
Debugging Distributed Programs Using Controlled
Re-execution

Neeraj Mittal
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712-1188, USA
neerajm@cs.utexas.edu

Vijay K. Garg�
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, TX 78712-1084, USA

garg@ece.utexas.edu

ABSTRACTDistributed programs are hard to write. A distributed de-bugger equipped with the mechanism to re-execute the tracedcomputation in a controlled fashion can greatly facilitatethe detection and localization of bugs. This approach givesrise to a general problem, called predicate control problem,which takes a computation and a safety property speci�ed onthe computation, and outputs a controlled computation thatmaintains the property.We de�ne a class of global predicates, called region predi-cates, that can be controlled e�ciently in a distributed com-putation. We prove that the synchronization generated byour algorithm is optimal. Further, we introduce the notionof an admissible sequence of events and prove that it is equiv-alent to the notion of predicate control. We then give an ef-�cient algorithm for the class of disjunctive predicates basedon the notion of an admissible sequence.
1. INTRODUCTIONWith the growth of internet, distributed systems are becom-ing more prevalent. However, correct distributed programsare di�cult to write; they often contain bugs - mismatchbetween expected and actual computations. Debugging isa process of tracking down the source of such bugs. Whilethe skill and intuition of the programmer play an importantrole in debugging, e�ective tools that provide an environ-ment for observing and replaying computations are indis-pensable. Such tools, called debuggers, can greatly facilitatethe detection and removal of the bugs.Debuggers have been widely used for developing traditionalsequential programs. However, distributed programs giverise to non-trivial issues which make traditional debuggers�supported in part by the NSF Grants ECS-9907213, CCR-9520540, TRW faculty assistantship award, a General Mo-tors Fellowship, and an IBM grant.

inadequate for the task. Firstly, unlike in sequential systemswhere the bug is based on an observable local state, a bug ina distributed system is often based on a global state that isnot easy to observe. Secondly, even after we have detecteda bug we may not be able to reproduce it due to inherentnon-determinism in a distributed program, brought aboutby varying processor and channel speeds. Thus unobserv-ability of global states and irreproducibility of distributedcomputations are the issues that need to be addressed whilebuilding a distributed debugging system. This has led toresearch in the detection of bugs [1, 2, 3, 4, 11, 14, 15] andthe replay of distributed computations [7, 9, 13].The correctness of a distributed program is often speci�ed asa combination of safety and liveness properties that shouldhold throughout a computation. On detecting violation of asafety property, a programmer can gain considerable insightinto the bug, that caused the violation, by learning whetherall possible runs or executions� of the computation are un-safe. In that case, the bug cannot be �xed by adding orremoving synchronization alone. On the other hand, if it ispossible to eliminate unsafe executions by adding synchro-nization to the computation then too little synchronizationis likely to be the problem. Further, the knowledge of theexact synchronization needed to maintain a safety propertycan help locate the bug in the program. The presence ofsuch a mechanism in a debugger can greatly improve its ef-fectiveness. The problem of controlling a computation basedon the speci�cation of safety properties on global states, re-ferred to as the predicate control problem, is the focus ofthis paper. Informally, given a distributed computation anda global predicate, if it is possible to maintain the predi-cate, without violating liveness, by adding synchronizationto the computation then the global predicate is controllablein the distributed computation. The synchronization in-volves adding an arrow from one process execution to an-other which ensures that the execution after the head of thearrow can proceed only after the execution before the tailhas completed. For example, consider the computation inFigure 1(a). The safety property is \the clocks of no twoprocesses drift apart more than 1 unit". The consistent cutC of the computation does not satisfy the safety property asclock0 = 0 and clock1 = 2 implying jclock0�clock1j = 2 > 1.However, by adding a synchronization arrow from e0 to f1,thereby, forcing e0 to occur before f1 eliminates the consis-�each distributed computation corresponds to multiple pos-sible executions of events.

0

1

0

1p1

p0

e0 e1

f0 f1

0 1 2

0 21

C
(a)

p1

p0

e0 e1

f0 f1

0 1 2

0 21

C

(b)

underlying message

synchronization arrowFigure 1: a computation (a) and a controlled com-putation (b).tent cuts such as C that violate the given safety property.Additionally, predicate control can be used to actively debuga distributed program [16]. Debugging typically involvesmultiple iterations of observing a distributed computationand then replaying the traced computation. Active debug-ging allows the traced computation to be replayed in a con-trolled fashion. This ability to do a controlled replay, if usedjudiciously, may accelerate the discovery and localization ofbugs. A programmer �rst detects a bug while observing acertain computation. He then tries to replay the computa-tion with added control, to determine if it would be su�cientto eliminate the bug. This control is in the form of addedcausal dependencies to the existing trace of the computa-tion and is speci�ed as a safety constraint. For example, theprogrammer may suspect that the bug is due to an event oc-curring before another event and specify the required syn-chronization as a safety property. The programmer mayrepeat the control mechanism to localize the bug further.He may also determine dependencies between the bugs sothat eliminating one bug would eliminate the other. Thus adistributed debugger equipped with predicate control mech-anism can prove to be a valuable tool for a programmer.Further, predicate control has applications in the area ofsoftware fault-tolerance [17]. It has been observed that manysoftware failures, especially those caused by synchronizationfaults, are transient in nature and may not recur when theprogram is re-executed with the same inputs. A commonapproach to achieving software fault-tolerance is based onsimply rolling back the processes to a previous state andthen restarting them in the hope that the transient failurewill not recur in the new execution [6, 18]. Methods basedon this approach rely on chance to recover from a transientsoftware failure. However, it is possible to do better in thespecial case of synchronization faults. Instead of leaving

