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ABSTRACTIn this paper, we show the onnetion between vetor loksused in distributed omputing and dimension theory of par-tially ordered sets. Based on this onnetion, we providelower bounds on the number of oordinates for timestamp-ing events in a distributed omputation for apturing thehappened-before relation. To this end, we introdue the no-tion of a string realizer and the string dimension of a poset.For distributed omputing and other appliations, the on-ept of string realizer is more natural than the hain realizerused in the lassial dimension theory. We establish the rela-tionship between the string dimension and the hain dimen-sion of a poset. Using this relationship and Dilworth's the-orem for the hain dimension of �nite distributive latties,we obtain the desired lower bound. The onept of stringsalso has appliations in eÆient enoding of partial ordersbeause it requires fewer bits to enode a string realizer thana hain realizer.
1. INTRODUCTIONA distributed omputation has been widely modeled as apartially ordered set (poset) (E;!) where E is the set ofevents in the omputation and ! is the happened-beforerelation[12℄. Fidge[10℄ and Mattern[13℄ independently intro-dued vetor loks to timestamp events suh that happened-before relationship between any two events an be deter-mined by examining their timestamps. In partiular, in adistributed omputation of N proesses, vetor timestampsprovide the following property:8e; f 2 E : e! f () v(e) < v(f)�supported in part by the NSF Grants ECS-9907213, CCR-9988225, Texas Eduation Board Grant ARP-320, an Engi-neering Foundation Fellowship, and an IBM grant.

where v(x) is the N -dimensional vetor timestamp of anyevent x. In other words, the poset of events is isomorphi tothe set of vetors in dimension N . The vetor lok meha-nism requires eah proess to send its vetor lok on all itsoutgoing messages. For large N , this mehanism introduessigni�ant overhead during the omputation. It is natural toask if there is an alternative mehanism with lower overheadfor timestamping events.The �rst lower bound argument on the size of the vetorloks is due to Charron-Bost[4℄. Her result states thatfor all N , there exists a omputation on N proesses suhthat any assignment of events to Rk whih aptures thehappened-before relation (and its omplement) must havek � N . Note that this result exludes possibility of lowerdimensional vetor loks only for that partiular omputa-tion on N proesses. However, it does not exlude times-tamps whih may use less than N oordinates for otheromputations on N proesses. In fat, it is easy to showdistributed omputations onN proesses that do not requireN -dimensional vetor timestamps to apturehappened-before relation and onurreny. We show that Nis indeed a lower bound on the size of vetor loks if an ad-ditional property is required from vetor loks. This prop-erty states that vetor loks an also be used to determinethe relationship between onsistent uts of the omputation.We show that any vetor lok mehanism that satis�es thisproperty must have dimension at least N for all distributedomputations on N proesses (suh that poset orrespond-ing to the omputation has width N). Indeed, Mattern andFidge's vetor loks satisfy this additional property andtherefore must have dimension at least N .Our results are based on drawing onnetions between vetorloks used in distributed omputing and dimension theoryof partially ordered sets [15℄. The dimension of a partiallyordered set, �rst introdued by Dushnik and Miller[8℄, isde�ned as the least number of total orders suh that thepartial order is the intersetion of these total orders. One ofthe advantages of this onept is that it provides an enod-ing sheme (or a timestamping sheme) for a partial order.If the dimension of a partial order on n elements is k, theneah element an be assigned a ode of size k log n suh thatthe ordering between any two elements an be derived in komparisons. Essentially, eah element is represented by a



