
An E�cient Deterministic Algorithm for theResource Discovery ProblemVijay K. Garg � Adnan Aziz yElectrical and Computer EngineeringThe University of Texas at AustinAbstractWe address the problem of how best to get a group of machines on a network to learn ofeach others existence; this is referred to as the Resource Discovery Problem (RDP). Straightfor-ward algorithms for RDP are slow or have high communication cost. Harchol et al. [3] recentlypresented name-dropper, a randomized distributed algorithm for RDP which has low time andcommunication complexity. However, name-dropper has signi�cant limitations | (1.) the useof randomization precludes it from providing a guaranteed bound on runtime, and, more signif-icantly, (2.) it has no mechanism by which convergence can be detected; in order to provide ahigh probability of convergence, the number of machines on the network must be known a priorito all machines. We present fast-leader, a deterministic distributed algorithm for RDP whichovercomes these limitations while matching name-dropper's time and communication costs.DISC 2000 Submission: regular paper trackVijay K. Garg will serve as the contact author:Email: garg@ece.utexas.eduPhone: (512) 475 9424Address: ENS 527, The University of Texas, Austin TX 78712
�Supported in part by the NSF Grants ECS-9907213, CCR-9520540, a General Motors Fellowship, and an IBMgrant.ySupported in part by an NSF Career Award and an IBM research partnership award.

1 The Resource Discovery Problem | IntroductionIn large distributed networks, it is often the case that a group of machines need to work togetherin a coordinated fashion. This is the case, for example, in implementations of distributed webcaching protocols [4], distributed �le systems [10], and the Domain Name Service protocol [6]. Inthis context, as a �rst step, it is essential that machines be able to learn about the existence ofeach other. Harchol et al. [3] refer to this as the Resource Discovery Problem (RDP).A key requirement of any algorithm for RDP is that it be e�cient, both in terms of the timetaken for machines to learn about each other as well as the amount of communication performed.Time e�ciency is critical, since the faster the ensemble converges, the sooner machines can get towork. Communication e�ciency is also imperative, because of the cost of bandwidth and the factthat excessive communication leads to greater latencies and consequently higher runtimes. Indeed,the motivation for the work of Harchol et al. [3] is the fact that naive algorithms (which we reviewin Section 2) for RDP are either slow to converge or overload the network.Our work has been largely inspired by the paper of Harchol et al. [3] who present name-dropper,a distributed randomized algorithm for RDP. We use the same formulation of the problem as theydo. Each machine has a unique ID (which can be thought of as an IP address); for a machineto send a message to another machine, it is necessary that it knows the latter's ID. Furthermore,these ID's are assumed to be elements of a totally-ordered set. The system can be viewed as adirected graph whose vertices correspond to machine ID's; an edge exists from i to j when i knowsof the existence of j, in which case we will refer to j as being a neighbor of i. An example of thisrepresentation is shown in Figure 1(a). The graph evolves as machines discover new machines.Figure 1(b) shows the edges added when machine 4 has sent its neighbor list to 3.It is natural to restrict attention to distributed algorithms for RDP, in which there is no centralcontrol and individual machines operate independently, each running its own copy of the sameprogram. Harchol et al. [3] model such algorithms as proceeding in synchronous parallel rounds;a round is de�ned as the time taken for each machine in the network to communicate with oneor more other machines. They measure the runtime for an algorithm for RDP by the number ofrounds needed for each machine to know of every other machine. When this happens, the algorithmis said to have converged.Their metric is fairly crude, as it neglects that fact that communication time is a function ofnetwork topology, and varies with load. However, this measure is suitable for asymptotic analysis.They de�ne two other complexity measures, namely the the connection communication complexity,
3