the recovery to chance, controlled re-execution of the tracedcomputation can be used to ensure that the transient syn-chronization failure does not occur.The research in distributed debugging has focussed onmainly two problems: detecting bugs in a distributed com-putation and replaying the traced computation. In contrast,our approach focuses on adding a control mechanism to adebugger to allow computations to be run under added syn-chronization to satisfy safety constraints. The predicate con-trol problem was formally introduced by Tarafdar and Garg.They proved that it is NP-complete in general. However,they solved the problem e�ciently for the class of disjunc-tive predicates and mutual exclusion [16, 17]. Besides theirwork, there is another study [10] that focuses on controllingglobal predicates within the class of conditional elementaryrestrictions. Unlike our model of a distributed system, themodel in [10] uses an o�-line speci�cation of pair-wise mu-tually exclusive states and does not use causality. Our con-tributions in this paper are following.� We identify a class of global predicates, called regionpredicates, that can be controlled e�ciently. The classof region predicates is fairly rich and, in some sense, ageneralization of the class of stable predicates. Manystable predicates, such as termination and deadlock,belong to this class. From the point of view of pred-icate control, it contains channel predicates such as\there are at most k messages in any channel at anytime", and fairness predicates such as \the di�erencebetween the number of times two processes are granteda resource is bounded". We give an e�cient algorithmto maintain a region predicate in a computation.� We prove that the synchronization produced by our al-gorithm for controlling a region predicate is optimal inthe sense that it eliminates all unsafe executions andno safe execution is suppressed, thereby guaranteeingmaximum concurrency possible in the controlled com-putation.� We introduce the notion of an admissible sequence ofevents and prove that existence of such a sequence isa necessary and su�cient condition for a predicate tobe controllable in a computation. Informally, given apredicate and a computation, an admissible sequenceyattempts to capture a set of properties satis�ed bysome non-empty subset of the safe executions of a com-putation.� Further, using the notion of an admissible sequence,we transform the problem of controlling a disjunc-tive predicate in a computation to �nding a path ina graph. Our algorithm has O(n2p) time complexityand O(np) message complexity, where n is the numberof processes and p is the maximum number of true-intervals on any process. The complexities are compa-rable to those in [16]. We also present an algorithmthat gives minimum synchronization. Our approachis more general and can be extended to �nd a controlstrategy for other classes of predicates.ythe sequence may not include all the events in a computa-tion

1

0

p1

p0

e0 e1 e2

f0 f1 f2

m

X Y
ZFigure 2: consistent cuts and frontiers.The organization of the paper is as follows. We present ourmodel of a distributed system and de�ne the problem for-mally in Section 2. In Section 3, we de�ne region predicatesand give an e�cient algorithm for their control. We alsoprove that the synchronization generated by our algorithmis optimal. We de�ne the notion of an admissible sequenceof events and prove its equivalence to the notion of predicatecontrol in Section 4. In Section 5, we derive an e�cient al-gorithm for the class of disjunctive predicates based on thenotion of an admissible sequence.

2. MODEL AND PROBLEM SPECIFICA-
TION

2.1 Model of a Distributed SystemA distributed system consists of a set of processes P =fp0; p1; : : : ; pn�1g. Each process executes a prede�ned pro-gram. Processes do not share any clock or memory; theycommunicate and synchronize with each other by sendingmessages over a set of channels. We assume that the mes-sages are not lost, altered or spuriously introduced into achannel. We do not assume that the channels are FIFO.The execution of each process in the distributed system ismodeled as a sequence of distinct events transforming theinitial state of the process to a �nal state. We use lowercaseletters e and f to represent events, and greek letters � and� to represent sequences of events. The process on whichan event e occurs is represented by e:proc. We use e:predand e:succ to denote the previous and the next event of e,respectively, on e:proc, if they exist. We use the conventionthat if e:succ does not exist then e:succ 62 C evaluates totrue for any set C of events. For convenience, we assumethat for each process pi there is a special event, called aninitial event and denoted by?i, that occurs before any otherevent on that process. Intuitively, ?i initializes the state ofpi. Let <P denote the order of events on the processes.The computation of a distributed system is modeled as anirreexive partial order on a set of events. We use E� todenote a distributed computation with a set of events Eand a partial order �, read as \precedes". We also usesymbols �, read as \before", and <, read as \under" torepresent irreexive partial orders on sets of events. LetE:? = f?iji 2 [1::n]g be the set of initial events. We assumethat E includes E:? and � includes <P . Further, events inE:? occur before any event in E nE:?, i.e., for each pi 2 Pand e 2 E n E:?, (?i; e) 2� , where \n" denotes the setdi�erence operation. For a relation �, e 4 f is equivalentto (e = f) _ (e � f). We use E:> to denote the set of

�nal events on the processes. We use the terms \distributedcomputation" and \computation" interchangeably.Figure 2 illustrates the various concepts introduced sofar. The distributed system shown in Figure 2 consistsof processes p0 and p1. In the �gure, a circle representsa local state of a process and a bar denotes an event ona process. The events e1 and f2 are send and receiveevents, respectively, of the message m. The set of eventsE = f?0; e0; e1; e2;?1; f0; f1; f2g. The executions of p0and p1 are given by sequences ?0e0e1e2 and ?1f0f1f2,respectively. The events e0 and e2 are the predecessor andthe successor, respectively, of the event e1, i.e., e1:pred = e0and e1:succ = e2. The order of events on processes<P = f(?0; e0); (e0; e1); (e1; e2); (?1; f0); (f0; f1); (f1; f2)g+.Here, R+ denotes the irreexive transitive closure of arelation R. The partial order on the set of events Eis the happened-before relation de�ned by Lamport [8],and is given by �= (<P [f(?0; f0); (?1; e0); (e1; f2)g)+.Further, E:> = fe2; f2g.
2.2 Consistent Cuts, Frontiers and Legal CutsA cut of a computation E� is a set of events C, whereE:? � C � E, such that for each event e in C, e:pred isalso in C (if it exists). Formally,cut(C;E�) def= (E:? � C)^ h8 e : e 62 E:? : e 2 C) e:pred 2 CiA frontier of a cut C is the set of those events in C whosesuccessors are not in C. Formally,C:frontier def= f e j e 2 C and e:succ 62 C gObserve that if an event in C is also in E:> then it is triv-ially in C:frontier. A cut C passes through an event e i� eis contained in C:frontier. A cut C is consistent i� for eachevent e in C, all its preceding events are also in C. Formally,consistent(C;E�) def=cut(C;E�) ^ h8 e; f :: (e � f) ^ (f 2 C)) e 2 CiIntuitively, a consistent cut captures the partial computa-tion of a distributed system and its frontier captures thestate of a distributed system.In Figure 2, X = f?0; e0;?1g, Y = f?0; e0; e1;?1; f0; f1gand Z = f?0; e0;?1; f0; f1; f2g are cuts of the computa-tion. Here, X and Y are consistent cuts. However, Z isnot consistent because e1 � f2 and f2 2 Z but e1 62 Z.Further, X:frontier = fe0;?1g, Y:frontier = fe1; f1g andZ:frontier = fe0; f2g. Finally, X passes through events e0and ?1.We now de�ne a legal cut that helps us to capture thoseexecutions of the computation that respect the order of theevents in a given sequence. Informally, if an execution (ofa computation) and a sequence of events do not di�er onthe relative order of any two events then every consistentcut of the execution is legal with respect to the sequence.Formally,