k-tuple representing its position in eah of the k orders. Al-though, the onept of dimension has been used suessfullyfor many mathematial appliations (for example in har-aterizing planar posets [15℄), we argue that the onept ofstring dimension introdued in this paper is more useful fordistributed omputing appliations.We �rst generalize the onept of a total order to that ofa string. Let (X;P ) be a poset where X is a set, and Pis a reexive, antisymmetri, and transitive binary relationon X. (X;P ) is a string if and only if there exists a map-ping f from X to N (the set of natural numbers) so that8x; y 2 X : x < y i� f(x) < f(y). The main di�erenefrom a hain is that we let f(x) = f(y) when x and y areonurrent. Every hain and every anti-hain is a string.Mathematially, a string is a lexiographi sum of hainsand anti-hains. We then introdue the onept of a stringrealizer of a poset. Informally, a string realizer of a poset is aset of strings suh that the relationships in the poset an bederived using the strings. The vetor loks that have beenused in distributed omputation orrespond to realizers us-ing strings rather than total orders. We then introdue thenotion of a string dimension of a poset as the least numberof strings required to realize the poset. We show, some-what surprisingly, that the string dimension of a poset isexatly equal to the dimension of the poset whenever thestring dimension is at least 2. This establishes a relation-ship between dimension theory and vetor lok mehanismswhih are more like strings.We then use standard results in dimension theory to deriveresults about vetor loks. We show that the theorem byCharron-Bost is a orollary of a result by Dushnik-Miller.Further, by using Dilworth's theorem on dimension of dis-tributive latties, we determine the string dimension of thelattie of onsistent uts indued by a distributed omputa-tion.There are other advantages of strings and string dimension.For example, we show that a string realizer leads to a moreeÆient enoding sheme for a partial order than a hainrealizer. We also de�ne the notion of a string extension ofa poset. A string extension is generalization of the oneptof topologial sort of a poset. We show that for every posetthere exists a string extension whose length is equal to theheight of the poset.In summary, the paper makes the following ontributions.� We introdue the onepts of string, string realizer andstring dimension and show that they are more natu-ral for distributed omputing appliations than thosebased on hains.� We establish that the string dimension of a poset issame as the hain dimension for any poset that is nota string.� We show that Charron-Bost's result follows from a re-sult by Dushnik and Miller[8℄.� We show that Fidge and Mattern's vetor lok alsoprovides ordering information on the lattie of onsis-tent uts indued by the partial order. We show that

any suh mehanism must have at least dimension Nusing Dilworth's theorem.� We show that, in general, string enoding of partialorders is more eÆient than hain enoding. We alsogive an algorithm that generates a ode with at mostlog(height(P )+1)�width(P ) bits for any poset (X;P ).This method is superior to ode based on hain real-izers when the height of the poset is small.� We introdue and prove the existene of a normal stringextension of a poset, and show its appliation to tasksheduling.Although this paper is onerned only with distributed om-puting appliations, we note that enoding of partial or-ders also have appliations in Databases[1℄, Arti�ial Intel-ligene[9℄ and programming languages development[5℄.
2. BACKGROUND: DIMENSION THEORY
2.1 Partially Ordered Set and LatticesA pair (X;P ) is alled a partially ordered set or poset if Xis a set and P is a reexive, antisymmetri, and transitivebinary relation on X. We all X the ground set while P isa partial order on X. We write x � y and y � x in P when(x; y) 2 P . Also, x < y and y > x in P means x � y in Pand x 6= y.We use Hasse diagrams1 to represent �nite posets. If x < yin P , then x appears lower than y in the diagram.Let x; y 2 X with x 6= y. If either x < y or y < x, wesay x and y are omparable, and write x ? y. On the otherhand, if neither x < y nor x > y, then we say x and y areinomparable, and write xjjy. A poset (X;P ) is alled hainif every distint pair of points from X is omparable in P .Similarly, we all a poset an antihain if every distint pairof points from X is inomparable in P . A point x 2 X isalled a maximal point (minimal point) if there is no pointy 2 X with x < y in P (x > y, respetively). We denote theset of all maximal points by max(X;P ), while min(X;P )denotes the set of all minimal points.A hain C of a poset (X;P ) is a maximum hain if no otherhain ontains more points than C. We use similar de�ni-tion for maximum antihain. The height of the poset P ,denoted by height(P ), is the number of points in the maxi-mum hain. Similarly, the width of the poset P , denoted bywidth(P ), is the number of points in a maximum antihain.We say (X;P ) and (Y;Q) are isomorphi, if there exists a1�1 and onto map f : X �! Y so that x1 � x2 in P if andonly if f(x1) � f(x2) in Q.An element y 2 X is alled an upper bound for S if s � yin P , for every s 2 S. An upper bound y for S is the leastupper bound for S, abbreviated l.u.b.(S), provided y � y0 inP for every upper bound y0 of S. Lower bounds and greatestlower bounds are de�ned similarly. The poset is alled alattie if every nonempty �nite subset S � X has the leastupper bound as well as the greatest lower bound.1The formal de�nition of Hasse diagrams an be found in[6℄.
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Figure 1: (X;P )When L = (X;P ) is a lattie, for any x; y 2 P , we de�nex _ y = l:u:bfx; yg (join)x ^ y = g:l:bfx; yg (meet)L is alled distributive lattie if for all x; y; z 2 Xx ^ (y _ z) = (x ^ y) _ (x ^ z)Next we provide the de�nition of down-set and the poset ofthe form 2P. Let P = (X;P ) be a poset and let S � X. Sis alled a down-set in (X;P ) if x 2 S whenever y 2 S andx � y in P . Let D denote the family of all down-sets of P.De�ne a partial order Q on D by D1 � D2 in Q if and onlyif D1 � D2. Then the poset Q = (D;Q) is isomorphi to2P.
2.2 DimensionA familyR = fL1; L2; : : : ; Ltg of linear orders onX is alleda hain realizer of a poset (X;P ) if P = \R. x < y 2 Li\Ljif x < y in both Li and Lj . We also say that R realizes P .Figure 1 shows a poset P in whih fL1; L2g realizes P .It an be shown [15℄ that R is a realizer of P i� for everyx; y 2 X with x k y (x inomparable to y) in P , there existsdistint integers i; j with 1 � i; j � t for whih x < y in Liand y < x in Lj . In the following, we write x < y whenx < y in L,Definition 1. [15℄ For any poset (X;P ), the dimensionof (X;P ), denoted by dim(X;P ), is the least positive integert for whih there exists a family R = fL1; L2; : : : ; Ltg oflinear extensions of P so that P = \R = \ti=1Li.The dimension of the poset in Fig. 1 is 2. The oneptof dimension provides us a way to enode a partial order.The elements of a partial order with dimension t an beenoded with a t-dimensional vetor as follows. For anyelement x, the vetor vx is de�ned as follows: vx[i℄ = numberof elements less than x in Li, for 1 � i � t. Given ode fortwo elements vx and vy, we have the following order:vx < vy () 8i : vx[i℄ < vy[i℄ (1)For example, the ode for a and b in the poset in Figure 1 is(2; 3) and (3; 1) based on the realizer. Based on the ode and(1), it an be easily determined that a and b are onurrent.We all the order given by (1) the hain order.

