Byzantine Vector Consensus in Complete Graphs

Nitin Vaidya
University of Illinois at Urbana-Champaign

Vijay Garg
University of Texas at Austin

Assumptions

- Complete graph of n processes
- f Byzantine faults
- Each process has d-dimensional vector input

$$
d=2
$$

Inputs

Exact Vector Consensus

■ Agreement: Fault-free processes agree exactly

- Validity: Output vector in convex hull of inputs at fault-free processes
- Termination: In finite time

Inputs $\binom{0}{1} \quad\binom{0}{0} \quad\binom{1}{0} \quad\binom{1}{1}$

Output

Approximate Vector Consensus

- ε-Agreement: output vector elements differ by $\leq \varepsilon$
- Validity: Output vector in convex hull of inputs at fault-free processes
- Termination: In finite time

$\varepsilon=0.04$

Traditional Consensus Problem

- Special case of vector consensus : d = 1

■ Necessary \& sufficient condition for complete graphs:

$$
n \geq 3 f+1
$$

in synchronous
[Lamport,Shostak,Pease]
\& asynchronous systems [Abraham,Amit,Dolev]

Results

Necessary and Sufficient Conditions (Complete Graphs)

- Exact consensus in synchronous systems

$$
n \geq \max (3, d+1) f+1
$$

- Approximate consensus in asynchronous systems

$$
n \geq(d+2) f+1
$$

STOC 2013

Similar results for asynchronous systems

Hammurabi Mendes \& Maurice Herlihy

Talk Outline

	Necessity	Sufficiency
Synchronous	$\max (3, d+1) f+1$	$\max (3, d+1) f+1$
Asynchronous	$(d+2) f+1$	$(d+2) f+1$

Synchronous Systems: $n \geq \max (3, d+1) f+1$ necessary

- $n \geq 3 f+1$ necessary due to Lamport, Shostak, Pease

Synchronous Systems: $n \geq \max (3, d+1) f+1$ necessary

- $n \geq 3 f+1$ necessary due to Lamport, Shostak, Pease
- Proof of $n \geq(d+1) f+1$ by contradiction ...
suppose that

$$
\begin{aligned}
& f=1 \\
& n \leq(d+1)
\end{aligned}
$$

$\mathrm{n} \leq \mathrm{d}+1=3 \quad$ when $\mathrm{d}=2$

- Three fault-free processes, with inputs shown below

Process A's Viewpoint

- If B faulty : output on green segment (for validity)

Process A's Viewpoint

- If B faulty: output on green segment (for validity)
- If C faulty: output on red segment

Process A's Viewpoint

■ If B faulty: output on green segment (for validity)

- If C faulty: output on red segment
\rightarrow Output must be on both segments = initial state

$$
d=2
$$

- Validity forces each process to choose output = own input
\rightarrow No agreement
$\Rightarrow \mathrm{n}=(\mathrm{d}+1)$ insufficient when $\mathrm{f}=1$
\rightarrow By simulation, (d+1)f insufficient

Proof generalizes to all d

Talk Outline

	Necessity	Sufficiency
Synchronous	$\max (3, d+1) f+1$	$\max (3, d+1) f+1$
Asynchronous	$(d+2) f+1$	$(d+2) f+1$

Synchronous System
 $n \geq \max (3, \mathrm{~d}+1) \mathrm{f}+1$

1. Reliably broadcast input vector to all processes
[Lamport,Shostak,Pease]
2. Receive multiset Y containing n vectors
3. Output $=$ a deterministically chosen point in

$$
\Gamma(Y)=\cap_{T \subseteq Y,|T|=|Y|-f} \operatorname{Hull}(T)
$$

$$
\mathrm{d}=2, \quad \mathrm{f}=1, \quad \mathrm{n}=4
$$

- Y contains 4 points, one from faulty process

$$
n-f=3
$$

- Y contains 4 points, one from faulty process
- Output in intersection of hulls of (n - f)-sets in Y

Proof of Validity

$$
\text { Output in } \Gamma(Y)=\cap_{T \subseteq Y,|T|=|Y|-f} \operatorname{Hull}(T)
$$

- Claim 1: Intersection is non-empty
- Claim 2 : All points in intersection are in convex hull of fault-free inputs