Definition 1. (legal cut) A consistent cut C of acomputation E� is legal with respect to a sequence ofdistinct events � i� for each event �i in �, if �i is in Cthen all its preceding events in � are also in C. Formally,legal(C;E�; �) def= consistent(C;E�)^ h8 j; k : k � j : �j 2 C) �k 2 CiIn Figure 2, Y is legal with respect to sequences e0f1f2 ande0e1e2 but not with respect to the sequence e0e2f1. We usethe concept of legality to de�ne the notion of an admissiblesequence later.
2.3 Global PredicatesLet Xi be the set of variables associated with process pi andlet X = SiXi. A global predicate � is a boolean-valuedfunction of the variables in X. We use �:C to denote thevalue of the global predicate � for the cut C. If �:C = truethen C satis�es � or � is true for C. A global predicate �is a local predicate of process pi i� it only depends on thevariables in Xi. We use the terms \global predicate" and\predicate" interchangeably.
2.4 Problem SpecificationInformally, given a distributed computation and a globalpredicate, if it is possible to maintain the predicate, withoutviolating liveness, by adding synchronization to the compu-tation then the global predicate is controllable in the com-putation. The predicate is often the safety property of adistributed system. For example, \there are at most k mes-sages in any channel at any time", \no two processes arein the critical section at the same time", or \at least oneserver is available at any time". The synchronization in-volves adding an arrow from one process execution to an-other which ensures that the execution after the head of thearrow can proceed only after the execution before the tailhas completed. It can be realized using control messages.The implementation details can be found in [16]. Formally,Definition 2. (controllable computation) A predi-cate � is controllable in a computation E� i� there exists anirreexive partial order < on E that extends � (i.e., ��<)such that every consistent cut of E< satis�es �.Each computation of a distributed system corresponds tomultiple ways in which the events can be interleaved to forman execution. An execution is safe i� it maintains the givenpredicate; otherwise it is unsafe. The following propertiesabout controllability of a predicate can be easily veri�ed.� (�)) ^ (� is controllable in E�)) iscontrollable in E�.� (� is controllable in E<) ^ (��<)) � is controllablein E�The predicate control problem is NP-complete in general.However, it can be solved e�ciently for certain classes ofpredicates including mutual exclusion and disjunctive pred-icates. In the next section, we introduce another class of

predicates namely region predicates for which the problemcan be solved in polynomial time.
3. REGION PREDICATESThe de�nition of a region predicate is based on p-regionpredicate, where p is a process. Intuitively, a p-region pred-icate states that, for each event e on p, there exists a mini-mum and a maximum consistent cut passing through e suchthat every consistent cut that lies between the two cuts sat-is�es the predicate. For example, consider the computationin Figure 3 and the fairness predicate \the di�erence be-tween the number of times p1 and p2 are granted a resourceis at most 1", i.e., jalloc1 � alloc2j � 1. Consider an evente on p1 as shown in Figure 3. Immediately after executionof e, alloc1 = 2. For the fairness predicate to hold for aconsistent cut passing through e, 1 � alloc2 � 3 shouldbe true. Note that alloc2 is monotonically non-decreasing.Thus there exists an earliest event on p2, say fmin, such thatalloc2 � 1. Likewise, there exists a latest event on p2, sayfmax, such that alloc2 � 3. The fairness predicate holds forall consistent cuts that pass through e and an event on p2that lies between fmin and fmax (both inclusive). For anyother consistent cut that passes through e, either alloc2 < 1or alloc2 > 3, and therefore the predicate is false. Observethat the set of consistent cuts of a computation that passthrough a set of events forms a lattice. Therefore there ex-ists a minimum consistent cut Cmin:e passing through e andfmin that satis�es �. Similarly, there exists a maximum con-sistent cut Cmax:e passing through e and fmax for which � istrue. Further, every consistent cut that lies between the twocuts satis�es the predicate. Note that the set of consistentcuts passing through e that satisfy the fairness predicate re-sembles the cross-section of an hourglass. Other examplesof pi-region predicate are,� any local predicate on pi.� at most ki;j messages in the channel from pi to pj :sendi;j � receivei;j � ki;j .� the drift between the clocks of pi and pj is bounded:jclocki � clockj j � �i;j .� xi < minfyj ; ykg, where xi, yj and yk are variables ofpi, pj and pk respectively. Moreover, yj and yk aremonotonically non-decreasing.Definition 3. (p-region predicate) A predicate � isa p-region predicate i� it satis�es the following properties.For every event e on process p,� (weak lattice) �:C^�:C0) �:(C\C0)^�:(C[C0),where C and C0 are consistent cuts that pass throughe, and� (weak inclusion) �:C0 ^ �:C00 ^ (C0 � C � C00))�:C, where C, C0 and C00 are consistent cuts that passthrough e.The weak lattice property says that the set of consistentcuts passing through an event e that satisfy � form a lattice,