b1 b2 b3 b4 b5

a1 a2 a3 a4 a5Figure 2: S5The dimension of a poset an be arbitrarily large. Considera poset (X;P ) where X = fa1; a2; : : : ; ang[fb1; b2; : : : ; bng,and ai < bj in P if and only if i 6= j, for i; j = 1; 2; : : : ; n.This lass of posets is known as the standard example anddenoted by Sn. Figure 2 shows the diagram for S5. Thefollowing Theorem is due to Dushnik and Miller[8℄.Theorem 2. [8℄ dim(Sn) = n.Let Li = [a1; : : : ; ai�1; ai+1; : : : ; an; bi; ai; b1; : : : ; bi�1; bi+1;: : : ; bn℄, where a1 is the lowest element, and bn is the highestelement in hain Li Then R = fL1; L2; : : : ; Lng is a realizerof Sn.
3. STRINGIn Setion 2 we saw that lassial dimension theory provideslower bounds on the dimension of vetors when the ompar-ison is based on the hain order. On the other hand, thevetor loks in distributed omputing use vetor orderinggiven by the following (2) whih we all vetor order.u < v � 8k : 1 � k � N : u[k℄ � v[k℄ ^9j : 1 � j � N : u[j℄ < v[j℄ (2)Consider a distributed system in whih the ode of elementsis determined in a deentralized fashion. In this ase therelationship between two events may not be known globally.Thus, if event e happened before f , this relationship maybe known only to a single proess. From the perspetiveof other proesses, e and f may be indistinguishable (forexample, when both are internal to the proess). This ismore easily aptured in the vetor order where a vetor uis deemed as smaller than vetor v even when u is smallerthan v in just one omponent and same in all the other om-ponents. Sine hain order requires that all the oordinatesin ode of event e are stritly less than all the respetive