Tverberg's Theorem

$\geq(\mathrm{d}+1) \mathrm{f}+1$ points can be partitioned into ($\mathrm{f}+1$) sets such that their convex hulls intersect

$$
\begin{aligned}
& d=2 \\
& f=2 \\
& n=8
\end{aligned}
$$

Tverberg's Theorem

$\geq(\mathrm{d}+1) \mathrm{f}+1$ points can be partitioned into ($\mathrm{f}+1$) sets such that their convex hulls intersect

$$
\begin{aligned}
& d=2 \\
& f=2 \\
& n=8
\end{aligned}
$$

Tverberg points

Claim 1: Intersection is Non-Empty

$$
\Gamma(Y)=\cap_{T \subseteq Y,|T|=|Y|-f} \operatorname{Hull}(T)
$$

- Each T contains one set in Tverberg partition of Y

Claim 1: Intersection is Non-Empty

$$
\Gamma(Y)=\cap_{T \subseteq Y,|T|=|Y|-f} \operatorname{Hull}(T)
$$

- Each T contains one set in Tverberg partition of Y
\rightarrow Intersection contains all Tverberg points of Y

Claim 1: Intersection is Non-Empty

$$
\Gamma(Y)=\cap_{T \subseteq Y,|T|=|Y|-f} \operatorname{Hull}(T)
$$

- Each T contains one set in Tverberg partition of Y
\rightarrow Intersection contains all Tverberg points of Y
\rightarrow Non-empty by Tverberg theorem when $\geq(\mathrm{d}+1) \mathrm{f}+1$

Claim 2:
 Intersection in Convex Hull of Fault-Free Inputs

$$
\Gamma(Y)=\cap_{T \subseteq Y,|T|=|Y|-f} \operatorname{Hull}(T)
$$

- At least one T contains inputs of only fault-free processes
\rightarrow Claim 2

Talk Outline

	Necessity	Sufficiency
Synchronous	$\max (3, d+1) f+1$	$\max (3, d+1) f+1$
Asynchronous	$(d+2) f+1$	$(d+2) f+1$

Asynchronous System
 $n \geq(d+2) f+1$ is Necessary

- Suppose $\mathrm{f}=1, \mathrm{n}=\mathrm{d}+2$
- One process very slow
... remaining $\mathrm{d}+1$ must terminate on their own
- d+1 processes choose output = own input
(as in synchronous case)

Talk Outline

	Necessity	Sufficiency
Synchronous	$\max (3, d+1) f+1$	$\max (3, d+1) f+1$
Asynchronous	$(d+2) f+1$	$(d+2) f+1$

Asynchronous System $n \geq(d+2) f+1$

- Algorithm executes in asynchronous rounds

■ Process i computes $v_{i}[t]$ in its round t

- Initialization: $\mathrm{v}_{\mathrm{i}}[0]=$ input vector

Asynchronous System $n \geq(d+2) f+1$

- Algorithm executes in asynchronous rounds

■ Process i computes $v_{i}[t]$ in its round t

- Initialization: $\mathrm{v}_{\mathrm{i}}[0]=$ input vector
... 2 steps per round

Step 1 in Round t

■ Reliably broadcast state $\mathrm{v}_{\mathrm{i}}[\mathrm{t}-1]$

■ Primitive from [Abraham, Amit, Dolev] ensures that
each pair of fault-free processes receives
(n-f) identical messages

Step 2 in Round t

- Process i receives multiset B_{i} of vectors in step 1

$$
\left|B_{i}\right| \geq n-f
$$

Step 2 in Round t

- Process i receives multiset B_{i} of vectors in step 1

$$
\left|B_{i}\right| \geq n-f
$$

■ For each (n - f$)$-subset Y of B_{i}... choose a point in $\Gamma(Y)$

Step 2 in Round t

- Process i receives multiset B_{i} of vectors in step 1

$$
\left|B_{i}\right| \geq n-f
$$

■ For each (n - f)-subset Y of B_{i}... choose a point in $\Gamma(Y)$

- New state $v_{i}[t]=$ average over these points

Validity

■ $\left|B_{i}\right| \geq n-f$
$\mathrm{n} \geq(\mathrm{d}+2) \mathrm{f}+1 \Rightarrow \mathrm{n}-\mathrm{f} \geq(\mathrm{d}+1) \mathrm{f}+1 \Rightarrow$ Tverberg applies

■ Validity proof similar to synchronous

ε-Agreement

Recall from Step 2

■ For each (n-f)-subset Y of B_{i}... choose a point in $\Gamma(Y)$
■ New state $\mathrm{v}_{\mathrm{i}}[\mathrm{t}]=$ average over these points

ε-Agreement

Recall from Step 2

- For each ($n-f$)-subset Y of B_{i}... choose a point in $\Gamma(Y)$
- New state $\mathrm{v}_{\mathrm{i}}[\mathrm{t}]=$ average over these points

Because i and j receive identical n-f messages in step 1, they choose at least one identical point above

ε-Agreement

Recall from Step 2

- For each (n - f)-subset Y of B_{i}... choose a point in $\Gamma(Y)$
- New state $v_{i}[t]=$ average over these points

Because i and j receive identical n-f messages in step 1, they choose at least one identical point above

$$
\begin{aligned}
& \mathbf{v}_{i}[t]=\sum \alpha_{k} \mathbf{v}_{k}[t-1] \\
& \mathbf{v}_{j}[t]=\sum \beta_{k} \mathbf{v}_{k}[t-1]
\end{aligned}
$$