1

52

4

3

1

52

4

(a) (b)Figure 1: Examples1

which is the total number of messages communicated over the duration of the algorithm, andthe pointer communication complexity, which is the total amount of data communicated over theduration of the algorithm.Harchol et al. [3] prove that the name-dropper algorithm is within a poly-logarithmic factor ofoptimal time and communication complexities. However, name-dropper has signi�cant limitations.First, because of randomization, it is intrinsically incapable of providing a guaranteed bound onthe runtime; in real-time applications this is unacceptable. More signi�cantly, as Harchol et al. [3]acknowledge, name-dropper has no mechanism by which it can detect convergence. Knowing whento stop, even when all that can be guaranteed is a high probability of convergence, requires thatthe number of machines on the network must be a priori known by all machines.In this paper we present fast-leader, a deterministic algorithm for RDP whose runtime andcommunication complexities match those of name-dropper. Being deterministic, fast-leader algo-rithm overcomes the �rst limitation of name-dropper described above. Furthermore, we will seethat convergence detection is built into the algorithm, thereby overcoming the second limitation ofname-dropper. Consequently, fast-leader halts as soon as convergence is achieved.One di�erence between fast-leader and name-dropper is that unlike name-dropper, fast-leaderrequires that the initial graph be strongly connected. In practice, this is easy to ensure: whenevera new machine is added to the system, it is su�cient for the new machine to know some existingmachine, and tell that machine about its presence.The remainder of this paper is organized as follows: In Section 2 we describe previouslyproposed algorithms and their shortcomings. This is followed in Section 3 with an exposition offast-leader, our new algorithm for RDP. We conclude in Section 4 with a discussion of relatedproblems and future work.2 Prior work2.1 The ooding and swamping algorithmsThe ooding algorithm, currently implemented in Internet routers [7], can be used to solve RDP.In this algorithm, each machine begins with an initial set of neighbors; machines are restrictedto communicate with their initial neighbors. At each round, each machine sends to all its initialneighbors the set of machines it has learned of since the previous round. The number of rounds toconvergence is �(dinitial), where dinitial is the diameter of the initial graph. Note that the diameterof a graph can be �(n), where n is the number of vertices present. Hence the runtime for aooding-based algorithm for RDP can be very high.It immediately follows from the �(dinitial) bound on the number of rounds, that the connectioncommunication complexity of the ooding algorithm is �(dinitial � minitial), where minitial is thenumber of edges present initially in the graph. Harchol et al. [3] demonstrate that the pointercommunication complexity for the ooding algorithm is �(n � minitial). In summary, using theooding algorithm for RDP is not appealing as it has potentially large runtime and high networkusage.The swamping algorithm is identical to the ooding algorithm, except that at each round,each machine communicates with its entire neighbor set at that round. The swamping algorithm2

is very fast | it never takes more than log n rounds to converge. However, it uses excessivecommunication resources: by simply considering the last round, when the graph is complete, wesee that its connection communication complexity is
(n2), and pointer communication complexityis
(n3).2.2 The name-dropper algorithmHarchol et al. [3] proposed the name-dropper algorithm for RDP. It proceeds as follows: at eachround, each machine selects a neighbor at random, and transmits its own neighbor list to theselected machine. An elaborate proof, based on union-bound and bounded Markov arguments,shows that, with high probability, name-dropper will converge in O(log2 n) rounds. Since eachmachine initiates a single connection at each round, name-dropper as a connection communicationcomplexity of O(n � log2 n), and a pointer communication complexity of O(n � log2 n).Consideration of the diameter of the graph yields a lower bound of
(log n) rounds on anyalgorithm for RDP. The bounds for name-dropper are poly-logarithmic of optimal [3]. However,name-dropper has the limitations of randomness and lack of convergence detection (cf. Page 2).2.3 Leader election and broadcastThere has been prior work on related problems, such as leader election [1, Chapters 3, 14] andbroadcast [1, Chapter 8]. Research on the leader election problem has focussed on speci�c topologies,on minimizing the number of messages passed, on obtaining lower bounds, and impossibility results.For example, there have been several papers on on obtaining lower bounds for leader election inring networks; a tight lower bound of
(n � logn) has been shown for the number of messages inthe average case that need to be passed for leader election [1, page 59]. Research on broadcast hasfocused on ensuring reliability and preserving the ordering of messages. As such, there appearsto have been little work on reducing the number of rounds and the communication complexity forthese problems.One fundamental di�erence is that in the previous work a message could traverse only theinitial set of edges; whereas in our model once a processor Pi learns about (the identity of) Pj ,it can directly send a message to Pj . Thus, all the algorithms discussed in literature for leaderelection would take at least O(n) rounds if they are adapted to our model.2.4 Parallel Algorithms for Determining Connected ComponentsThere has been considerable work on parallel algorithms for determining connected componentsin a graph. The problem requires the algorithm to assign a unique label to all nodes in the sameconnected component. Usually the identity of one of the nodes in the component is chosen as thelabel. Therefore, a connected components algorithm can also be used for leader election by viewingthe label of the component as its leader. There are many parallel algorithms for determining con-nected components. The algorithm by Chin, Lam and Chen [2] determines connected componentsin O(log2 n) time with O(n2) work on a common CRCW PRAM model. The algorithm by Shiloachand Vishkin [8] determines connected component in O(log n) time with O((m + n) � log n) on anarbitrary CRCW model where m is the number of edges in the graph. Both of these algorithms3