1

0

minf maxf

min.e .emaxC C

p2

p1

2

p0

e 2

0 1 1 2 3 4Figure 3: an illustration of a region predicate and the required synchronization.thereby ensuring that there is a minimum and a maximumconsistent cut passing through e for which � is true. Theweak inclusion property captures the fact the predicate holdsfor every consistent cut that lies between the minimum andthe maximum consistent cuts. It can be easily proved thatthe class of p-region predicates, for a process p, is closedunder conjunctionWe now de�ne a region predicate. A predicate is a regionpredicate i� it can be expressed as a conjunction of p-regionpredicates (possibly di�erent p's), i.e., it can be writtenas !0 ^ !1 ^ � � � ^ !m�1, where each !i is a p-region predi-cate for some process p. Since true is a p-region predicatefor any process p, any region predicate can be written as!0 ^ !1 ^ � � � ^ !n�1, where each !i is a pi-region predicate.Consider an event e on process pi. We denote the minimumand maximum consistent cuts that pass through e and sat-isfy !i by Cmin:e and Cmax:e, respectively. Note that if noconsistent cut that passes through e satis�es � then � is notcontrollable. Therefore we assume that there is at least oneconsistent cut that passes through e and satis�es �.To control !i in a computation E�, we need to ensurethat the frontier of any consistent cut (of the controlledcomputation) always lies between Cmin:e and Cmax:e, forsome event e on pi. In other words, whenever the compu-tation reaches an event e on pi all events in Cmin:e n feghave already been executed, and the computation doesnot advance beyond Cmax:e n feg before leaving e. Tothat e�ect, we add synchronization arrows from events in(Cmin:e):frontier (excluding e) to e, and from e:succ tosuccessor of events in (Cmax:e):frontier (again, excludinge). Formally, synchronization for each event e on pi,denoted by �:e, is de�ned as follows.(D 3.1) �:e def=f (f; e) j f 2 (Cmin:e):frontier n feg and e 62 E:? gS f (e:succ; f:succ) j e 62 E:>, f 62 E:> andf 2 (Cmax:e):frontier n feg gFigure 3 illustrates the synchronization for an event e. Thesynchronization needed to control � in E�, denoted by �, isde�ned as Se2E�:e. We now prove that � is both necessaryand su�cient synchronization to control � in E�. Note thatfor � to be controllable in E�, it must evaluate to true forthe initial consistent cut E:? and the �nal consistent cut E.In the next lemma, we establish that the synchronization

given by � is su�cient by proving that � eliminates allunsafe executions of the computation.Lemma 1. (� is su�cient) Let � be the synchroniza-tion as de�ned (in D 3.1) for a region predicate � and acomputation E�. If E:? and E satisfy �, and � [� isacyclic then every consistent cut of E<, where < is any ir-reexive partial order that extends � [�, satis�es �.Proof. Consider a consistent cut C of E< and an evente on some process pi that is contained in the frontier of C.We claim that Cmin:e � C � Cmax:e.We �rst show that Cmin:e � C. There are two cases: e 2E:? or e 62 E:?. If e 2 E:? then Cmin:e = E:?. Byde�nition of a consistent cut, C � E:? which implies C �Cmin:e. Therefore assume e 62 E:?. Let fmin be an event inthe frontier of Cmin:e that occur on some process pj , wherepj 6= pi. By de�nition of �:e, (fmin; e) 2 �:e implying(fmin; e) 2 �. Since � �<, fmin < e. Further, since C is aconsistent cut of E< and contains e, it also contains fmin.Thus every event in the frontier of Cmin:e is contained in C.Equivalently, Cmin:e � C. Likewise, C � Cmax:e.This proves our claim that Cmin:e � C � Cmax:e. By def-inition of Cmin:e and Cmax:e, !i:(Cmin:e) and !i:(Cmax:e)hold. Using the weak inclusion property, !i:C holds. Sincepi was chosen arbitrarily, for each i, !i:C holds. Therefore� is true for C.Lemma 2 proves that every controlled computation in whichthe given region predicate always holds contains �, therebyproving that the synchronization � is necessary.Lemma 2. (� is necessary) If a region predicate � iscontrollable in a computation E� then E:? and E satisfy�. Further, let � be the synchronization as de�ned (in D3.1), and < be any irreexive partial order that extends� such that every consistent cut of E< satis�es �. Then(� [�) �<.Proof. Since E:? and E are consistent cuts of E<, theysatisfy �. We prove that � �< by showing that �:e �<,for each event e in E. Consider an event e in E and let

