Byzantine Vector Consensus in Complete Graphs

Nitin Vaidya

University of Illinois at Urbana-Champaign

Vijay Garg University of Texas at Austin

Assumptions

- Complete graph of n processes
- **f** Byzantine faults
- Each process has d-dimensional vector input

d = 2

Exact Vector Consensus

Agreement: Fault-free processes agree *exactly*

 Validity: Output vector in convex hull of inputs at fault-free processes

Termination: In finite time

Approximate Vector Consensus

\epsilon-Agreement: output vector elements differ by $\leq \epsilon$

 Validity: Output vector in convex hull of inputs at fault-free processes

Termination: In finite time

Traditional Consensus Problem

Special case of vector consensus : d = 1

Necessary & sufficient condition for complete graphs:

$n \geq 3f + 1$

in synchronous [Lamport,Shostak,Pease] & asynchronous systems [Abraham,Amit,Dolev]

Results

Necessary and Sufficient Conditions (Complete Graphs)

Exact consensus in synchronous systems

$n \ge max(3,d+1) f + 1$

Approximate consensus in asynchronous systems

 $n \geq (d+2) f + 1$

Similar results for asynchronous systems

Hammurabi Mendes & Maurice Herlihy

Talk Outline

	Necessity	Sufficiency
Synchronous	max(3,d+1) f +1	max(3,d+1) f +1
Asynchronous	(d+2) <mark>f</mark> +1	(d+2) <mark>f</mark> +1

Synchronous Systems: $n \ge max(3,d+1) f + 1$ necessary

 $n \ge 3f + 1$ necessary due to Lamport, Shostak, Pease

Synchronous Systems: $n \ge max(3,d+1) f + 1$ necessary

n \geq 3f +1 necessary due to Lamport, Shostak, Pease

Proof of $n \ge (d+1) f + 1$ by contradiction ...

suppose that f = 1 $n \le (d+1)$

$n \le d+1 = 3$ when d = 2

Three fault-free processes, with inputs shown below

Process A's Viewpoint

If B faulty : output on green segment (for validity)

Process A's Viewpoint

If B faulty : output on green segment (for validity)
If C faulty : output on red segment

Process A's Viewpoint

- If B faulty : output on green segment (for validity)
 If C faulty : output on red segment
- → Output must be on <u>both</u> segments = initial state

d = 2

Validity forces each process to choose output = own input

➔ No agreement

- → n = (d+1) insufficient when f = 1
- → By simulation, (d+1)f insufficient

Proof generalizes to all d

Talk Outline

	Necessity	Sufficiency
Synchronous	max(3,d+1) f +1	max(3,d+1) f +1
Asynchronous	(d+2) f +1	(d+2) f +1

Synchronous System $n \ge max(3,d+1) f + 1$

1. Reliably broadcast input vector to all processes [Lamport,Shostak,Pease]

2. Receive multiset Y containing n vectors

3. Output = a deterministically chosen point in

 $\Gamma(Y) = \bigcap_{T \subseteq Y, |T| = |Y| - f} \operatorname{Hull}(T)$

d = 2, f = 1, n = 4

Y contains 4 points, one from faulty process

n-f = 3

- Y contains 4 points, one from faulty process
- Output in intersection of hulls of (n-f)-sets in Y

Proof of Validity

Output in $\Gamma(Y) = \bigcap_{T \subseteq Y, |T| = |Y| - f} \operatorname{Hull}(T)$

Claim 1 : Intersection is non-empty

Claim 2 : All points in intersection are in convex hull of fault-free inputs

Tverberg's Theorem

 \geq (d+1)f+1 points can be partitioned into (f+1) sets such that their convex hulls intersect

Tverberg's Theorem

 \geq (d+1)f+1 points can be partitioned into (f+1) sets such that their convex hulls intersect

Tverberg points

Claim 1: Intersection is Non-Empty

$$\Gamma(Y) = \bigcap_{T \subseteq Y, |T| = |Y| - f} \operatorname{Hull}(T)$$

Each T contains one set in Tverberg partition of Y

Claim 1: Intersection is Non-Empty

$\Gamma(Y) = \bigcap_{T \subseteq Y, |T| = |Y| - f} \operatorname{Hull}(T)$

Each T contains one set in Tverberg partition of Y

➔ Intersection contains all Tverberg points of Y

Claim 1: Intersection is Non-Empty

$\Gamma(Y) = \bigcap_{T \subseteq Y, |T| = |Y| - f} \operatorname{Hull}(T)$

Each T contains one set in Tverberg partition of Y

→ Intersection contains all Tverberg points of Y

→ Non-empty by Tverberg theorem when \geq (d+1)f+1

Claim 2:

Intersection in Convex Hull of Fault-Free Inputs

$$\Gamma(Y) = \bigcap_{T \subseteq Y, |T| = |Y| - f} \operatorname{Hull}(T)$$

At least one T contains inputs of only fault-free processes

→ Claim 2

Talk Outline

	Necessity	Sufficiency
Synchronous	max(3,d+1) f +1	max(3,d+1) f +1
Asynchronous	(d+2) f +1	(d+2) f +1

Asynchronous System $n \ge (d+2) f + 1$ is Necessary

- Suppose f=1, n=d+2
- One process very slow ... remaining d+1 must terminate on their own
- d+1 processes choose output = own input
 (as in synchronous case)

Talk Outline

	Necessity	Sufficiency
Synchronous	max(3,d+1) f +1	max(3,d+1) f +1
Asynchronous	(d+2) f +1	(d+2) f +1