assume that in one time step every edge can be examined (in parallel). While this is true in PRAMmodels, it does not apply to our framework. We have assumed that every node initiates contactwith at most one node in every round. With this constraint one time step of the CRCW PRAMmay require O(n) rounds in a distributed system. Thus, these algorithms have time complexity ofO(n � log n) rounds when used in a distributed system.3 Resource Discovery Algorithm3.1 NotationWe model the evolution of the graph by means of the \knows" predicate K(i; j; r). At round rthe predicate K(i; j; r) denotes that machine i knows machine j at the beginning of the round r.By convention, rounds are numbered starting from 1. The predicate K(i; j; 1) is simply the initialgraph. By de�nition of \knows", we assume that K(i; i; r) is true for all i and r. Clearly, thepredicate K is monotone in r, i.e.,K(i; j; r)) 8r0 � r : K(i; j; r0):The parent of machine i at round r is the machine with the highest ID that i knows of at thebeginning of round r. Formally, we de�ne the functionparent(i; r) = max f j j K(i; j; r)g:Observe that the parent always exists because K(i; i; r) for all i and r.It may be that parent(i; r) equals i. Machines for which this condition holds will be referredto as leaders at round r. Formally,leader(i; r) � (parent(i; r) = i):Note that the leader predicate is monotonically decreasing in r, i.e.,:leader(i; r)) 8r0 � r : :leader(i; r0):We associate a level number with each machine at round r. Conceptually, the level number ofi is the maximum round number up to which i was a leader. Formally, we de�ne the functionlevel(i; r) = max (f0g [f k j leader(i; k) ^ k � rg):Note that if the machine was never a leader, then its level number is 0 and will remain 0.Furthermore, the level number of a machine continues to increase with each round while it is aleader. Once it ceases to be a leader, it can never become a leader and hence its level number willnot change after that.
4

3.2 The fast-leader algorithmWe now describe fast-leader | a deterministic algorithm for resource discovery. We prove itscorrectness and demonstrate that it converges in O(log2 n) rounds. As discussed on page 2, weassume that the initial graph is strongly connected.The fast-leader algorithm proceeds in two steps:1. Leader Election: This is the main component of the algorithm. A leader election algorithmconverts a strongly connected graph to a star-graph in which one machine directly knows allother machines in the graph. This stage of the algorithm requires O(log2 n) rounds.2. Broadcast: This stage ensures that everyone knows about everyone. A star-graph can beconverted to a complete graph in a single round by having the leader broadcast its infor-mation to all machines. This round adds �(n) to message complexity and �(n2) to pointercommunication complexity.Our algorithm also consists of synchronous rounds as in [3]. At any round r, every machine ihas for each of its neighbors k an estimate of level(k; r); these estimates are initialized to 0 at thebeginning of round 1.In each round a machine, Pi, initiates contact with exactly one neighbor, Pj , and exchangesits neighbor information with Pj . Speci�cally, Pi creates a message containing its own ID andlevel number, as well as the ID's for all of its neighbors, together with its estimates of their levelnumbers. The machine Pj does the same; these two messages are then exchanged.Note that the level number that Pi has for itself is exact. However, the level numbers thatit knows for its neighbors are estimates: they are lower bounds for the neighbors current levelnumbers, as they may have been determined in previous rounds, or from other machines. When Pjreceives the message, it records all new ID's and the level numbers sent for these ID's, as well asupdates its own estimates for level numbers for machines whose ID's it already knows about butfor whom its estimated level is lower than the corresponding value received from Pi. The machinePi handles the message from Pj in a symmetric manner.The idea of exchanging information with a neighbor is similar to that of [3]; the key di�erenceis in the selection mechanism. Whereas name-dropper simply chooses one neighbor at random, ouralgorithm uses a deterministic strategy to choose a \useful" neighbor to communicate with.Machines select a neighbor to communicate with as follows: any machine which is not a leaderalways communicates with its parent. A leader u, on the other hand, initiates contact with itshelper machine for that round. Formally, we de�ne a function helper(i; r) that returns the helperof machine i in round r in Figure 2. We will later show that unless the algorithm has terminated,helper will always return non-null value.Conceptually, if u is a leader, its helper is a machine k which is a neighbor of u, but whichdid not communicate with u in the previous round. There are two possibilities: either k changedits parent from u to someone else, or it did not. In the �rst case, u is guaranteed that k knowssomeone with a bigger identi�er and therefore u contacts k. If the �rst case does not hold, u ordersits neighbors by its estimates of their level numbers, breaking ties using ID's; it then contacts themachine with the highest position in this order which did not contact u in the last round.5