oordinates in ode of event f , it is diÆult to use hainorder in a distributed system. In this setion, we generalizethe onepts in dimension theory so that the ordering usedbetween odes is idential to (2).We �rst give the de�nition of a string.Definition 3 (string). A poset (X;P ) is a string ifand only if 9f : X ! N (the set of natural numbers) suhthat 8x; y 2 X : x < y i� f(x) < f(y)The set of elements in a string whih have the same fvalue is alled a knot. For example, a poset (X;P ) whereX = fa; b; ; dg and P = f(a; b); (a; ); (a; d); (b; d); (; d)g isa string beause we an assign f(a) = 0; f(b) = f() = 1,and f(d) = 2. Here, b and  are in the same knot. Thedi�erene between a hain and a string is that a hain re-quires existene of a one-to-one mapping suh that x < yi� f(x) < f(y). For strings, we drop the requirement of thefuntion to be one-to-one. We represent a �nite string bythe sequene of knots in the string. Thus, P is equivalentto the string f(a); (b; ); (d)g.A hain is a string in whih every knot is of size 1. Ananti-hain is also a string with exatly one knot. Note thata string drops the distintion between elements whih havethe same order relationship with all other elements. Thus,two elements x and y have the same ode f(x) = f(y) i� forany element z, (1) x < z i� y < z, and (2) z < x i� z < y.This is a more natural onept for ordered sets.A string gives more eÆient enoding of the partial orderthan the use of hains. At an extreme, the range of f maybe �nite even when the domain of f is in�nite. For example,the following order f all even numbers g < f all odd numbersg on natural numbers an be enoded by assigning 0 to alleven numbers and 1 to all odd numbers. Suh a poset annotbe assigned odes using the lassial dimension theory.We write x �s y if x � y in string s, and x <s y if x < y instring s.Definition 4 (String Realizer). For any poset (X;P ),a set of strings S is alled a string realizer i� 8x; y 2 X :x < y in P if and only if1. 8s 2 S : x �s y, and2. 9t 2 S : x <t y.The de�nition of less-than relation between two elementsin the poset based on the strings is idential to the less-than relation as used in vetor loks. This is one of themotivation for de�ning string realizer in the above manner.A string realizer for the poset in Fig. 1 is given by twostrings s1 = f(); (d; a); (b)g s2 = f(d; b); (; a)gThere are two important di�erenes between de�nitions ofstring realizers and hain realizers. First, if R is a hain

realizer of a poset P , then P is simply the intersetion oflinear extensions in R. This is not true for a string realizer(see Fig. 1). Seondly, all the total orders in R preserve P ,i.e., x < y in P implies that x < y in all hains in R. Thisis not true for string realizer. For example, d < a in posetP of Fig. 1, but (d; a) appears as a knot in the string s1.We are only guaranteed that a will not appear lower than din any string - they may appear in the same knot.Now, analogous to the dimension we de�neDefinition 5 (String Dimension). For any poset (X;P ),the string dimension of (X;P ), denoted by sdim(X;P ), isthe size of the smallest set of strings S suh that S is a stringrealizer for (X;P ).Example 6. Consider the standard example Sn. The fol-lowing funtion f an be used to reate a string realizer ofSn. For all k; i = 1; 2; : : : ; n,fk(ai) = � 0 if k 6= i1 otherwisefk(bi) = � 0 if k = i1 otherwiseFor example,a1 = (1; 0; 0; : : : ; 0); b1 = (0; 1; 1; : : : ; 1)a2 = (0; 1; 0; : : : ; 0); b2 = (1; 0; 1; : : : ; 1)In this example, the length of eah string is 2 and thus eahelement requires only n bits for enoding. If we use lassialdimension based on total orders, eah element would requiren � log n bits.Example 7. Consider the poset (X;P ) as follows.X = f;; fag; fbg; fa; bg; fa; g; fa; b; ggP = f(A;B) 2 X �X : A � Bg.A string realizer for the poset an be obtained as follows.For eah set A 2 X, we use a bit vetor representation ofthe set A. Thus, fa; g is represented by (1; 0; 1) and the setfa; bg is represented by (1; 1; 0). This representation givesus a string realizer with three strings suh that every stringhas exatly two knots.We now establish the relationship between string dimensionand hain dimension. It may appear, at �rst, that thestring dimension of a poset may be muh smaller than thehain dimension. However, this is not the ase as shown bythe following result.Theorem 8 (Equivalene Theorem). For any poset(X;P ) suh that sdim(P ) � 2; sdim(P ) = dim(P )Proof. There are two ases.sdim(P ) � dim(P ).