e:proc = pi. Further, consider events fmin and fmax in thefrontiers of Cmin:e and Cmax:e, respectively, that occur onsome process pj , where pj 6= pi. We show that if (fmin; e) 2�:e then fmin < e, and if (e:succ; fmax:succ) 2 �:e thene:succ < fmax:succ.Assume (fmin; e) 2 �:e. By de�nition of �:e, e 62 E:?.There are two cases: fmin 2 E:? or fmin 62 E:?. If fmin 2E:? then fmin � e which implies fmin < e. Therefore as-sume fmin 62 E:?. Further, assume, by the way of contradic-tion, fmin 6< e. In that case, there exists a consistent cut ofE<, say C, that passes through e but does not contain fmin.Since !i:C and !i:(Cmin:e) hold, !i:(C \ Cmin:e) is true(weak lattice property). However, C\Cmin:e is strictly con-tained in Cmin:e as fmin 62 (C\Cmin:e) but fmin 2 Cmin:e.This contradicts the fact that Cmin:e is the minimum con-sistent cut that passes through e and satis�es !i. Similarly,if (e:succ; fmax:succ) 2 �:e then e:succ < fmax:succ.Thus, for each e in E, �:e �< implying � �<. Since both� and � are contained in <, (� [<) �<.Theorem 3 combines Lemma 1 and Lemma 2, and givesnecessary and su�cient conditions for a region predicate tobe controllable.Theorem 3. Let � be the synchronization as de�ned (inD 3.1) for a region predicate � and a computation E�. Then� is controllable in E� i� (1) E:? and E satisfy �, and (2)� [� is acyclic.Proof. (if) Let <= (� [�)+. Since � [� is acyclic,< is an irreexive partial order that extends � [�. UsingLemma 1, every consistent cut of E< satis�es �. Thus � iscontrollable in E�.(only if) If � is controllable in E� then there exists anirreexive partial order < that extends � such that everyconsistent cut of E< satis�es �. Using Lemma 2, � [� iscontained in <. Since < is acyclic, � [� is acyclic. Also,again using Lemma 2, E:? and E satisfy �.We now prove the optimality of our synchronization. Wecall a synchronization optimal i� it eliminates all unsafe ex-ecutions but does not suppress any safe execution.Theorem 4. (� is optimal) Let � be the synchroniza-tion as de�ned (in D 3.1) for a region predicate � and acomputation E�. If � is controllable in E� then � is opti-mal.Proof. Assume � is controllable in E� and let <= (�[�)+. Using Lemma 2, < is an irreexive partial order.Further, using Lemma 1, every consistent cut of E< satis�es�. Thus < does not contain any unsafe execution of E�.It remains to be shown that every safe execution of E� isan execution of E<. Every safe execution of E� can berepresented by a total order on the set of events E. Let <

be a safe execution of E�. By de�nition, �� < and everyconsistent cut of E< satis�es �. Thus, using Lemma 2, <contains � [�. This implies < extends< or, in other words,< is an execution of E<.Theorem 3 gives us an e�cient way to compute thesynchronization needed to control a region predicate in acomputation provided we can e�ciently compute Cmin:eand Cmax:e for each event e. We show that a regionpredicate satis�es the linearity property which gives us ane�cient way to compute Cmin:e and Cmax:e for each evente in E. Let e:proc = pi and C be a consistent cut of E�that passes through e. The linearity property demands thatif !i evaluates to false for C then there exists an event f inC:frontier, di�erent from e, such that f cannot be a partof the frontier of any consistent cut of E� passing throughe that satis�es !i. Formally,:!i:C) h9f : f 2 C:frontier n feg :h@C0 : C0 is a consistent cut of E� :!i:C0 and C0 passes through e and fiiTheorem 5. A region predicate satis�es the linearityproperty.Proof. Let � be a region predicate of a computationE�. Consider a consistent cut C of E�. Let e be anevent in the frontier of C and e:proc = pi. Assume !ievaluates to false for C, and, on the contrary, for eachf 2 C:frontier n feg there exists a consistent cut of E�,say Cf , that passes through e and f , and satis�es !i. Con-sider the cuts Cmin and Cmax de�ned as the intersectionand the union, respectively, of all Cf 's. Observe that Cminand Cmax are consistent cuts of E� that pass through e, andCmin � C � Cmax. Further, using the weak lattice prop-erty, !i:(Cmin) and !i:(Cmax) hold as !i is true for all Cf 's.Thus, using the weak inclusion property, !i:C also holds, acontradiction.Figure 4 gives an e�cient algorithm to compute Cmin:e foran event e, given a region predicate � and a computationE�. The algorithm to compute Cmax:e is similar and hasbeen omitted. It is easy to see that given a region predi-cate � and a computation E�, the complexity of computingCmin:e and Cmax:e, for each event e, is O(j�j�jEj2) assumingthe time complexity of invoking the linearity property everytime is O(j�j). Figure 5 describes the algorithm to determinewhether a region predicate is controllable in a computation.The algorithm has O(j�j�jEj2) time complexity.Remark: Note that the class of region predicates is in-comparable to the class of linear and post-linear predicatesde�ned by Chase and Garg in [2]. Let C� denote the setof all consistent cuts for which � is true. If � is a linearpredicate, C� is an inf-semilattice. Similarly, if � is a post-linear predicate, C� is a sup-semilattice. However, if � isa region predicate, C� may neither be an inf-semilattice ora sup-semilattice. In particular, it is not necessary thatCmin:e � Cmin:(e:succ) or Cmax:e � Cmax:(e:succ). Forexample, C� when � is \x < y", where y is a monotonically

given a computation E�, a p-region predicate �, andan event e on process p:Cmin := minimum consistent cut that passes through e;while not done doif there exists an event f in Cmin:frontiersuch that e:succ � f thenexit(\Cmin :e does not exist");endif;if there exists events f and g, f 6= e, in C:frontiersuch that f:succ � g thenCmin := Cmin [f:succ;else /* Cmin is a consistent cut */if �:C then exit(Cmin);else�nd the event f using linearity property;Cmin := Cmin [f:succ;endif;endif;endwhile;Figure 4: an algorithm to compute Cmin:e for anevent e.given a computation E� and a region predicate �:1. if E:? or E does not satisfy � thenexit(\� cannot be controlled in E�");2. for each event e 2 E do compute Cmin:e and Cmax:e;3. compute the synchronization � as de�ned (in D 3.1);4. if � [� is acyclic then exit(�)else exit(\� cannot be controlled in E�");Figure 5: the algorithm to determine if a regionpredicate is controllable in a computation.non-decreasing variable of pj and x is a non-monotonic vari-able of pi, does not form an inf-semilattice.
4. ADMISSIBLE SEQUENCESIn this section, we give an alternative characterization ofcontrollability based on the notion of an admissible se-quence. Informally, given a predicate � and a computationE�, an admissible sequence of events � tries to capture theset of properties satis�ed by some non-empty subset S ofthe safe executions of E�. Each execution in S traversesthrough a set of phases. The ith phase starts when �i isexecuted and continues until the execution on �i:proc ad-vances beyond �i, i.e., �i:succ is executed. Each executionin S satis�es the following properties. Firstly, for each i,the execution enters the ith phase before the (i+1)st phase.For this to hold, � and E� cannot di�er on relative orderof any two events (agreement property). Secondly, there areno gaps in the traversal of phases implying (1) the initialconsistent cut E:? and the �nal consistent cut E belong toat least one phase (possibly di�erent) (boundary condition),and (2) for each i, the (i+1)st phase is entered before leav-ing the ith phase (continuity property). Finally, to ensurethat no unsafe execution satis�es these properties, all con-sistent cuts of the computation that are legal with respect