function helper(r)if (9k : parent(k; r � 1) 6= i ^ parent(k; r � 2) = i) f /* parent(k; r) = �1 for r � 0 */return k;else forder f k j K(i; k; r) g by level number estimates, breaking ties using ID'sreturn maxf k j K(i; k; r) ^ (parent(k; r � 1) 6= i)g /* max returns nil on ; */gfunction fast-leader:round rif :leader(i; r)/*a machine in the neighbor list is given by (level estimate; id)*/exchange neighbor list with parent(i; r);elseif helper(i; r) 6= nilexchange neighbor list with helper(i; r);elsedeclare yourself as the global leader.Figure 2: Fast Leader Election Algorithm at PiThe intuition behind the strategy is as follows. The goal of fast-leader is to elect a global leaderas quickly as possible. Thus it helps to reduce the number of leaders. The �rst choice of the helpermachine eliminates u as the leader. If the �rst case does not hold, the leader chooses as helperthe \largest" machine k it knows, where machines are ordered by level estimates, with ID's beingused to break ties. If k knew about u and still did not report to u, then u will be eliminated as aleader. Otherwise, u will be successful in capturing k. Since the algorithm is based on comparisonusing (level, id) pairs, the algorithm favors capturing most recent leaders. Note that there is noguarantee that the helper will be a leader when it is captured.Observing that every machine initiates contact with at most one other machine, it follows thatexactly n exchanges take place in each round. Since our algorithm takes O(log2 n) rounds, it followsthat our algorithm uses at most O(n log2 n) messages. Each message contains at most a constantamount of information per machine, so the size of a message is O(n). Every machine needs to storea constant amount of information about each machine M that it knows of, speci�cally,M 's ID anda level estimate for M ; leader machines need to store in addition which machines reported to it inthe previous two rounds. Thus the asymptotic space complexity of fast-leader is O(n), matchingthat of name-dropper.3.3 Correctness and Complexity of fast-leaderWe show that whenever the algorithm terminates, i.e., there exists a process which is a leader anddoes not have a helper, then it is indeed the global leader. Later, we will show that our algorithm6