It is suÆient to show that for any hain realizer of size k,there exists a string realizer of equal or smaller size. Givena hain realizer C, we onstrut the string realizer as follows.Eah hain is simply viewed as a string. Our obligation isto show that the order generated from the string realizer isthe same as the one based on hain realizer (reall that thede�nition of less than for string realizer is di�erent from lessthan in a hain realizer.) In this proof, let x 7! y () 8s 2S : x �s y ^ 9t 2 S : x <t y. It is suÆient to show thatx < y () x 7! y. First, we show that x < y =) x 7! y.x < y =) 8 2 C : x < y=) 8s 2 S : x <s y=) 8s 2 S : x �s y ^ 9t 2 S : x <t y=) x 7! yNext, we show that :(x < y) =) :(x 7! y). There aretwo ases.ase A: y < x =) y 7! x (From ase I)=) :(x 7! y)ase B: x k y =) :(x < y) ^ :(y < x)=) 9 2 C : x < y ^ 9d 2 C : y <d x=) 9s 2 S : x <s y ^ 9t 2 S : y <t x=) :(y 7! x) ^ :(x 7! y)=) :(x 7! y)dim(P ) � sdim(P ).Given a string realizer of P , S, we onstrut the orrespond-ing hain realizer. We ahieve this by untying knots of thestring to form a hain.First onsider the ase when two elements x and y belong tothe same knot in all strings. We will ombine these elementsinto one element say z. After �nding the hain realizer ofthe new set, we replae z with x and y. Further, in onehain we keep x less than y and in another hain we keep yless than x. Observe that we an do this beause there areat least two hains due to our assumption of sdim(P ) � 2.Now assume that there are no two elements as in the �rstase. Consider any knot fx1; x2; : : : ; xmg in any string s1.Now we determine for all pairs (xi; xj) of the elements inthe knot.1. If (8s 2 S � fs1g : xi �s xj) ^ (9t 2 S � fs1g : xi <txj), then we get xi < xj . or2. If 9s; t 2 S � fs1g : (xi <s xj) ^ (xj <t xi), then weget xi k xj .Then, we an untie this knot by performing the topologialsort. By repeating this proess, all knots on s1 an be untied,and we obtain the hain.Figure 3 shows an example of this untying mehanism. Sined and e appear in the same knot in all strings, we �rst om-bine d and e into one element f . As a result we get stringsin Figure 3(C). We then untie the knot (; f) by keeping less than f in s1 and untie the knot (a; b) in s2 by keeping aless than b. We now have the hain order. Now we replaef by d and e, keeping d less than e in s1 and e less than din s2 to get the hains in Figure 3(D).