to � and belong to at least one phase satisfy the given pred-icate (weak safety property). Let j�j denote the length of asequence �. Formally,Definition 4. (admissible sequence) A sequence ofdistinct events � is admissible with respect to a predicate� and a computation E� i� it satis�es the following proper-ties.� (agreement) � is consistent with �, i.e., for each iand j, i < j) �j 6� �i,� (boundary condition) �0 2 E:? and �j�j�1 2 E:>,� (continuity) for each i, �i 62 E:>) �i:succ 6� �i+1,and� (weak safety) any cut C that is legal with respect to� such that �i 2 C:frontier, for some i, satis�es �,i.e., legal(C;E�; �)^h9�i :: �i 2 C:frontieri) �:C.For example, in Figure 6, the sequence e0e1f2 is notan admissible sequence as the initial consistent, given byf?0;?1g, does not belong to any phase (the boundary con-dition is violated). The sequence ?0f1e0f2 is not admissiblesince every execution of the computation executes e0 beforef1, thereby entering the 2nd phase before the 1st phase (theagreement property is not satis�ed). The sequence?0e0f1f2is not an admissible sequence because every execution of thecomputation must execute e1 (and therefore leave e0) beforeit can execute f1, thereby leaving the 1st phase before en-tering the 2nd phase (the continuity property is violated).Finally, the sequence ?0e0f0e2 satis�es the boundary con-dition, and the agreement and continuity properties.We now show the equivalence of the notion of an admissiblesequence and the notion of controllability. In the next theo-rem, we prove that the existence of an admissible sequenceis a necessary condition for controllability by showing thatevery safe execution of a computation constitutes an admis-sible sequence.Theorem 6. If a predicate � is controllable in a compu-tation E� then there exists an admissible sequence of eventswith respect to � and E�.Proof. Let � be any safe execution of E�, and < be thetotal order of events given by �. By construction, � sat-is�es the agreement property and the boundary condition.Assume, by the way of contradiction, � violates the conti-nuity property. Therefore, for some i, �i � �i:succ � �i+1.Since ��<, �i < �i:succ < �i+1. Further, since � containsall events of E, �i:succ 2 �. Let �j = �i:succ. We havei < j < i+1, a contradiction. Therefore � satis�es the con-tinuity property. Finally, consider a consistent cut C of E�that satis�es the antecedent of the weak safety property. Inparticular, C is legal with respect to � which implies C is aconsistent cut of � (or E<). Since � is a safe execution, �is true for C.

0

1

e2e

synchronization

1

synchronization

p0

p1
0f

0e

f1 f2Figure 6: an illustration of the synchronization cor-responding to an admissible sequence.Next, we show that existence of an admissible sequence is asu�cient condition for a given predicate to be controllable.To do so, we �rst give the synchronization needed to beadded to a computation so as to suppress all its unsafeexecutions. We then prove the synchronization does noteliminate all safe executions. Formally, given an admissiblesequence of events �, the required synchronization consistsof two types of arrows, denoted by �0 and �00, de�ned asfollows.(D 4.1) �0 def= f (�i; �j) j 0 � i < j < j�j g, and(D 4.2) �00 def= f (�i+1; �i:succ) j 0 � i < j�j � 1,�i 62 E:> and �i:proc 6= �i+1:proc gFigure 6 illustrates the synchronization for the admissible se-quence ?0e0f0e2. The synchronization given by �0 ensuresthat every execution of the controlled computation entersthe phases in the correct order. The synchronization givenby �00 guarantees that, for each i, every execution of thecontrolled computation enters the (i + 1)st phase before itleaves the ith phase.Theorem 7. If there exists an admissible sequence ofevents with respect to a predicate � and a computation E�then � is controllable in E�.Proof. Let � be an admissible sequence of events withrespect to � and E�. As explained before, we add the syn-chronization given by �0 (de�ned in D 4.1) and �00 (de�nedin D 4.2) to E�. The proof then reduces to showing that(1) the added synchronization does not create any dead-locks, i.e., there are no cycles, (2) every consistent cut ofthe controlled computation is legal with respect to �, and(3) every consistent cut of the controlled computation con-tains at least one event from � in its frontier. Due to thelack of space, the proof is presented elsewhere [12].Theorem 8. A predicate � is controllable in a computa-tion E� i� there exists an admissible sequence of events withrespect to � and E�.
5. DISJUNCTIVE PREDICATESIn this section, we give an e�cient algorithm to solve thepredicate control problem for the class of disjunctive predi-cates. Our algorithm is based on the notion of an admissiblesequence introduced in the previous section. Intuitively, adisjunctive predicate states that at least one local condition