Asynchronous System $n \ge (d+2) f + 1$

Algorithm executes in asynchronous rounds

Process i computes v_i[t] in its round t

Initialization: v_i[0] = input vector

Asynchronous System $n \ge (d+2) f + 1$

Algorithm executes in asynchronous rounds

Process i computes v_i[t] in its round t

Initialization: v_i[0] = input vector

... 2 steps per round

Step 1 in Round t

Reliably broadcast state v_i[t-1]

Primitive from [Abraham, Amit, Dolev] ensures that

each pair of fault-free processes receives (n-f) identical messages

Step 2 in Round t

Process i receives multiset B_i of vectors in step 1

 $|\mathsf{B}_i| \ge n-f$

Step 2 in Round t

Process i receives multiset B_i of vectors in step 1

 $|\mathsf{B}_{\mathsf{i}}| \ge \mathsf{n}\mathsf{-}\mathsf{f}$

For each (n-f)-subset Y of B_i ... choose a point in $\Gamma(Y)$

Step 2 in Round t

Process i receives multiset B_i of vectors in step 1

 $|\mathsf{B}_{\mathsf{i}}| \ge \mathsf{n}\mathsf{-}\mathsf{f}$

For each (n-f)-subset Y of B_i ... choose a point in $\Gamma(Y)$

• New state $v_i[t]$ = average over these points

Validity

$n \ge (d+2) f+1 \rightarrow n-f \ge (d+1) f+1 \rightarrow Tverberg applies$

Validity proof similar to synchronous

Recall from Step 2

For each (n-f)-subset Y of B_i ... choose a point in Γ(Y)
 New state v_i[t] = average over these points

Recall from Step 2

For each (n-f)-subset Y of B_i ... choose a point in Γ(Y)
 New state v_i[t] = average over these points

Because i and j receive identical n-f messages in step 1, they choose at least one identical point above

Recall from Step 2

For each (n-f)-subset Y of B_i ... choose a point in Γ(Y)
 New state v_i[t] = average over these points

Because i and j receive identical n-f messages in step 1, they choose at least one identical point above

$$\mathbf{v}_i[t] = \sum \alpha_k \, \mathbf{v}_k[t-1]$$

$$\mathbf{v}_j[t] = \sum \beta_k \, \mathbf{v}_k[t-1]$$

v_i[t] and v_i[t] as
 convex combination
 of fault-free states,
 with non-zero weight
 for an identical process

$$\mathbf{v}_{i}[t] = \sum \alpha_{k} \mathbf{v}_{k}[t-1]$$
$$\mathbf{v}_{j}[t] = \sum \beta_{k} \mathbf{v}_{k}[t-1]$$

v_i[t] and v_i[t] as
 convex combination
 of fault-free states,
 with non-zero weight
 for an identical process

Rest of the argument standard in convergence proofs

$$\mathbf{v}_{i}[t] = \sum \alpha_{k} \mathbf{v}_{k}[t-1]$$
$$\mathbf{v}_{j}[t] = \sum \beta_{k} \mathbf{v}_{k}[t-1]$$

v_i[t] and v_i[t] as
 convex combination
 of fault-free states,
 with non-zero weight
 for an identical process

Rest of the argument standard in convergence proofs

- Range of each vector element shrinks by a factor < 1 in each round</p>
- \rightarrow ϵ -Agreement after sufficient number of rounds

Summary

- Necessary and sufficient n for vector consensus
- Synchronous & asynchronous systems

Matrix Form

$$\mathbf{v}_{i}[t] = \sum \alpha_{k} \mathbf{v}_{k}[t-1]$$
$$\mathbf{v}_{j}[t] = \sum \beta_{k} \mathbf{v}_{k}[t-1]$$

v_i[t] and v_i[t] as
 convex combination
 of fault-free states,
 with non-zero weight
 for an identical process

v[t] = M[t] v[t-1] where M[t] is row stochastic with a coefficient of ergodicity < 1

Matrix Form

$$\mathbf{v}_{i}[t] = \sum \alpha_{k} \mathbf{v}_{k}[t-1]$$
$$\mathbf{v}_{j}[t] = \sum \beta_{k} \mathbf{v}_{k}[t-1]$$

v_i[t] and v_i[t] as
 convex combination
 of fault-free states,
 with non-zero weight
 for an identical process

v[t] = M[t] v[t-1] where M[t] is row stochastic with a coefficient of ergodicity < 1

→ Consensus because ΠM[t] has a limit with identical rows Hajnal 1957 Wolfowitz 1963

Matrix Form

- Popular tool in decentralized control literature on fault-free iterative consensus [Tsitsiklis,Jadbabaei]
- Allows derivation of stronger results
 - Incomplete graphs
 - Time-varying graphs

Thanks!

Exact Consensus

Agreement: Fault-free processes agree *exactly*

 Validity: Agreed value in convex hull of inputs at fault-free processes

Termination: In finite time

Exact Consensus

Agreement: Fault-free processes agree *exactly*

 Validity: Agreed value in convex hull of inputs at fault-free processes

Termination: In finite time

Impossible with asynchrony [FLP]

Approximate Consensus

Agreement: Fault-free processes agree *approximately*

- Validity: ...
- Termination: ...

Approximate Consensus

Agreement: Fault-free processes agree *approximately*

- Validity: ...
- Termination: ...

Necessary & Sufficient Condition (Complete Graphs)

Necessary & Sufficient Condition (Complete Graphs)

for

- Exact consensus with synchrony
- Approximate consensus with asynchrony

Necessary & Sufficient Condition (Complete Graphs)

for

- Exact consensus with synchrony
- Approximate consensus with asynchrony

with scalar inputs