always terminates (in O(log2) rounds).Theorem 1 Assuming strong connectivity, if i is a leader and has a null helper, then it must bea global leader. Formally,leader(i; r) ^ (helper(i; r) = nil)) 8j : K(i; j; r)Proof: First consider the case when r = 1. From de�nition of helper(i; 1), there does not existany j di�erent from i such that K(i; j; 1). From strong connectivity, this is possible only when thegraph consists of a single vertex i. Since K(i; i; 1), the claim holds.Now consider the case when r is greater than 1. We prove the contrapositive. Assume thatthere exists j such that :K(i; j; r), but leader(i; r) ^ (helper(i; r) = nil). However, from strongconnectivity we know that there exists a sequence of vertices (a0; a1; � � � ; am) such that a0 = i,am = j and K(ak; ak+1; 1) for all 0 � k < m. Let j0 be the �rst vertex in this path such that:K(i; j0; r); such a vertex must exist since by hypothesis :K(i; j; r). The vertex j0 is distinct fromi because K(i; i; r). Let u be the vertex preceding j0 in this path. From the de�nition of j0 and u,we see that the following must hold: K(i; u; r) ^K(u; j0; 1) ^ :K(i; j0; r); we call this Condition 1.We now do a case analysis.Case 1: parent(u; r � 1) 6= i.We observe that the set f k j K(i; k; r)^ (parent(k; r� 1) 6= i)g is nonempty since it containsu. Therefore, helper(i; r) is not null.Case 2: parent(u; r � 1) = i.Since K(u; j0; 1) and r > 1, we know that K(u; j0; r� 1) from the monotonicity of K. There-fore, K(i; j0; r) from the algorithm. This contradicts Condition 1.We now prove that fast-leader converges in O(log2 n) rounds.The argument is based on viewing the algorithm as log n phases, each consisting of dlog ne+3rounds. We will prove that in each phase the number of leaders reduce by at least a factor of 2.This implies that in at most logn phases the number of leaders will reduce to 1. We will show thatone additional phase ensures that the leader knows everybody.Conceptually, at any round the parent function induces a graph on the machines; the edge(u; v) exists in the induced graph exactly when parent(u; r) = v. This graph is a forest of trees,and the trees are rooted at leaders, as in Figure 3. In our proof we will analyze how the forestevolves.It is important to note that the concept of phase is used only for the purpose of proof andis not required in the algorithm. If for a particular family of graphs convergence is achieved inf(n) rounds, then fast-leader will terminate in f(n) rounds, even if f(n) = o(log2 n). In contrast,name-dropper has no mechanism to detect convergence; it can at most provide a bound on theprobability of convergence, and that too only when n is a priori known to all machines.From now on we use an additional argument with our functions to indicate the phase. Thus,leader(i; r; p) means that i is a leader in round r of phase p. We do the same for the K and parentfunctions. 7

a1 a4

a0

a2

a3

b1 b2

b0

b3

b5b4

b6

z0

z1

Figure 3: A forest of trees.Let pleaders(p) denote the set of leaders at the �rst round of phase p. In a round r of a phasep, we de�ne the rank of i that captures the notion of how distant i is from knowing a memberof pleaders(p). To de�ne the rank function formally, we �rst introduce an iterated version of theparent function: parentk(i; r; p) = parent(parentk�1(i; r; p); r; p) if k > 0parent0(i; r; p) = i if k = 0Now, we de�ne the rank function as:rank(i; r; p) = minf k j 9u 2 pleaders(p) : K(parentk(i; r; p); u; i; p)gInformally, the rank of a machine is the distance to the least ancestor who knows one of themachines in pleaders(p). Note that the rank of a machine which knows some machine in pleaders(p)is 0. Since the knowledge of a machine can only increase, once the rank of a machine becomes 0,it stays 0 in that phase.Note that the rank function is well de�ned: from any machine by following parents we willeventually arrive at a node that knows of a member in pleaders(p). Let h be the maximum rankof any machine in the �rst round of phase p, i.e.,h = maxfrank(i; 1; p) j ig:It is easy to see that h is most n� 1. For notational convenience, we de�ne t = dlog he. We nowshow that the rank of any machine is 0 at the beginning of round t+ 1 in phase p.Theorem 2 For any machine i and phase p, we have rank(i; t+ 1; p) = 0.Proof: Let i be any machine. We �rst show that for any round k,rank(i; k; p) � 1) rank(i; k + 1; p) = 0:If the rank of the machine is 0, then it stays 0. If the rank of machine i is 1, then by de�nition ofrank, the parent of i in round k knew of a machine u 2 pleaders(p). From our algorithm, i willlearn about u in phase k. Therefore, its rank will become 0 in the next round.8