must be met at all times, or, in other words, a bad combi-nation of local conditions does not occur. For example,� at least one server is available at all times: avail0 _avail1 _ � � � _ availn�1.� two process mutual exclusion: :cs0 _ :cs1.� at least one philosopher is thinking at any time:think0 _ think1 _ � � � _ thinkn�1.The special case of k-mutual exclusion problem, when k =n � 1, belongs to the class of disjunctive predicates. For-mally, a global predicate is a disjunctive predicate i� it canbe expressed as a disjunction of local predicates, i.e., it canbe written as l0 _ l1 _ � � � _ lm�1, where each li is a localpredicate of some process. Observe that false is a localpredicate of any process. Thus any disjunctive predicatecan be written as l0 _ l1 _ � � � _ ln�1, where each li is a localpredicate of pi.Let � be a disjunctive predicate and E� be a computation.Given an event e on a process pi, since li is a local predi-cate of pi, we can calculate the value of li for e. An event eon a process pi is a true event i� li:e evaluates to true. Tocompute an admissible sequence of events, we construct agraph G = (V; E), called \true event graph" (TEG), as fol-lows. There is a vertex in the graph for each true event inE. Further, there is an edge from vertex e to vertex f i�e:succ 6� f . The vertex e is labeled as \initial" i� e 2 E:?.Similarly, the vertex e is labeled as \�nal" i� e 2 E:>. Wecall a path in the graph as permissible i� it starts from avertex labeled \initial" and ends at a vertex labeled \�nal".We show that there exists a permissible path in G i� � iscontrollable in E�. Note that there is a one-to-one corre-spondence between paths in the graph and sequences of trueevents that satisfy the continuity property. Hereafter, weuse them interchangeably. Due to the semantics of disjunc-tion, every path satis�es the weak safety property. Further,by de�nition, every permissible path satis�es the boundarycondition. In the next lemma, we prove that the shortestpermissible path satis�es the agreement property.Theorem 9. Let G = (V; E) be the TEG correspondingto a disjunctive predicate � and a computation E�. Theshortest permissible path in G, if it exists, corresponds to anadmissible sequence of events.Proof. Assume there exists a permissible path in G. Let� = �0�1 � � ��m�1 be the shortest permissible path. Asargued before, � satis�es the boundary condition, and thecontinuity and weak safety properties. Assume, by the wayof contradiction, � does not respect �. Therefore there ex-ist vertices �i and �j , i < j, such that �j � �i. Notethat �i cannot be an \initial" vertex implying i > 0. Since� is the shortest permissible path, there is no edge from�i�1 to �j , otherwise we have a shorter permissible pathnamely �0�1 � � ��i�1�j � � ��m�1, a contradiction. An ab-sence of edge from �i�1 to �j implies �i�1:succ � �j . Since�j � �i, �i�1:succ � �i, thereby precluding an edge from�i�1 to �i, a contradiction. Thus � respects �. In otherwords, � satis�es the agreement property.

0

1

0

0e
p0

g0p2

p1
f

2

1

: a true event

f0

g1

e1

:"initial"

:"final"

:"final"e

g1

f0

1Figure 7: a computation and its corresponding TEG.We next show that if the given disjunctive predicate is con-trollable in a computation then there exists a permissiblepath in the graph.Theorem 10. Let G = (V; E) be the TEG correspondingto a disjunctive predicate � and a computation E�. If � iscontrollable in E� then there exists a permissible path in G.Proof. Assume � is controllable in E�. Therefore thereexists an irreexive partial order < that extends � suchthat every consistent cut of E< satis�es �. Without loss ofgenerality, assume < is a total order. Further, there exists avertex labeled \initial" in G, otherwise � evaluates to falsefor E:?. Let �0 denote such a vertex. Starting from �0,we construct a permissible path � by adding vertices to thepath constructed as yet until we reach a \�nal" vertex.Let �i denote the last vertex reached in the path so far. If�i is labeled \�nal", we have a permissible path. There-fore assume �i is not labeled \�nal" implying �i:succ exists.Observe that events in any consistent cut of E< are totallyordered because < is a total order. Let Ci be the consistentcut of E< such that �i:succ is the last event in the cut. Weset �i+1 to any true event in the frontier of Ci. Since �satis�es Ci, �i+1 exists. Note that �i+1 v �i:succ because�i:succ and �i+1 are events contained in Ci, and �i:succ isthe last event in Ci. Therefore �i:succ 6< �i+1. Since ��<,�i:succ 6� �i+1 which implies there is an edge from �i to�i+1 in G.Finally, we need to prove that a vertex labeled \�nal" iseventually added to the path. Observe that, for each i,�i+1:succ 6v �i:succ. This is so because neither �i nor�i+1:succ belong to Ci:frontier. Therefore �i:succ < �i+1implying Ci (Ci+1. This implies that no vertex is revisitedwhile constructing the path. Since number of vertices are�nite, a vertex labeled \�nal" is eventually reached.Theorem 11. Let G = (V; E) be the TEG correspondingto a disjunctive predicate � and a computation E�. Then �is controllable in E� i� there exists a permissible path in G.The previous algorithm can be easily modi�ed to give anadmissible sequence that generates minimum synchroniza-tion. To do so, we assign a weight to each edge in the TEG

as follows.w:(e; f) def= � (0; 1) if f 4 e:succ(1; 1) otherwiseHere, w:(e; f) denotes the weight of edge (e; f). Two weightsare compared using lexicographic ordering and added byperforming component-wise addition. Note that an admis-sible sequence generated from a TEG consists only of trueevents. As a result, we do not need to add the synchro-nization given by �0 (de�ned in D 4.1) to a computation inorder to control a disjunctive predicate. The synchroniza-tion given by �00 (de�ned in D 4.3) su�ces. This is becausethe admissible sequence constructed from a TEG satis�esa stronger property than the weak safety property namelyh9�i :: �i 2 Ci:frontieri) �:C.We prove elsewhere [12] that the shortest permissible paththe weighted TEG (WTEG) not only constitutes an admissi-ble sequence of events but also gives minimum synchroniza-tion. This is important in scenarios where the bandwidth islimited and the number of control messages need to be min-imized. Intuitively, the �rst entry in the weight of an edge(e; f) indicates whether � subsumes the synchronization ar-row from the event f to the event e:succ. The shortest per-missible path in a WTEG, therefore, corresponds to a paththat minimizes two things. Firstly, it minimizes the numberof synchronization arrows in �00 that are not contained in�, i.e., j�00 n � j. Secondly, among all paths that minimizej �00 n � j, it gives the path with the smallest number ofedges, i.e., the path that minimizes j�00 j.The algorithms presented here have O(n2m2) time complex-ity, where n is the number of processes and m is the maxi-mum number of true events on any process. That is because,in the worst case, there can be as many as O(nm) verticesand O(n2m2) edges in TEG. To reduce the number of edgesin the graph, we observe that if there is an edge from vertexe to vertex f then there is an edge from vertex g to vertexh for each g and h such that e 6P g and h 6P f . ThusTheorem 11 still holds if, for each event e and process p, weput an edge from the vertex e to the vertex correspondingto the last event f on p such that e:succ 6� f . This ensuresthat there are at most O(n2m) edges in the graph. Further,by using true-intervalsz instead of true events to constructza true-interval is a sequence of contiguous true events on aprocess

