE International Conference on Distributed
Computing Systems, pages 83-91, Vancouver, June 1995.

[14] A. Schiper, J. Eggli, and A. Sandoz. A New Algorithm
to Implement Causal Ordering. In Proceedings of the 3rd
International Workshop on Distributed Algorithms, LNCS-
392, pages 219-232, Berlin, 1989.

[15] C. Skawratananond, N. Mittal, and V. K. Garg. A
Lightweight Algorithm for Causal Message Ordering in Mo-
bile Computing Systems. Technical Report TR-PDS-1998-
011, PDS Lab, University of Texas at Austin, USA, Novem-
ber 1998.

[16] Li-Hsing Yen, Ting-Lu Huang, and Shu-Yuen Hwang. A
Protocol for Causally Ordered Message Delivery in Mobile
Computing Systems. Mobile Networks and Applications,
1997.