4. APPLICATIONS OF STRING REALIZ-
ERS AND DIMENSION

4.1 Lower Bound on Dimension of Vector ClocksAs we have mentioned before, the de�nition of a string re-alizer is idential to the de�nition for vetor loks in dis-tributed systems. A distributed omputation onN proessesan be modeled as a poset of events (E;!) of width N .Fidge and Mattern's vetor loks are simply string realiz-ers of the poset (E;!). For example, onsider the poset inFig. 3 whih has width two. We an view it as a omputa-tion on two proesses, the �rst proess exeutes events a, band d in that order, and the seond proess exeutes  ande in that order. By viewing b and  as send events reeivedat e and d respetively, we get the following vetor loksfor all events:v(a) = (1; 0); v(b) = (2; 0); v(d) = (3; 1);v() = (0; 1); v(e) = (2; 2)This orresponds to two stringss1 = f(); (a); (b; e); (d)g and s2 = f(a; b); (; d); (e)gThis is a di�erent string realizer than shown in Figure 3, buthas the same dimension.Now that we have established equivalene of dimension andstring dimension for non-string posets, we an use existingresults from dimension theory to prove results on dimensionof vetor loks.We �rst onsider lower bounds on the (string) dimension ofvetor loks. Charron-Bost[4℄ has shown that we require atleast N -dimensional vetor timestamps to apture onur-reny in the distributed omputation onsisting of N pro-esses. The proof is by onstruting a omputation in whihany timestamping sheme with less than N oordinates isnot able to apture onurreny aurately. The followingproof uses dimension theory and our equivalene theorem.Theorem 9. For every N , there exists a distributed om-putation (E;!) on N proesses suh that any assignmentfrom E to N k that aptures onurreny relation on E hask � N .Proof. The result is trivially true for N equal to 1. Forany N � 2, onsider the standard example SN shown in Fig-ure 2. De�ne ai and b(i mod N)+1 to be on proess Pi. Thisomputation is on N proesses. By Dushnik and Miller'sTheorem, this poset has dimension N . From Theorem 8,the omputation has string dimension also equal to N . Anyassignment from E to N k that aptures onurreny rela-tion, results in a string realizer with k strings. Sine thestring dimension is N , it follows that k � N .Although this result proves that there annot be a uniformtimestamping mehanism of less than N oordinates, it doesnot exlude timestamping mehanism whih may use lessthan N oordinates for a partiular omputation.
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S S21 S S1 2Figure 3: An example of untying mehanism.As an extreme example, onsider a system of N proesses,where N > 3. Assume that proesses do not send any mes-sages to eah other. We an timestamp eah event j onproess i by the vetor vi(j) = (i; n� i; j). It is easy to seethat this timestamping mehanism aptures onurreny re-lation aurately2.Next we show that N -dimensional vetor loks of Fidge andMattern (FM vetors for short) have an additional propertythat makes it neessary to have dimension N for all om-putations. In partiular, FM vetors satisfy the followingproperty. If f and g are two distint events suh that eventf is on proess f:p, thenv(f)[f:p℄ � v(g)[f:p℄) f ! g (3)As a result of this property we show that FM vetors an alsobe used to timestamp elements of another poset - the lattieof onsistent uts of the omputation (E;!). For notationalonveniene, we use e:v[i℄ to denote the ith omponent ofthe vetor lok assigned to the event e. Reall that F is aonsistent ut of (E;!) i�(f 2 F ) ^ (e! f)) e 2 FFor a onsistent ut F , we de�ne its timestamp asF:v[i℄ = maxfe:v[i℄ j e 2 FgTheorem 10 shows that the proposed vetor timestamp foronsistent uts based on FM vetor loks aptures the re-lation � between onsistent uts.Theorem 10. F � G () F:v � G:vProof. It is easy to see thatF � G =) F:v � G:vWe show that F:v � G:v =) F � G. Let :(F � G). Thisimplies that there exists f 2 F �G.2In fat, this partial order an be enoded using vetorloks of dimension 2.

fde�nition of �gF:v � G:v =) 8i9g 2 G : f:v[i℄ � g:v[i℄fde�nition of fg=) 9g 2 G : f 6= g ^ f:v[f:p℄ � g:v[f:p℄fFM vetor lok propertyg=) 9g 2 G : f ! gfG is a onsistent utg=) f 2 GContradition.We now explore the struture of the set of all onsistent utsunder the relation �. Consistent uts are idential to down-sets in lattie theory. A standard result in lattie theorystatesTheorem 11. [2, 14℄ Given any poset P , let 2P be theposet formed by the set of its down-sets under � order.Then, 2P is a distributive lattie.Further, a result due to Dilworth tells us the dimension ofa distributive lattie.Theorem 12. [7℄ Let L be a distributive lattie. Choosea poset P = (X;P ) so that L is isomorphi to 2P. Thendim(L) = width(P ).Combining our equivalene theorem with these results, wegetTheorem 13. Any vetor lok mehanism that aptures� relation on the set of onsistent uts in a distributed om-putation of width N (equivalently, on N proesses), musthave at least N oordinates.Proof. Follows from Theorems 11, 12 and 8.
4.2 Encoding Partial OrdersThe onept of string realizer has the advantage over hainrealizer that it generally requires less number of bits to en-ode a partial order using string realizer. Formally, onsider