We now show thatrank(i; k; p) > 1) rank(i; k + 1; p) � drank(i; k; p)=2eLet v be the least ancestor of i which knows of some machine u 2 pleaders(p). De�ne W tobe the set of machines along the path (based on the parent pointer) from i to the machine v. Wetake W to include i but not v. Note that the size of W is equal to the rank of i.After round k, either all machines inW have their parent pointers inW [fvg or some machinein W has a parent pointer outside of W . We consider both possibilities:Case 1 8w 2W : parent(w; k + 1; p) 2W [fvg.In this case, for any w 2W such that parent(w; k; p) 6= v, we haveparent(w; k + 1; p) = parent(parent(w; k; p); k; p):This implies rank(i; k + 1; p) � drank(i; k; p)=2e. This is the standard pointer jumpingtechnique used in design of parallel algorithms.Case 2 9w 2W : parent(w; k + 1; p) 62W [fvg.Let y be the �rst machine on the path from i to v for which parent(y; k + 1; p) 62 W [fvg.There are two subcases. Either, y was contacted by some other machine and y changed itsparent, or y was a child of v in round k and in round k+1 its parent became parent(v; k; p).If y was contacted by some other machine, that machine must be a leader and it followsthat rank(y; k + 1; p) = 0. If y was a child of v, then its rank is 1 and it follows again thatrank(y; k + 1; p) = 0.Now consider any machine i0 on the path from i to y; for each such machine, its parent in roundk+1 is inW [fvg (since by hypothesis, y was the �rst machine such that parent(y; k+1; p) 62W [fvg). Hence parent(i0; k+1; p) = parent(parent(i0; k; p); k; p). Analogous to Case 1, thedistance of i to y is halved. Since rank(y; k + 1; p) = 0, it follows that rank(i; k + 1; p) �drank(i; k; p)=2e.By the arguments above, in t rounds, the rank of every machine is at most 1; in one moreround, the rank of each machine becomes 0.We now show that the number of leaders in every phase go down by at least a factor of 2.The main argument would show that in a phase every leader x will either become a nonleader orwill capture another leader y. It is clear that once a leader is captured, from our algorithm y willcontinue reporting to x unless it �nds a bigger identi�er. In that case, from the de�nition of thehelper, we are guaranteed that x will become a nonleader in the next round. Observe that thehelper function is designed such that if y used to report to x and then stopped reporting to x, theny or a machine with a similar characteristic is used as a helper.Theorem 3 If jpleaders(p)j > 1, then jpleaders(p+ 1)j � jpleaders(p)j=2.Proof: It is clear that pleaders(p + 1) � pleaders(p). We show that for any machine u 2pleaders(p+ 1) there exists a machine x 2 pleaders(p)� pleaders(p+ 1), such that parent(x; t+9

3; p) = u. Since a machine cannot have two parents, it follows that the number of leaders is at leasthalved in each phase.Consider the round t+ 1 for any machine u in pleaders(p + 1). Let v be the helper machinefor u. We �rst claim that v knows a machine x, di�erent from u, which is either bigger than u, oris a member of pleaders(p). Formally,9x : K(v; x; t + 1; p) ^ ((u < x) _ (x 2 pleader(p) ^ (x 6= u))): (1)From Theorem 2, we know that K(v; w; t + 1; p) for some w 2 pleaders(p). If w 6= u, we aredone because w discharges the existential requirement. Otherwise, w = u. Since K(v; u; t + 1; p)and parent(v; t+ 1; p) 6= u (because v is the helper machine for u), we get that v must know someother machine with a strictly greater identi�er. This proves our claim.From the above claim, and the fact that the neighbor list of v is sent to u in round t+ 1, oneof the following cases holds for round t+ 2.Case 1 9x : K(u; x; t+ 2; p) ^ (u < x).This implies :leader(u; t+ 2; p). Therefore u 62 pleaders(p+ 1).Case 2 9x : K(u; x; t+ 2; p) ^ (x 2 pleaders(p) ^ (x 6= u)).If (u < x), Case 1 holds. So now consider the case when x < u. In round t + 2 dueto our strategy for choosing helper, either machine u is not a leader or it will contact themachine with the highest (level, id). This implies that u will contact the machine x or amachine which was a leader for at least as many rounds as x. Call this machine y. Clearly,y 2 pleaders(p). If u = parent(y; t + 3; p), u has managed to capture y and we are done;otherwise, 9z : K(u; z; t+3; p)^(u < z). This implies that u 62 pleaders(p+1), a contradiction.Note that the level numbers known to a machine at a particular round are only estimates, andmay not be the true level numbers at that round; however, the true level numbers are no less thanthe estimates. Let � be the total number of rounds which have taken place when phase p begins.Since children of the leader get their estimate updated in the �rst round of phase p, any machine inthe tree of the leader will have its estimate at least equal to �. Thus in Theorem 3 the machine u'sestimate of x's level number is at least �. Therefore, the node it contacts will have a level numberat least �.We now have the following result.Theorem 4 The Fast Leader Election algorithm terminates in O(log2n) rounds with a uniqueleader.Proof: From Theorem 3, the number of leaders get at least halved in every phase. The totalnumber of leaders in the �rst phase is bounded above by n. Therefore, at most logn phases arerequired for the number of leaders to reduce to 1. Each phase is log n + 3; the result followsimmediately.Once there is only one leader, from Theorem 2 we know that in O(log n) rounds every machinewill report to that leader. At that point, the leader will terminate declaring itself to be the globalleader based on Theorem 1. 10