$v_{i}[t]$ and $v_{i}[t]$ as convex combination of fault-free states, with non-zero weight for an identical process

ε-Agreement

$$
\begin{array}{lr}
\mathbf{v}_{i}[t]=\sum \alpha_{k} \mathbf{v}_{k}[t-1] & \begin{array}{c}
\mathbf{v}_{i}[t] \text { and } \mathbf{v}_{\mathrm{i}}[t] \text { as } \\
\text { convex combination } \\
\text { of fault-free states, }
\end{array} \\
\mathbf{v}_{j}[t]=\sum \beta_{k} \mathbf{v}_{k}[t-1] & \begin{array}{c}
\text { with non-zero weight } \\
\text { for an identical process }
\end{array}
\end{array}
$$

Rest of the argument standard in convergence proofs

ε-Agreement

$$
\begin{array}{lr}
\mathbf{v}_{i}[t]=\sum \alpha_{k} \mathbf{v}_{k}[t-1] & \begin{array}{c}
\mathbf{v}_{i}[t] \text { and } \mathbf{v}_{i}[t] \text { as } \\
\text { convex combination } \\
\text { of fault-free states, }
\end{array} \\
\mathbf{v}_{j}[t]=\sum \beta_{k} \mathbf{v}_{k}[t-1] & \begin{array}{c}
\text { with non-zero weight } \\
\text { for an identical process }
\end{array}
\end{array}
$$

Rest of the argument standard in convergence proofs
\rightarrow Range of each vector element shrinks by a factor <1 in each round
$\rightarrow \varepsilon$-Agreement after sufficient number of rounds

Summary

■ Necessary and sufficient n for vector consensus

- Synchronous \& asynchronous systems

Matrix Form

$$
\begin{aligned}
\mathbf{v}_{i}[t] & =\sum \alpha_{k} \mathbf{v}_{k}[t-1] \\
\mathbf{v}_{j}[t] & =\sum \beta_{k} \mathbf{v}_{k}[t-1]
\end{aligned}
$$

$v_{i}[t]$ and $v_{i}[t]$ as convex combination of fault-free states, with non-zero weight for an identical process

$v[t]=M[t] v[t-1] \quad$ where $M[t]$ is row stochastic with a coefficient of ergodicity <1

Matrix Form

$$
\begin{aligned}
\mathbf{v}_{i}[t] & =\sum \alpha_{k} \mathbf{v}_{k}[t-1] \\
\mathbf{v}_{j}[t] & =\sum \beta_{k} \mathbf{v}_{k}[t-1]
\end{aligned}
$$

$v_{i}[t]$ and $v_{i}[t]$ as convex combination of fault-free states, with non-zero weight for an identical process
$\mathrm{v}[\mathrm{t}]=\mathrm{M}[\mathrm{t}] \mathrm{v}[\mathrm{t}-1] \quad$ where $\mathrm{M}[\mathrm{t}]$ is row stochastic with a coefficient of ergodicity <1
\rightarrow Consensus because ПM[t] has a limit with identical rows Hajnal 1957
Wolfowitz 1963

Matrix Form

- Popular tool in decentralized control literature on fault-free iterative consensus [Tsitsiklis,Jadbabaei]
- Allows derivation of stronger results
- Incomplete graphs
- Time-varying graphs

Thanks!

Exact Consensus

■ Agreement: Fault-free processes agree exactly

- Validity: Agreed value in convex hull of inputs at fault-free processes
- Termination: In finite time
0

0
1
\rightarrow Must agree on 0

Exact Consensus

■ Agreement: Fault-free processes agree exactly

- Validity: Agreed value in convex hull of inputs at fault-free processes
- Termination: In finite time
0
1
0
1
\rightarrow May agree on . 4

Exact Consensus

Impossible with asynchrony [FLP]

Approximate Consensus

- Agreement: Fault-free processes agree approximately

■ Validity: ...

- Termination:

Approximate Consensus

- Agreement: Fault-free processes agree approximately
- Validity: ...
- Termination:
0
1
0
$1 \rightarrow$ May agree on $\approx .4$

Necessary \& Sufficient Condition (Complete Graphs)

■ $\mathrm{n} \geq 3 \mathrm{f}+1$

Necessary \& Sufficient Condition (Complete Graphs)

■ $\mathrm{n} \geq 3 \mathrm{f}+1$
for

■ Exact consensus with synchrony

- Approximate consensus with asynchrony

Necessary \& Sufficient Condition (Complete Graphs)

- $n \geq 3 f+1$
for

■ Exact consensus with synchrony

- Approximate consensus with asynchrony
with scalar inputs