the graph, we can reduce the time complexity to O(n2p),where p is the maximum number of true-intervals on anyprocess.
6. CONCLUSIONS AND FUTURE WORKA distributed debugger equipped with the mechanism tore-execute a traced computation under control can greatlyfacilitate the detection and localization of bugs. This ap-proach gives rise to predicate control problem. However, thepredicate control problem was proved to be NP-complete ingeneral by Tarafdar and Garg. They developed e�cient al-gorithms for the class of disjunctive predicates and mutualexclusion. We extend their work in two ways. Firstly, wede�ne a class of predicates called region predicates that in-cludes channel predicates such as \there are at most k mes-sage in any channel at any time", and fairness predicatessuch as \the di�erence between the number of times twoprocesses are granted a resource is bounded". We give ane�cient algorithm to compute the synchronization neededto control a region predicates in a traced computation. Wealso prove that the synchronization given by our algorithmguarantees maximum concurrency in the controlled compu-tation. Further, we introduce the notion of an admissiblesequence of events and prove its equivalence to the notionof predicate control. Using this notion, we reduce the prob-lem of determining the synchronization for a computation,given a disjunctive predicate, to �nding a path in a graph.We also give an algorithm that minimizes the number of syn-chronization arrows (or control messages) in the controlledcomputation.We have extended the notion of an admissible sequenceof events to the notion of an admissible sequence ofsub-frontiers. A sub-frontier is a set of events that canbe a part of the frontier of some consistent cut. Based onthis notion, we have developed algorithms for the class ofk-disjunctive predicates - predicates that can be expressedas a disjunction of predicates, where each disjunct spans atmost k processes.
7. REFERENCES[1] K. Mani Chandy and Leslie Lamport. DistributedSnapshots: Determining Global States of DistributedSystems. ACM Transactions on Computer Systems,3(1):63{75, February 1985.[2] Craig Chase and Vijay K. Garg. Detection of GlobalPredicates: Techniques and their Limitations.Distributed Computing, 11(4):191{201, 1998.[3] R. Cooper and Keith Marzullo. Consistent Detectionof Global Predicates. In Proceedings of the ACM/ONRWorkshop on Parallel and Distributed Debugging,pages 163{173, Santa Cruz, California, 1991.[4] R. Cypher and E. Leu. E�cient Race Detection forMessage-Passing Programs with Nonblocking Sendsand Recieves. In Proceedings of the IEEE Symposiumon Parallel and Distributed Processing, pages 534{541,1995.[5] C. Fidge. Logical Time in Distributed ComputingSystems. IEEE Computer, 24(8):28{33, August 1991.

[6] Y. Huang and Chandra Kintala. SoftwareImplemented Fault Tolerance: Technologies andExperience. In Proceedings of IEEE Fault-TolerantComputing Symposium, pages 138{144, June 1993.[7] Richard Kilgore and Craig Chase. Re-execution ofDistributed Programs to Detect Bugs Hidden byRacing Messages. In Proceedings of the InternationalConference on System Sciences, Hawaii, January 1997.[8] Leslie Lamport. Time, Clocks, and the Ordering ofEvents in a Distributed System. Communications ofthe ACM, 21(7):558{565, July 1978.[9] T. J. LeBlanc and J. M. Mellor-Crummey. DebuggingPrograms with Instant Replay. IEEE Transactions onComputers, C-36(4):471{482, April 1987.[10] A. Maggiolo-Schettini, H. Welde, and J. Winkowski.Modeling a Solution for a Control Problem inDistributed Systems by Restrictions. TheoreticalComputer Science, 13(1):61{83, January 1981.[11] B. P. Miller and J. Choi. Breakpoints and Halting inDistributed Programs. In Proceedings of the 8th IEEEInternational Conference on Distributed ComputingSystems, pages 316{323, 1988.[12] Neeraj Mittal and Vijay K. Garg. DebuggingDistributed Programs Using Controlled Re-execution.Technical Report TR-PDS-2000-002, Parallel andDistributed Systems Group, The University of Texasat Austin, 2000.[13] R. H. B. Netzer and B. P. Miller. Optimal Tracingand Replay for Debgging Message-Passing Programs.The Journal of Supercomputing, 8(4):371{388, 1995.[14] Scott D. Stoller and Yanhong A. Liu. E�cientSymbolic Detection of Global Properties inDistributed Systems. In Proceedings of the 10thInternational Conference on Computer-AidedVeri�cation, pages 357{368, 1998.[15] K. Tai. Race Analysis of Traces of AsynchronousMessage-Passing Programs. In Proceedings of the 17thIEEE International Conference on DistributedComputing Systems, pages 261{268, 1997.[16] Ashis Tarafdar and Vijay K. Garg. Predicate Controlfor Active Debugging of Distributed Programs. InProceedings of the 9th IEEE Symposium on Paralleland Distributed Processing (SPDP), Orlando, 1998.[17] Ashis Tarafdar and Vijay K. Garg. Software FaultTolerance of Concurrent Programs Using ControlledRe-execution. In Proceedings of the 13th InternationalSymposium on Distributed Computing (DISC), pages210{224, Bratislava, Slovak Republic, September 1999.[18] Y. M. Wang, Y. Huang, W. K. Fuchs, ChandraKintala, and Gaurav Suri. Progressive Retry forSoftware Failure Recovery in Message-PassingApplications. IEEE Transactions on Computers,46(10):1137{1141, October 1997.