the following problem. Given a partial order (X;P ), de�ne aoding funtion ode : X �! f0; 1gk and a binary relation <on odes suh that 8x; y 2 X : x < y in P () ode(x) <ode(y). Note that the order relation may be any arbitraryorder (not neessarily vetor order). The only requirementis that it an only use the bits in ode(x) and ode(y) todetermine the order. It is lear that any partial order anbe oded using log(n) + n bits per element as follows. Forevery element, we store a binary array of size n. Further,eah element is assigned a unique index into the array. Letindex(x) be the index of x in 1::n and x:v be the n bit arrayfor element x. Then, we determine the order between x andy as follows. x < y i� (x:v[index(y)℄ < y:v[index(x)℄).Using dimension theory, partial orders of lower dimensionsan be enoded muh more suintly. If a partial order hasdimension k, then it an be enoded using k � log(n) bits.However, when the dimension is large (as for the standardexample), this method may take upto n=2 � log(n) bits perelement.String realizers typially result in a lower number of bitsfor enoding. From Theorem 8, we know that for odingpurposes, the total number of oordinates based on totalorders and strings are the same. The di�erene lies in thenumber of bits required to ode a single oordinate. Given astring realizer R. If R has k strings eah of length less thanor equal to l, then (X;P ) an be oded using k log l bits.l is learly less than or equal to jXj. Depending upon thestruture of the poset, l may be muh smaller than log(n)as seen for the ase of the standard example.In general, we have the following result.Theorem 14. Every partial order (X;P ) on n � 2 el-ements an be enoded using a string realizer in at mostlog(height(P ) + 1) � width(P ) bits.Proof. For onveniene, let w = width(P ). We use Dil-worth's hain overing theorem whih states that (X;P )an be partitioned into w hains C1; C2; :::; Cw. We thenuse the transitively redued diagram of (X;P ) with w pro-esses as given by the hain deomposition. Further, we useFidge and Mattern's algorithm to assign vetor timestampfor eah event when the poset diagram is viewed as a ompu-tation. These vetor timestamps determine a string realizerwith w oordinates suh that no oordinate is greater thanheight(P ) + 1.There is a small hange in appliation of Fidge and Mat-tern's algorithm in above onstrution. Their algorithm as-sumes that initial events of all proesses are inomparableand assigns the initial event at proess i a vetor timestampas follows:8j : j 6= i : v[j℄ = 0;v[i℄ = 1;In our onstrution (in the proof of Theorem 14), all theinitial events of hains may not be inomparable. To solvethis problem, it is suÆient to add a speial initial eventfor eah hain whose smallest event is not a minimal event

in the partial order. For example, onsider the poset inFig. 4. This poset an be deomposed into three hainsfa; b; g; fd; eg, and ff; gg. However, d is not a minimalelement of the poset. Hene to apply, Fidge and Mattern'salgorithm we may assume an event smaller than d whih isinomparable to a and f in Proess 2 with vetor lok equalto (0; 1; 0). Then, to ompute the vetor at d, we omputethe maximum of vetors for a, f and (0; 1; 0). Thus, thevetor lok for all events an be derived asv(a) = (1; 0; 0); v(f) = (0; 0; 1); v(d) = (1; 1; 1);v(b) = (2; 0; 0); v() = (3; 0; 0); v(e) = (2; 2; 1);v(g) = (1; 1; 2).This results in the following string realizer:s1 = f(f); (a; d; g); (b; e); ()g,s2 = f(a; f; b; ); (d; g); (e)g, ands3 = f(a; b; ); (d; e; f); (g)g.Observe that some strings may be longer than others andwe need not use the same number of bits to enode positionsin all the strings. The total number of bits required for arealizer with t strings isi=tXi=1dlog(length(si)eWe note here that Bouhet[3℄ and Trotter[15℄ introdueda generalization of the original dimension by restriting thelength of hains used in the realizer. This new dimension pa-rameter is alled k-dimension (denoted by dimk(P )), whenonly the hains of length k are allowed in the realizer of P .The k-dimension of P , k � 2, is the smallest positive integert for whih P is isomorphi to a subposet of Kt (ie. Kt is theprodut of t hains of length k). Therefore, the 2-dimensionis the size of the smallest hyperube in whih P an beembedded.Obviously [11℄,dim(P ) � dimk�1(P ) � : : : � dim2(P )One interesting question is to determine the smallest inte-ger k, 2 � k � jP j, suh that dim(P ) = dimk(P ). Ourproedure in the proof of Theorem 14, shows that8k : k > height(P ) : dim(P ) = dimk(P )Habib et al.[11℄ went further by allowing hains of di�er-ent length in the realizer of the poset. They de�ned a newdimension parameter alled enoding dimension as follows.The enoding dimension of a poset P , denoted by edim(P ),is the least integer t suh that t =Pi=pi=1dlog2 kie and P anbe embedded into K1 � K2 � : : : Kp, where Ki denotes ahain of length ki.It is shown in [11℄ that when P is an antihain, then edim(P ) =2 log jP j. This is equal to the number of bits required in theDushnik-Miller's dimension. However, by using string real-izers, we an use only one bit to enode eah element in anantihain.
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fFigure 4: A Poset and its Normal String ExtensionA key distinguishing feature of our work is that we alloworder equivalent elements to have the same ode. This ismore natural onept for posets. Further, it allows hier-arhial representation of orders. Two elements may havethe same ode at one level, but di�erent at the other levelwhen they are not distinguishable at oarser granularity butan be distinguished with �ner granularity of the order. Forexample, in a distributed omputation, all internal eventsbetween two external events may be assigned the same odeat the oarser level of granularity.
4.3 Lower bound on Dimension of a PosetWe �rst de�ne the notion of string length to derive a lowerbound on dimension of any poset. The length of a realizerS for the poset P , denoted by slength(P;S), is de�ned asthe length of the longest string in the string realizer S ofP . Let slength(P ) denote the length of the longest stringin the string realizer with minimum number of strings. Thefollowing de�nition is useful in determining the lower boundon the dimension.Definition 15. Let (X;P ) be any poset. For x; y 2 X,we say that x is order-equivalent to y (denoted by x � y )i� x is inomparable to y and for all z 2 X : x < z � y < zand for all z 2 X : z < x � z < yLet numeq(P ) denote the number of equivalene lasses ofthe relation �. The following lemma shows the relationshipamong dim(P ); slength(P ) and numeq(P ).Lemma 16. dim(P ) � log (numeq(P ))= log (slength(P )).Proof. The proof follows from the fat that the totalnumber of odes is equal to slength(P )dim(P ). Further,two elements in di�erent equivalene lasses annot havethe idential ode. This implies that slength(P )dim(P ) �numeq(P ).The above lemma provides a lower bound on dimension ofa poset P .
4.4 String Extension of Partial OrdersMany appliations, for example, task sheduling with pree-dene onstraints require that elements in a poset are pro-essed in a order whih does not violate preedene on-straints. In general, topologial sort of a partial order whihprodues a linear extension of partial order has been useful