Since a machine initiates at most one message per round it is clear that the message complexityis O(n log2 n) and the pointer complexity (the number of pointers communicated) is O(n2 log2 n).4 ConclusionIn summary we have developed an e�cient algorithm for RDP which overcomes key limitations ofpreviously o�ered solutions. For brevity, we have omitted experimental results; however, simula-tions on the Georgia Tech Internetwork Topology Models [11] indicate that name-dropper takes twoto four times as many rounds as fast-leader to achieve convergence. More signi�cantly, it was alwaysthe case that both achieved convergence in far fewer than log2 n rounds; however, name-dropperhad no way to determine this.It is relatively straightforward to use the ideas underlying fast-leader to develop a convergencedetection algorithm, which can run in conjunction with any resource discovery thus providing themwith a stopping rule, without any increase in message complexity. Additionally, fast-leader can bemodi�ed to achieve fast solutions to other problems in distributed computing, such as the topologydiscovery problem. Because of space limitations, we do not present these applications.One shortcoming of fast-leader is that it requires more memory, and more computation by eachmachine in a round. However, given the low cost of memory, and the relative speeds of computersand networks [9, page 73] this should not signi�cantly a�ect performance.Another shortcoming of fast-leader is that rounds are assumed to be synchronous. However,the individual transactions can be made asynchronous; we conjecture that even in the asynchronouscase, fast-leader will perform well.A more signi�cant limitation of fast-leader is the fact that when it is close to convergence,there will be a small set of leaders, and each will communicate with a large number of followers.Consequently, leaders may get swamped. (The possibility of swamping exists with name-droppertoo, e.g., in a star topology.) There are some obvious optimizations to fast-leader, which alleviatethis problem. For example, instead of sending the entire neighbor list to the parent in every round,a machine can send only the new information it has learnt in the last round. With this optimizationit is clear that no machine can ever receive more than n pointers from any machine. To implementthis optimization, it is su�cient for every machine to remember the parent and the message it sentin the last round. More generally, there is a large body of literature on load-balancing, e.g., [5],which can be applied to this problem. We are investigating extensions to fast-leader in whichleaders can transfer some of their transactions to their followers.The fast-leader algorithm is the simplest algorithm that we were able to prove a poly-logarithmictime bound on; however, we believe that simpler versions of fast-leader exist which are also havepoly-logarithmic time complexity.References[1] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations and Advanced Topics.McGraw Hill, 1998. 11

[2] F. Y. Chin, J. Lam, and I. Chen. E�cient parallel algorithms for some graph problems. Communicationsof the ACM, 25(9):659{665, 1982.[3] Mor Harchol-Balter, Tom Leighton, and Daniel Lewin. Resource Discovery in Distributed Networks. InSymposium on Principles of Distributed Computing, May 1999.[4] Akamai Inc. www.akamai.com.[5] David Karger, Eric Lehman, Tom Leighton, Matthew Levine, Daniel Lewin, and Rina Panigrahy. Con-sistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hotspots on the WorldWide Web. In Proc. ACM Symposium on the Theory of Computing, May 1997.[6] S. Keshav. An Engineering Approach to Computer Networking . Addison-Wesley, 1997.[7] John Moy. RFC 1583. http://www.dsi.unive.it/Connected/RFC/1583, 1994.[8] Y. Shiloach and U. Vishkin. An o(n log n) parallel connectivity algorithm. Journal of Algorithms,3(1):57{67, 1982.[9] Mark Stemm. A Network Measurement Architecture for Adaptive Applications. PhD thesis, The Uni-versity of California at Berkeley, 1999.[10] Chandramohan A. Thekkath, Timothy Mann, and Edward K. Lee. Frangipani: A Scalable DistributedFile System. In ACM Symposium on Operating System Principles, October 1997.[11] Ellen W. Zegura, Ken Calvert, and S. Bhattacharjee. How to Model an Internetwork. In Proc. IEEEInfocom, 1996.

12