in this and other algorithmi appliations. Similar to a lin-ear extension, we an de�ne a string extension of a partialorder as follows.Definition 17. A string s is a string extension of a par-tial order (X;P ) if 8x; y 2 X : x <P y ) x <s y.Note that in ontrast to a hain realizer whih ontains lin-ear extensions of a partial order, a string realizer does notneessarily ontain string extensions.We all s, a normal string extension of (X;P ) if the lengthof s is equal to the height of (X;P ). We have the followingresult.Theorem 18. For every poset (X;P ), there exists a nor-mal string extension s.Proof. The string s an be onstruted by the followingalgorithm (that is impliit in Dilworth's anti-hain overingtheorem). Remove all the minimal elements of the partialorder and put them in the lowest knot. Get the next setof minimal elements and put them as the next knot. Byrepeating this proedure till all elements in (X;P ) are re-moved we get the desired string. It an be easily veri�edthat the string preserve order in (X;P ) and has its lengthequal to the height of the poset.For example, onsider the poset in Fig. 4. The normal stringextension produed using the onstrution in Theorem 18 is:f(a; f); (b; d); (; e; g)gIt is easily veri�ed that the above string preserves the partialorder.If the poset (X;P ) denotes tasks, then a normal string ex-tension represents a proessing shedule (assuming that on-urrent tasks an be exeuted in parallel). The length of thestring orresponds to a ritial path in (X;P ).
5. CONCLUSIONSIn this paper, we introdue a new lass of posets alled stringand de�ne the notions of string realizer and string dimen-sion. We show that for distributed omputing appliations,these onepts are more natural than the orresponding las-sial onepts based on hains. In general, string enodingof partial orders is more eÆient than hain enoding and



easier to obtain in a distributed environment. We also es-tablish that the string dimension of a poset is the same asthe hain dimension for any poset that is not a string.We show that Charron-Bost's result follows from the resultby Dushnik and Miller[8℄. We also show that Fidge andMattern's vetor lok provides ordering information on thelattie of onsistent uts indued by the partial order. Byinvoking Dilworth's theorem, we show that any mehanismthat provides ordering information on the onsistent utsmust have dimension equal to the width of the omputation.We also show appliations of our theory in enoding partialorders and determining string extensions of a partial order.
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